1 /*
2  * Copyright (C) 2016 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 
12 #include "cptvf.h"
13 
14 #define DRV_NAME	"thunder-cptvf"
15 #define DRV_VERSION	"1.0"
16 
17 struct cptvf_wqe {
18 	struct tasklet_struct twork;
19 	void *cptvf;
20 	u32 qno;
21 };
22 
23 struct cptvf_wqe_info {
24 	struct cptvf_wqe vq_wqe[CPT_NUM_QS_PER_VF];
25 };
26 
27 static void vq_work_handler(unsigned long data)
28 {
29 	struct cptvf_wqe_info *cwqe_info = (struct cptvf_wqe_info *)data;
30 	struct cptvf_wqe *cwqe = &cwqe_info->vq_wqe[0];
31 
32 	vq_post_process(cwqe->cptvf, cwqe->qno);
33 }
34 
35 static int init_worker_threads(struct cpt_vf *cptvf)
36 {
37 	struct pci_dev *pdev = cptvf->pdev;
38 	struct cptvf_wqe_info *cwqe_info;
39 	int i;
40 
41 	cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL);
42 	if (!cwqe_info)
43 		return -ENOMEM;
44 
45 	if (cptvf->nr_queues) {
46 		dev_info(&pdev->dev, "Creating VQ worker threads (%d)\n",
47 			 cptvf->nr_queues);
48 	}
49 
50 	for (i = 0; i < cptvf->nr_queues; i++) {
51 		tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler,
52 			     (u64)cwqe_info);
53 		cwqe_info->vq_wqe[i].qno = i;
54 		cwqe_info->vq_wqe[i].cptvf = cptvf;
55 	}
56 
57 	cptvf->wqe_info = cwqe_info;
58 
59 	return 0;
60 }
61 
62 static void cleanup_worker_threads(struct cpt_vf *cptvf)
63 {
64 	struct cptvf_wqe_info *cwqe_info;
65 	struct pci_dev *pdev = cptvf->pdev;
66 	int i;
67 
68 	cwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
69 	if (!cwqe_info)
70 		return;
71 
72 	if (cptvf->nr_queues) {
73 		dev_info(&pdev->dev, "Cleaning VQ worker threads (%u)\n",
74 			 cptvf->nr_queues);
75 	}
76 
77 	for (i = 0; i < cptvf->nr_queues; i++)
78 		tasklet_kill(&cwqe_info->vq_wqe[i].twork);
79 
80 	kzfree(cwqe_info);
81 	cptvf->wqe_info = NULL;
82 }
83 
84 static void free_pending_queues(struct pending_qinfo *pqinfo)
85 {
86 	int i;
87 	struct pending_queue *queue;
88 
89 	for_each_pending_queue(pqinfo, queue, i) {
90 		if (!queue->head)
91 			continue;
92 
93 		/* free single queue */
94 		kzfree((queue->head));
95 
96 		queue->front = 0;
97 		queue->rear = 0;
98 
99 		return;
100 	}
101 
102 	pqinfo->qlen = 0;
103 	pqinfo->nr_queues = 0;
104 }
105 
106 static int alloc_pending_queues(struct pending_qinfo *pqinfo, u32 qlen,
107 				u32 nr_queues)
108 {
109 	u32 i;
110 	size_t size;
111 	int ret;
112 	struct pending_queue *queue = NULL;
113 
114 	pqinfo->nr_queues = nr_queues;
115 	pqinfo->qlen = qlen;
116 
117 	size = (qlen * sizeof(struct pending_entry));
118 
119 	for_each_pending_queue(pqinfo, queue, i) {
120 		queue->head = kzalloc((size), GFP_KERNEL);
121 		if (!queue->head) {
122 			ret = -ENOMEM;
123 			goto pending_qfail;
124 		}
125 
126 		queue->front = 0;
127 		queue->rear = 0;
128 		atomic64_set((&queue->pending_count), (0));
129 
130 		/* init queue spin lock */
131 		spin_lock_init(&queue->lock);
132 	}
133 
134 	return 0;
135 
136 pending_qfail:
137 	free_pending_queues(pqinfo);
138 
139 	return ret;
140 }
141 
142 static int init_pending_queues(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
143 {
