xref: /openbmc/linux/drivers/crypto/cavium/nitrox/nitrox_hal.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/delay.h>
3 
4 #include "nitrox_dev.h"
5 #include "nitrox_csr.h"
6 
7 #define PLL_REF_CLK 50
8 #define MAX_CSR_RETRIES 10
9 
10 /**
11  * emu_enable_cores - Enable EMU cluster cores.
12  * @ndev: NITROX device
13  */
14 static void emu_enable_cores(struct nitrox_device *ndev)
15 {
16 	union emu_se_enable emu_se;
17 	union emu_ae_enable emu_ae;
18 	int i;
19 
20 	/* AE cores 20 per cluster */
21 	emu_ae.value = 0;
22 	emu_ae.s.enable = 0xfffff;
23 
24 	/* SE cores 16 per cluster */
25 	emu_se.value = 0;
26 	emu_se.s.enable = 0xffff;
27 
28 	/* enable per cluster cores */
29 	for (i = 0; i < NR_CLUSTERS; i++) {
30 		nitrox_write_csr(ndev, EMU_AE_ENABLEX(i), emu_ae.value);
31 		nitrox_write_csr(ndev, EMU_SE_ENABLEX(i), emu_se.value);
32 	}
33 }
34 
35 /**
36  * nitrox_config_emu_unit - configure EMU unit.
37  * @ndev: NITROX device
38  */
39 void nitrox_config_emu_unit(struct nitrox_device *ndev)
40 {
41 	union emu_wd_int_ena_w1s emu_wd_int;
42 	union emu_ge_int_ena_w1s emu_ge_int;
43 	u64 offset;
44 	int i;
45 
46 	/* enable cores */
47 	emu_enable_cores(ndev);
48 
49 	/* enable general error and watch dog interrupts */
50 	emu_ge_int.value = 0;
51 	emu_ge_int.s.se_ge = 0xffff;
52 	emu_ge_int.s.ae_ge = 0xfffff;
53 	emu_wd_int.value = 0;
54 	emu_wd_int.s.se_wd = 1;
55 
56 	for (i = 0; i < NR_CLUSTERS; i++) {
57 		offset = EMU_WD_INT_ENA_W1SX(i);
58 		nitrox_write_csr(ndev, offset, emu_wd_int.value);
59 		offset = EMU_GE_INT_ENA_W1SX(i);
60 		nitrox_write_csr(ndev, offset, emu_ge_int.value);
61 	}
62 }
63 
64 static void reset_pkt_input_ring(struct nitrox_device *ndev, int ring)
65 {
66 	union nps_pkt_in_instr_ctl pkt_in_ctl;
67 	union nps_pkt_in_done_cnts pkt_in_cnts;
68 	int max_retries = MAX_CSR_RETRIES;
69 	u64 offset;
70 
71 	/* step 1: disable the ring, clear enable bit */
72 	offset = NPS_PKT_IN_INSTR_CTLX(ring);
73 	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
74 	pkt_in_ctl.s.enb = 0;
75 	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
76 
77 	/* step 2: wait to clear [ENB] */
78 	usleep_range(100, 150);
79 	do {
80 		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
81 		if (!pkt_in_ctl.s.enb)
82 			break;
83 		udelay(50);
84 	} while (max_retries--);
85 
86 	/* step 3: clear done counts */
87 	offset = NPS_PKT_IN_DONE_CNTSX(ring);
88 	pkt_in_cnts.value = nitrox_read_csr(ndev, offset);
89 	nitrox_write_csr(ndev, offset, pkt_in_cnts.value);
90 	usleep_range(50, 100);
91 }
92 
93 void enable_pkt_input_ring(struct nitrox_device *ndev, int ring)
94 {
95 	union nps_pkt_in_instr_ctl pkt_in_ctl;
96 	int max_retries = MAX_CSR_RETRIES;
97 	u64 offset;
98 
99 	/* 64-byte instruction size */
100 	offset = NPS_PKT_IN_INSTR_CTLX(ring);
101 	pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
102 	pkt_in_ctl.s.is64b = 1;
103 	pkt_in_ctl.s.enb = 1;
104 	nitrox_write_csr(ndev, offset, pkt_in_ctl.value);
105 
106 	/* wait for set [ENB] */
107 	do {
108 		pkt_in_ctl.value = nitrox_read_csr(ndev, offset);
109 		if (pkt_in_ctl.s.enb)
110 			break;
111 		udelay(50);
112 	} while (max_retries--);
113 }
114 
115 /**
116  * nitrox_config_pkt_input_rings - configure Packet Input Rings
117  * @ndev: NITROX device
118  */
119 void nitrox_config_pkt_input_rings(struct nitrox_device *ndev)
120 {
121 	int i;
122 
123 	for (i = 0; i < ndev->nr_queues; i++) {
124 		struct nitrox_cmdq *cmdq = &ndev->pkt_inq[i];
125 		union nps_pkt_in_instr_rsize pkt_in_rsize;
126 		union nps_pkt_in_instr_baoff_dbell pkt_in_dbell;
127 		u64 offset;
128 
129 		reset_pkt_input_ring(ndev, i);
130 
131 		/**
132 		 * step 4:
133 		 * configure ring base address 16-byte aligned,
134 		 * size and interrupt threshold.
