xref: /openbmc/linux/drivers/crypto/caam/qi.c (revision 74a22e8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
13 
14 #include "regs.h"
15 #include "qi.h"
16 #include "desc.h"
17 #include "intern.h"
18 #include "desc_constr.h"
19 
20 #define PREHDR_RSLS_SHIFT	31
21 
22 /*
23  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
24  * so that resources used by the in-flight buffers do not become a memory hog.
25  */
26 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
27 
28 #define CAAM_QI_ENQUEUE_RETRIES	10000
29 
30 #define CAAM_NAPI_WEIGHT	63
31 
32 /*
33  * caam_napi - struct holding CAAM NAPI-related params
34  * @irqtask: IRQ task for QI backend
35  * @p: QMan portal
36  */
37 struct caam_napi {
38 	struct napi_struct irqtask;
39 	struct qman_portal *p;
40 };
41 
42 /*
43  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
44  *                     responses expected on each cpu.
45  * @caam_napi: CAAM NAPI params
46  * @net_dev: netdev used by NAPI
47  * @rsp_fq: response FQ from CAAM
48  */
49 struct caam_qi_pcpu_priv {
50 	struct caam_napi caam_napi;
51 	struct net_device net_dev;
52 	struct qman_fq *rsp_fq;
53 } ____cacheline_aligned;
54 
55 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
56 static DEFINE_PER_CPU(int, last_cpu);
57 
58 /*
59  * caam_qi_priv - CAAM QI backend private params
60  * @cgr: QMan congestion group
61  * @qi_pdev: platform device for QI backend
62  */
63 struct caam_qi_priv {
64 	struct qman_cgr cgr;
65 	struct platform_device *qi_pdev;
66 };
67 
68 static struct caam_qi_priv qipriv ____cacheline_aligned;
69 
70 /*
71  * This is written by only one core - the one that initialized the CGR - and
72  * read by multiple cores (all the others).
73  */
74 bool caam_congested __read_mostly;
75 EXPORT_SYMBOL(caam_congested);
76 
77 #ifdef CONFIG_DEBUG_FS
78 /*
79  * This is a counter for the number of times the congestion group (where all
80  * the request and response queueus are) reached congestion. Incremented
81  * each time the congestion callback is called with congested == true.
82  */
83 static u64 times_congested;
84 #endif
85 
86 /*
87  * This is a a cache of buffers, from which the users of CAAM QI driver
88  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
89  * doing malloc on the hotpath.
90  * NOTE: A more elegant solution would be to have some headroom in the frames
91  *       being processed. This could be added by the dpaa-ethernet driver.
92  *       This would pose a problem for userspace application processing which
93  *       cannot know of this limitation. So for now, this will work.
94  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
95  */
96 static struct kmem_cache *qi_cache;
97 
98 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
99 {
100 	struct qm_fd fd;
101 	dma_addr_t addr;
102 	int ret;
103 	int num_retries = 0;
104 
105 	qm_fd_clear_fd(&fd);
106 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
107 
108 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
109 			      DMA_BIDIRECTIONAL);
110 	if (dma_mapping_error(qidev, addr)) {
111 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
112 		return -EIO;
113 	}
114 	qm_fd_addr_set64(&fd, addr);
115 
116 	do {
117 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
118 		if (likely(!ret))
119 			return 0;
120 
121 		if (ret != -EBUSY)
122 			break;
123 		num_retries++;
124 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
125 
126 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
127 
128 	return ret;
129 }
130 EXPORT_SYMBOL(caam_qi_enqueue);
131 
132 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
133 			   const union qm_mr_entry *msg)
134 {
135 	const struct qm_fd *fd;
136 	struct caam_drv_req *drv_req;
137 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
138 
139 	fd = &msg->ern.fd;
140 
141 	if (qm_fd_get_format(fd) != qm_fd_compound) {
142 		dev_err(qidev, "Non-compound FD from CAAM\n");
143 		return;
144 	}
145 
146 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
147 	if (!drv_req) {
148 		dev_err(qidev,
149 			"Can't find original request for CAAM response\n");
150 		return;
151 	}
152 
153 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
154 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
155 
156 	drv_req->cbk(drv_req, -EIO);
157 }
158 
159 static struct qman_fq *create_caam_req_fq(struct device *qidev,
160 					  struct qman_fq *rsp_fq,
161 					  dma_addr_t hwdesc,
162 					  int fq_sched_flag)
163 {
164 	int ret;
165 	struct qman_fq *req_fq;
166 	struct qm_mcc_initfq opts;
167 