144 	struct pci_dev *pdev = cptvf->pdev;
145 	int ret;
146 
147 	if (!nr_queues)
148 		return 0;
149 
150 	ret = alloc_pending_queues(&cptvf->pqinfo, qlen, nr_queues);
151 	if (ret) {
152 		dev_err(&pdev->dev, "failed to setup pending queues (%u)\n",
153 			nr_queues);
154 		return ret;
155 	}
156 
157 	return 0;
158 }
159 
160 static void cleanup_pending_queues(struct cpt_vf *cptvf)
161 {
162 	struct pci_dev *pdev = cptvf->pdev;
163 
164 	if (!cptvf->nr_queues)
165 		return;
166 
167 	dev_info(&pdev->dev, "Cleaning VQ pending queue (%u)\n",
168 		 cptvf->nr_queues);
169 	free_pending_queues(&cptvf->pqinfo);
170 }
171 
172 static void free_command_queues(struct cpt_vf *cptvf,
173 				struct command_qinfo *cqinfo)
174 {
175 	int i;
176 	struct command_queue *queue = NULL;
177 	struct command_chunk *chunk = NULL;
178 	struct pci_dev *pdev = cptvf->pdev;
179 	struct hlist_node *node;
180 
181 	/* clean up for each queue */
182 	for (i = 0; i < cptvf->nr_queues; i++) {
183 		queue = &cqinfo->queue[i];
184 		if (hlist_empty(&cqinfo->queue[i].chead))
185 			continue;
186 
187 		hlist_for_each_entry_safe(chunk, node, &cqinfo->queue[i].chead,
188 					  nextchunk) {
189 			dma_free_coherent(&pdev->dev, chunk->size,
190 					  chunk->head,
191 					  chunk->dma_addr);
192 			chunk->head = NULL;
193 			chunk->dma_addr = 0;
194 			hlist_del(&chunk->nextchunk);
195 			kzfree(chunk);
196 		}
197 
198 		queue->nchunks = 0;
199 		queue->idx = 0;
200 	}
201 
202 	/* common cleanup */
203 	cqinfo->cmd_size = 0;
204 }
205 
206 static int alloc_command_queues(struct cpt_vf *cptvf,
207 				struct command_qinfo *cqinfo, size_t cmd_size,
208 				u32 qlen)
209 {
210 	int i;
211 	size_t q_size;
212 	struct command_queue *queue = NULL;
213 	struct pci_dev *pdev = cptvf->pdev;
214 
215 	/* common init */
216 	cqinfo->cmd_size = cmd_size;
217 	/* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */
218 	cptvf->qsize = min(qlen, cqinfo->qchunksize) *
219 			CPT_NEXT_CHUNK_PTR_SIZE + 1;
220 	/* Qsize in bytes to create space for alignment */
221 	q_size = qlen * cqinfo->cmd_size;
222 
223 	/* per queue initialization */
224 	for (i = 0; i < cptvf->nr_queues; i++) {
225 		size_t c_size = 0;
226 		size_t rem_q_size = q_size;
227 		struct command_chunk *curr = NULL, *first = NULL, *last = NULL;
228 		u32 qcsize_bytes = cqinfo->qchunksize * cqinfo->cmd_size;
229 
230 		queue = &cqinfo->queue[i];
231 		INIT_HLIST_HEAD(&cqinfo->queue[i].chead);
232 		do {
233 			curr = kzalloc(sizeof(*curr), GFP_KERNEL);
234 			if (!curr)
235 				goto cmd_qfail;
236 
237 			c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes :
238 					rem_q_size;
239 			curr->head = (u8 *)dma_alloc_coherent(&pdev->dev,
240 							      c_size + CPT_NEXT_CHUNK_PTR_SIZE,
241 							      &curr->dma_addr,
242 							      GFP_KERNEL);
243 			if (!curr->head) {
244 				dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n",
245 					i, queue->nchunks);
246 				kfree(curr);
247 				goto cmd_qfail;
248 			}
249 
250 			curr->size = c_size;
251 			if (queue->nchunks == 0) {
252 				hlist_add_head(&curr->nextchunk,
253 					       &cqinfo->queue[i].chead);
