1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CAAM/SEC 4.x QI transport/backend driver 4 * Queue Interface backend functionality 5 * 6 * Copyright 2013-2016 Freescale Semiconductor, Inc. 7 * Copyright 2016-2017, 2019-2020 NXP 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/kthread.h> 12 #include <soc/fsl/qman.h> 13 14 #include "regs.h" 15 #include "qi.h" 16 #include "desc.h" 17 #include "intern.h" 18 #include "desc_constr.h" 19 20 #define PREHDR_RSLS_SHIFT 31 21 #define PREHDR_ABS BIT(25) 22 23 /* 24 * Use a reasonable backlog of frames (per CPU) as congestion threshold, 25 * so that resources used by the in-flight buffers do not become a memory hog. 26 */ 27 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 28 29 #define CAAM_QI_ENQUEUE_RETRIES 10000 30 31 #define CAAM_NAPI_WEIGHT 63 32 33 /* 34 * caam_napi - struct holding CAAM NAPI-related params 35 * @irqtask: IRQ task for QI backend 36 * @p: QMan portal 37 */ 38 struct caam_napi { 39 struct napi_struct irqtask; 40 struct qman_portal *p; 41 }; 42 43 /* 44 * caam_qi_pcpu_priv - percpu private data structure to main list of pending 45 * responses expected on each cpu. 46 * @caam_napi: CAAM NAPI params 47 * @net_dev: netdev used by NAPI 48 * @rsp_fq: response FQ from CAAM 49 */ 50 struct caam_qi_pcpu_priv { 51 struct caam_napi caam_napi; 52 struct net_device net_dev; 53 struct qman_fq *rsp_fq; 54 } ____cacheline_aligned; 55 56 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); 57 static DEFINE_PER_CPU(int, last_cpu); 58 59 /* 60 * caam_qi_priv - CAAM QI backend private params 61 * @cgr: QMan congestion group 62 */ 63 struct caam_qi_priv { 64 struct qman_cgr cgr; 65 }; 66 67 static struct caam_qi_priv qipriv ____cacheline_aligned; 68 69 /* 70 * This is written by only one core - the one that initialized the CGR - and 71 * read by multiple cores (all the others). 72 */ 73 bool caam_congested __read_mostly; 74 EXPORT_SYMBOL(caam_congested); 75 76 #ifdef CONFIG_DEBUG_FS 77 /* 78 * This is a counter for the number of times the congestion group (where all 79 * the request and response queueus are) reached congestion. Incremented 80 * each time the congestion callback is called with congested == true. 81 */ 82 static u64 times_congested; 83 #endif 84 85 /* 86 * This is a a cache of buffers, from which the users of CAAM QI driver 87 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than 88 * doing malloc on the hotpath. 89 * NOTE: A more elegant solution would be to have some headroom in the frames 90 * being processed. This could be added by the dpaa-ethernet driver. 91 * This would pose a problem for userspace application processing which 92 * cannot know of this limitation. So for now, this will work. 93 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here 94 */ 95 static struct kmem_cache *qi_cache; 96 97 static void *caam_iova_to_virt(struct iommu_domain *domain, 98 dma_addr_t iova_addr) 99 { 100 phys_addr_t phys_addr; 101 102 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 103 104 return phys_to_virt(phys_addr); 105 } 106 107 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) 108 { 109 struct qm_fd fd; 110 dma_addr_t addr; 111 int ret; 112 int num_retries = 0; 113 114 qm_fd_clear_fd(&fd); 115 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); 116 117 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), 118 DMA_BIDIRECTIONAL); 119 if (dma_mapping_error(qidev, addr)) { 120 dev_err(qidev, "DMA mapping error for QI enqueue request\n"); 121 return -EIO; 122 } 123 qm_fd_addr_set64(&fd, addr); 124 125 do { 126 ret = qman_enqueue(req->drv_ctx->req_fq, &fd); 127 if (likely(!ret)) { 128 refcount_inc(&req->drv_ctx->refcnt); 129 return 0; 130 } 131 132 if (ret != -EBUSY) 133 break; 134 num_retries++; 135 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); 136 137 dev_err(qidev, "qman_enqueue failed: %d\n", ret); 138 139 return ret; 140 } 141 EXPORT_SYMBOL(caam_qi_enqueue); 142 143 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, 144 const union qm_mr_entry *msg) 145 { 146 const struct qm_fd *fd; 147 struct caam_drv_req *drv_req; 148 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 149 struct caam_drv_private *priv = dev_get_drvdata(qidev); 150 151 fd = &msg->ern.fd; 152 153 