168 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
169 	if (!req_fq)
170 		return ERR_PTR(-ENOMEM);
171 
172 	req_fq->cb.ern = caam_fq_ern_cb;
173 	req_fq->cb.fqs = NULL;
174 
175 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
176 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
177 	if (ret) {
178 		dev_err(qidev, "Failed to create session req FQ\n");
179 		goto create_req_fq_fail;
180 	}
181 
182 	memset(&opts, 0, sizeof(opts));
183 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
184 				   QM_INITFQ_WE_CONTEXTB |
185 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
186 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
187 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
188 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
189 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
190 	opts.fqd.cgid = qipriv.cgr.cgrid;
191 
192 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
193 	if (ret) {
194 		dev_err(qidev, "Failed to init session req FQ\n");
195 		goto init_req_fq_fail;
196 	}
197 
198 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
199 		smp_processor_id());
200 	return req_fq;
201 
202 init_req_fq_fail:
203 	qman_destroy_fq(req_fq);
204 create_req_fq_fail:
205 	kfree(req_fq);
206 	return ERR_PTR(ret);
207 }
208 
209 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
210 {
211 	int ret;
212 
213 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
214 				    QMAN_VOLATILE_FLAG_FINISH,
215 				    QM_VDQCR_PRECEDENCE_VDQCR |
216 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
217 	if (ret) {
218 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
219 		return ret;
220 	}
221 
222 	do {
223 		struct qman_portal *p;
224 
225 		p = qman_get_affine_portal(smp_processor_id());
226 		qman_p_poll_dqrr(p, 16);
227 	} while (fq->flags & QMAN_FQ_STATE_NE);
228 
229 	return 0;
230 }
231 
232 static int kill_fq(struct device *qidev, struct qman_fq *fq)
233 {
234 	u32 flags;
235 	int ret;
236 
237 	ret = qman_retire_fq(fq, &flags);
238 	if (ret < 0) {
239 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
240 		return ret;
241 	}
242 
243 	if (!ret)
244 		goto empty_fq;
245 
246 	/* Async FQ retirement condition */
247 	if (ret == 1) {
248 		/* Retry till FQ gets in retired state */
249 		do {
250 			msleep(20);
251 		} while (fq->state != qman_fq_state_retired);
252 
253 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
254 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
255 	}
256 
257 empty_fq:
258 	if (fq->flags & QMAN_FQ_STATE_NE) {
259 		ret = empty_retired_fq(qidev, fq);
260 		if (ret) {
261 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
262 				fq->fqid);
263 			return ret;
264 		}
265 	}
266 
267 	ret = qman_oos_fq(fq);
268 	if (ret)
269 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
270 
271 	qman_destroy_fq(fq);
272 	kfree(fq);
273 
274 	return ret;
275 }
276 
277 static int empty_caam_fq(struct qman_fq *fq)
278 {
279 	int ret;
280 	struct qm_mcr_queryfq_np np;
281 
282 	/* Wait till the older CAAM FQ get empty */
283 	do {
284 		ret = qman_query_fq_np(fq, &np);
285 		if (ret)
286 			return ret;
287 
288 		if (!qm_mcr_np_get(&np, frm_cnt))
289 			break;
290 
291 		msleep(20);
292 	} while (1);
293 
294 	/*
295 	 * Give extra time for pending jobs from this FQ in holding tanks
296 	 * to get processed
297 	 */
298 	msleep(20);
299 	return 0;
300 }
301 
302 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
303 {
304 	int ret;
305 	u32 num_words;
306 	struct qman_fq *new_fq, *old_fq;
307 	struct device *qidev = drv_ctx->qidev;
308 
309 	num_words = desc_len(sh_desc);
310 	if (num_words > MAX_SDLEN) {
311 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
312 		return -EINVAL;
313 	}
314 
315 	/* Note down older req FQ */
316 	old_fq = drv_ctx->req_fq;
317 
318 	/* Create a new req FQ in parked state */
319 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
320 				    drv_ctx->context_a, 0);
321 	if (IS_ERR(new_fq)) {
322 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
323 		return PTR_ERR(new_fq);
324 	}
325 
326 	/* Hook up new FQ to context so that new requests keep queuing */
327 	drv_ctx->req_fq = new_fq;
328 
329 	/* Empty and remove the older FQ */
330 	ret = empty_caam_fq(old_fq);
331 	if (ret) {
332 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
333 
334 		/* We can revert to older FQ */
335 		drv_ctx->req_fq = old_fq;
336 
337 		if (kill_fq(qidev, new_fq))
338 			dev_warn(qidev, "New CAAM FQ kill failed\n");
339 
340 		return ret;
341 	}
342 
343 	/*
344 	 * Re-initialise pre-header. Set RSLS and SDLEN.