254 				first = curr;
255 			} else {
256 				hlist_add_behind(&curr->nextchunk,
257 						 &last->nextchunk);
258 			}
259 
260 			queue->nchunks++;
261 			rem_q_size -= c_size;
262 			if (last)
263 				*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
264 
265 			last = curr;
266 		} while (rem_q_size);
267 
268 		/* Make the queue circular */
269 		/* Tie back last chunk entry to head */
270 		curr = first;
271 		*((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr;
272 		queue->qhead = curr;
273 		spin_lock_init(&queue->lock);
274 	}
275 	return 0;
276 
277 cmd_qfail:
278 	free_command_queues(cptvf, cqinfo);
279 	return -ENOMEM;
280 }
281 
282 static int init_command_queues(struct cpt_vf *cptvf, u32 qlen)
283 {
284 	struct pci_dev *pdev = cptvf->pdev;
285 	int ret;
286 
287 	/* setup AE command queues */
288 	ret = alloc_command_queues(cptvf, &cptvf->cqinfo, CPT_INST_SIZE,
289 				   qlen);
290 	if (ret) {
291 		dev_err(&pdev->dev, "failed to allocate AE command queues (%u)\n",
292 			cptvf->nr_queues);
293 		return ret;
294 	}
295 
296 	return ret;
297 }
298 
299 static void cleanup_command_queues(struct cpt_vf *cptvf)
300 {
301 	struct pci_dev *pdev = cptvf->pdev;
302 
303 	if (!cptvf->nr_queues)
304 		return;
305 
306 	dev_info(&pdev->dev, "Cleaning VQ command queue (%u)\n",
307 		 cptvf->nr_queues);
308 	free_command_queues(cptvf, &cptvf->cqinfo);
309 }
310 
311 static void cptvf_sw_cleanup(struct cpt_vf *cptvf)
312 {
313 	cleanup_worker_threads(cptvf);
314 	cleanup_pending_queues(cptvf);
315 	cleanup_command_queues(cptvf);
316 }
317 
318 static int cptvf_sw_init(struct cpt_vf *cptvf, u32 qlen, u32 nr_queues)
319 {
320 	struct pci_dev *pdev = cptvf->pdev;
321 	int ret = 0;
322 	u32 max_dev_queues = 0;
323 
324 	max_dev_queues = CPT_NUM_QS_PER_VF;
325 	/* possible cpus */
326 	nr_queues = min_t(u32, nr_queues, max_dev_queues);
327 	cptvf->nr_queues = nr_queues;
328 
329 	ret = init_command_queues(cptvf, qlen);
330 	if (ret) {
331 		dev_err(&pdev->dev, "Failed to setup command queues (%u)\n",
332 			nr_queues);
333 		return ret;
334 	}
335 
336 	ret = init_pending_queues(cptvf, qlen, nr_queues);
337 	if (ret) {
338 		dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n",
339 			nr_queues);
340 		goto setup_pqfail;
341 	}
342 
343 	/* Create worker threads for BH processing */
344 	ret = init_worker_threads(cptvf);
345 	if (ret) {
346 		dev_err(&pdev->dev, "Failed to setup worker threads\n");
347 		goto init_work_fail;
348 	}
349 
350 	return 0;
351 
352 init_work_fail:
353 	cleanup_worker_threads(cptvf);
354 	cleanup_pending_queues(cptvf);
355 
356 setup_pqfail:
357 	cleanup_command_queues(cptvf);
358 
359 	return ret;
360 }
361 
362 static void cptvf_free_irq_affinity(struct cpt_vf *cptvf, int vec)
363 {
364 	irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL);
365 	free_cpumask_var(cptvf->affinity_mask[vec]);
366 }
367 
368 static void cptvf_write_vq_ctl(struct cpt_vf *cptvf, bool val)
369 {
370 	union cptx_vqx_ctl vqx_ctl;
371 
372 	vqx_ctl.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0));
373 	vqx_ctl.s.ena = val;
