xref: /openbmc/linux/drivers/crypto/caam/qi.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
13 
14 #include "regs.h"
15 #include "qi.h"
16 #include "desc.h"
17 #include "intern.h"
18 #include "desc_constr.h"
19 
20 #define PREHDR_RSLS_SHIFT	31
21 
22 /*
23  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
24  * so that resources used by the in-flight buffers do not become a memory hog.
25  */
26 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
27 
28 #define CAAM_QI_ENQUEUE_RETRIES	10000
29 
30 #define CAAM_NAPI_WEIGHT	63
31 
32 /*
33  * caam_napi - struct holding CAAM NAPI-related params
34  * @irqtask: IRQ task for QI backend
35  * @p: QMan portal
36  */
37 struct caam_napi {
38 	struct napi_struct irqtask;
39 	struct qman_portal *p;
40 };
41 
42 /*
43  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
44  *                     responses expected on each cpu.
45  * @caam_napi: CAAM NAPI params
46  * @net_dev: netdev used by NAPI
47  * @rsp_fq: response FQ from CAAM
48  */
49 struct caam_qi_pcpu_priv {
50 	struct caam_napi caam_napi;
51 	struct net_device net_dev;
52 	struct qman_fq *rsp_fq;
53 } ____cacheline_aligned;
54 
55 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
56 static DEFINE_PER_CPU(int, last_cpu);
57 
58 /*
59  * caam_qi_priv - CAAM QI backend private params
60  * @cgr: QMan congestion group
61  * @qi_pdev: platform device for QI backend
62  */
63 struct caam_qi_priv {
64 	struct qman_cgr cgr;
65 	struct platform_device *qi_pdev;
66 };
67 
68 static struct caam_qi_priv qipriv ____cacheline_aligned;
69 
70 /*
71  * This is written by only one core - the one that initialized the CGR - and
72  * read by multiple cores (all the others).
73  */
74 bool caam_congested __read_mostly;
75 EXPORT_SYMBOL(caam_congested);
76 
77 #ifdef CONFIG_DEBUG_FS
78 /*
79  * This is a counter for the number of times the congestion group (where all
80  * the request and response queueus are) reached congestion. Incremented
81  * each time the congestion callback is called with congested == true.
82  */
83 static u64 times_congested;
84 #endif
85 
86 /*
87  * CPU from where the module initialised. This is required because QMan driver
88  * requires CGRs to be removed from same CPU from where they were originally
89  * allocated.
90  */
91 static int mod_init_cpu;
92 
93 /*
94  * This is a a cache of buffers, from which the users of CAAM QI driver
95  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
96  * doing malloc on the hotpath.
97  * NOTE: A more elegant solution would be to have some headroom in the frames
98  *       being processed. This could be added by the dpaa-ethernet driver.
99  *       This would pose a problem for userspace application processing which
100  *       cannot know of this limitation. So for now, this will work.
101  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
102  */
103 static struct kmem_cache *qi_cache;
104 
105 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
106 {
107 	struct qm_fd fd;
108 	dma_addr_t addr;
109 	int ret;
110 	int num_retries = 0;
111 
112 	qm_fd_clear_fd(&fd);
113 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
114 
115 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
116 			      DMA_BIDIRECTIONAL);
117 	if (dma_mapping_error(qidev, addr)) {
118 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
119 		return -EIO;
120 	}
121 	qm_fd_addr_set64(&fd, addr);
122 
123 	do {
124 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
125 		if (likely(!ret))
126 			return 0;
127 
128 		if (ret != -EBUSY)
129 			break;
130 		num_retries++;
131 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
132 
133 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
134 
135 	return ret;
136 }
137 EXPORT_SYMBOL(caam_qi_enqueue);
138 
139 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
140 			   const union qm_mr_entry *msg)
141 {
142 	const struct qm_fd *fd;
143 	struct caam_drv_req *drv_req;
144 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
145 
146 	fd = &msg->ern.fd;
147 
148 	if (qm_fd_get_format(fd) != qm_fd_compound) {
149 		dev_err(qidev, "Non-compound FD from CAAM\n");
150 		return;
151 	}
152 
153 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
154 	if (!drv_req) {
155 		dev_err(qidev,
156 			"Can't find original request for CAAM response\n");
157 		return;
158 	}
159 
160 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
161 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
162 
163 	drv_req->cbk(drv_req, -EIO);
164 }
165 
166 static struct qman_fq *create_caam_req_fq(struct device *qidev,
167 					  struct qman_fq *rsp_fq,
168 					  dma_addr_t hwdesc,
169 					  int fq_sched_flag)
170 {
171 	int ret;