135 		 */
136 		offset = NPS_PKT_IN_INSTR_BADDRX(i);
137 		nitrox_write_csr(ndev, offset, cmdq->dma);
138 
139 		/* configure ring size */
140 		offset = NPS_PKT_IN_INSTR_RSIZEX(i);
141 		pkt_in_rsize.value = 0;
142 		pkt_in_rsize.s.rsize = ndev->qlen;
143 		nitrox_write_csr(ndev, offset, pkt_in_rsize.value);
144 
145 		/* set high threshold for pkt input ring interrupts */
146 		offset = NPS_PKT_IN_INT_LEVELSX(i);
147 		nitrox_write_csr(ndev, offset, 0xffffffff);
148 
149 		/* step 5: clear off door bell counts */
150 		offset = NPS_PKT_IN_INSTR_BAOFF_DBELLX(i);
151 		pkt_in_dbell.value = 0;
152 		pkt_in_dbell.s.dbell = 0xffffffff;
153 		nitrox_write_csr(ndev, offset, pkt_in_dbell.value);
154 
155 		/* enable the ring */
156 		enable_pkt_input_ring(ndev, i);
157 	}
158 }
159 
160 static void reset_pkt_solicit_port(struct nitrox_device *ndev, int port)
161 {
162 	union nps_pkt_slc_ctl pkt_slc_ctl;
163 	union nps_pkt_slc_cnts pkt_slc_cnts;
164 	int max_retries = MAX_CSR_RETRIES;
165 	u64 offset;
166 
167 	/* step 1: disable slc port */
168 	offset = NPS_PKT_SLC_CTLX(port);
169 	pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
170 	pkt_slc_ctl.s.enb = 0;
171 	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
172 
173 	/* step 2 */
174 	usleep_range(100, 150);
175 	/* wait to clear [ENB] */
176 	do {
177 		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
178 		if (!pkt_slc_ctl.s.enb)
179 			break;
180 		udelay(50);
181 	} while (max_retries--);
182 
183 	/* step 3: clear slc counters */
184 	offset = NPS_PKT_SLC_CNTSX(port);
185 	pkt_slc_cnts.value = nitrox_read_csr(ndev, offset);
186 	nitrox_write_csr(ndev, offset, pkt_slc_cnts.value);
187 	usleep_range(50, 100);
188 }
189 
190 void enable_pkt_solicit_port(struct nitrox_device *ndev, int port)
191 {
192 	union nps_pkt_slc_ctl pkt_slc_ctl;
193 	int max_retries = MAX_CSR_RETRIES;
194 	u64 offset;
195 
196 	offset = NPS_PKT_SLC_CTLX(port);
197 	pkt_slc_ctl.value = 0;
198 	pkt_slc_ctl.s.enb = 1;
199 	/*
200 	 * 8 trailing 0x00 bytes will be added
201 	 * to the end of the outgoing packet.
202 	 */
203 	pkt_slc_ctl.s.z = 1;
204 	/* enable response header */
205 	pkt_slc_ctl.s.rh = 1;
206 	nitrox_write_csr(ndev, offset, pkt_slc_ctl.value);
207 
208 	/* wait to set [ENB] */
209 	do {
210 		pkt_slc_ctl.value = nitrox_read_csr(ndev, offset);
211 		if (pkt_slc_ctl.s.enb)
212 			break;
213 		udelay(50);
214 	} while (max_retries--);
215 }
216 
217 static void config_pkt_solicit_port(struct nitrox_device *ndev, int port)
218 {
219 	union nps_pkt_slc_int_levels pkt_slc_int;
220 	u64 offset;
221 
222 	reset_pkt_solicit_port(ndev, port);
223 
224 	/* step 4: configure interrupt levels */
225 	offset = NPS_PKT_SLC_INT_LEVELSX(port);
226 	pkt_slc_int.value = 0;
227 	/* time interrupt threshold */
228 	pkt_slc_int.s.timet = 0x3fffff;
229 	nitrox_write_csr(ndev, offset, pkt_slc_int.value);
230 
231 	/* enable the solicit port */
232 	enable_pkt_solicit_port(ndev, port);
233 }
234 
235 void nitrox_config_pkt_solicit_ports(struct nitrox_device *ndev)
236 {
237 	int i;
238 
239 	for (i = 0; i < ndev->nr_queues; i++)
240 		config_pkt_solicit_port(ndev, i);
241 }
242 
243 /**
244  * enable_nps_interrupts - enable NPS interrutps
245  * @ndev: NITROX device.