374 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_CTL(0, 0), vqx_ctl.u);
375 }
376 
377 void cptvf_write_vq_doorbell(struct cpt_vf *cptvf, u32 val)
378 {
379 	union cptx_vqx_doorbell vqx_dbell;
380 
381 	vqx_dbell.u = cpt_read_csr64(cptvf->reg_base,
382 				     CPTX_VQX_DOORBELL(0, 0));
383 	vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
384 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DOORBELL(0, 0),
385 			vqx_dbell.u);
386 }
387 
388 static void cptvf_write_vq_inprog(struct cpt_vf *cptvf, u8 val)
389 {
390 	union cptx_vqx_inprog vqx_inprg;
391 
392 	vqx_inprg.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0));
393 	vqx_inprg.s.inflight = val;
394 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_INPROG(0, 0), vqx_inprg.u);
395 }
396 
397 static void cptvf_write_vq_done_numwait(struct cpt_vf *cptvf, u32 val)
398 {
399 	union cptx_vqx_done_wait vqx_dwait;
400 
401 	vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
402 				     CPTX_VQX_DONE_WAIT(0, 0));
403 	vqx_dwait.s.num_wait = val;
404 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
405 			vqx_dwait.u);
406 }
407 
408 static void cptvf_write_vq_done_timewait(struct cpt_vf *cptvf, u16 time)
409 {
410 	union cptx_vqx_done_wait vqx_dwait;
411 
412 	vqx_dwait.u = cpt_read_csr64(cptvf->reg_base,
413 				     CPTX_VQX_DONE_WAIT(0, 0));
414 	vqx_dwait.s.time_wait = time;
415 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_WAIT(0, 0),
416 			vqx_dwait.u);
417 }
418 
419 static void cptvf_enable_swerr_interrupts(struct cpt_vf *cptvf)
420 {
421 	union cptx_vqx_misc_ena_w1s vqx_misc_ena;
422 
423 	vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
424 					CPTX_VQX_MISC_ENA_W1S(0, 0));
425 	/* Set mbox(0) interupts for the requested vf */
426 	vqx_misc_ena.s.swerr = 1;
427 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
428 			vqx_misc_ena.u);
429 }
430 
431 static void cptvf_enable_mbox_interrupts(struct cpt_vf *cptvf)
432 {
433 	union cptx_vqx_misc_ena_w1s vqx_misc_ena;
434 
435 	vqx_misc_ena.u = cpt_read_csr64(cptvf->reg_base,
436 					CPTX_VQX_MISC_ENA_W1S(0, 0));
437 	/* Set mbox(0) interupts for the requested vf */
438 	vqx_misc_ena.s.mbox = 1;
439 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_ENA_W1S(0, 0),
440 			vqx_misc_ena.u);
441 }
442 
443 static void cptvf_enable_done_interrupts(struct cpt_vf *cptvf)
444 {
445 	union cptx_vqx_done_ena_w1s vqx_done_ena;
446 
447 	vqx_done_ena.u = cpt_read_csr64(cptvf->reg_base,
448 					CPTX_VQX_DONE_ENA_W1S(0, 0));
449 	/* Set DONE interrupt for the requested vf */
450 	vqx_done_ena.s.done = 1;
451 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ENA_W1S(0, 0),
452 			vqx_done_ena.u);
453 }
454 
455 static void cptvf_clear_dovf_intr(struct cpt_vf *cptvf)
456 {
457 	union cptx_vqx_misc_int vqx_misc_int;
458 
459 	vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
460 					CPTX_VQX_MISC_INT(0, 0));
461 	/* W1C for the VF */
462 	vqx_misc_int.s.dovf = 1;
463 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
464 			vqx_misc_int.u);
465 }
466 
467 static void cptvf_clear_irde_intr(struct cpt_vf *cptvf)