172 	struct qman_fq *req_fq;
173 	struct qm_mcc_initfq opts;
174 
175 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
176 	if (!req_fq)
177 		return ERR_PTR(-ENOMEM);
178 
179 	req_fq->cb.ern = caam_fq_ern_cb;
180 	req_fq->cb.fqs = NULL;
181 
182 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
183 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
184 	if (ret) {
185 		dev_err(qidev, "Failed to create session req FQ\n");
186 		goto create_req_fq_fail;
187 	}
188 
189 	memset(&opts, 0, sizeof(opts));
190 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
191 				   QM_INITFQ_WE_CONTEXTB |
192 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
193 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
194 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
195 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
196 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
197 	opts.fqd.cgid = qipriv.cgr.cgrid;
198 
199 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
200 	if (ret) {
201 		dev_err(qidev, "Failed to init session req FQ\n");
202 		goto init_req_fq_fail;
203 	}
204 
205 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
206 		smp_processor_id());
207 	return req_fq;
208 
209 init_req_fq_fail:
210 	qman_destroy_fq(req_fq);
211 create_req_fq_fail:
212 	kfree(req_fq);
213 	return ERR_PTR(ret);
214 }
215 
216 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
217 {
218 	int ret;
219 
220 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
221 				    QMAN_VOLATILE_FLAG_FINISH,
222 				    QM_VDQCR_PRECEDENCE_VDQCR |
223 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
224 	if (ret) {
225 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
226 		return ret;
227 	}
228 
229 	do {
230 		struct qman_portal *p;
231 
232 		p = qman_get_affine_portal(smp_processor_id());
233 		qman_p_poll_dqrr(p, 16);
234 	} while (fq->flags & QMAN_FQ_STATE_NE);
235 
236 	return 0;
237 }
238 
239 static int kill_fq(struct device *qidev, struct qman_fq *fq)
240 {
241 	u32 flags;
242 	int ret;
243 
244 	ret = qman_retire_fq(fq, &flags);
245 	if (ret < 0) {
246 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
247 		return ret;
248 	}
249 
250 	if (!ret)
251 		goto empty_fq;
252 
253 	/* Async FQ retirement condition */
254 	if (ret == 1) {
255 		/* Retry till FQ gets in retired state */
256 		do {
257 			msleep(20);
258 		} while (fq->state != qman_fq_state_retired);
259 
260 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
261 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
262 	}
263 
264 empty_fq:
265 	if (fq->flags & QMAN_FQ_STATE_NE) {
266 		ret = empty_retired_fq(qidev, fq);
267 		if (ret) {
268 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
269 				fq->fqid);
270 			return ret;
271 		}
272 	}
273 
274 	ret = qman_oos_fq(fq);
275 	if (ret)
276 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
277 
278 	qman_destroy_fq(fq);
279 	kfree(fq);
280 
281 	return ret;
282 }
283 
284 static int empty_caam_fq(struct qman_fq *fq)
285 {
286 	int ret;
287 	struct qm_mcr_queryfq_np np;
288 
289 	/* Wait till the older CAAM FQ get empty */
290 	do {
291 		ret = qman_query_fq_np(fq, &np);
292 		if (ret)
293 			return ret;
294 
295 		if (!qm_mcr_np_get(&np, frm_cnt))
296 			break;
297 
298 		msleep(20);
299 	} while (1);
300 
301 	/*
302 	 * Give extra time for pending jobs from this FQ in holding tanks
303 	 * to get processed
304 	 */
305 	msleep(20);
306 	return 0;
307 }
308 
309 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
310 {
311 	int ret;
312 	u32 num_words;
313 	struct qman_fq *new_fq, *old_fq;
314 	struct device *qidev = drv_ctx->qidev;
315 
316 	num_words = desc_len(sh_desc);
317 	if (num_words > MAX_SDLEN) {
318 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
319 		return -EINVAL;
320 	}
321 
322 	/* Note down older req FQ */
323 	old_fq = drv_ctx->req_fq;
324 
325 	/* Create a new req FQ in parked state */
326 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
327 				    drv_ctx->context_a, 0);
328 	if (unlikely(IS_ERR_OR_NULL(new_fq))) {
329 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
330 		return PTR_ERR(new_fq);
331 	}
332 
333 	/* Hook up new FQ to context so that new requests keep queuing */
334 	drv_ctx->req_fq = new_fq;
335 
336 	/* Empty and remove the older FQ */
337 	ret = empty_caam_fq(old_fq);
338 	if (ret) {
339 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
340 
341 		/* We can revert to older FQ */
342 		drv_ctx->req_fq = old_fq;
343 
344 		if (kill_fq(qidev, new_fq))
345 			dev_warn(qidev, "New CAAM FQ kill failed\n");
346 
347 		return ret;
348 	}
349 
350 	/*
351 	 * Re-initialise pre-header. Set RSLS and SDLEN.