345 	 * Update the shared descriptor for driver context.
346 	 */
347 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
348 					   num_words);
349 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
350 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
351 				   sizeof(drv_ctx->sh_desc) +
352 				   sizeof(drv_ctx->prehdr),
353 				   DMA_BIDIRECTIONAL);
354 
355 	/* Put the new FQ in scheduled state */
356 	ret = qman_schedule_fq(new_fq);
357 	if (ret) {
358 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
359 
360 		/*
361 		 * We can kill new FQ and revert to old FQ.
362 		 * Since the desc is already modified, it is success case
363 		 */
364 
365 		drv_ctx->req_fq = old_fq;
366 
367 		if (kill_fq(qidev, new_fq))
368 			dev_warn(qidev, "New CAAM FQ kill failed\n");
369 	} else if (kill_fq(qidev, old_fq)) {
370 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
371 	}
372 
373 	return 0;
374 }
375 EXPORT_SYMBOL(caam_drv_ctx_update);
376 
377 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
378 				       int *cpu,
379 				       u32 *sh_desc)
380 {
381 	size_t size;
382 	u32 num_words;
383 	dma_addr_t hwdesc;
384 	struct caam_drv_ctx *drv_ctx;
385 	const cpumask_t *cpus = qman_affine_cpus();
386 
387 	num_words = desc_len(sh_desc);
388 	if (num_words > MAX_SDLEN) {
389 		dev_err(qidev, "Invalid descriptor len: %d words\n",
390 			num_words);
391 		return ERR_PTR(-EINVAL);
392 	}
393 
394 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
395 	if (!drv_ctx)
396 		return ERR_PTR(-ENOMEM);
397 
398 	/*
399 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
400 	 * and dma-map them.
401 	 */
402 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
403 					   num_words);
404 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
405 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
406 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
407 				DMA_BIDIRECTIONAL);
408 	if (dma_mapping_error(qidev, hwdesc)) {
409 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
410 		kfree(drv_ctx);
411 		return ERR_PTR(-ENOMEM);
412 	}
413 	drv_ctx->context_a = hwdesc;
414 
415 	/* If given CPU does not own the portal, choose another one that does */
416 	if (!cpumask_test_cpu(*cpu, cpus)) {
417 		int *pcpu = &get_cpu_var(last_cpu);
418 
419 		*pcpu = cpumask_next(*pcpu, cpus);
420 		if (*pcpu >= nr_cpu_ids)
421 			*pcpu = cpumask_first(cpus);
422 		*cpu = *pcpu;
423 
424 		put_cpu_var(last_cpu);
425 	}
426 	drv_ctx->cpu = *cpu;
427 
428 	/* Find response FQ hooked with this CPU */
429 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
430 
431 	/* Attach request FQ */
432 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
433 					     QMAN_INITFQ_FLAG_SCHED);
434 	if (IS_ERR(drv_ctx->req_fq)) {
435 		dev_err(qidev, "create_caam_req_fq failed\n");
436 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
437 		kfree(drv_ctx);
438 		return ERR_PTR(-ENOMEM);
439 	}
440 
441 	drv_ctx->qidev = qidev;
442 	return drv_ctx;
443 }
444 EXPORT_SYMBOL(caam_drv_ctx_init);
445 
446 void *qi_cache_alloc(gfp_t flags)
447 {
448 	return kmem_cache_alloc(qi_cache, flags);
449 }
450 EXPORT_SYMBOL(qi_cache_alloc);
451 
452 void qi_cache_free(void *obj)
453 {
454 	kmem_cache_free(qi_cache, obj);
455 }
456 EXPORT_SYMBOL(qi_cache_free);
457 
458 static int caam_qi_poll(struct napi_struct *napi, int budget)
459 {
460 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
461 
462 	int cleaned = qman_p_poll_dqrr(np->p, budget);
463 
464 	if (cleaned < budget) {
465 		napi_complete(napi);
466 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
467 	}
468 
469 	return cleaned;
470 }
471 
472 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
473 {
474 	if (IS_ERR_OR_NULL(drv_ctx))
475 		return;
476 
477 	/* Remove request FQ */
478 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
479 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
480 
481 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
482 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
483 			 DMA_BIDIRECTIONAL);
484 	kfree(drv_ctx);
485 }
486 EXPORT_SYMBOL(caam_drv_ctx_rel);
487 