468 {
469 	union cptx_vqx_misc_int vqx_misc_int;
470 
471 	vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
472 					CPTX_VQX_MISC_INT(0, 0));
473 	/* W1C for the VF */
474 	vqx_misc_int.s.irde = 1;
475 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
476 			vqx_misc_int.u);
477 }
478 
479 static void cptvf_clear_nwrp_intr(struct cpt_vf *cptvf)
480 {
481 	union cptx_vqx_misc_int vqx_misc_int;
482 
483 	vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
484 					CPTX_VQX_MISC_INT(0, 0));
485 	/* W1C for the VF */
486 	vqx_misc_int.s.nwrp = 1;
487 	cpt_write_csr64(cptvf->reg_base,
488 			CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
489 }
490 
491 static void cptvf_clear_mbox_intr(struct cpt_vf *cptvf)
492 {
493 	union cptx_vqx_misc_int vqx_misc_int;
494 
495 	vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
496 					CPTX_VQX_MISC_INT(0, 0));
497 	/* W1C for the VF */
498 	vqx_misc_int.s.mbox = 1;
499 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
500 			vqx_misc_int.u);
501 }
502 
503 static void cptvf_clear_swerr_intr(struct cpt_vf *cptvf)
504 {
505 	union cptx_vqx_misc_int vqx_misc_int;
506 
507 	vqx_misc_int.u = cpt_read_csr64(cptvf->reg_base,
508 					CPTX_VQX_MISC_INT(0, 0));
509 	/* W1C for the VF */
510 	vqx_misc_int.s.swerr = 1;
511 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0),
512 			vqx_misc_int.u);
513 }
514 
515 static u64 cptvf_read_vf_misc_intr_status(struct cpt_vf *cptvf)
516 {
517 	return cpt_read_csr64(cptvf->reg_base, CPTX_VQX_MISC_INT(0, 0));
518 }
519 
520 static irqreturn_t cptvf_misc_intr_handler(int irq, void *cptvf_irq)
521 {
522 	struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
523 	struct pci_dev *pdev = cptvf->pdev;
524 	u64 intr;
525 
526 	intr = cptvf_read_vf_misc_intr_status(cptvf);
527 	/*Check for MISC interrupt types*/
528 	if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
529 		dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n",
530 			intr, cptvf->vfid);
531 		cptvf_handle_mbox_intr(cptvf);
532 		cptvf_clear_mbox_intr(cptvf);
533 	} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
534 		cptvf_clear_dovf_intr(cptvf);
535 		/*Clear doorbell count*/
536 		cptvf_write_vq_doorbell(cptvf, 0);
537 		dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n",
538 			intr, cptvf->vfid);
539 	} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
540 		cptvf_clear_irde_intr(cptvf);
541 		dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n",
542 			intr, cptvf->vfid);
543 	} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
544 		cptvf_clear_nwrp_intr(cptvf);
545 		dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n",
546 			intr, cptvf->vfid);
547 	} else if (unlikely(intr & CPT_VF_INTR_SERR_MASK)) {
548 		cptvf_clear_swerr_intr(cptvf);
549 		dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n",
550 			intr, cptvf->vfid);
551 	} else {
552 		dev_err(&pdev->dev, "Unhandled interrupt in CPT VF %d\n",
553 			cptvf->vfid);
554 	}
555 
556 	return IRQ_HANDLED;
557 }
558 
559 static inline struct cptvf_wqe *get_cptvf_vq_wqe(struct cpt_vf *cptvf,