352 	 * Update the shared descriptor for driver context.
353 	 */
354 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
355 					   num_words);
356 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
357 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
358 				   sizeof(drv_ctx->sh_desc) +
359 				   sizeof(drv_ctx->prehdr),
360 				   DMA_BIDIRECTIONAL);
361 
362 	/* Put the new FQ in scheduled state */
363 	ret = qman_schedule_fq(new_fq);
364 	if (ret) {
365 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
366 
367 		/*
368 		 * We can kill new FQ and revert to old FQ.
369 		 * Since the desc is already modified, it is success case
370 		 */
371 
372 		drv_ctx->req_fq = old_fq;
373 
374 		if (kill_fq(qidev, new_fq))
375 			dev_warn(qidev, "New CAAM FQ kill failed\n");
376 	} else if (kill_fq(qidev, old_fq)) {
377 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
378 	}
379 
380 	return 0;
381 }
382 EXPORT_SYMBOL(caam_drv_ctx_update);
383 
384 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
385 				       int *cpu,
386 				       u32 *sh_desc)
387 {
388 	size_t size;
389 	u32 num_words;
390 	dma_addr_t hwdesc;
391 	struct caam_drv_ctx *drv_ctx;
392 	const cpumask_t *cpus = qman_affine_cpus();
393 
394 	num_words = desc_len(sh_desc);
395 	if (num_words > MAX_SDLEN) {
396 		dev_err(qidev, "Invalid descriptor len: %d words\n",
397 			num_words);
398 		return ERR_PTR(-EINVAL);
399 	}
400 
401 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
402 	if (!drv_ctx)
403 		return ERR_PTR(-ENOMEM);
404 
405 	/*
406 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
407 	 * and dma-map them.
408 	 */
409 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
410 					   num_words);
411 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
412 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
413 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
414 				DMA_BIDIRECTIONAL);
415 	if (dma_mapping_error(qidev, hwdesc)) {
416 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
417 		kfree(drv_ctx);
418 		return ERR_PTR(-ENOMEM);
419 	}
420 	drv_ctx->context_a = hwdesc;
421 
422 	/* If given CPU does not own the portal, choose another one that does */
423 	if (!cpumask_test_cpu(*cpu, cpus)) {
424 		int *pcpu = &get_cpu_var(last_cpu);
425 
426 		*pcpu = cpumask_next(*pcpu, cpus);
427 		if (*pcpu >= nr_cpu_ids)
428 			*pcpu = cpumask_first(cpus);
429 		*cpu = *pcpu;
430 
431 		put_cpu_var(last_cpu);
432 	}
433 	drv_ctx->cpu = *cpu;
434 
435 	/* Find response FQ hooked with this CPU */
436 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
437 
438 	/* Attach request FQ */
439 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
440 					     QMAN_INITFQ_FLAG_SCHED);
441 	if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) {
442 		dev_err(qidev, "create_caam_req_fq failed\n");
443 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
444 		kfree(drv_ctx);
445 		return ERR_PTR(-ENOMEM);
446 	}
447 
448 	drv_ctx->qidev = qidev;
449 	return drv_ctx;
450 }
451 EXPORT_SYMBOL(caam_drv_ctx_init);
452 
453 void *qi_cache_alloc(gfp_t flags)
454 {
455 	return kmem_cache_alloc(qi_cache, flags);
456 }
457 EXPORT_SYMBOL(qi_cache_alloc);
458 
459 void qi_cache_free(void *obj)
460 {
461 	kmem_cache_free(qi_cache, obj);
462 }
463 EXPORT_SYMBOL(qi_cache_free);
464 
465 static int caam_qi_poll(struct napi_struct *napi, int budget)
466 {
467 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
468 
469 	int cleaned = qman_p_poll_dqrr(np->p, budget);
470 
471 	if (cleaned < budget) {
472 		napi_complete(napi);
473 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
474 	}
475 
476 	return cleaned;
477 }
478 
479 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
480 {
481 	if (IS_ERR_OR_NULL(drv_ctx))
482 		return;
483 
484 	/* Remove request FQ */
485 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
486 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
487 
488 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
489 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
490 			 DMA_BIDIRECTIONAL);
491 	kfree(drv_ctx);
492 }
493 EXPORT_SYMBOL(caam_drv_ctx_rel);
494 
495 int caam_qi_shutdown(struct device *qidev)
496 {
497 	int i, ret;
498 	struct caam_qi_priv *priv = dev_get_drvdata(qidev);
499 	const cpumask_t *cpus = qman_affine_cpus();
500 	struct cpumask old_cpumask = current->cpus_allowed;
501 
502 	for_each_cpu(i, cpus) {
503 		struct napi_struct *irqtask;
504 
505 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
506 		napi_disable(irqtask);
507 		netif_napi_del(irqtask);
508 
509 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
510 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
511 	}
512 
513 	/*
514 	 * QMan driver requires CGRs to be deleted from same CPU from where they
515 	 * were instantiated. Hence we get the module removal execute from the
516 	 * same CPU from where it was originally inserted.
