xref: /openbmc/linux/drivers/crypto/cavium/cpt/cptpf_main.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Cavium, Inc.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/firmware.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/moduleparam.h>
11 #include <linux/pci.h>
12 #include <linux/printk.h>
13 
14 #include "cptpf.h"
15 
16 #define DRV_NAME	"thunder-cpt"
17 #define DRV_VERSION	"1.0"
18 
19 static u32 num_vfs = 4; /* Default 4 VF enabled */
20 module_param(num_vfs, uint, 0444);
21 MODULE_PARM_DESC(num_vfs, "Number of VFs to enable(1-16)");
22 
23 /*
24  * Disable cores specified by coremask
25  */
26 static void cpt_disable_cores(struct cpt_device *cpt, u64 coremask,
27 			      u8 type, u8 grp)
28 {
29 	u64 pf_exe_ctl;
30 	u32 timeout = 100;
31 	u64 grpmask = 0;
32 	struct device *dev = &cpt->pdev->dev;
33 
34 	if (type == AE_TYPES)
35 		coremask = (coremask << cpt->max_se_cores);
36 
37 	/* Disengage the cores from groups */
38 	grpmask = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
39 	cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
40 			(grpmask & ~coremask));
41 	udelay(CSR_DELAY);
42 	grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
43 	while (grp & coremask) {
44 		dev_err(dev, "Cores still busy %llx", coremask);
45 		grp = cpt_read_csr64(cpt->reg_base,
46 				     CPTX_PF_EXEC_BUSY(0));
47 		if (!timeout--)
48 			break;
49 
50 		udelay(CSR_DELAY);
51 	}
52 
53 	/* Disable the cores */
54 	pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
55 	cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
56 			(pf_exe_ctl & ~coremask));
57 	udelay(CSR_DELAY);
58 }
59 
60 /*
61  * Enable cores specified by coremask
62  */
63 static void cpt_enable_cores(struct cpt_device *cpt, u64 coremask,
64 			     u8 type)
65 {
66 	u64 pf_exe_ctl;
67 
68 	if (type == AE_TYPES)
69 		coremask = (coremask << cpt->max_se_cores);
70 
71 	pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0));
72 	cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0),
73 			(pf_exe_ctl | coremask));
74 	udelay(CSR_DELAY);
75 }
76 
77 static void cpt_configure_group(struct cpt_device *cpt, u8 grp,
78 				u64 coremask, u8 type)
79 {
80 	u64 pf_gx_en = 0;
81 
82 	if (type == AE_TYPES)
83 		coremask = (coremask << cpt->max_se_cores);
84 
85 	pf_gx_en = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp));
86 	cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp),
87 			(pf_gx_en | coremask));
88 	udelay(CSR_DELAY);
89 }
90 
91 static void cpt_disable_mbox_interrupts(struct cpt_device *cpt)
92 {
93 	/* Clear mbox(0) interupts for all vfs */
94 	cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1CX(0, 0), ~0ull);
95 }
96 
97 static void cpt_disable_ecc_interrupts(struct cpt_device *cpt)
98 {
99 	/* Clear ecc(0) interupts for all vfs */
100 	cpt_write_csr64(cpt->reg_base, CPTX_PF_ECC0_ENA_W1C(0), ~0ull);
101 }
102 
103 static void cpt_disable_exec_interrupts(struct cpt_device *cpt)
104 {
105 	/* Clear exec interupts for all vfs */
106 	cpt_write_csr64(cpt->reg_base, CPTX_PF_EXEC_ENA_W1C(0), ~0ull);
107 }
108 
