1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CAAM/SEC 4.x QI transport/backend driver 4 * Queue Interface backend functionality 5 * 6 * Copyright 2013-2016 Freescale Semiconductor, Inc. 7 * Copyright 2016-2017, 2019-2020 NXP 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/device.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/kernel.h> 14 #include <linux/kthread.h> 15 #include <linux/netdevice.h> 16 #include <linux/platform_device.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <soc/fsl/qman.h> 20 21 #include "debugfs.h" 22 #include "regs.h" 23 #include "qi.h" 24 #include "desc.h" 25 #include "intern.h" 26 #include "desc_constr.h" 27 28 #define PREHDR_RSLS_SHIFT 31 29 #define PREHDR_ABS BIT(25) 30 31 /* 32 * Use a reasonable backlog of frames (per CPU) as congestion threshold, 33 * so that resources used by the in-flight buffers do not become a memory hog. 34 */ 35 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 36 37 #define CAAM_QI_ENQUEUE_RETRIES 10000 38 39 #define CAAM_NAPI_WEIGHT 63 40 41 /* 42 * caam_napi - struct holding CAAM NAPI-related params 43 * @irqtask: IRQ task for QI backend 44 * @p: QMan portal 45 */ 46 struct caam_napi { 47 struct napi_struct irqtask; 48 struct qman_portal *p; 49 }; 50 51 /* 52 * caam_qi_pcpu_priv - percpu private data structure to main list of pending 53 * responses expected on each cpu. 54 * @caam_napi: CAAM NAPI params 55 * @net_dev: netdev used by NAPI 56 * @rsp_fq: response FQ from CAAM 57 */ 58 struct caam_qi_pcpu_priv { 59 struct caam_napi caam_napi; 60 struct net_device net_dev; 61 struct qman_fq *rsp_fq; 62 } ____cacheline_aligned; 63 64 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); 65 static DEFINE_PER_CPU(int, last_cpu); 66 67 /* 68 * caam_qi_priv - CAAM QI backend private params 69 * @cgr: QMan congestion group 70 */ 71 struct caam_qi_priv { 72 struct qman_cgr cgr; 73 }; 74 75 static struct caam_qi_priv qipriv ____cacheline_aligned; 76 77 /* 78 * This is written by only one core - the one that initialized the CGR - and 79 * read by multiple cores (all the others). 80 */ 81 bool caam_congested __read_mostly; 82 EXPORT_SYMBOL(caam_congested); 83 84 /* 85 * This is a cache of buffers, from which the users of CAAM QI driver 86 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than 87 * doing malloc on the hotpath. 88 * NOTE: A more elegant solution would be to have some headroom in the frames 89 * being processed. This could be added by the dpaa-ethernet driver. 90 * This would pose a problem for userspace application processing which 91 * cannot know of this limitation. So for now, this will work. 92 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here 93 */ 94 static struct kmem_cache *qi_cache; 95 96 static void *caam_iova_to_virt(struct iommu_domain *domain, 97 dma_addr_t iova_addr) 98 { 99 phys_addr_t phys_addr; 100 101 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 102 103 return phys_to_virt(phys_addr); 104 } 105 106 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) 107 { 108 struct qm_fd fd; 109 dma_addr_t addr; 110 int ret; 111 int num_retries = 0; 112 113 qm_fd_clear_fd(&fd); 114 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); 115 116 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), 117 DMA_BIDIRECTIONAL); 118 if (dma_mapping_error(qidev, addr)) { 119 dev_err(qidev, "DMA mapping error for QI enqueue request\n"); 120 return -EIO; 121 } 122 qm_fd_addr_set64(&fd, addr); 123 124 do { 125 ret = qman_enqueue(req->drv_ctx->req_fq, &fd); 126 if (likely(!ret)) { 127 refcount_inc(&req->drv_ctx->refcnt); 128 return 0; 129 } 130 131 if (ret != -EBUSY) 132 break; 133 num_retries++; 134 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); 135 136 dev_err(qidev, "qman_enqueue failed: %d\n", ret); 137 138 return ret; 139 } 140 EXPORT_SYMBOL(caam_qi_enqueue); 141 142 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, 143 const union qm_mr_entry *msg) 144 { 145 const struct qm_fd *fd; 146 struct caam_drv_req *drv_req; 147 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 148 struct caam_drv_private *priv = dev_get_drvdata(qidev); 149 150 fd = &msg->ern.fd; 151 152 