1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Cavium, Inc. 4 */ 5 6 #include <linux/interrupt.h> 7 #include <linux/module.h> 8 9 #include "cptvf.h" 10 11 #define DRV_NAME "thunder-cptvf" 12 #define DRV_VERSION "1.0" 13 14 struct cptvf_wqe { 15 struct tasklet_struct twork; 16 void *cptvf; 17 u32 qno; 18 }; 19 20 struct cptvf_wqe_info { 21 struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF]; 22 }; 23 24 static void vq_work_handler(unsigned long data) 25 { 26 struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data; 27 struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0]; 28 29 vq_post_process(cwqe->cptvf, cwqe->qno); 30 } 31 32 static int init_worker_threads(struct cpt_vf *cptvf) 33 { 34 struct pci_dev *pdev = cptvf->pdev; 35 struct cptvf_wqe_info *cwqe_info; 36 int i; 37 38 cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL); 39 if (!cwqe_info) 40 return -ENOMEM; 41 42 if (cptvf->nr_queues) { 43 dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n", 44 cptvf->nr_queues); 45 } 46 47 for (i = 0; i < cptvf->nr_queues; i++) { 48 tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler, 49 (u64)cwqe_info); 50 cwqe_info->vq_wqe[i].qno = i; 51 cwqe_info->vq_wqe[i].cptvf = cptvf; 52 } 53 54 cptvf->wqe_info = cwqe_info; 55 56 return 0; 57 } 58 59 static void cleanup_worker_threads(struct cpt_vf *cptvf) 60 { 61 struct cptvf_wqe_info *cwqe_info; 62 struct pci_dev *pdev = cptvf->pdev; 63 int i; 64 65 cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info; 66 if (!cwqe_info) 67 return; 68 69 if (cptvf->nr_queues) { 70 dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n", 71 cptvf->nr_queues); 72 } 73 74 for (i = 0; i < cptvf->nr_queues; i++) 75 tasklet_kill(&cwqe_info->vq_wqe[i].twork); 76 77 kfree_sensitive(cwqe_info); 78 cptvf->wqe_info = NULL; 79 } 80 81 static void free_pending_queues(struct pending_qinfo *pqinfo) 82 { 83 int i; 84 struct pending_queue *queue; 85 86 for_each_pending_queue(pqinfo, queue, i) { 87 if (!queue->head) 88 continue; 89 90 /* free single queue */ 91 kfree_sensitive((queue->head)); 92 93 queue->front = 0; 94 queue->rear = 0; 95 96 return; 97 } 98 99 pqinfo->qlen = 0; 100 pqinfo->nr_queues = 0; 101 } 102 103 static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen, 104 u32 nr_queues) 105 { 106 u32 i; 107 size_t size; 108 int ret; 109 struct pending_queue *queue = NULL; 110 111 pqinfo->nr_queues = nr_queues; 112 pqinfo->qlen = qlen; 113 114 size = (qlen * sizeof(struct pending_entry)); 115 116 for_each_pending_queue(pqinfo, queue, i) { 117 queue->head = kzalloc((size), GFP_KERNEL); 118 if (!queue->head) { 119 ret = -ENOMEM; 120 goto pending_qfail; 121 } 122 123 queue->front = 0; 124 queue->rear = 0; 125 atomic64_set((&queue->pending_count), (0)); 126 127 /* init queue spin lock */ 128 spin_lock_init(&queue->lock); 129 } 130 131 return 0; 132 133 pending_qfail: 134 free_pending_queues(pqinfo); 135 136 return ret; 137 } 138 139 static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues) 140 { 141 struct pci_dev *pdev = cptvf->pdev; 142 int ret; 143 144 if (!nr_queues) 145 return 0; 146 147 ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues); 148 if (ret) { 149 dev_err(&pdev->dev, "failed to setup pending queues (%u)\n", 150 nr_queues); 151 return ret; 152 } 153 154 return 0; 155 } 156 157 static void cleanup_pending_queues(struct cpt_vf *cptvf) 158 { 159 struct pci_dev *pdev = cptvf->pdev; 160 161 if (!cptvf->nr_queues) 162 return; 163 164 dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n", 165 cptvf->nr_queues); 166 free_pending_queues(&cptvf->pqinfo); 167 } 168 169 static void free_command_queues(struct cpt_vf *cptvf, 170 struct command_qinfo *cqinfo) 171 { 172 int i; 173 struct command_queue *queue = NULL; 174 struct command_chunk *chunk = NULL; 175 struct pci_dev *pdev = cptvf->pdev; 176 struct hlist_node *node; 177 178 /* clean up for each queue */ 179 for (i = 0; i < cptvf->nr_queues; i++) { 180 queue = &cqinfo->queue[i]; 181 if (hlist_empty(&cqinfo->queue[i].chead)) 182 continue; 183 184 hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead, 185 nextchunk) { 186 dma_free_coherent(&pdev->dev, chunk->size, 187 chunk->head, 188 chunk->dma_addr); 189 chunk->head = NULL; 190 chunk->dma_addr = 0; 191 hlist_del(&chunk->nextchunk); 192 kfree_sensitive(chunk); 193 } 194 195 queue->nchunks = 0; 196 queue->idx = 0; 197 } 198 199 /* common cleanup */ 200 cqinfo->cmd_size = 0; 201 } 202 203 static int alloc_command_queues(struct cpt_vf *cptvf, 204 struct command_qinfo *cqinfo, size_t cmd_size, 205 u32 qlen) 206 { 207 int i; 208 size_t q_size; 209 struct command_queue *queue = NULL; 210 struct pci_dev *pdev = cptvf->pdev; 211 212 /* common init */ 213 cqinfo->cmd_size = cmd_size; 214 /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */ 215 cptvf->qsize = min(qlen, cqinfo->qchunksize) * 216 CPT_NEXT_CHUNK_PTR_SIZE + 1; 217 /* Qsize in bytes to create space for alignment */ 218 q_size = qlen * cqinfo->cmd_size; 219 220 /* per queue initialization */ 221 for (i = 0; i < cptvf->nr_queues; i++) { 222 size_t c_size = 0; 223 size_t rem_q_size = q_size; 224 struct command_chunk *curr = NULL, *first = NULL, *last = NULL; 225 u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size; 226 227 queue = &cqinfo->queue[i]; 228 INIT_HLIST_HEAD(&cqinfo->queue[i].chead); 229 do { 230 curr = kzalloc(sizeof(*curr), GFP_KERNEL); 231 if (!curr) 232 goto cmd_qfail; 233 234 c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes : 235 rem_q_size; 236 curr->head = (u8 *)dma_alloc_coherent(&pdev->dev, 237 c_size + CPT_NEXT_CHUNK_PTR_SIZE, 238 &curr->dma_addr, 239 GFP_KERNEL); 240 if (!curr->head) { 241 dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n", 242 i, queue->nchunks); 243 kfree(curr); 244 goto cmd_qfail; 245 } 246 247 curr->size = c_size; 248 if (queue->nchunks == 0) { 249 hlist_add_head(&curr->nextchunk, 250 &cqinfo->queue[i].chead); 251 first = curr; 252 } else { 253 hlist_add_behind(&curr->nextchunk, 254 &last->nextchunk); 255 } 256 257 queue->nchunks++; 258 rem_q_size -= c_size; 259 if (last) 260 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; 261 262 last = curr; 263 } while (rem_q_size); 264 265 /* Make the queue circular */ 266 /* Tie back last chunk entry to head */ 267 curr = first; 268 *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; 269 queue->qhead = curr; 270 spin_lock_init(&queue->lock); 271 } 272 return 0; 273 274 cmd_qfail: 275 free_command_queues(cptvf, cqinfo); 276 return -ENOMEM; 277 } 278 279 static int init_command_queues(struct cpt_vf *cptvf, u32 qlen) 280 { 281 struct pci_dev *pdev = cptvf->pdev; 282 int ret; 283 284 /* setup AE command queues */ 285 ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE, 286 qlen); 287 if (ret) { 288 dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n", 289 cptvf->nr_queues); 290 return ret; 291 } 292 293 return ret; 294 } 295 296 static void cleanup_command_queues(struct cpt_vf *cptvf) 297 { 298 struct pci_dev *pdev = cptvf->pdev; 299 300 if (!cptvf->nr_queues) 301 return; 302 303 dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n", 304 cptvf->nr_queues); 305 free_command_queues(cptvf, &cptvf->cqinfo); 306 } 307 308 static void cptvf_sw_cleanup(struct cpt_vf *cptvf) 309 { 310 cleanup_worker_threads(cptvf); 311 cleanup_pending_queues(cptvf); 312 cleanup_command_queues(cptvf); 313 } 314 315 static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues) 316 { 317 struct pci_dev *pdev = cptvf->pdev; 318 int ret = 0; 319 u32 max_dev_queues = 0; 320 321 max_dev_queues = CPT_NUM_QS_PER_VF; 322 /* possible cpus */ 323 nr_queues = min_t(u32, nr_queues, max_dev_queues); 324 cptvf->nr_queues = nr_queues; 325 326 ret = init_command_queues(cptvf, qlen); 327 if (ret) { 328 dev_err(&pdev->dev, "Failed to setup command queues (%u)\n", 329 nr_queues); 330 return ret; 331 } 332 333 ret = init_pending_queues(cptvf, qlen, nr_queues); 334 if (ret) { 335 dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", 336 nr_queues); 337 goto setup_pqfail; 338 } 339 340 /* Create worker threads for BH processing */ 341 ret = init_worker_threads(cptvf); 342 if (ret) { 343 dev_err(&pdev->dev, "Failed to setup worker threads\n"); 344 goto init_work_fail; 345 } 346 347 return 0; 348 349 init_work_fail: 350 cleanup_worker_threads(cptvf); 351 cleanup_pending_queues(cptvf); 352 353 setup_pqfail: 354 cleanup_command_queues(cptvf); 355 356 return ret; 357 } 358 359 static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec) 360 { 361 irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL); 362 free_cpumask_var(cptvf->affinity_mask[vec]); 363 } 364 365 static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val) 366 { 367 union cptx_vqx_ctl vqx_ctl; 368 369 vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0)); 370 vqx_ctl.s.ena = val; 371 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u); 372 } 373 374 void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val) 375 { 376 union cptx_vqx_doorbell vqx_dbell; 377 378 vqx_dbell.u = cpt_read_csr64(cptvf->reg_base, 379 CPTX_VQX_DOORBELL(0, 0)); 380 vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */ 381 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0), 382 vqx_dbell.u); 383 } 384 385 static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val) 386 { 387 union cptx_vqx_inprog vqx_inprg; 388 389 vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0)); 390 vqx_inprg.s.inflight = val; 391 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u); 392 } 393 394 static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val) 395 { 396 union cptx_vqx_done_wait vqx_dwait; 397 398 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base, 399 CPTX_VQX_DONE_WAIT(0, 0)); 400 vqx_dwait.s.num_wait = val; 401 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0), 402 vqx_dwait.u); 403 } 404 405 static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time) 406 { 407 union cptx_vqx_done_wait vqx_dwait; 408 409 vqx_dwait.u = cpt_read_csr64(cptvf->reg_base, 410 CPTX_VQX_DONE_WAIT(0, 0)); 411 vqx_dwait.s.time_wait = time; 412 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0), 413 vqx_dwait.u); 414 } 415 416 static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf) 417 { 418 union cptx_vqx_misc_ena_w1s vqx_misc_ena; 419 420 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base, 421 CPTX_VQX_MISC_ENA_W1S(0, 0)); 422 /* Set mbox(0) interupts for the requested vf */ 423 vqx_misc_ena.s.swerr = 1; 424 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0), 425 vqx_misc_ena.u); 426 } 427 428 static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf) 429 { 430 union cptx_vqx_misc_ena_w1s vqx_misc_ena; 431 432 vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base, 433 CPTX_VQX_MISC_ENA_W1S(0, 0)); 434 /* Set mbox(0) interupts for the requested vf */ 435 vqx_misc_ena.s.mbox = 1; 436 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0), 437 vqx_misc_ena.u); 438 } 439 440 static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf) 441 { 442 union cptx_vqx_done_ena_w1s vqx_done_ena; 443 444 vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base, 445 CPTX_VQX_DONE_ENA_W1S(0, 0)); 446 /* Set DONE interrupt for the requested vf */ 447 vqx_done_ena.s.done = 1; 448 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0), 449 vqx_done_ena.u); 450 } 451 452 static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf) 453 { 454 union cptx_vqx_misc_int vqx_misc_int; 455 456 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, 457 CPTX_VQX_MISC_INT(0, 0)); 458 /* W1C for the VF */ 459 vqx_misc_int.s.dovf = 1; 460 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), 461 vqx_misc_int.u); 462 } 463 464 static void cptvf_clear_irde_intr(struct cpt_vf *cptvf) 465 { 