109 static void cpt_disable_all_interrupts(struct cpt_device *cpt)
110 {
111 	cpt_disable_mbox_interrupts(cpt);
112 	cpt_disable_ecc_interrupts(cpt);
113 	cpt_disable_exec_interrupts(cpt);
114 }
115 
116 static void cpt_enable_mbox_interrupts(struct cpt_device *cpt)
117 {
118 	/* Set mbox(0) interupts for all vfs */
119 	cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1SX(0, 0), ~0ull);
120 }
121 
122 static int cpt_load_microcode(struct cpt_device *cpt, struct microcode *mcode)
123 {
124 	int ret = 0, core = 0, shift = 0;
125 	u32 total_cores = 0;
126 	struct device *dev = &cpt->pdev->dev;
127 
128 	if (!mcode || !mcode->code) {
129 		dev_err(dev, "Either the mcode is null or data is NULL\n");
130 		return -EINVAL;
131 	}
132 
133 	if (mcode->code_size == 0) {
134 		dev_err(dev, "microcode size is 0\n");
135 		return -EINVAL;
136 	}
137 
138 	/* Assumes 0-9 are SE cores for UCODE_BASE registers and
139 	 * AE core bases follow
140 	 */
141 	if (mcode->is_ae) {
142 		core = CPT_MAX_SE_CORES; /* start couting from 10 */
143 		total_cores = CPT_MAX_TOTAL_CORES; /* upto 15 */
144 	} else {
145 		core = 0; /* start couting from 0 */
146 		total_cores = CPT_MAX_SE_CORES; /* upto 9 */
147 	}
148 
149 	/* Point to microcode for each core of the group */
150 	for (; core < total_cores ; core++, shift++) {
151 		if (mcode->core_mask & (1 << shift)) {
152 			cpt_write_csr64(cpt->reg_base,
153 					CPTX_PF_ENGX_UCODE_BASE(0, core),
154 					(u64)mcode->phys_base);
155 		}
156 	}
157 	return ret;
158 }
159 
160 static int do_cpt_init(struct cpt_device *cpt, struct microcode *mcode)
161 {
162 	int ret = 0;
163 	struct device *dev = &cpt->pdev->dev;
164 
165 	/* Make device not ready */
166 	cpt->flags &= ~CPT_FLAG_DEVICE_READY;
167 	/* Disable All PF interrupts */
168 	cpt_disable_all_interrupts(cpt);
169 	/* Calculate mcode group and coremasks */
170 	if (mcode->is_ae) {
171 		if (mcode->num_cores > cpt->max_ae_cores) {
172 			dev_err(dev, "Requested for more cores than available AE cores\n");
173 			ret = -EINVAL;
174 			goto cpt_init_fail;
175 		}
176 
177 		if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
178 			dev_err(dev, "Can't load, all eight microcode groups in use");
179 			return -ENFILE;
180 		}
181 
182 		mcode->group = cpt->next_group;
183 		/* Convert requested cores to mask */
184 		mcode->core_mask = GENMASK(mcode->num_cores, 0);
185 		cpt_disable_cores(cpt, mcode->core_mask, AE_TYPES,
186 				  mcode->group);
187 		/* Load microcode for AE engines */
188 		ret = cpt_load_microcode(cpt, mcode);
189 		if (ret) {
190 			dev_err(dev, "Microcode load Failed for %s\n",
191 				mcode->version);
192 			goto cpt_init_fail;
193 		}
194 		cpt->next_group++;
195 		/* Configure group mask for the mcode */
196 		cpt_configure_group(cpt, mcode->group, mcode->core_mask,
197 				    AE_TYPES);
198 		/* Enable AE cores for the group mask */
199 		cpt_enable_cores(cpt, mcode->core_mask, AE_TYPES);
200 	} else {
201 		if (mcode->num_cores > cpt->max_se_cores) {
202 			dev_err(dev, "Requested for more cores than available SE cores\n");