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 153 if (!drv_req) { 154 dev_err(qidev, 155 "Can't find original request for CAAM response\n"); 156 return; 157 } 158 159 refcount_dec(&drv_req->drv_ctx->refcnt); 160 161 if (qm_fd_get_format(fd) != qm_fd_compound) { 162 dev_err(qidev, "Non-compound FD from CAAM\n"); 163 return; 164 } 165 166 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 167 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 168 169 if (fd->status) 170 drv_req->cbk(drv_req, be32_to_cpu(fd->status)); 171 else 172 drv_req->cbk(drv_req, JRSTA_SSRC_QI); 173 } 174 175 static struct qman_fq *create_caam_req_fq(struct device *qidev, 176 struct qman_fq *rsp_fq, 177 dma_addr_t hwdesc, 178 int fq_sched_flag) 179 { 180 int ret; 181 struct qman_fq *req_fq; 182 struct qm_mcc_initfq opts; 183 184 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); 185 if (!req_fq) 186 return ERR_PTR(-ENOMEM); 187 188 req_fq->cb.ern = caam_fq_ern_cb; 189 req_fq->cb.fqs = NULL; 190 191 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | 192 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); 193 if (ret) { 194 dev_err(qidev, "Failed to create session req FQ\n"); 195 goto create_req_fq_fail; 196 } 197 198 memset(&opts, 0, sizeof(opts)); 199 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 200 QM_INITFQ_WE_CONTEXTB | 201 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 202 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 203 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); 204 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); 205 qm_fqd_context_a_set64(&opts.fqd, hwdesc); 206 opts.fqd.cgid = qipriv.cgr.cgrid; 207 208 ret = qman_init_fq(req_fq, fq_sched_flag, &opts); 209 if (ret) { 210 dev_err(qidev, "Failed to init session req FQ\n"); 211 goto init_req_fq_fail; 212 } 213 214 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, 215 smp_processor_id()); 216 return req_fq; 217 218 init_req_fq_fail: 219 qman_destroy_fq(req_fq); 220 create_req_fq_fail: 221 kfree(req_fq); 222 return ERR_PTR(ret); 223 } 224 225 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) 226 { 227 int ret; 228 229 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | 230 QMAN_VOLATILE_FLAG_FINISH, 231 QM_VDQCR_PRECEDENCE_VDQCR | 232 QM_VDQCR_NUMFRAMES_TILLEMPTY); 233 if (ret) { 234 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); 235 return ret; 236 } 237 238 do { 239 struct qman_portal *p; 240 241 p = qman_get_affine_portal(smp_processor_id()); 242 qman_p_poll_dqrr(p, 16); 243 } while (fq->flags & QMAN_FQ_STATE_NE); 244 245 return 0; 246 } 247 248 static int kill_fq(struct device *qidev, struct qman_fq *fq) 249 { 250 u32 flags; 251 int ret; 252 253 ret = qman_retire_fq(fq, &flags); 254 if (ret < 0) { 255 dev_err(qidev, "qman_retire_fq failed: %d\n", ret); 256 return ret; 257 } 258 259 if (!ret) 260 goto empty_fq; 261 262 /* Async FQ retirement condition */ 263 if (ret == 1) { 264 /* Retry till FQ gets in retired state */ 265 do { 266 msleep(20); 267 } while (fq->state != qman_fq_state_retired); 268 269 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); 270 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); 271 } 272 273 empty_fq: 274 if (fq->flags & QMAN_FQ_STATE_NE) { 275 ret = empty_retired_fq(qidev, fq); 276 if (ret) { 277 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", 278 fq->fqid); 279 return ret; 280 } 281 } 282 283 ret = qman_oos_fq(fq); 284 if (ret) 285 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); 286 287 qman_destroy_fq(fq); 288 kfree(fq); 289 290 return ret; 291 } 292 293 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) 294 { 295 int ret; 296 int retries = 10; 297 struct qm_mcr_queryfq_np np; 298 299 /* Wait till the older CAAM FQ get empty */ 300 do { 301 ret = qman_query_fq_np(fq, &np); 302 if (ret) 303 return ret; 304 305 if (!qm_mcr_np_get(&np, frm_cnt)) 306 break; 307 308 msleep(20); 309 } while (1); 310 311 /* Wait until pending jobs from this FQ are processed by CAAM */ 312 do { 313 if (refcount_read(&drv_ctx->refcnt) == 1) 314 break; 315 316 msleep(20); 317 } while (--retries); 318 319 if (!retries) 320 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", 321 