488 void caam_qi_shutdown(struct device *qidev)
489 {
490 	int i;
491 	struct caam_qi_priv *priv = dev_get_drvdata(qidev);
492 	const cpumask_t *cpus = qman_affine_cpus();
493 
494 	for_each_cpu(i, cpus) {
495 		struct napi_struct *irqtask;
496 
497 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
498 		napi_disable(irqtask);
499 		netif_napi_del(irqtask);
500 
501 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
502 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
503 	}
504 
505 	qman_delete_cgr_safe(&priv->cgr);
506 	qman_release_cgrid(priv->cgr.cgrid);
507 
508 	kmem_cache_destroy(qi_cache);
509 
510 	platform_device_unregister(priv->qi_pdev);
511 }
512 
513 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
514 {
515 	caam_congested = congested;
516 
517 	if (congested) {
518 #ifdef CONFIG_DEBUG_FS
519 		times_congested++;
520 #endif
521 		pr_debug_ratelimited("CAAM entered congestion\n");
522 
523 	} else {
524 		pr_debug_ratelimited("CAAM exited congestion\n");
525 	}
526 }
527 
528 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
529 {
530 	/*
531 	 * In case of threaded ISR, for RT kernels in_irq() does not return
532 	 * appropriate value, so use in_serving_softirq to distinguish between
533 	 * softirq and irq contexts.
534 	 */
535 	if (unlikely(in_irq() || !in_serving_softirq())) {
536 		/* Disable QMan IRQ source and invoke NAPI */
537 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
538 		np->p = p;
539 		napi_schedule(&np->irqtask);
540 		return 1;
541 	}
542 	return 0;
543 }
544 
545 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
546 						    struct qman_fq *rsp_fq,
547 						    const struct qm_dqrr_entry *dqrr)
548 {
549 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
550 	struct caam_drv_req *drv_req;
551 	const struct qm_fd *fd;
552 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
553 	u32 status;
554 
555 	if (caam_qi_napi_schedule(p, caam_napi))
556 		return qman_cb_dqrr_stop;
557 
558 	fd = &dqrr->fd;
559 	status = be32_to_cpu(fd->status);
560 	if (unlikely(status)) {
561 		u32 ssrc = status & JRSTA_SSRC_MASK;
562 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
563 
564 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
565 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
566 			dev_err(qidev, "Error: %#x in CAAM response FD\n",
567 				status);
568 	}
569 
570 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
571 		dev_err(qidev, "Non-compound FD from CAAM\n");
572 		return qman_cb_dqrr_consume;
573 	}
574 
575 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
576 	if (unlikely(!drv_req)) {
577 		dev_err(qidev,
578 			"Can't find original request for caam response\n");
579 		return qman_cb_dqrr_consume;
580 	}
581 
582 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
583 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
584 
585 	drv_req->cbk(drv_req, status);
586 	return qman_cb_dqrr_consume;
587 }
588 
589 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
590 {
591 	struct qm_mcc_initfq opts;
592 	struct qman_fq *fq;
593 	int ret;
594 
595 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
596 	if (!fq)
597 		return -ENOMEM;
598 
599 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
600 
601 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
602 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
603 	if (ret) {
604 		dev_err(qidev, "Rsp FQ create failed\n");
605 		kfree(fq);
606 		return -ENODEV;
607 	}
608 
609 	memset(&opts, 0, sizeof(opts));
610 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
611 				   QM_INITFQ_WE_CONTEXTB |
612 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
613 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
614 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
615 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
616 	opts.fqd.cgid = qipriv.cgr.cgrid;
617 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
618 						QM_STASHING_EXCL_DATA;
619 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
620 
621 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
622 	if (ret) {
623 		dev_err(qidev, "Rsp FQ init failed\n");