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 154 if (!drv_req) { 155 dev_err(qidev, 156 "Can't find original request for CAAM response\n"); 157 return; 158 } 159 160 refcount_dec(&drv_req->drv_ctx->refcnt); 161 162 if (qm_fd_get_format(fd) != qm_fd_compound) { 163 dev_err(qidev, "Non-compound FD from CAAM\n"); 164 return; 165 } 166 167 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 168 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 169 170 if (fd->status) 171 drv_req->cbk(drv_req, be32_to_cpu(fd->status)); 172 else 173 drv_req->cbk(drv_req, JRSTA_SSRC_QI); 174 } 175 176 static struct qman_fq *create_caam_req_fq(struct device *qidev, 177 struct qman_fq *rsp_fq, 178 dma_addr_t hwdesc, 179 int fq_sched_flag) 180 { 181 int ret; 182 struct qman_fq *req_fq; 183 struct qm_mcc_initfq opts; 184 185 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); 186 if (!req_fq) 187 return ERR_PTR(-ENOMEM); 188 189 req_fq->cb.ern = caam_fq_ern_cb; 190 req_fq->cb.fqs = NULL; 191 192 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | 193 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); 194 if (ret) { 195 dev_err(qidev, "Failed to create session req FQ\n"); 196 goto create_req_fq_fail; 197 } 198 199 memset(&opts, 0, sizeof(opts)); 200 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 201 QM_INITFQ_WE_CONTEXTB | 202 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 203 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 204 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); 205 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); 206 qm_fqd_context_a_set64(&opts.fqd, hwdesc); 207 opts.fqd.cgid = qipriv.cgr.cgrid; 208 209 ret = qman_init_fq(req_fq, fq_sched_flag, &opts); 210 if (ret) { 211 dev_err(qidev, "Failed to init session req FQ\n"); 212 goto init_req_fq_fail; 213 } 214 215 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, 216 smp_processor_id()); 217 return req_fq; 218 219 init_req_fq_fail: 220 qman_destroy_fq(req_fq); 221 create_req_fq_fail: 222 kfree(req_fq); 223 return ERR_PTR(ret); 224 } 225 226 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) 227 { 228 int ret; 229 230 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | 231 QMAN_VOLATILE_FLAG_FINISH, 232 QM_VDQCR_PRECEDENCE_VDQCR | 233 QM_VDQCR_NUMFRAMES_TILLEMPTY); 234 if (ret) { 235 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); 236 return ret; 237 } 238 239 do { 240 struct qman_portal *p; 241 242 p = qman_get_affine_portal(smp_processor_id()); 243 qman_p_poll_dqrr(p, 16); 244 } while (fq->flags & QMAN_FQ_STATE_NE); 245 246 return 0; 247 } 248 249 static int kill_fq(struct device *qidev, struct qman_fq *fq) 250 { 251 u32 flags; 252 int ret; 253 254 ret = qman_retire_fq(fq, &flags); 255 if (ret < 0) { 256 dev_err(qidev, "qman_retire_fq failed: %d\n", ret); 257 return ret; 258 } 259 260 if (!ret) 261 goto empty_fq; 262 263 /* Async FQ retirement condition */ 264 if (ret == 1) { 265 /* Retry till FQ gets in retired state */ 266 do { 267 msleep(20); 268 } while (fq->state != qman_fq_state_retired); 269 270 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); 271 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); 272 } 273 274 empty_fq: 275 if (fq->flags & QMAN_FQ_STATE_NE) { 276 ret = empty_retired_fq(qidev, fq); 277 if (ret) { 278 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", 279 fq->fqid); 280 return ret; 281 } 282 } 283 284 ret = qman_oos_fq(fq); 285 if (ret) 286 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); 287 288 qman_destroy_fq(fq); 289 kfree(fq); 290 291 return ret; 292 } 293 294 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) 295 { 296 int ret; 297 int retries = 10; 298 struct qm_mcr_queryfq_np np; 299 300 /* Wait till the older CAAM FQ get empty */ 301 do { 302 ret = qman_query_fq_np(fq, &np); 303 if (ret) 304 return ret; 305 306 if (!qm_mcr_np_get(&np, frm_cnt)) 307 break; 308 309 msleep(20); 310 } while (1); 311 312 /* Wait until pending jobs from this FQ are processed by CAAM */ 313 do { 314 if (refcount_read(&drv_ctx->refcnt) == 1) 315 break; 316 317 msleep(20); 318 } while (--retries); 319 320 if (!retries) 321 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", 322 refcount_read(&drv_ctx->refcnt), fq->fqid); 323 324 return 