466 union cptx_vqx_misc_int vqx_misc_int; 467 468 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, 469 CPTX_VQX_MISC_INT(0, 0)); 470 /* W1C for the VF */ 471 vqx_misc_int.s.irde = 1; 472 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), 473 vqx_misc_int.u); 474 } 475 476 static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf) 477 { 478 union cptx_vqx_misc_int vqx_misc_int; 479 480 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, 481 CPTX_VQX_MISC_INT(0, 0)); 482 /* W1C for the VF */ 483 vqx_misc_int.s.nwrp = 1; 484 cpt_write_csr64(cptvf->reg_base, 485 CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u); 486 } 487 488 static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf) 489 { 490 union cptx_vqx_misc_int vqx_misc_int; 491 492 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, 493 CPTX_VQX_MISC_INT(0, 0)); 494 /* W1C for the VF */ 495 vqx_misc_int.s.mbox = 1; 496 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), 497 vqx_misc_int.u); 498 } 499 500 static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf) 501 { 502 union cptx_vqx_misc_int vqx_misc_int; 503 504 vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base, 505 CPTX_VQX_MISC_INT(0, 0)); 506 /* W1C for the VF */ 507 vqx_misc_int.s.swerr = 1; 508 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0), 509 vqx_misc_int.u); 510 } 511 512 static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf) 513 { 514 return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0)); 515 } 516 517 static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq) 518 { 519 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq; 520 struct pci_dev *pdev = cptvf->pdev; 521 u64 intr; 522 523 intr = cptvf_read_vf_misc_intr_status(cptvf); 524 /*Check for MISC interrupt types*/ 525 if (likely(intr & CPT_VF_INTR_MBOX_MASK)) { 526 dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n", 527 intr, cptvf->vfid); 528 cptvf_handle_mbox_intr(cptvf); 529 cptvf_clear_mbox_intr(cptvf); 530 } else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) { 531 cptvf_clear_dovf_intr(cptvf); 532 /*Clear doorbell count*/ 533 cptvf_write_vq_doorbell(cptvf, 0); 534 dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n", 535 intr, cptvf->vfid); 536 } else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) { 537 cptvf_clear_irde_intr(cptvf); 538 dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n", 539 intr, cptvf->vfid); 540 } else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) { 541 cptvf_clear_nwrp_intr(cptvf); 542 dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n", 543 intr, cptvf->vfid); 544 } else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) { 545 cptvf_clear_swerr_intr(cptvf); 546 dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n", 547 intr, cptvf->vfid); 548 } else { 549 dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n", 550 cptvf->vfid); 551 } 552 553 return IRQ_HANDLED; 554 } 555 556 static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf, 557 int qno) 558 { 559 struct cptvf_wqe_info *nwqe_info; 560 561 if (unlikely(qno >= cptvf->nr_queues)) 562 return NULL; 563 nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info; 564 565 return &nwqe_info->vq_wqe[qno]; 566 } 567 568 static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf) 569 { 570 union cptx_vqx_done vqx_done; 571 572 vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0)); 573 return vqx_done.s.done; 574 } 575 576 static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf, 577 u32 ackcnt) 578 { 579 union cptx_vqx_done_ack vqx_dack_cnt; 580 581 vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base, 582 CPTX_VQX_DONE_ACK(0, 0)); 583 vqx_dack_cnt.s.done_ack = ackcnt; 584 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0), 585 vqx_dack_cnt.u); 586 } 587 588 static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq) 589 { 590 struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq; 