246  *
247  * This includes NPS core, packet in and slc interrupts.
248  */
249 static void enable_nps_interrupts(struct nitrox_device *ndev)
250 {
251 	union nps_core_int_ena_w1s core_int;
252 
253 	/* NPS core interrutps */
254 	core_int.value = 0;
255 	core_int.s.host_wr_err = 1;
256 	core_int.s.host_wr_timeout = 1;
257 	core_int.s.exec_wr_timeout = 1;
258 	core_int.s.npco_dma_malform = 1;
259 	core_int.s.host_nps_wr_err = 1;
260 	nitrox_write_csr(ndev, NPS_CORE_INT_ENA_W1S, core_int.value);
261 
262 	/* NPS packet in ring interrupts */
263 	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_LO_ENA_W1S, (~0ULL));
264 	nitrox_write_csr(ndev, NPS_PKT_IN_RERR_HI_ENA_W1S, (~0ULL));
265 	nitrox_write_csr(ndev, NPS_PKT_IN_ERR_TYPE_ENA_W1S, (~0ULL));
266 	/* NPS packet slc port interrupts */
267 	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_HI_ENA_W1S, (~0ULL));
268 	nitrox_write_csr(ndev, NPS_PKT_SLC_RERR_LO_ENA_W1S, (~0ULL));
269 	nitrox_write_csr(ndev, NPS_PKT_SLC_ERR_TYPE_ENA_W1S, (~0uLL));
270 }
271 
272 void nitrox_config_nps_unit(struct nitrox_device *ndev)
273 {
274 	union nps_core_gbl_vfcfg core_gbl_vfcfg;
275 
276 	/* endian control information */
277 	nitrox_write_csr(ndev, NPS_CORE_CONTROL, 1ULL);
278 
279 	/* disable ILK interface */
280 	core_gbl_vfcfg.value = 0;
281 	core_gbl_vfcfg.s.ilk_disable = 1;
282 	core_gbl_vfcfg.s.cfg = __NDEV_MODE_PF;
283 	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, core_gbl_vfcfg.value);
284 	/* config input and solicit ports */
285 	nitrox_config_pkt_input_rings(ndev);
286 	nitrox_config_pkt_solicit_ports(ndev);
287 
288 	/* enable interrupts */
289 	enable_nps_interrupts(ndev);
290 }
291 
292 void nitrox_config_pom_unit(struct nitrox_device *ndev)
293 {
294 	union pom_int_ena_w1s pom_int;
295 	int i;
296 
297 	/* enable pom interrupts */
298 	pom_int.value = 0;
299 	pom_int.s.illegal_dport = 1;
300 	nitrox_write_csr(ndev, POM_INT_ENA_W1S, pom_int.value);
301 
302 	/* enable perf counters */
303 	for (i = 0; i < ndev->hw.se_cores; i++)
304 		nitrox_write_csr(ndev, POM_PERF_CTL, BIT_ULL(i));
305 }
306 
307 /**
308  * nitrox_config_rand_unit - enable NITROX random number unit
309  * @ndev: NITROX device
310  */
311 void nitrox_config_rand_unit(struct nitrox_device *ndev)
312 {
313 	union efl_rnm_ctl_status efl_rnm_ctl;
314 	u64 offset;
315 
316 	offset = EFL_RNM_CTL_STATUS;
317 	efl_rnm_ctl.value = nitrox_read_csr(ndev, offset);
318 	efl_rnm_ctl.s.ent_en = 1;
319 	efl_rnm_ctl.s.rng_en = 1;
320 	nitrox_write_csr(ndev, offset, efl_rnm_ctl.value);
321 }
322 
323 void nitrox_config_efl_unit(struct nitrox_device *ndev)
324 {
325 	int i;
326 
327 	for (i = 0; i < NR_CLUSTERS; i++) {
328 		union efl_core_int_ena_w1s efl_core_int;
329 		u64 offset;
330 
331 		/* EFL core interrupts */
332 		offset = EFL_CORE_INT_ENA_W1SX(i);
333 		efl_core_int.value = 0;
334 		efl_core_int.s.len_ovr = 1;
335 		efl_core_int.s.d_left = 1;
336 		efl_core_int.s.epci_decode_err = 1;
337 		nitrox_write_csr(ndev, offset, efl_core_int.value);
338 
339 		offset = EFL_CORE_VF_ERR_INT0_ENA_W1SX(i);