0; 325 } 326 327 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) 328 { 329 int ret; 330 u32 num_words; 331 struct qman_fq *new_fq, *old_fq; 332 struct device *qidev = drv_ctx->qidev; 333 334 num_words = desc_len(sh_desc); 335 if (num_words > MAX_SDLEN) { 336 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); 337 return -EINVAL; 338 } 339 340 /* Note down older req FQ */ 341 old_fq = drv_ctx->req_fq; 342 343 /* Create a new req FQ in parked state */ 344 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, 345 drv_ctx->context_a, 0); 346 if (IS_ERR(new_fq)) { 347 dev_err(qidev, "FQ allocation for shdesc update failed\n"); 348 return PTR_ERR(new_fq); 349 } 350 351 /* Hook up new FQ to context so that new requests keep queuing */ 352 drv_ctx->req_fq = new_fq; 353 354 /* Empty and remove the older FQ */ 355 ret = empty_caam_fq(old_fq, drv_ctx); 356 if (ret) { 357 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); 358 359 /* We can revert to older FQ */ 360 drv_ctx->req_fq = old_fq; 361 362 if (kill_fq(qidev, new_fq)) 363 dev_warn(qidev, "New CAAM FQ kill failed\n"); 364 365 return ret; 366 } 367 368 /* 369 * Re-initialise pre-header. Set RSLS and SDLEN. 370 * Update the shared descriptor for driver context. 371 */ 372 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 373 num_words); 374 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 375 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 376 dma_sync_single_for_device(qidev, drv_ctx->context_a, 377 sizeof(drv_ctx->sh_desc) + 378 sizeof(drv_ctx->prehdr), 379 DMA_BIDIRECTIONAL); 380 381 /* Put the new FQ in scheduled state */ 382 ret = qman_schedule_fq(new_fq); 383 if (ret) { 384 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); 385 386 /* 387 * We can kill new FQ and revert to old FQ. 388 * Since the desc is already modified, it is success case 389 */ 390 391 drv_ctx->req_fq = old_fq; 392 393 if (kill_fq(qidev, new_fq)) 394 dev_warn(qidev, "New CAAM FQ kill failed\n"); 395 } else if (kill_fq(qidev, old_fq)) { 396 dev_warn(qidev, "Old CAAM FQ kill failed\n"); 397 } 398 399 return 0; 400 } 401 EXPORT_SYMBOL(caam_drv_ctx_update); 402 403 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, 404 int *cpu, 405 u32 *sh_desc) 406 { 407 size_t size; 408 u32 num_words; 409 dma_addr_t hwdesc; 410 struct caam_drv_ctx *drv_ctx; 411 const cpumask_t *cpus = qman_affine_cpus(); 412 413 num_words = desc_len(sh_desc); 414 if (num_words > MAX_SDLEN) { 415 dev_err(qidev, "Invalid descriptor len: %d words\n", 416 num_words); 417 return ERR_PTR(-EINVAL); 418 } 419 420 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); 421 if (!drv_ctx) 422 return ERR_PTR(-ENOMEM); 423 424 /* 425 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor 426 * and dma-map them. 427 */ 428 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 429 num_words); 430 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 431 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 432 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); 433 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, 434 DMA_BIDIRECTIONAL); 435 if (dma_mapping_error(qidev, hwdesc)) { 436 dev_err(qidev, "DMA map error for preheader + shdesc\n"); 437 kfree(drv_ctx); 438 return ERR_PTR(-ENOMEM); 439 } 440 drv_ctx->context_a = hwdesc; 441 442 /* If given CPU does not own the portal, choose another one that does */ 443 if (!cpumask_test_cpu(*cpu, cpus)) { 444 int *pcpu = &get_cpu_var(last_cpu); 445 446 *pcpu = cpumask_next(*pcpu, cpus); 447 if (*pcpu >= nr_cpu_ids) 448 *pcpu = cpumask_first(cpus); 449 *cpu = *pcpu; 450 451 put_cpu_var(last_cpu); 452 } 453 drv_ctx->cpu = *cpu; 454 455 /* Find response FQ hooked with this CPU */ 456 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); 457 458 /* Attach request FQ */ 459 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, 460 QMAN_INITFQ_FLAG_SCHED); 461 if (IS_ERR(drv_ctx->req_fq)) { 462 dev_err(qidev, "create_caam_req_fq failed\n"); 463 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); 464 kfree(drv_ctx); 465 return ERR_PTR(-ENOMEM); 466 } 467 468 /* init reference counter used to track references to request FQ */ 469 refcount_set(&drv_ctx->refcnt, 1); 470 471 drv_ctx->qidev = qidev; 472 return drv_ctx; 473 } 474 EXPORT_SYMBOL(caam_drv_ctx_init); 475 476 void *qi_cache_alloc(gfp_t flags) 477 { 478 return kmem_cache_alloc(qi_cache, flags); 479 } 480 EXPORT_SYMBOL(qi_cache_alloc); 481 482 void qi_cache_free(void *obj) 483 { 484 kmem_cache_free(qi_cache, obj); 485 } 486 EXPORT_SYMBOL(qi_cache_free); 487 488 static int caam_qi_poll(struct napi_struct *napi, int budget) 489 { 490 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); 491 492 int cleaned = qman_p_poll_dqrr(np->p, budget); 493 494 if (cleaned < budget) { 495 napi_complete(napi); 496 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 497 } 498 499 return cleaned; 500 } 501 502 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) 503 { 504 if (IS_ERR_OR_NULL(drv_ctx)) 505 return; 506 507 /* Remove request FQ */ 508 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) 509 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); 510 511 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, 512 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), 513 DMA_BIDIRECTIONAL); 514 kfree(drv_ctx); 515 } 516 EXPORT_SYMBOL(caam_drv_ctx_rel); 517 518 static void caam_qi_shutdown(void *data) 519 { 520 int i; 521 struct device *qidev = data; 522 struct caam_qi_priv *priv = &qipriv; 523 const cpumask_t *cpus = qman_affine_cpus(); 524 525 for_each_cpu(i, cpus) { 526 struct napi_struct *irqtask; 527 528 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; 529 napi_disable(irqtask); 530 netif_napi_del(irqtask); 531 532 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) 533 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); 534 } 535 536 qman_delete_cgr_safe(&priv->cgr); 537 qman_release_cgrid(priv->cgr.cgrid); 538 539 kmem_cache_destroy(qi_cache); 540 } 541 542 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) 543 { 544 caam_congested = congested; 545 546 if (congested) { 547 #ifdef CONFIG_DEBUG_FS 548 times_congested++; 549 #endif 550 pr_debug_ratelimited("CAAM entered congestion\n"); 551 552 } else { 553 pr_debug_ratelimited("CAAM exited congestion\n"); 554 } 555 } 556 557 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np) 558 { 559 /* 560 * In case of threaded ISR, for RT kernels in_irq() does not return 561 * appropriate value, so use in_serving_softirq to distinguish between 562 * softirq and irq contexts. 563 */ 564 if (unlikely(in_irq() || !in_serving_softirq())) { 565 /* Disable QMan IRQ source and invoke NAPI */ 566 qman_p_irqsource_remove(p, QM_PIRQ_DQRI); 567 np->p = p; 568 napi_schedule(&np->irqtask); 569 return 1; 570 } 571 return 0; 572 } 573 574 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, 575 struct qman_fq *rsp_fq, 576 const struct qm_dqrr_entry *dqrr) 577 { 578 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); 579 struct caam_drv_req *drv_req; 580 const struct qm_fd *fd; 581 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 582 struct caam_drv_private *priv = dev_get_drvdata(qidev); 583 u32 status; 584 585 if (caam_qi_napi_schedule(p, caam_napi)) 586 return qman_cb_dqrr_stop; 587 588 fd = &dqrr->fd; 589 590 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 591 if (unlikely(!drv_req)) { 592 dev_err(qidev, 593 "Can't find original request for caam response\n"); 594 return qman_cb_dqrr_consume; 595 } 596 597 refcount_dec(&drv_req->drv_ctx->refcnt); 598 599 status = be32_to_cpu(fd->status); 600 if (unlikely(status)) { 601 u32 ssrc = status & JRSTA_SSRC_MASK; 602 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; 603 604 if (ssrc != JRSTA_SSRC_CCB_ERROR || 605 err_id != JRSTA_CCBERR_ERRID_ICVCHK) 606 dev_err_ratelimited(qidev, 607 "Error: %#x in CAAM response FD\n", 608 status); 609 } 610 611 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { 612 dev_err(qidev, "Non-compound FD from CAAM\n"); 613 return qman_cb_dqrr_consume; 614 } 615 616 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 617 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 618 619 drv_req->cbk(drv_req, status); 620 return qman_cb_dqrr_consume; 621 } 622 623 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) 624 { 625 struct qm_mcc_initfq opts; 626 struct qman_fq *fq; 627 int ret; 628 629 fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); 630 if (!fq) 631 return -ENOMEM; 632 633 