560 						 int qno)
561 {
562 	struct cptvf_wqe_info *nwqe_info;
563 
564 	if (unlikely(qno >= cptvf->nr_queues))
565 		return NULL;
566 	nwqe_info = (struct cptvf_wqe_info *)cptvf->wqe_info;
567 
568 	return &nwqe_info->vq_wqe[qno];
569 }
570 
571 static inline u32 cptvf_read_vq_done_count(struct cpt_vf *cptvf)
572 {
573 	union cptx_vqx_done vqx_done;
574 
575 	vqx_done.u = cpt_read_csr64(cptvf->reg_base, CPTX_VQX_DONE(0, 0));
576 	return vqx_done.s.done;
577 }
578 
579 static inline void cptvf_write_vq_done_ack(struct cpt_vf *cptvf,
580 					   u32 ackcnt)
581 {
582 	union cptx_vqx_done_ack vqx_dack_cnt;
583 
584 	vqx_dack_cnt.u = cpt_read_csr64(cptvf->reg_base,
585 					CPTX_VQX_DONE_ACK(0, 0));
586 	vqx_dack_cnt.s.done_ack = ackcnt;
587 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_DONE_ACK(0, 0),
588 			vqx_dack_cnt.u);
589 }
590 
591 static irqreturn_t cptvf_done_intr_handler(int irq, void *cptvf_irq)
592 {
593 	struct cpt_vf *cptvf = (struct cpt_vf *)cptvf_irq;
594 	struct pci_dev *pdev = cptvf->pdev;
595 	/* Read the number of completions */
596 	u32 intr = cptvf_read_vq_done_count(cptvf);
597 
598 	if (intr) {
599 		struct cptvf_wqe *wqe;
600 
601 		/* Acknowledge the number of
602 		 * scheduled completions for processing
603 		 */
604 		cptvf_write_vq_done_ack(cptvf, intr);
605 		wqe = get_cptvf_vq_wqe(cptvf, 0);
606 		if (unlikely(!wqe)) {
607 			dev_err(&pdev->dev, "No work to schedule for VF (%d)",
608 				cptvf->vfid);
609 			return IRQ_NONE;
610 		}
611 		tasklet_hi_schedule(&wqe->twork);
612 	}
613 
614 	return IRQ_HANDLED;
615 }
616 
617 static void cptvf_set_irq_affinity(struct cpt_vf *cptvf, int vec)
618 {
619 	struct pci_dev *pdev = cptvf->pdev;
620 	int cpu;
621 
622 	if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec],
623 				GFP_KERNEL)) {
624 		dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d",
625 			cptvf->vfid);
626 		return;
627 	}
628 
629 	cpu = cptvf->vfid % num_online_cpus();
630 	cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node),
631 			cptvf->affinity_mask[vec]);
632 	irq_set_affinity_hint(pci_irq_vector(pdev, vec),
633 			cptvf->affinity_mask[vec]);
634 }
635 
636 static void cptvf_write_vq_saddr(struct cpt_vf *cptvf, u64 val)
637 {
638 	union cptx_vqx_saddr vqx_saddr;
639 
640 	vqx_saddr.u = val;
641 	cpt_write_csr64(cptvf->reg_base, CPTX_VQX_SADDR(0, 0), vqx_saddr.u);
642 }
643 
644 void cptvf_device_init(struct cpt_vf *cptvf)
645 {
646 	u64 base_addr = 0;
647 
648 	/* Disable the VQ */
649 	cptvf_write_vq_ctl(cptvf, 0);
650 	/* Reset the doorbell */
651 	cptvf_write_vq_doorbell(cptvf, 0);
652 	/* Clear inflight */
653 	cptvf_write_vq_inprog(cptvf, 0);
654 	/* Write VQ SADDR */
655 	/* TODO: for now only one queue, so hard coded */
656 	base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr);
657 	cptvf_write_vq_saddr(cptvf, base_addr);
658 	/* Configure timerhold / coalescence */
659 	cptvf_write_vq_done_timewait(cptvf, CPT_TIMER_THOLD);
660 	cptvf_write_vq_done_numwait(cptvf, 1);
661 	/* Enable the VQ */
662 	cptvf_write_vq_ctl(cptvf, 1);
663 	/* Flag the VF ready */