refcount_read(&drv_ctx->refcnt), fq->fqid); 322 323 return 0; 324 } 325 326 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) 327 { 328 int ret; 329 u32 num_words; 330 struct qman_fq *new_fq, *old_fq; 331 struct device *qidev = drv_ctx->qidev; 332 333 num_words = desc_len(sh_desc); 334 if (num_words > MAX_SDLEN) { 335 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); 336 return -EINVAL; 337 } 338 339 /* Note down older req FQ */ 340 old_fq = drv_ctx->req_fq; 341 342 /* Create a new req FQ in parked state */ 343 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, 344 drv_ctx->context_a, 0); 345 if (IS_ERR(new_fq)) { 346 dev_err(qidev, "FQ allocation for shdesc update failed\n"); 347 return PTR_ERR(new_fq); 348 } 349 350 /* Hook up new FQ to context so that new requests keep queuing */ 351 drv_ctx->req_fq = new_fq; 352 353 /* Empty and remove the older FQ */ 354 ret = empty_caam_fq(old_fq, drv_ctx); 355 if (ret) { 356 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); 357 358 /* We can revert to older FQ */ 359 drv_ctx->req_fq = old_fq; 360 361 if (kill_fq(qidev, new_fq)) 362 dev_warn(qidev, "New CAAM FQ kill failed\n"); 363 364 return ret; 365 } 366 367 /* 368 * Re-initialise pre-header. Set RSLS and SDLEN. 369 * Update the shared descriptor for driver context. 370 */ 371 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 372 num_words); 373 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 374 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 375 dma_sync_single_for_device(qidev, drv_ctx->context_a, 376 sizeof(drv_ctx->sh_desc) + 377 sizeof(drv_ctx->prehdr), 378 DMA_BIDIRECTIONAL); 379 380 /* Put the new FQ in scheduled state */ 381 ret = qman_schedule_fq(new_fq); 382 if (ret) { 383 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); 384 385 /* 386 * We can kill new FQ and revert to old FQ. 387 * Since the desc is already modified, it is success case 388 */ 389 390 drv_ctx->req_fq = old_fq; 391 392 if (kill_fq(qidev, new_fq)) 393 dev_warn(qidev, "New CAAM FQ kill failed\n"); 394 } else if (kill_fq(qidev, old_fq)) { 395 dev_warn(qidev, "Old CAAM FQ kill failed\n"); 396 } 397 398 return 0; 399 } 400 EXPORT_SYMBOL(caam_drv_ctx_update); 401 402 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, 403 int *cpu, 404 u32 *sh_desc) 405 { 406 size_t size; 407 u32 num_words; 408 dma_addr_t hwdesc; 409 struct caam_drv_ctx *drv_ctx; 410 const cpumask_t *cpus = qman_affine_cpus(); 411 412 num_words = desc_len(sh_desc); 413 if (num_words > MAX_SDLEN) { 414 dev_err(qidev, "Invalid descriptor len: %d words\n", 415 num_words); 416 return ERR_PTR(-EINVAL); 417 } 418 419 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); 420 if (!drv_ctx) 421 return ERR_PTR(-ENOMEM); 422 423 /* 424 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor 425 * and dma-map them. 426 */ 427 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 428 num_words); 429 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 430 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 431 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); 432 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, 433 DMA_BIDIRECTIONAL); 434 if (dma_mapping_error(qidev, hwdesc)) { 435 dev_err(qidev, "DMA map error for preheader + shdesc\n"); 436 kfree(drv_ctx); 437 return ERR_PTR(-ENOMEM); 438 } 439 drv_ctx->context_a = hwdesc; 440 441 /* If given CPU does not own the portal, choose another one that does */ 442 if (!cpumask_test_cpu(*cpu, cpus)) { 443 int *pcpu = &get_cpu_var(last_cpu); 444 445 *pcpu = cpumask_next(*pcpu, cpus); 446 if (*pcpu >= nr_cpu_ids) 447 *pcpu = cpumask_first(cpus); 448 *cpu = *pcpu; 449 450 put_cpu_var(last_cpu); 451 } 452 drv_ctx->cpu = *cpu; 453 454 /* Find response FQ hooked with this CPU */ 455 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); 456 457 /* Attach request FQ */ 458 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, 459 QMAN_INITFQ_FLAG_SCHED); 460 if (IS_ERR(drv_ctx->req_fq)) { 461 dev_err(qidev, "create_caam_req_fq failed\n"); 462 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); 463 kfree(drv_ctx); 464 return ERR_PTR(-ENOMEM); 465 } 466 467 /* init reference counter used