340 		nitrox_write_csr(ndev, offset, (~0ULL));
341 		offset = EFL_CORE_VF_ERR_INT1_ENA_W1SX(i);
342 		nitrox_write_csr(ndev, offset, (~0ULL));
343 	}
344 }
345 
346 void nitrox_config_bmi_unit(struct nitrox_device *ndev)
347 {
348 	union bmi_ctl bmi_ctl;
349 	union bmi_int_ena_w1s bmi_int_ena;
350 	u64 offset;
351 
352 	/* no threshold limits for PCIe */
353 	offset = BMI_CTL;
354 	bmi_ctl.value = nitrox_read_csr(ndev, offset);
355 	bmi_ctl.s.max_pkt_len = 0xff;
356 	bmi_ctl.s.nps_free_thrsh = 0xff;
357 	bmi_ctl.s.nps_hdrq_thrsh = 0x7a;
358 	nitrox_write_csr(ndev, offset, bmi_ctl.value);
359 
360 	/* enable interrupts */
361 	offset = BMI_INT_ENA_W1S;
362 	bmi_int_ena.value = 0;
363 	bmi_int_ena.s.max_len_err_nps = 1;
364 	bmi_int_ena.s.pkt_rcv_err_nps = 1;
365 	bmi_int_ena.s.fpf_undrrn = 1;
366 	nitrox_write_csr(ndev, offset, bmi_int_ena.value);
367 }
368 
369 void nitrox_config_bmo_unit(struct nitrox_device *ndev)
370 {
371 	union bmo_ctl2 bmo_ctl2;
372 	u64 offset;
373 
374 	/* no threshold limits for PCIe */
375 	offset = BMO_CTL2;
376 	bmo_ctl2.value = nitrox_read_csr(ndev, offset);
377 	bmo_ctl2.s.nps_slc_buf_thrsh = 0xff;
378 	nitrox_write_csr(ndev, offset, bmo_ctl2.value);
379 }
380 
381 void invalidate_lbc(struct nitrox_device *ndev)
382 {
383 	union lbc_inval_ctl lbc_ctl;
384 	union lbc_inval_status lbc_stat;
385 	int max_retries = MAX_CSR_RETRIES;
386 	u64 offset;
387 
388 	/* invalidate LBC */
389 	offset = LBC_INVAL_CTL;
390 	lbc_ctl.value = nitrox_read_csr(ndev, offset);
391 	lbc_ctl.s.cam_inval_start = 1;
392 	nitrox_write_csr(ndev, offset, lbc_ctl.value);
393 
394 	offset = LBC_INVAL_STATUS;
395 	do {
396 		lbc_stat.value = nitrox_read_csr(ndev, offset);
397 		if (lbc_stat.s.done)
398 			break;
399 		udelay(50);
400 	} while (max_retries--);
401 }
402 
403 void nitrox_config_lbc_unit(struct nitrox_device *ndev)
404 {
405 	union lbc_int_ena_w1s lbc_int_ena;
406 	u64 offset;
407 
408 	invalidate_lbc(ndev);
409 
410 	/* enable interrupts */
411 	offset = LBC_INT_ENA_W1S;
412 	lbc_int_ena.value = 0;
413 	lbc_int_ena.s.dma_rd_err = 1;
414 	lbc_int_ena.s.over_fetch_err = 1;
415 	lbc_int_ena.s.cam_inval_abort = 1;
416 	lbc_int_ena.s.cam_hard_err = 1;
417 	nitrox_write_csr(ndev, offset, lbc_int_ena.value);
418 
419 	offset = LBC_PLM_VF1_64_INT_ENA_W1S;
420 	nitrox_write_csr(ndev, offset, (~0ULL));
421 	offset = LBC_PLM_VF65_128_INT_ENA_W1S;
422 	nitrox_write_csr(ndev, offset, (~0ULL));
423 
424 	offset = LBC_ELM_VF1_64_INT_ENA_W1S;
425 	nitrox_write_csr(ndev, offset, (~0ULL));
426 	offset = LBC_ELM_VF65_128_INT_ENA_W1S;
427 	nitrox_write_csr(ndev, offset, (~0ULL));
428 }
429 
430 void config_nps_core_vfcfg_mode(struct nitrox_device *ndev, enum vf_mode mode)
431 {
432 	union nps_core_gbl_vfcfg vfcfg;
433 
434 	vfcfg.value = nitrox_read_csr(ndev, NPS_CORE_GBL_VFCFG);
435 	vfcfg.s.cfg = mode & 0x7;
436 
437 	nitrox_write_csr(ndev, NPS_CORE_GBL_VFCFG, vfcfg.value);
438 }
439 
440 static const char *get_core_option(u8 se_cores, u8 ae_cores)
441 {
442 	const char *option = "";
443 
444 	if (ae_cores == AE_MAX_CORES) {