203 			ret = -EINVAL;
204 			goto cpt_init_fail;
205 		}
206 		if (cpt->next_group >= CPT_MAX_CORE_GROUPS) {
207 			dev_err(dev, "Can't load, all eight microcode groups in use");
208 			return -ENFILE;
209 		}
210 
211 		mcode->group = cpt->next_group;
212 		/* Covert requested cores to mask */
213 		mcode->core_mask = GENMASK(mcode->num_cores, 0);
214 		cpt_disable_cores(cpt, mcode->core_mask, SE_TYPES,
215 				  mcode->group);
216 		/* Load microcode for SE engines */
217 		ret = cpt_load_microcode(cpt, mcode);
218 		if (ret) {
219 			dev_err(dev, "Microcode load Failed for %s\n",
220 				mcode->version);
221 			goto cpt_init_fail;
222 		}
223 		cpt->next_group++;
224 		/* Configure group mask for the mcode */
225 		cpt_configure_group(cpt, mcode->group, mcode->core_mask,
226 				    SE_TYPES);
227 		/* Enable SE cores for the group mask */
228 		cpt_enable_cores(cpt, mcode->core_mask, SE_TYPES);
229 	}
230 
231 	/* Enabled PF mailbox interrupts */
232 	cpt_enable_mbox_interrupts(cpt);
233 	cpt->flags |= CPT_FLAG_DEVICE_READY;
234 
235 	return ret;
236 
237 cpt_init_fail:
238 	/* Enabled PF mailbox interrupts */
239 	cpt_enable_mbox_interrupts(cpt);
240 
241 	return ret;
242 }
243 
244 struct ucode_header {
245 	u8 version[CPT_UCODE_VERSION_SZ];
246 	__be32 code_length;
247 	u32 data_length;
248 	u64 sram_address;
249 };
250 
251 static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
252 {
253 	const struct firmware *fw_entry;
254 	struct device *dev = &cpt->pdev->dev;
255 	struct ucode_header *ucode;
256 	unsigned int code_length;
257 	struct microcode *mcode;
258 	int j, ret = 0;
259 
260 	ret = request_firmware(&fw_entry, fw, dev);
261 	if (ret)
262 		return ret;
263 
264 	ucode = (struct ucode_header *)fw_entry->data;
265 	mcode = &cpt->mcode[cpt->next_mc_idx];
266 	memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ);
267 	code_length = ntohl(ucode->code_length);
268 	if (code_length == 0 || code_length >= INT_MAX / 2) {
269 		ret = -EINVAL;
270 		goto fw_release;
271 	}
272 	mcode->code_size = code_length * 2;
273 
274 	mcode->is_ae = is_ae;
275 	mcode->core_mask = 0ULL;
276 	mcode->num_cores = is_ae ? 6 : 10;
277 
278 	/*  Allocate DMAable space */
279 	mcode->code = dma_alloc_coherent(&cpt->pdev->dev, mcode->code_size,
280 					 &mcode->phys_base, GFP_KERNEL);
281 	if (!mcode->code) {
282 		dev_err(dev, "Unable to allocate space for microcode");
283 		ret = -ENOMEM;
284 		goto fw_release;
285 	}
286 
287 	memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)),
288 	       mcode->code_size);
289 
290 	/* Byte swap 64-bit */
291 	for (j = 0; j < (mcode->code_size / 8); j++)
292 		((__be64 *)mcode->code)[j] = cpu_to_be64(((u64 *)mcode->code)[j]);
293 	/*  MC needs 16-bit swap */
294 	for (j = 0; j < (mcode->code_size / 2); j++)
295 		((__be16 *)mcode->code)[j] = cpu_to_be16(((u16 *)mcode->code)[j]);
296 
297 	dev_dbg(dev, "mcode->code_size = %u\n", mcode->code_size);
298 	dev_dbg(dev, "mcode->is_ae = %u\n", mcode->is_ae);
299 	dev_dbg(dev, "mcode->num_cores = %u\n", mcode->num_cores);
300 	dev_dbg(dev, "mcode->code = %llx\n", (u64)mcode->code);