664 	cptvf->flags |= CPT_FLAG_DEVICE_READY;
665 }
666 
667 static int cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
668 {
669 	struct device *dev = &pdev->dev;
670 	struct cpt_vf *cptvf;
671 	int    err;
672 
673 	cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL);
674 	if (!cptvf)
675 		return -ENOMEM;
676 
677 	pci_set_drvdata(pdev, cptvf);
678 	cptvf->pdev = pdev;
679 	err = pci_enable_device(pdev);
680 	if (err) {
681 		dev_err(dev, "Failed to enable PCI device\n");
682 		pci_set_drvdata(pdev, NULL);
683 		return err;
684 	}
685 
686 	err = pci_request_regions(pdev, DRV_NAME);
687 	if (err) {
688 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
689 		goto cptvf_err_disable_device;
690 	}
691 	/* Mark as VF driver */
692 	cptvf->flags |= CPT_FLAG_VF_DRIVER;
693 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
694 	if (err) {
695 		dev_err(dev, "Unable to get usable DMA configuration\n");
696 		goto cptvf_err_release_regions;
697 	}
698 
699 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
700 	if (err) {
701 		dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
702 		goto cptvf_err_release_regions;
703 	}
704 
705 	/* MAP PF's configuration registers */
706 	cptvf->reg_base = pcim_iomap(pdev, 0, 0);
707 	if (!cptvf->reg_base) {
708 		dev_err(dev, "Cannot map config register space, aborting\n");
709 		err = -ENOMEM;
710 		goto cptvf_err_release_regions;
711 	}
712 
713 	cptvf->node = dev_to_node(&pdev->dev);
714 	err = pci_alloc_irq_vectors(pdev, CPT_VF_MSIX_VECTORS,
715 			CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX);
716 	if (err < 0) {
717 		dev_err(dev, "Request for #%d msix vectors failed\n",
718 			CPT_VF_MSIX_VECTORS);
719 		goto cptvf_err_release_regions;
720 	}
721 
722 	err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC),
723 			  cptvf_misc_intr_handler, 0, "CPT VF misc intr",
724 			  cptvf);
725 	if (err) {
726 		dev_err(dev, "Request misc irq failed");
727 		goto cptvf_free_vectors;
728 	}
729 
730 	/* Enable mailbox interrupt */
731 	cptvf_enable_mbox_interrupts(cptvf);
732 	cptvf_enable_swerr_interrupts(cptvf);
733 
734 	/* Check ready with PF */
735 	/* Gets chip ID / device Id from PF if ready */
736 	err = cptvf_check_pf_ready(cptvf);
737 	if (err) {
738 		dev_err(dev, "PF not responding to READY msg");
739 		goto cptvf_free_misc_irq;
740 	}
741 
742 	/* CPT VF software resources initialization */
743 	cptvf->cqinfo.qchunksize = CPT_CMD_QCHUNK_SIZE;
744 	err = cptvf_sw_init(cptvf, CPT_CMD_QLEN, CPT_NUM_QS_PER_VF);
745 	if (err) {
746 		dev_err(dev, "cptvf_sw_init() failed");
747 		goto cptvf_free_misc_irq;
748 	}
749 	/* Convey VQ LEN to PF */
750 	err = cptvf_send_vq_size_msg(cptvf);
751 	if (err) {
752 		dev_err(dev, "PF not responding to QLEN msg");
753 		goto cptvf_free_misc_irq;
754 	}
755 
756 	/* CPT VF device initialization */
757 	cptvf_device_init(cptvf);
758 	/* Send msg to PF to assign currnet Q to required group */
759 	cptvf->vfgrp = 1;
760 	err = cptvf_send_vf_to_grp_msg(cptvf);
761 	if (err) {
762 		dev_err(dev, "PF not responding to VF_GRP msg");
763 		goto cptvf_free_misc_irq;