517 	 */
518 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
519 
520 	ret = qman_delete_cgr(&priv->cgr);
521 	if (ret)
522 		dev_err(qidev, "Deletion of CGR failed: %d\n", ret);
523 	else
524 		qman_release_cgrid(priv->cgr.cgrid);
525 
526 	kmem_cache_destroy(qi_cache);
527 
528 	/* Now that we're done with the CGRs, restore the cpus allowed mask */
529 	set_cpus_allowed_ptr(current, &old_cpumask);
530 
531 	platform_device_unregister(priv->qi_pdev);
532 	return ret;
533 }
534 
535 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
536 {
537 	caam_congested = congested;
538 
539 	if (congested) {
540 #ifdef CONFIG_DEBUG_FS
541 		times_congested++;
542 #endif
543 		pr_debug_ratelimited("CAAM entered congestion\n");
544 
545 	} else {
546 		pr_debug_ratelimited("CAAM exited congestion\n");
547 	}
548 }
549 
550 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
551 {
552 	/*
553 	 * In case of threaded ISR, for RT kernels in_irq() does not return
554 	 * appropriate value, so use in_serving_softirq to distinguish between
555 	 * softirq and irq contexts.
556 	 */
557 	if (unlikely(in_irq() || !in_serving_softirq())) {
558 		/* Disable QMan IRQ source and invoke NAPI */
559 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
560 		np->p = p;
561 		napi_schedule(&np->irqtask);
562 		return 1;
563 	}
564 	return 0;
565 }
566 
567 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
568 						    struct qman_fq *rsp_fq,
569 						    const struct qm_dqrr_entry *dqrr)
570 {
571 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
572 	struct caam_drv_req *drv_req;
573 	const struct qm_fd *fd;
574 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
575 	u32 status;
576 
577 	if (caam_qi_napi_schedule(p, caam_napi))
578 		return qman_cb_dqrr_stop;
579 
580 	fd = &dqrr->fd;
581 	status = be32_to_cpu(fd->status);
582 	if (unlikely(status)) {
583 		u32 ssrc = status & JRSTA_SSRC_MASK;
584 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
585 
586 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
587 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
588 			dev_err(qidev, "Error: %#x in CAAM response FD\n",
589 				status);
590 	}
591 
592 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
593 		dev_err(qidev, "Non-compound FD from CAAM\n");
594 		return qman_cb_dqrr_consume;
595 	}
596 
597 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
598 	if (unlikely(!drv_req)) {
599 		dev_err(qidev,
600 			"Can't find original request for caam response\n");
601 		return qman_cb_dqrr_consume;
602 	}
603 
604 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
605 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
606 
607 	drv_req->cbk(drv_req, status);
608 	return qman_cb_dqrr_consume;
609 }
610 
611 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
612 {
613 	struct qm_mcc_initfq opts;
614 	struct qman_fq *fq;
615 	int ret;
616 
617 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
618 	if (!fq)
619 		return -ENOMEM;
620 
621 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
622 
623 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
624 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
625 	if (ret) {
626 		dev_err(qidev, "Rsp FQ create failed\n");
627 		kfree(fq);
628 		return -ENODEV;
629 	}
630 
631 	memset(&opts, 0, sizeof(opts));
632 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
633 				   QM_INITFQ_WE_CONTEXTB |
634 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
635 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
636 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
637 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
638 	opts.fqd.cgid = qipriv.cgr.cgrid;
639 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
640 						QM_STASHING_EXCL_DATA;
641 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
642 
643 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
644 	if (ret) {
645 		dev_err(qidev, "Rsp FQ init failed\n");
646 		kfree(fq);
647 		return -ENODEV;
648 	}
649 
650 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
651 
652 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
653 	return 0;
654 }
655 
656 static int init_cgr(struct device *qidev)
657 {
658 	int ret;
659 	struct qm_mcc_initcgr opts;
660 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
661 			MAX_RSP_FQ_BACKLOG_PER_CPU;
662 
