xref: /openbmc/linux/drivers/crypto/caam/qi.c (revision afba8b0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017, 2019-2020 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
13 
14 #include "debugfs.h"
15 #include "regs.h"
16 #include "qi.h"
17 #include "desc.h"
18 #include "intern.h"
19 #include "desc_constr.h"
20 
21 #define PREHDR_RSLS_SHIFT	31
22 #define PREHDR_ABS		BIT(25)
23 
24 /*
25  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
26  * so that resources used by the in-flight buffers do not become a memory hog.
27  */
28 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
29 
30 #define CAAM_QI_ENQUEUE_RETRIES	10000
31 
32 #define CAAM_NAPI_WEIGHT	63
33 
34 /*
35  * caam_napi - struct holding CAAM NAPI-related params
36  * @irqtask: IRQ task for QI backend
37  * @p: QMan portal
38  */
39 struct caam_napi {
40 	struct napi_struct irqtask;
41 	struct qman_portal *p;
42 };
43 
44 /*
45  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
46  *                     responses expected on each cpu.
47  * @caam_napi: CAAM NAPI params
48  * @net_dev: netdev used by NAPI
49  * @rsp_fq: response FQ from CAAM
50  */
51 struct caam_qi_pcpu_priv {
52 	struct caam_napi caam_napi;
53 	struct net_device net_dev;
54 	struct qman_fq *rsp_fq;
55 } ____cacheline_aligned;
56 
57 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
58 static DEFINE_PER_CPU(int, last_cpu);
59 
60 /*
61  * caam_qi_priv - CAAM QI backend private params
62  * @cgr: QMan congestion group
63  */
64 struct caam_qi_priv {
65 	struct qman_cgr cgr;
66 };
67 
68 static struct caam_qi_priv qipriv ____cacheline_aligned;
69 
70 /*
71  * This is written by only one core - the one that initialized the CGR - and
72  * read by multiple cores (all the others).
73  */
74 bool caam_congested __read_mostly;
75 EXPORT_SYMBOL(caam_congested);
76 
77 /*
78  * This is a a cache of buffers, from which the users of CAAM QI driver
79  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
80  * doing malloc on the hotpath.
81  * NOTE: A more elegant solution would be to have some headroom in the frames
82  *       being processed. This could be added by the dpaa-ethernet driver.
83  *       This would pose a problem for userspace application processing which
84  *       cannot know of this limitation. So for now, this will work.
85  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
86  */
87 static struct kmem_cache *qi_cache;
88 
89 static void *caam_iova_to_virt(struct iommu_domain *domain,
90 			       dma_addr_t iova_addr)
91 {
92 	phys_addr_t phys_addr;
93 
94 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
95 
96 	return phys_to_virt(phys_addr);
97 }
98 
99 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
100 {
101 	struct qm_fd fd;
102 	dma_addr_t addr;
103 	int ret;
104 	int num_retries = 0;
105 
106 	qm_fd_clear_fd(&fd);
107 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
108 
109 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
110 			      DMA_BIDIRECTIONAL);
111 	if (dma_mapping_error(qidev, addr)) {
112 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
113 		return -EIO;
114 	}
115 	qm_fd_addr_set64(&fd, addr);
116 
117 	do {
118 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
119 		if (likely(!ret)) {
120 			refcount_inc(&req->drv_ctx->refcnt);
121 			return 0;
122 		}
123 
124 		if (ret != -EBUSY)
125 			break;
126 		num_retries++;
127 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
128 
129 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
130 
131 	return ret;
132 }
133 EXPORT_SYMBOL(caam_qi_enqueue);
134 
135 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
136 			   const union qm_mr_entry *msg)
137 {
138 	const struct qm_fd *fd;
139 	struct caam_drv_req *drv_req;
140 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
141 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
142 
143 	fd = &msg->ern.fd;
144 
145 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
146 	if (!drv_req) {
147 		dev_err(qidev,
148 			"Can't find original request for CAAM response\n");
149 		return;
150 	}
151 
152 	refcount_dec(&drv_req->drv_ctx->refcnt);
153 
154 	if (qm_fd_get_format(fd) != qm_fd_compound) {
155 		dev_err(qidev, "Non-compound FD from CAAM\n");
156 		return;
157 	}
158 
159 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
160 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
161 
162 	if (fd->status)
163 		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
164 	else
165 		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
166 }
167 
168 static struct qman_fq *create_caam_req_fq(struct device *qidev,
169 					  struct qman_fq *rsp_fq,
170 					  dma_addr_t hwdesc,
171 					  int fq_sched_flag)
172 {
173 	int ret;
174 	struct qman_fq *req_fq;
175 	struct qm_mcc_initfq opts;
176 