301 	dev_dbg(dev, "mcode->phys_base = %llx\n", mcode->phys_base);
302 
303 	ret = do_cpt_init(cpt, mcode);
304 	if (ret) {
305 		dma_free_coherent(&cpt->pdev->dev, mcode->code_size,
306 				  mcode->code, mcode->phys_base);
307 		dev_err(dev, "do_cpt_init failed with ret: %d\n", ret);
308 		goto fw_release;
309 	}
310 
311 	dev_info(dev, "Microcode Loaded %s\n", mcode->version);
312 	mcode->is_mc_valid = 1;
313 	cpt->next_mc_idx++;
314 
315 fw_release:
316 	release_firmware(fw_entry);
317 
318 	return ret;
319 }
320 
321 static int cpt_ucode_load(struct cpt_device *cpt)
322 {
323 	int ret = 0;
324 	struct device *dev = &cpt->pdev->dev;
325 
326 	ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-ae.out", true);
327 	if (ret) {
328 		dev_err(dev, "ae:cpt_ucode_load failed with ret: %d\n", ret);
329 		return ret;
330 	}
331 	ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-se.out", false);
332 	if (ret) {
333 		dev_err(dev, "se:cpt_ucode_load failed with ret: %d\n", ret);
334 		return ret;
335 	}
336 
337 	return ret;
338 }
339 
340 static irqreturn_t cpt_mbx0_intr_handler(int irq, void *cpt_irq)
341 {
342 	struct cpt_device *cpt = (struct cpt_device *)cpt_irq;
343 
344 	cpt_mbox_intr_handler(cpt, 0);
345 
346 	return IRQ_HANDLED;
347 }
348 
349 static void cpt_reset(struct cpt_device *cpt)
350 {
351 	cpt_write_csr64(cpt->reg_base, CPTX_PF_RESET(0), 1);
352 }
353 
354 static void cpt_find_max_enabled_cores(struct cpt_device *cpt)
355 {
356 	union cptx_pf_constants pf_cnsts = {0};
357 
358 	pf_cnsts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_CONSTANTS(0));
359 	cpt->max_se_cores = pf_cnsts.s.se;
360 	cpt->max_ae_cores = pf_cnsts.s.ae;
361 }
362 
363 static u32 cpt_check_bist_status(struct cpt_device *cpt)
364 {
365 	union cptx_pf_bist_status bist_sts = {0};
366 
367 	bist_sts.u = cpt_read_csr64(cpt->reg_base,
368 				    CPTX_PF_BIST_STATUS(0));
369 
370 	return bist_sts.u;
371 }
372 
373 static u64 cpt_check_exe_bist_status(struct cpt_device *cpt)
374 {
375 	union cptx_pf_exe_bist_status bist_sts = {0};
376 
377 	bist_sts.u = cpt_read_csr64(cpt->reg_base,
378 				    CPTX_PF_EXE_BIST_STATUS(0));
379 
380 	return bist_sts.u;
381 }
382 
383 static void cpt_disable_all_cores(struct cpt_device *cpt)
384 {
385 	u32 grp, timeout = 100;
386 	struct device *dev = &cpt->pdev->dev;
387 
388 	/* Disengage the cores from groups */
389 	for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
390 		cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), 0);
391 		udelay(CSR_DELAY);
392 	}
393 
394 	grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0));
395 	while (grp) {
396 		dev_err(dev, "Cores still busy");
397 		grp = cpt_read_csr64(cpt->reg_base,
398 				     CPTX_PF_EXEC_BUSY(0));
399 		if (!timeout--)
400 			break;
401 
402 		udelay(CSR_DELAY);
403 	}
404 	/* Disable the cores */
405 	cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), 0);
406 }
407 
408 /*
409  * Ensure all cores are disengaged from all groups by
410  * calling cpt_disable_all_cores() before calling this
411  * function.