fq->cb.dqrr = caam_rsp_fq_dqrr_cb; 634 635 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | 636 QMAN_FQ_FLAG_DYNAMIC_FQID, fq); 637 if (ret) { 638 dev_err(qidev, "Rsp FQ create failed\n"); 639 kfree(fq); 640 return -ENODEV; 641 } 642 643 memset(&opts, 0, sizeof(opts)); 644 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 645 QM_INITFQ_WE_CONTEXTB | 646 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 647 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | 648 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 649 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); 650 opts.fqd.cgid = qipriv.cgr.cgrid; 651 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | 652 QM_STASHING_EXCL_DATA; 653 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); 654 655 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); 656 if (ret) { 657 dev_err(qidev, "Rsp FQ init failed\n"); 658 kfree(fq); 659 return -ENODEV; 660 } 661 662 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; 663 664 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); 665 return 0; 666 } 667 668 static int init_cgr(struct device *qidev) 669 { 670 int ret; 671 struct qm_mcc_initcgr opts; 672 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * 673 MAX_RSP_FQ_BACKLOG_PER_CPU; 674 675 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); 676 if (ret) { 677 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); 678 return ret; 679 } 680 681 qipriv.cgr.cb = cgr_cb; 682 memset(&opts, 0, sizeof(opts)); 683 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | 684 QM_CGR_WE_MODE); 685 opts.cgr.cscn_en = QM_CGR_EN; 686 opts.cgr.mode = QMAN_CGR_MODE_FRAME; 687 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); 688 689 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); 690 if (ret) { 691 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, 692 qipriv.cgr.cgrid); 693 return ret; 694 } 695 696 dev_dbg(qidev, "Congestion threshold set to %llu\n", val); 697 return 0; 698 } 699 700 static int alloc_rsp_fqs(struct device *qidev) 701 { 702 int ret, i; 703 const cpumask_t *cpus = qman_affine_cpus(); 704 705 /*Now create response FQs*/ 706 for_each_cpu(i, cpus) { 707 ret = alloc_rsp_fq_cpu(qidev, i); 708 if (ret) { 709 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); 710 return ret; 711 } 712 } 713 714 return 0; 715 } 716 717 static void free_rsp_fqs(void) 718 { 719 int i; 720 const cpumask_t *cpus = qman_affine_cpus(); 721 722 for_each_cpu(i, cpus) 723 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 724 } 725 726 int caam_qi_init(struct platform_device *caam_pdev) 727 { 728 int err, i; 729 struct device *ctrldev = &caam_pdev->dev, *qidev; 730 struct caam_drv_private *ctrlpriv; 731 const cpumask_t *cpus = qman_affine_cpus(); 732 733 ctrlpriv = dev_get_drvdata(ctrldev); 734 qidev = ctrldev; 735 736 /* Initialize the congestion detection */ 737 err = init_cgr(qidev); 738 if (err) { 739 dev_err(qidev, "CGR initialization failed: %d\n", err); 740 return err; 741 } 742 743 /* Initialise response FQs */ 744 err = alloc_rsp_fqs(qidev); 745 if (err) { 746 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); 747 free_rsp_fqs(); 748 return err; 749 } 750 751 /* 752 * Enable the NAPI contexts on each of the core which has an affine 753 * portal. 754 */ 755 for_each_cpu(i, cpus) { 756 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); 757 struct caam_napi *caam_napi = &priv->caam_napi; 758 struct napi_struct *irqtask = &caam_napi->irqtask; 759 struct net_device *net_dev = &priv->net_dev; 760 761 net_dev->dev = *qidev; 762 INIT_LIST_HEAD(&net_dev->napi_list); 763 764 netif_napi_add(net_dev, irqtask, caam_qi_poll, 765 CAAM_NAPI_WEIGHT); 766 767 napi_enable(irqtask); 768 } 769 770 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, 771 SLAB_CACHE_DMA, NULL); 772 if (!qi_cache) { 773 dev_err(qidev, "Can't allocate CAAM cache\n"); 774 free_rsp_fqs(); 775 return -ENOMEM; 776 } 777 778 #ifdef CONFIG_DEBUG_FS 779 debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl, 780 ×_congested, &caam_fops_u64_ro); 781 #endif 782 783 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv); 784 if (err) 785 return err; 786 787 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); 788 return 0; 789 } 790