177 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
178 	if (!req_fq)
179 		return ERR_PTR(-ENOMEM);
180 
181 	req_fq->cb.ern = caam_fq_ern_cb;
182 	req_fq->cb.fqs = NULL;
183 
184 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
185 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
186 	if (ret) {
187 		dev_err(qidev, "Failed to create session req FQ\n");
188 		goto create_req_fq_fail;
189 	}
190 
191 	memset(&opts, 0, sizeof(opts));
192 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
193 				   QM_INITFQ_WE_CONTEXTB |
194 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
195 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
196 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
197 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
198 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
199 	opts.fqd.cgid = qipriv.cgr.cgrid;
200 
201 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
202 	if (ret) {
203 		dev_err(qidev, "Failed to init session req FQ\n");
204 		goto init_req_fq_fail;
205 	}
206 
207 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
208 		smp_processor_id());
209 	return req_fq;
210 
211 init_req_fq_fail:
212 	qman_destroy_fq(req_fq);
213 create_req_fq_fail:
214 	kfree(req_fq);
215 	return ERR_PTR(ret);
216 }
217 
218 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
219 {
220 	int ret;
221 
222 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
223 				    QMAN_VOLATILE_FLAG_FINISH,
224 				    QM_VDQCR_PRECEDENCE_VDQCR |
225 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
226 	if (ret) {
227 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
228 		return ret;
229 	}
230 
231 	do {
232 		struct qman_portal *p;
233 
234 		p = qman_get_affine_portal(smp_processor_id());
235 		qman_p_poll_dqrr(p, 16);
236 	} while (fq->flags & QMAN_FQ_STATE_NE);
237 
238 	return 0;
239 }
240 
241 static int kill_fq(struct device *qidev, struct qman_fq *fq)
242 {
243 	u32 flags;
244 	int ret;
245 
246 	ret = qman_retire_fq(fq, &flags);
247 	if (ret < 0) {
248 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
249 		return ret;
250 	}
251 
252 	if (!ret)
253 		goto empty_fq;
254 
255 	/* Async FQ retirement condition */
256 	if (ret == 1) {
257 		/* Retry till FQ gets in retired state */
258 		do {
259 			msleep(20);
260 		} while (fq->state != qman_fq_state_retired);
261 
262 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
263 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
264 	}
265 
266 empty_fq:
267 	if (fq->flags & QMAN_FQ_STATE_NE) {
268 		ret = empty_retired_fq(qidev, fq);
269 		if (ret) {
270 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
271 				fq->fqid);
272 			return ret;
273 		}
274 	}
275 
276 	ret = qman_oos_fq(fq);
277 	if (ret)
278 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
279 
280 	qman_destroy_fq(fq);
281 	kfree(fq);
282 
283 	return ret;
284 }
285 
286 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
287 {
288 	int ret;
289 	int retries = 10;
290 	struct qm_mcr_queryfq_np np;
291 
292 	/* Wait till the older CAAM FQ get empty */
293 	do {
294 		ret = qman_query_fq_np(fq, &np);
295 		if (ret)
296 			return ret;
297 
298 		if (!qm_mcr_np_get(&np, frm_cnt))
299 			break;
300 
301 		msleep(20);
302 	} while (1);
303 
304 	/* Wait until pending jobs from this FQ are processed by CAAM */
305 	do {
306 		if (refcount_read(&drv_ctx->refcnt) == 1)
307 			break;
308 
309 		msleep(20);
310 	} while (--retries);
311 
312 	if (!retries)
313 		dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
314 			      refcount_read(&drv_ctx->refcnt), fq->fqid);
315 
316 	return 0;
317 }
318 
319 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
320 {
321 	int ret;
322 	u32 num_words;
323 	struct qman_fq *new_fq, *old_fq;
324 	struct device *qidev = drv_ctx->qidev;
325 
326 	num_words = desc_len(sh_desc);
327 	if (num_words > MAX_SDLEN) {
328 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
329 		return -EINVAL;
330 	}
331 
332 	/* Note down older req FQ */
333 	old_fq = drv_ctx->req_fq;
334 
335 	/* Create a new req FQ in parked state */
336 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
337 				    drv_ctx->context_a, 0);
338 	if (IS_ERR(new_fq)) {
339 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
340 		return PTR_ERR(new_fq);
341 	}
342 
343 	/* Hook up new FQ to context so that new requests keep queuing */
344 	drv_ctx->req_fq = new_fq;
345 
346 	/* Empty and remove the older FQ */
347 	ret = empty_caam_fq(old_fq, drv_ctx);
348 	if (ret) {
349 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
350 
351 		/* We can revert to older FQ */
352 		drv_ctx->req_fq = old_fq;
353 
354 		if (kill_fq(qidev, new_fq))
355 			dev_warn(qidev, "New CAAM FQ kill failed\n");
356 
357 		return ret;
358 	}
359 
360 	/*
361 	 * Re-initialise pre-header. Set RSLS and SDLEN.