to track references to request FQ */ 468 refcount_set(&drv_ctx->refcnt, 1); 469 470 drv_ctx->qidev = qidev; 471 return drv_ctx; 472 } 473 EXPORT_SYMBOL(caam_drv_ctx_init); 474 475 void *qi_cache_alloc(gfp_t flags) 476 { 477 return kmem_cache_alloc(qi_cache, flags); 478 } 479 EXPORT_SYMBOL(qi_cache_alloc); 480 481 void qi_cache_free(void *obj) 482 { 483 kmem_cache_free(qi_cache, obj); 484 } 485 EXPORT_SYMBOL(qi_cache_free); 486 487 static int caam_qi_poll(struct napi_struct *napi, int budget) 488 { 489 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); 490 491 int cleaned = qman_p_poll_dqrr(np->p, budget); 492 493 if (cleaned < budget) { 494 napi_complete(napi); 495 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 496 } 497 498 return cleaned; 499 } 500 501 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) 502 { 503 if (IS_ERR_OR_NULL(drv_ctx)) 504 return; 505 506 /* Remove request FQ */ 507 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) 508 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); 509 510 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, 511 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), 512 DMA_BIDIRECTIONAL); 513 kfree(drv_ctx); 514 } 515 EXPORT_SYMBOL(caam_drv_ctx_rel); 516 517 static void caam_qi_shutdown(void *data) 518 { 519 int i; 520 struct device *qidev = data; 521 struct caam_qi_priv *priv = &qipriv; 522 const cpumask_t *cpus = qman_affine_cpus(); 523 524 for_each_cpu(i, cpus) { 525 struct napi_struct *irqtask; 526 527 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; 528 napi_disable(irqtask); 529 netif_napi_del(irqtask); 530 531 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) 532 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); 533 } 534 535 qman_delete_cgr_safe(&priv->cgr); 536 qman_release_cgrid(priv->cgr.cgrid); 537 538 kmem_cache_destroy(qi_cache); 539 } 540 541 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) 542 { 543 caam_congested = congested; 544 545 if (congested) { 546 caam_debugfs_qi_congested(); 547 548 pr_debug_ratelimited("CAAM entered congestion\n"); 549 550 } else { 551 pr_debug_ratelimited("CAAM exited congestion\n"); 552 } 553 } 554 555 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np, 556 bool sched_napi) 557 { 558 if (sched_napi) { 559 /* Disable QMan IRQ source and invoke NAPI */ 560 qman_p_irqsource_remove(p, QM_PIRQ_DQRI); 561 np->p = p; 562 napi_schedule(&np->irqtask); 563 return 1; 564 } 565 return 0; 566 } 567 568 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, 569 struct qman_fq *rsp_fq, 570 const struct qm_dqrr_entry *dqrr, 571 bool sched_napi) 572 { 573 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); 574 struct caam_drv_req *drv_req; 575 const struct qm_fd *fd; 576 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 577 struct caam_drv_private *priv = dev_get_drvdata(qidev); 578 u32 status; 579 580 if (caam_qi_napi_schedule(p, caam_napi, sched_napi)) 581 return qman_cb_dqrr_stop; 582 583 fd = &dqrr->fd; 584 585 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 586 if (unlikely(!drv_req)) { 587 dev_err(qidev, 588 "Can't find original request for caam response\n"); 589 return qman_cb_dqrr_consume; 590 } 591 592 refcount_dec(&drv_req->drv_ctx->refcnt); 593 594 status = be32_to_cpu(fd->status); 595 if (unlikely(status)) { 596 u32 ssrc = status & JRSTA_SSRC_MASK; 597 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; 598 599 if (ssrc != JRSTA_SSRC_CCB_ERROR || 600 err_id != JRSTA_CCBERR_ERRID_ICVCHK) 601 dev_err_ratelimited(qidev, 602 "Error: %#x in CAAM response FD\n", 603 status); 604 } 605 606 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { 607 dev_err(qidev, "Non-compound FD from CAAM\n"); 608 return qman_cb_dqrr_consume; 609 } 610 611 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 612 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 613 614 drv_req->cbk(drv_req, status); 615 return qman_cb_dqrr_consume; 616 } 617 618 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) 619 { 620 struct qm_mcc_initfq opts; 621 struct qman_fq *fq; 622 int ret; 623 624 fq = kzalloc(sizeof(*fq), GFP_KERNEL); 625 if (!fq) 626 return -ENOMEM; 627 628 fq->cb.dqrr = caam_rsp_fq_dqrr_cb; 629 630 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | 631 QMAN_FQ_FLAG_DYNAMIC_FQID, fq); 632 if (ret) { 633 dev_err(qidev, "Rsp FQ create failed\n"); 634 kfree(fq); 635 return -ENODEV; 636 } 637 638 memset(&opts, 0, sizeof(opts)); 639 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 640 QM_INITFQ_WE_CONTEXTB | 641 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 642 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | 643 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 644 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); 645 opts.fqd.cgid = qipriv.cgr.cgrid; 646 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | 647 QM_STASHING_EXCL_DATA; 648 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); 649 650 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); 651 if (ret) { 652 dev_err(qidev, "Rsp FQ init failed\n"); 653 kfree(fq); 654 return -ENODEV; 655 } 656 657 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; 658 659 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); 660 return 0; 661 } 662 663 static int init_cgr(struct device *qidev) 664 { 665 int ret; 666 struct qm_mcc_initcgr opts; 667 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * 668 MAX_RSP_FQ_BACKLOG_PER_CPU; 669 670 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); 671 if (ret) { 672 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); 673 return ret; 674 } 675 676 qipriv.cgr.cb = cgr_cb; 677 memset(&opts, 0, sizeof(opts)); 678 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | 679 QM_CGR_WE_MODE); 680 opts.cgr.cscn_en = QM_CGR_EN; 681 opts.cgr.mode = QMAN_CGR_MODE_FRAME; 682 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); 683 684 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); 685 if (ret) { 686 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, 687 qipriv.cgr.cgrid); 688 return ret; 689 } 690 691 dev_dbg(qidev, "Congestion threshold set to %llu\n", val); 692 return 0; 693 } 694 695 static int alloc_rsp_fqs(struct device *qidev) 696 { 697 int ret, i; 698 const cpumask_t *cpus = qman_affine_cpus(); 699 700 /*Now create response FQs*/ 701 for_each_cpu(i, cpus) { 702 ret = alloc_rsp_fq_cpu(qidev, i); 703 if (ret) { 704 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); 705 return ret; 706 } 707 } 708 709 return 0; 710 } 711 712 static void free_rsp_fqs(void) 713 { 714 int i; 715 const cpumask_t *cpus = qman_affine_cpus(); 716 717 for_each_cpu(i, cpus) 718 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 719 } 720 721 int caam_qi_init(struct platform_device *caam_pdev) 722 { 723 int err, i; 724 struct device *ctrldev = &caam_pdev->dev, *qidev; 725 struct caam_drv_private *ctrlpriv; 726 const cpumask_t *cpus = qman_affine_cpus(); 727 728 ctrlpriv = dev_get_drvdata(ctrldev); 729 qidev = ctrldev; 730 731 /* Initialize the congestion detection */ 732 err = init_cgr(qidev); 733 if (err) { 734 dev_err(qidev, "CGR initialization failed: %d\n", err); 735 return err; 736 } 737 738 /* Initialise response FQs */ 739 err = alloc_rsp_fqs(qidev); 740 if (err) { 741 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); 742 free_rsp_fqs(); 743 return err; 744 } 745 746 /* 747 * Enable the NAPI contexts on each of the core which has an affine 748 * portal. 749 */ 750 for_each_cpu(i, cpus) { 751 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); 752 struct caam_napi *caam_napi = &priv->caam_napi; 753 struct napi_struct *irqtask = &caam_napi->irqtask; 754 struct net_device *net_dev = &priv->net_dev; 755 756 net_dev->dev = *qidev; 757 INIT_LIST_HEAD(&net_dev->napi_list); 758 759 netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll, 760 CAAM_NAPI_WEIGHT); 761 762 napi_enable(irqtask); 763 } 764 765 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 766 dma_get_cache_alignment(), 0, NULL); 767 if (!qi_cache) { 768 dev_err(qidev, "Can't allocate CAAM cache\n"); 769 free_rsp_fqs(); 770 return -ENOMEM; 771 } 772 773 caam_debugfs_qi_init(ctrlpriv); 774 775 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, qidev); 776 if (err) 777 return err; 778 779 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); 780 return 0; 781 } 782