663 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
664 	if (ret) {
665 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
666 		return ret;
667 	}
668 
669 	qipriv.cgr.cb = cgr_cb;
670 	memset(&opts, 0, sizeof(opts));
671 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
672 				   QM_CGR_WE_MODE);
673 	opts.cgr.cscn_en = QM_CGR_EN;
674 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
675 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
676 
677 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
678 	if (ret) {
679 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
680 			qipriv.cgr.cgrid);
681 		return ret;
682 	}
683 
684 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
685 	return 0;
686 }
687 
688 static int alloc_rsp_fqs(struct device *qidev)
689 {
690 	int ret, i;
691 	const cpumask_t *cpus = qman_affine_cpus();
692 
693 	/*Now create response FQs*/
694 	for_each_cpu(i, cpus) {
695 		ret = alloc_rsp_fq_cpu(qidev, i);
696 		if (ret) {
697 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
698 			return ret;
699 		}
700 	}
701 
702 	return 0;
703 }
704 
705 static void free_rsp_fqs(void)
706 {
707 	int i;
708 	const cpumask_t *cpus = qman_affine_cpus();
709 
710 	for_each_cpu(i, cpus)
711 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
712 }
713 
714 int caam_qi_init(struct platform_device *caam_pdev)
715 {
716 	int err, i;
717 	struct platform_device *qi_pdev;
718 	struct device *ctrldev = &caam_pdev->dev, *qidev;
719 	struct caam_drv_private *ctrlpriv;
720 	const cpumask_t *cpus = qman_affine_cpus();
721 	struct cpumask old_cpumask = current->cpus_allowed;
722 	static struct platform_device_info qi_pdev_info = {
723 		.name = "caam_qi",
724 		.id = PLATFORM_DEVID_NONE
725 	};
726 
727 	/*
728 	 * QMAN requires CGRs to be removed from same CPU+portal from where it
729 	 * was originally allocated. Hence we need to note down the
730 	 * initialisation CPU and use the same CPU for module exit.
731 	 * We select the first CPU to from the list of portal owning CPUs.
732 	 * Then we pin module init to this CPU.
733 	 */
734 	mod_init_cpu = cpumask_first(cpus);
735 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
736 
737 	qi_pdev_info.parent = ctrldev;
738 	qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
739 	qi_pdev = platform_device_register_full(&qi_pdev_info);
740 	if (IS_ERR(qi_pdev))
741 		return PTR_ERR(qi_pdev);
742 	set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
743 
744 	ctrlpriv = dev_get_drvdata(ctrldev);
745 	qidev = &qi_pdev->dev;
746 
747 	qipriv.qi_pdev = qi_pdev;
748 	dev_set_drvdata(qidev, &qipriv);
749 
750 	/* Initialize the congestion detection */
751 	err = init_cgr(qidev);
752 	if (err) {
753 		dev_err(qidev, "CGR initialization failed: %d\n", err);
754 		platform_device_unregister(qi_pdev);
755 		return err;
756 	}
757 
758 	/* Initialise response FQs */
759 	err = alloc_rsp_fqs(qidev);
760 	if (err) {
761 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
762 		free_rsp_fqs();
763 		platform_device_unregister(qi_pdev);
764 		return err;
765 	}
766 
767 	/*
768 	 * Enable the NAPI contexts on each of the core which has an affine
769 	 * portal.
770 	 */
771 	for_each_cpu(i, cpus) {
772 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
773 		struct caam_napi *caam_napi = &priv->caam_napi;
774 		struct napi_struct *irqtask = &caam_napi->irqtask;
775 		struct net_device *net_dev = &priv->net_dev;
776 
777 		net_dev->dev = *qidev;
778 		INIT_LIST_HEAD(&net_dev->napi_list);
779 
780 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
781 			       CAAM_NAPI_WEIGHT);
782 
783 		napi_enable(irqtask);
784 	}
785 
786 	/* Hook up QI device to parent controlling caam device */
787 	ctrlpriv->qidev = qidev;
788 
789 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
790 				     SLAB_CACHE_DMA, NULL);
791 	if (!qi_cache) {
792 		dev_err(qidev, "Can't allocate CAAM cache\n");
793 		free_rsp_fqs();
794 		platform_device_unregister(qi_pdev);
795 		return -ENOMEM;
796 	}
797 
798 	/* Done with the CGRs; restore the cpus allowed mask */
799 	set_cpus_allowed_ptr(current, &old_cpumask);
800 #ifdef CONFIG_DEBUG_FS
801 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
802 			    &times_congested, &caam_fops_u64_ro);
803 #endif
804 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
805 	return 0;
806 }
807