412  */
413 static void cpt_unload_microcode(struct cpt_device *cpt)
414 {
415 	u32 grp = 0, core;
416 
417 	/* Free microcode bases and reset group masks */
418 	for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) {
419 		struct microcode *mcode = &cpt->mcode[grp];
420 
421 		if (cpt->mcode[grp].code)
422 			dma_free_coherent(&cpt->pdev->dev, mcode->code_size,
423 					  mcode->code, mcode->phys_base);
424 		mcode->code = NULL;
425 	}
426 	/* Clear UCODE_BASE registers for all engines */
427 	for (core = 0; core < CPT_MAX_TOTAL_CORES; core++)
428 		cpt_write_csr64(cpt->reg_base,
429 				CPTX_PF_ENGX_UCODE_BASE(0, core), 0ull);
430 }
431 
432 static int cpt_device_init(struct cpt_device *cpt)
433 {
434 	u64 bist;
435 	struct device *dev = &cpt->pdev->dev;
436 
437 	/* Reset the PF when probed first */
438 	cpt_reset(cpt);
439 	msleep(100);
440 
441 	/*Check BIST status*/
442 	bist = (u64)cpt_check_bist_status(cpt);
443 	if (bist) {
444 		dev_err(dev, "RAM BIST failed with code 0x%llx", bist);
445 		return -ENODEV;
446 	}
447 
448 	bist = cpt_check_exe_bist_status(cpt);
449 	if (bist) {
450 		dev_err(dev, "Engine BIST failed with code 0x%llx", bist);
451 		return -ENODEV;
452 	}
453 
454 	/*Get CLK frequency*/
455 	/*Get max enabled cores */
456 	cpt_find_max_enabled_cores(cpt);
457 	/*Disable all cores*/
458 	cpt_disable_all_cores(cpt);
459 	/*Reset device parameters*/
460 	cpt->next_mc_idx   = 0;
461 	cpt->next_group = 0;
462 	/* PF is ready */
463 	cpt->flags |= CPT_FLAG_DEVICE_READY;
464 
465 	return 0;
466 }
467 
468 static int cpt_register_interrupts(struct cpt_device *cpt)
469 {
470 	int ret;
471 	struct device *dev = &cpt->pdev->dev;
472 
473 	/* Enable MSI-X */
474 	ret = pci_alloc_irq_vectors(cpt->pdev, CPT_PF_MSIX_VECTORS,
475 			CPT_PF_MSIX_VECTORS, PCI_IRQ_MSIX);
476 	if (ret < 0) {
477 		dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n",
478 			CPT_PF_MSIX_VECTORS);
479 		return ret;
480 	}
481 
482 	/* Register mailbox interrupt handlers */
483 	ret = request_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)),
484 			  cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt);
485 	if (ret)
486 		goto fail;
487 
488 	/* Enable mailbox interrupt */
489 	cpt_enable_mbox_interrupts(cpt);
490 	return 0;
491 
492 fail:
493 	dev_err(dev, "Request irq failed\n");
494 	pci_disable_msix(cpt->pdev);
495 	return ret;
496 }
497 
498 static void cpt_unregister_interrupts(struct cpt_device *cpt)
499 {
500 	free_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)), cpt);
501 	pci_disable_msix(cpt->pdev);
502 }
503 
504 static int cpt_sriov_init(struct cpt_device *cpt, int num_vfs)
505 {
506 	int pos = 0;
507 	int err;
508 	u16 total_vf_cnt;
509 	struct pci_dev *pdev = cpt->pdev;
510 
511 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
512 	if (!pos) {
513 		dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n");
514 		return -ENODEV;
515 	}
516 
517 	cpt->num_vf_en = num_vfs; /* User requested VFs */
518 	pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt);
519 	if (total_vf_cnt < cpt->num_vf_en)
520 		cpt->num_vf_en = total_vf_cnt;
521 
522 	if (!total_vf_cnt)
523 		return 0;
524 
525 	/*Enabled the available VFs */
526 	err = pci_enable_sriov(pdev, cpt->num_vf_en);
527 	if (err) {
528 		dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n",
529 			cpt->num_vf_en);
530 		cpt->num_vf_en = 0;
531 		return err;
532 	}
533 
534 	/* TODO: Optionally enable static VQ priorities feature */
535 
536 	dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n",
537 		 cpt->num_vf_en);
538 