591 struct pci_dev *pdev = cptvf->pdev; 592 /* Read the number of completions */ 593 u32 intr = cptvf_read_vq_done_count(cptvf); 594 595 if (intr) { 596 struct cptvf_wqe *wqe; 597 598 /* Acknowledge the number of 599 * scheduled completions for processing 600 */ 601 cptvf_write_vq_done_ack(cptvf, intr); 602 wqe = get_cptvf_vq_wqe(cptvf, 0); 603 if (unlikely(!wqe)) { 604 dev_err(&pdev->dev, "No work to schedule for VF (%d)", 605 cptvf->vfid); 606 return IRQ_NONE; 607 } 608 tasklet_hi_schedule(&wqe->twork); 609 } 610 611 return IRQ_HANDLED; 612 } 613 614 static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec) 615 { 616 struct pci_dev *pdev = cptvf->pdev; 617 int cpu; 618 619 if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec], 620 GFP_KERNEL)) { 621 dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d", 622 cptvf->vfid); 623 return; 624 } 625 626 cpu = cptvf->vfid % num_online_cpus(); 627 cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node), 628 cptvf->affinity_mask[vec]); 629 irq_set_affinity_hint(pci_irq_vector(pdev, vec), 630 cptvf->affinity_mask[vec]); 631 } 632 633 static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val) 634 { 635 union cptx_vqx_saddr vqx_saddr; 636 637 vqx_saddr.u = val; 638 cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u); 639 } 640 641 static void cptvf_device_init(struct cpt_vf *cptvf) 642 { 643 u64 base_addr = 0; 644 645 /* Disable the VQ */ 646 cptvf_write_vq_ctl(cptvf, 0); 647 /* Reset the doorbell */ 648 cptvf_write_vq_doorbell(cptvf, 0); 649 /* Clear inflight */ 650 cptvf_write_vq_inprog(cptvf, 0); 651 /* Write VQ SADDR */ 652 /* TODO: for now only one queue, so hard coded */ 653 base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr); 654 cptvf_write_vq_saddr(cptvf, base_addr); 655 /* Configure timerhold / coalescence */ 656 cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD); 657 cptvf_write_vq_done_numwait(cptvf, 1); 658 /* Enable the VQ */ 659 cptvf_write_vq_ctl(cptvf, 1); 660 /* Flag the VF ready */ 661 cptvf->flags |= CPT_FLAG_DEVICE_READY; 662 } 663 664 static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 665 { 666 struct device *dev = &pdev->dev; 667 struct cpt_vf *cptvf; 668 int err; 669 670 cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); 671 if (!cptvf) 672 return -ENOMEM; 673 674 pci_set_drvdata(pdev, cptvf); 675 cptvf->pdev = pdev; 676 err = pci_enable_device(pdev); 677 if (err) { 678 dev_err(dev, "Failed to enable PCI device\n"); 679 pci_set_drvdata(pdev, NULL); 680 return err; 681 } 682 683 err = pci_request_regions(pdev, DRV_NAME); 684 if (err) { 685 dev_err(dev, "PCI request regions failed 0x%x\n", err); 686 goto cptvf_err_disable_device; 687 } 688 /* Mark as VF driver */ 689 cptvf->flags |= CPT_FLAG_VF_DRIVER; 690 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 691 if (err) { 692 dev_err(dev, "Unable to get usable 48-bit DMA configuration\n"); 693 goto cptvf_err_release_regions; 694 } 695 696 /* MAP PF's configuration registers */ 697 cptvf->reg_base = pcim_iomap(pdev, 0, 0); 698 if (!cptvf->reg_base) { 699 dev_err(dev, "Cannot map config register space, aborting\n"); 700 err = -ENOMEM; 701 goto cptvf_err_release_regions; 702 } 703 704 cptvf->node = dev_to_node(&pdev->dev); 705 err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS, 706 CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX); 707 if (err < 0) { 708 dev_err(dev, "Request for #%d msix vectors failed\n", 709 CPT_VF_MSIX_VECTORS); 710 goto cptvf_err_release_regions; 711 } 712 713 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), 714 cptvf_misc_intr_handler, 0, "CPT VF misc intr", 715 cptvf); 716 if (err) { 717 dev_err(dev, "Request misc irq failed"); 718 goto cptvf_free_vectors; 719 } 720 721 /* Enable mailbox interrupt */ 722 cptvf_enable_mbox_interrupts(cptvf); 723 cptvf_enable_swerr_interrupts(cptvf); 724 725 /* Check ready with PF */ 726 /* Gets chip ID / device Id from PF if ready */ 727 err = cptvf_check_pf_ready(cptvf); 728 if (err) { 729 dev_err(dev, "PF not responding to READY msg"); 730 goto cptvf_free_misc_irq; 731 } 732 733 /* CPT VF software resources initialization */ 734 cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE; 735 err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF); 736 if (err) { 737 dev_err(dev, "cptvf_sw_init() failed"); 738 goto cptvf_free_misc_irq; 739 } 740 /* Convey VQ LEN to PF */ 741 err = cptvf_send_vq_size_msg(cptvf); 742 if (err) { 743 dev_err(dev, "PF not responding to QLEN msg"); 744 goto cptvf_free_misc_irq; 745 } 746 747 /* CPT VF device initialization */ 748 cptvf_device_init(cptvf); 749 /* Send msg to PF to assign currnet Q to required group */ 750 cptvf->vfgrp = 1; 751 err = cptvf_send_vf_to_grp_msg(cptvf); 752 if (err) { 753 dev_err(dev, "PF not responding to VF_GRP msg"); 754 goto cptvf_free_misc_irq; 755 } 756 757 cptvf->priority = 1; 758 err = cptvf_send_vf_priority_msg(cptvf); 759 if (err) { 760 dev_err(dev, "PF not responding to VF_PRIO msg"); 761 goto cptvf_free_misc_irq; 762 } 763 764 err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), 765 cptvf_done_intr_handler, 0, "CPT VF done intr", 766 cptvf); 767 if (err) { 768 dev_err(dev, "Request done irq failed\n"); 769 goto cptvf_free_misc_irq; 770 } 771 772 /* Enable mailbox interrupt */ 773 cptvf_enable_done_interrupts(cptvf); 774 775 /* Set irq affinity masks */ 776 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); 777 cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); 778 779 err = cptvf_send_vf_up(cptvf); 780 if (err) { 781 dev_err(dev, "PF not responding to UP msg"); 782 goto cptvf_free_irq_affinity; 783 } 784 err = cvm_crypto_init(cptvf); 785 if (err) { 786 dev_err(dev, "Algorithm register failed\n"); 787 goto cptvf_free_irq_affinity; 788 } 789 return 0; 790 791 cptvf_free_irq_affinity: 792 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); 793 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); 794 cptvf_free_misc_irq: 795 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); 796 cptvf_free_vectors: 797 pci_free_irq_vectors(cptvf->pdev); 798 cptvf_err_release_regions: 799 pci_release_regions(pdev); 800 cptvf_err_disable_device: 801 pci_disable_device(pdev); 802 pci_set_drvdata(pdev, NULL); 803 804 return err; 805 } 806 807 static void cptvf_remove(struct pci_dev *pdev) 808 { 809 struct cpt_vf *cptvf = pci_get_drvdata(pdev); 810 811 if (!cptvf) { 812 dev_err(&pdev->dev, "Invalid CPT-VF device\n"); 813 return; 814 } 815 816 /* Convey DOWN to PF */ 817 if (cptvf_send_vf_down(cptvf)) { 818 dev_err(&pdev->dev, "PF not responding to DOWN msg"); 819 } else { 820 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); 821 cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); 822 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); 823 free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); 824 pci_free_irq_vectors(cptvf->pdev); 825 cptvf_sw_cleanup(cptvf); 826 pci_set_drvdata(pdev, NULL); 827 pci_release_regions(pdev); 828 pci_disable_device(pdev); 829 cvm_crypto_exit(); 830 } 831 } 832 833 static void cptvf_shutdown(struct pci_dev *pdev) 834 { 835 cptvf_remove(pdev); 836 } 837 838 /* Supported devices */ 839 static const struct pci_device_id cptvf_id_table[] = { 840 {PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0}, 841 { 0, } /* end of table */ 842 }; 843 844 static struct pci_driver cptvf_pci_driver = { 845 .name = DRV_NAME, 846 .id_table = cptvf_id_table, 847 .probe = cptvf_probe, 848 .remove = cptvf_remove, 849 .shutdown = cptvf_shutdown, 850 }; 851 852 module_pci_driver(cptvf_pci_driver); 853 854 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>"); 855 MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver"); 856 MODULE_LICENSE("GPL v2"); 857 MODULE_VERSION(DRV_VERSION); 858 MODULE_DEVICE_TABLE(pci, cptvf_id_table); 859