624 		kfree(fq);
625 		return -ENODEV;
626 	}
627 
628 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
629 
630 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
631 	return 0;
632 }
633 
634 static int init_cgr(struct device *qidev)
635 {
636 	int ret;
637 	struct qm_mcc_initcgr opts;
638 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
639 			MAX_RSP_FQ_BACKLOG_PER_CPU;
640 
641 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
642 	if (ret) {
643 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
644 		return ret;
645 	}
646 
647 	qipriv.cgr.cb = cgr_cb;
648 	memset(&opts, 0, sizeof(opts));
649 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
650 				   QM_CGR_WE_MODE);
651 	opts.cgr.cscn_en = QM_CGR_EN;
652 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
653 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
654 
655 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
656 	if (ret) {
657 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
658 			qipriv.cgr.cgrid);
659 		return ret;
660 	}
661 
662 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
663 	return 0;
664 }
665 
666 static int alloc_rsp_fqs(struct device *qidev)
667 {
668 	int ret, i;
669 	const cpumask_t *cpus = qman_affine_cpus();
670 
671 	/*Now create response FQs*/
672 	for_each_cpu(i, cpus) {
673 		ret = alloc_rsp_fq_cpu(qidev, i);
674 		if (ret) {
675 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
676 			return ret;
677 		}
678 	}
679 
680 	return 0;
681 }
682 
683 static void free_rsp_fqs(void)
684 {
685 	int i;
686 	const cpumask_t *cpus = qman_affine_cpus();
687 
688 	for_each_cpu(i, cpus)
689 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
690 }
691 
692 int caam_qi_init(struct platform_device *caam_pdev)
693 {
694 	int err, i;
695 	struct platform_device *qi_pdev;
696 	struct device *ctrldev = &caam_pdev->dev, *qidev;
697 	struct caam_drv_private *ctrlpriv;
698 	const cpumask_t *cpus = qman_affine_cpus();
699 	static struct platform_device_info qi_pdev_info = {
700 		.name = "caam_qi",
701 		.id = PLATFORM_DEVID_NONE
702 	};
703 
704 	qi_pdev_info.parent = ctrldev;
705 	qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
706 	qi_pdev = platform_device_register_full(&qi_pdev_info);
707 	if (IS_ERR(qi_pdev))
708 		return PTR_ERR(qi_pdev);
709 	set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
710 
711 	ctrlpriv = dev_get_drvdata(ctrldev);
712 	qidev = &qi_pdev->dev;
713 
714 	qipriv.qi_pdev = qi_pdev;
715 	dev_set_drvdata(qidev, &qipriv);
716 
717 	/* Initialize the congestion detection */
718 	err = init_cgr(qidev);
719 	if (err) {
720 		dev_err(qidev, "CGR initialization failed: %d\n", err);
721 		platform_device_unregister(qi_pdev);
722 		return err;
723 	}
724 
725 	/* Initialise response FQs */
726 	err = alloc_rsp_fqs(qidev);
727 	if (err) {
728 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
729 		free_rsp_fqs();
730 		platform_device_unregister(qi_pdev);
731 		return err;
732 	}
733 
734 	/*
735 	 * Enable the NAPI contexts on each of the core which has an affine
736 	 * portal.
737 	 */
738 	for_each_cpu(i, cpus) {
739 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
740 		struct caam_napi *caam_napi = &priv->caam_napi;
741 		struct napi_struct *irqtask = &caam_napi->irqtask;
742 		struct net_device *net_dev = &priv->net_dev;
743 
744 		net_dev->dev = *qidev;
745 		INIT_LIST_HEAD(&net_dev->napi_list);
746 
747 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
748 			       CAAM_NAPI_WEIGHT);
749 
750 		napi_enable(irqtask);
751 	}
752 
753 	/* Hook up QI device to parent controlling caam device */
754 	ctrlpriv->qidev = qidev;
755 
756 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
757 				     SLAB_CACHE_DMA, NULL);
758 	if (!qi_cache) {
759 		dev_err(qidev, "Can't allocate CAAM cache\n");
760 		free_rsp_fqs();
761 		platform_device_unregister(qi_pdev);
762 		return -ENOMEM;
763 	}
764 
765 #ifdef CONFIG_DEBUG_FS
766 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
767 			    &times_congested, &caam_fops_u64_ro);
768 #endif
769 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
770 	return 0;
771 }
772