539 	cpt->flags |= CPT_FLAG_SRIOV_ENABLED;
540 
541 	return 0;
542 }
543 
544 static int cpt_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
545 {
546 	struct device *dev = &pdev->dev;
547 	struct cpt_device *cpt;
548 	int err;
549 
550 	if (num_vfs > 16 || num_vfs < 4) {
551 		dev_warn(dev, "Invalid vf count %d, Resetting it to 4(default)\n",
552 			 num_vfs);
553 		num_vfs = 4;
554 	}
555 
556 	cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL);
557 	if (!cpt)
558 		return -ENOMEM;
559 
560 	pci_set_drvdata(pdev, cpt);
561 	cpt->pdev = pdev;
562 	err = pci_enable_device(pdev);
563 	if (err) {
564 		dev_err(dev, "Failed to enable PCI device\n");
565 		pci_set_drvdata(pdev, NULL);
566 		return err;
567 	}
568 
569 	err = pci_request_regions(pdev, DRV_NAME);
570 	if (err) {
571 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
572 		goto cpt_err_disable_device;
573 	}
574 
575 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
576 	if (err) {
577 		dev_err(dev, "Unable to get usable 48-bit DMA configuration\n");
578 		goto cpt_err_release_regions;
579 	}
580 
581 	/* MAP PF's configuration registers */
582 	cpt->reg_base = pcim_iomap(pdev, 0, 0);
583 	if (!cpt->reg_base) {
584 		dev_err(dev, "Cannot map config register space, aborting\n");
585 		err = -ENOMEM;
586 		goto cpt_err_release_regions;
587 	}
588 
589 	/* CPT device HW initialization */
590 	cpt_device_init(cpt);
591 
592 	/* Register interrupts */
593 	err = cpt_register_interrupts(cpt);
594 	if (err)
595 		goto cpt_err_release_regions;
596 
597 	err = cpt_ucode_load(cpt);
598 	if (err)
599 		goto cpt_err_unregister_interrupts;
600 
601 	/* Configure SRIOV */
602 	err = cpt_sriov_init(cpt, num_vfs);
603 	if (err)
604 		goto cpt_err_unregister_interrupts;
605 
606 	return 0;
607 
608 cpt_err_unregister_interrupts:
609 	cpt_unregister_interrupts(cpt);
610 cpt_err_release_regions:
611 	pci_release_regions(pdev);
612 cpt_err_disable_device:
613 	pci_disable_device(pdev);
614 	pci_set_drvdata(pdev, NULL);
615 	return err;
616 }
617 
618 static void cpt_remove(struct pci_dev *pdev)
619 {
620 	struct cpt_device *cpt = pci_get_drvdata(pdev);
621 
622 	/* Disengage SE and AE cores from all groups*/
623 	cpt_disable_all_cores(cpt);
624 	/* Unload microcodes */
625 	cpt_unload_microcode(cpt);
626 	cpt_unregister_interrupts(cpt);
627 	pci_disable_sriov(pdev);
628 	pci_release_regions(pdev);
629 	pci_disable_device(pdev);
630 	pci_set_drvdata(pdev, NULL);
631 }
632 
633 static void cpt_shutdown(struct pci_dev *pdev)
634 {
635 	struct cpt_device *cpt = pci_get_drvdata(pdev);
636 
637 	if (!cpt)
638 		return;
639 
640 	dev_info(&pdev->dev, "Shutdown device %x:%x.\n",
641 		 (u32)pdev->vendor, (u32)pdev->device);
642 
643 	cpt_unregister_interrupts(cpt);
644 	pci_release_regions(pdev);
645 	pci_disable_device(pdev);
646 	pci_set_drvdata(pdev, NULL);
647 }
648 
649 /* Supported devices */
650 static const struct pci_device_id cpt_id_table[] = {
651 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CPT_81XX_PCI_PF_DEVICE_ID) },
652 	{ 0, }  /* end of table */
653 };
654 
655 static struct pci_driver cpt_pci_driver = {
656 	.name = DRV_NAME,
657 	.id_table = cpt_id_table,
658 	.probe = cpt_probe,
659 	.remove = cpt_remove,
660 	.shutdown = cpt_shutdown,
661 };
662 
663 module_pci_driver(cpt_pci_driver);
664 
665 MODULE_AUTHOR("George Cherian <george.cherian@cavium.com>");
666 MODULE_DESCRIPTION("Cavium Thunder CPT Physical Function Driver");
667 MODULE_LICENSE("GPL v2");
668 MODULE_VERSION(DRV_VERSION);
669 MODULE_DEVICE_TABLE(pci, cpt_id_table);
670