362 	 * Update the shared descriptor for driver context.
363 	 */
364 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
365 					   num_words);
366 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
367 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
368 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
369 				   sizeof(drv_ctx->sh_desc) +
370 				   sizeof(drv_ctx->prehdr),
371 				   DMA_BIDIRECTIONAL);
372 
373 	/* Put the new FQ in scheduled state */
374 	ret = qman_schedule_fq(new_fq);
375 	if (ret) {
376 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
377 
378 		/*
379 		 * We can kill new FQ and revert to old FQ.
380 		 * Since the desc is already modified, it is success case
381 		 */
382 
383 		drv_ctx->req_fq = old_fq;
384 
385 		if (kill_fq(qidev, new_fq))
386 			dev_warn(qidev, "New CAAM FQ kill failed\n");
387 	} else if (kill_fq(qidev, old_fq)) {
388 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
389 	}
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL(caam_drv_ctx_update);
394 
395 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
396 				       int *cpu,
397 				       u32 *sh_desc)
398 {
399 	size_t size;
400 	u32 num_words;
401 	dma_addr_t hwdesc;
402 	struct caam_drv_ctx *drv_ctx;
403 	const cpumask_t *cpus = qman_affine_cpus();
404 
405 	num_words = desc_len(sh_desc);
406 	if (num_words > MAX_SDLEN) {
407 		dev_err(qidev, "Invalid descriptor len: %d words\n",
408 			num_words);
409 		return ERR_PTR(-EINVAL);
410 	}
411 
412 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
413 	if (!drv_ctx)
414 		return ERR_PTR(-ENOMEM);
415 
416 	/*
417 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
418 	 * and dma-map them.
419 	 */
420 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
421 					   num_words);
422 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
423 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
424 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
425 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
426 				DMA_BIDIRECTIONAL);
427 	if (dma_mapping_error(qidev, hwdesc)) {
428 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
429 		kfree(drv_ctx);
430 		return ERR_PTR(-ENOMEM);
431 	}
432 	drv_ctx->context_a = hwdesc;
433 
434 	/* If given CPU does not own the portal, choose another one that does */
435 	if (!cpumask_test_cpu(*cpu, cpus)) {
436 		int *pcpu = &get_cpu_var(last_cpu);
437 
438 		*pcpu = cpumask_next(*pcpu, cpus);
439 		if (*pcpu >= nr_cpu_ids)
440 			*pcpu = cpumask_first(cpus);
441 		*cpu = *pcpu;
442 
443 		put_cpu_var(last_cpu);
444 	}
445 	drv_ctx->cpu = *cpu;
446 
447 	/* Find response FQ hooked with this CPU */
448 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
449 
450 	/* Attach request FQ */
451 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
452 					     QMAN_INITFQ_FLAG_SCHED);
453 	if (IS_ERR(drv_ctx->req_fq)) {
454 		dev_err(qidev, "create_caam_req_fq failed\n");
455 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
456 		kfree(drv_ctx);
457 		return ERR_PTR(-ENOMEM);
458 	}
459 
460 	/* init reference counter used to track references to request FQ */
461 	refcount_set(&drv_ctx->refcnt, 1);
462 
463 	drv_ctx->qidev = qidev;
464 	return drv_ctx;
465 }
466 EXPORT_SYMBOL(caam_drv_ctx_init);
467 
468 void *qi_cache_alloc(gfp_t flags)
469 {
470 	return kmem_cache_alloc(qi_cache, flags);
471 }
472 EXPORT_SYMBOL(qi_cache_alloc);
473 
474 void qi_cache_free(void *obj)
475 {
476 	kmem_cache_free(qi_cache, obj);
477 }
478 EXPORT_SYMBOL(qi_cache_free);
479 
480 static int caam_qi_poll(struct napi_struct *napi, int budget)
481 {
482 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
483 
484 	int cleaned = qman_p_poll_dqrr(np->p, budget);
485 
486 	if (cleaned < budget) {
487 		napi_complete(napi);
488 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
489 	}
490 
491 	return cleaned;
492 }
493 
494 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
495 {
496 	if (IS_ERR_OR_NULL(drv_ctx))
497 		return;