764 	}
765 
766 	cptvf->priority = 1;
767 	err = cptvf_send_vf_priority_msg(cptvf);
768 	if (err) {
769 		dev_err(dev, "PF not responding to VF_PRIO msg");
770 		goto cptvf_free_misc_irq;
771 	}
772 
773 	err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE),
774 			  cptvf_done_intr_handler, 0, "CPT VF done intr",
775 			  cptvf);
776 	if (err) {
777 		dev_err(dev, "Request done irq failed\n");
778 		goto cptvf_free_misc_irq;
779 	}
780 
781 	/* Enable mailbox interrupt */
782 	cptvf_enable_done_interrupts(cptvf);
783 
784 	/* Set irq affinity masks */
785 	cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
786 	cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
787 
788 	err = cptvf_send_vf_up(cptvf);
789 	if (err) {
790 		dev_err(dev, "PF not responding to UP msg");
791 		goto cptvf_free_irq_affinity;
792 	}
793 	err = cvm_crypto_init(cptvf);
794 	if (err) {
795 		dev_err(dev, "Algorithm register failed\n");
796 		goto cptvf_free_irq_affinity;
797 	}
798 	return 0;
799 
800 cptvf_free_irq_affinity:
801 	cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
802 	cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
803 cptvf_free_misc_irq:
804 	free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
805 cptvf_free_vectors:
806 	pci_free_irq_vectors(cptvf->pdev);
807 cptvf_err_release_regions:
808 	pci_release_regions(pdev);
809 cptvf_err_disable_device:
810 	pci_disable_device(pdev);
811 	pci_set_drvdata(pdev, NULL);
812 
813 	return err;
814 }
815 
816 static void cptvf_remove(struct pci_dev *pdev)
817 {
818 	struct cpt_vf *cptvf = pci_get_drvdata(pdev);
819 
820 	if (!cptvf) {
821 		dev_err(&pdev->dev, "Invalid CPT-VF device\n");
822 		return;
823 	}
824 
825 	/* Convey DOWN to PF */
826 	if (cptvf_send_vf_down(cptvf)) {
827 		dev_err(&pdev->dev, "PF not responding to DOWN msg");
828 	} else {
829 		cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE);
830 		cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC);
831 		free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf);
832 		free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf);
833 		pci_free_irq_vectors(cptvf->pdev);
834 		cptvf_sw_cleanup(cptvf);
835 		pci_set_drvdata(pdev, NULL);
836 		pci_release_regions(pdev);
837 		pci_disable_device(pdev);
838 		cvm_crypto_exit();
839 	}
840 }
841 
842 static void cptvf_shutdown(struct pci_dev *pdev)
843 {
844 	cptvf_remove(pdev);
845 }
846 
847 /* Supported devices */
848 static const struct pci_device_id cptvf_id_table[] = {
849 	{PCI_VDEVICE(CAVIUM, CPT_81XX_PCI_VF_DEVICE_ID), 0},
850 	{ 0, }  /* end of table */
851 };
852 
853 static struct pci_driver cptvf_pci_driver = {
854 	.name = DRV_NAME,
855 	.id_table = cptvf_id_table,
856 	.probe = cptvf_probe,
857 	.remove = cptvf_remove,
858 	.shutdown = cptvf_shutdown,
859 };
860 
861 module_pci_driver(cptvf_pci_driver);
862 
863 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
864 MODULE_DESCRIPTION("Cavium Thunder CPT Virtual Function Driver");
865 MODULE_LICENSE("GPL v2");
866 MODULE_VERSION(DRV_VERSION);
867 MODULE_DEVICE_TABLE(pci, cptvf_id_table);
868