445 		switch (se_cores) {
446 		case SE_MAX_CORES:
447 			option = "60";
448 			break;
449 		case 40:
450 			option = "60s";
451 			break;
452 		}
453 	} else if (ae_cores == (AE_MAX_CORES / 2)) {
454 		option = "30";
455 	} else {
456 		option = "60i";
457 	}
458 
459 	return option;
460 }
461 
462 static const char *get_feature_option(u8 zip_cores, int core_freq)
463 {
464 	if (zip_cores == 0)
465 		return "";
466 	else if (zip_cores < ZIP_MAX_CORES)
467 		return "-C15";
468 
469 	if (core_freq >= 850)
470 		return "-C45";
471 	else if (core_freq >= 750)
472 		return "-C35";
473 	else if (core_freq >= 550)
474 		return "-C25";
475 
476 	return "";
477 }
478 
479 void nitrox_get_hwinfo(struct nitrox_device *ndev)
480 {
481 	union emu_fuse_map emu_fuse;
482 	union rst_boot rst_boot;
483 	union fus_dat1 fus_dat1;
484 	unsigned char name[IFNAMSIZ * 2] = {};
485 	int i, dead_cores;
486 	u64 offset;
487 
488 	/* get core frequency */
489 	offset = RST_BOOT;
490 	rst_boot.value = nitrox_read_csr(ndev, offset);
491 	ndev->hw.freq = (rst_boot.pnr_mul + 3) * PLL_REF_CLK;
492 
493 	for (i = 0; i < NR_CLUSTERS; i++) {
494 		offset = EMU_FUSE_MAPX(i);
495 		emu_fuse.value = nitrox_read_csr(ndev, offset);
496 		if (emu_fuse.s.valid) {
497 			dead_cores = hweight32(emu_fuse.s.ae_fuse);
498 			ndev->hw.ae_cores += AE_CORES_PER_CLUSTER - dead_cores;
499 			dead_cores = hweight16(emu_fuse.s.se_fuse);
500 			ndev->hw.se_cores += SE_CORES_PER_CLUSTER - dead_cores;
501 		}
502 	}
503 	/* find zip hardware availability */
504 	offset = FUS_DAT1;
505 	fus_dat1.value = nitrox_read_csr(ndev, offset);
506 	if (!fus_dat1.nozip) {
507 		dead_cores = hweight8(fus_dat1.zip_info);
508 		ndev->hw.zip_cores = ZIP_MAX_CORES - dead_cores;
509 	}
510 
511 	/* determine the partname
512 	 * CNN55<core option>-<freq><pincount>-<feature option>-<rev>
513 	 */
514 	snprintf(name, sizeof(name), "CNN55%s-%3dBG676%s-1.%u",
515 		 get_core_option(ndev->hw.se_cores, ndev->hw.ae_cores),
516 		 ndev->hw.freq,
517 		 get_feature_option(ndev->hw.zip_cores, ndev->hw.freq),
518 		 ndev->hw.revision_id);
519 
520 	/* copy partname */
521 	strncpy(ndev->hw.partname, name, sizeof(ndev->hw.partname));
522 }
523 
524 void enable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
525 {
526 	u64 value = ~0ULL;
527 	u64 reg_addr;
528 
529 	/* Mailbox interrupt low enable set register */
530 	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1S;
531 	nitrox_write_csr(ndev, reg_addr, value);
532 
533 	/* Mailbox interrupt high enable set register */
534 	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1S;
535 	nitrox_write_csr(ndev, reg_addr, value);
536 }
537 
538 void disable_pf2vf_mbox_interrupts(struct nitrox_device *ndev)
539 {
540 	u64 value = ~0ULL;
541 	u64 reg_addr;
542 
543 	/* Mailbox interrupt low enable clear register */
544 	reg_addr = NPS_PKT_MBOX_INT_LO_ENA_W1C;
545 	nitrox_write_csr(ndev, reg_addr, value);
546 
547 	/* Mailbox interrupt high enable clear register */
548 	reg_addr = NPS_PKT_MBOX_INT_HI_ENA_W1C;
549 	nitrox_write_csr(ndev, reg_addr, value);
550 }
551