498 
499 	/* Remove request FQ */
500 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
501 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
502 
503 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
504 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
505 			 DMA_BIDIRECTIONAL);
506 	kfree(drv_ctx);
507 }
508 EXPORT_SYMBOL(caam_drv_ctx_rel);
509 
510 static void caam_qi_shutdown(void *data)
511 {
512 	int i;
513 	struct device *qidev = data;
514 	struct caam_qi_priv *priv = &qipriv;
515 	const cpumask_t *cpus = qman_affine_cpus();
516 
517 	for_each_cpu(i, cpus) {
518 		struct napi_struct *irqtask;
519 
520 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
521 		napi_disable(irqtask);
522 		netif_napi_del(irqtask);
523 
524 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
525 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
526 	}
527 
528 	qman_delete_cgr_safe(&priv->cgr);
529 	qman_release_cgrid(priv->cgr.cgrid);
530 
531 	kmem_cache_destroy(qi_cache);
532 }
533 
534 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
535 {
536 	caam_congested = congested;
537 
538 	if (congested) {
539 		caam_debugfs_qi_congested();
540 
541 		pr_debug_ratelimited("CAAM entered congestion\n");
542 
543 	} else {
544 		pr_debug_ratelimited("CAAM exited congestion\n");
545 	}
546 }
547 
548 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
549 {
550 	/*
551 	 * In case of threaded ISR, for RT kernels in_irq() does not return
552 	 * appropriate value, so use in_serving_softirq to distinguish between
553 	 * softirq and irq contexts.
554 	 */
555 	if (unlikely(in_irq() || !in_serving_softirq())) {
556 		/* Disable QMan IRQ source and invoke NAPI */
557 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
558 		np->p = p;
559 		napi_schedule(&np->irqtask);
560 		return 1;
561 	}
562 	return 0;
563 }
564 
565 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
566 						    struct qman_fq *rsp_fq,
567 						    const struct qm_dqrr_entry *dqrr)
568 {
569 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
570 	struct caam_drv_req *drv_req;
571 	const struct qm_fd *fd;
572 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
573 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
574 	u32 status;
575 
576 	if (caam_qi_napi_schedule(p, caam_napi))
577 		return qman_cb_dqrr_stop;
578 
579 	fd = &dqrr->fd;
580 
581 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
582 	if (unlikely(!drv_req)) {
583 		dev_err(qidev,
584 			"Can't find original request for caam response\n");
585 		return qman_cb_dqrr_consume;
586 	}
587 
588 	refcount_dec(&drv_req->drv_ctx->refcnt);
589 
590 	status = be32_to_cpu(fd->status);
591 	if (unlikely(status)) {
592 		u32 ssrc = status & JRSTA_SSRC_MASK;
593 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
594 
595 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
596 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
597 			dev_err_ratelimited(qidev,
598 					    "Error: %#x in CAAM response FD\n",
599 					    status);
600 	}
601 
602 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
603 		dev_err(qidev, "Non-compound FD from CAAM\n");
604 		return qman_cb_dqrr_consume;
605 	}
606 
607 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
608 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
609 
610 	drv_req->cbk(drv_req, status);
611 	return qman_cb_dqrr_consume;
612 }
613 
614 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
615 {
616 	struct qm_mcc_initfq opts;
617 	struct qman_fq *fq;
618 	int ret;
619 
620 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
621 	if (!fq)
622 		return -ENOMEM;
623 
624 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
625 
626 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
627 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
628 	if (ret) {
629 		dev_err(qidev, "Rsp FQ create failed\n");
630 		kfree(fq);
631 		return -ENODEV;
632 	}
633 
634 	memset(&opts, 0, sizeof(opts));
635 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
636 				   QM_INITFQ_WE_CONTEXTB |
637 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
638 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
639 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
640 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
641 	opts.fqd.cgid = qipriv.cgr.cgrid;
642 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
643 						QM_STASHING_EXCL_DATA;
644 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
645 
646 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
647 	if (ret) {
648 		dev_err(qidev, "Rsp FQ init failed\n");
649 		kfree(fq);
650 		return -ENODEV;
651 	}
652 
653 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
654 
655 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
656 	return 0;
657 }
658 
659 static int init_cgr(struct device *qidev)
660 {
661 	int ret;
662 	struct qm_mcc_initcgr opts;
663 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
664 			MAX_RSP_FQ_BACKLOG_PER_CPU;
665 
666 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
667 	if (ret) {
668 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
669 		return ret;
670 	}
671 
672 	qipriv.cgr.cb = cgr_cb;
673 	memset(&opts, 0, sizeof(opts));
674 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
675 				   QM_CGR_WE_MODE);
676 	opts.cgr.cscn_en = QM_CGR_EN;
677 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
678 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
679 
680 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
681 	if (ret) {
682 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
683 			qipriv.cgr.cgrid);
684 		return ret;
685 	}
686 
687 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
688 	return 0;
689 }
690 
691 static int alloc_rsp_fqs(struct device *qidev)
692 {
693 	int ret, i;
694 	const cpumask_t *cpus = qman_affine_cpus();
695 
696 	/*Now create response FQs*/
697 	for_each_cpu(i, cpus) {
698 		ret = alloc_rsp_fq_cpu(qidev, i);
699 		if (ret) {
700 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
701 			return ret;
702 		}
703 	}
704 
705 	return 0;
706 }
707 
708 static void free_rsp_fqs(void)
709 {
710 	int i;
711 	const cpumask_t *cpus = qman_affine_cpus();
712 
713 	for_each_cpu(i, cpus)
714 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
715 }
716 
717 int caam_qi_init(struct platform_device *caam_pdev)
718 {
719 	int err, i;
720 	struct device *ctrldev = &caam_pdev->dev, *qidev;
721 	struct caam_drv_private *ctrlpriv;
722 	const cpumask_t *cpus = qman_affine_cpus();
723 
724 	ctrlpriv = dev_get_drvdata(ctrldev);
725 	qidev = ctrldev;
726 
727 	/* Initialize the congestion detection */
728 	err = init_cgr(qidev);
729 	if (err) {
730 		dev_err(qidev, "CGR initialization failed: %d\n", err);
731 		return err;
732 	}
733 
734 	/* Initialise response FQs */
735 	err = alloc_rsp_fqs(qidev);
736 	if (err) {
737 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
738 		free_rsp_fqs();
739 		return err;
740 	}
741 
742 	/*
743 	 * Enable the NAPI contexts on each of the core which has an affine
744 	 * portal.
745 	 */
746 	for_each_cpu(i, cpus) {
747 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
748 		struct caam_napi *caam_napi = &priv->caam_napi;
749 		struct napi_struct *irqtask = &caam_napi->irqtask;
750 		struct net_device *net_dev = &priv->net_dev;
751 
752 		net_dev->dev = *qidev;
753 		INIT_LIST_HEAD(&net_dev->napi_list);
754 
755 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
756 			       CAAM_NAPI_WEIGHT);
757 
758 		napi_enable(irqtask);
759 	}
760 
761 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
762 				     SLAB_CACHE_DMA, NULL);
763 	if (!qi_cache) {
764 		dev_err(qidev, "Can't allocate CAAM cache\n");
765 		free_rsp_fqs();
766 		return -ENOMEM;
767 	}
768 
769 	caam_debugfs_qi_init(ctrlpriv);
770 
771 	err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
772 	if (err)
773 		return err;
774 
775 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
776 	return 0;
777 }
778