xref: /openbmc/linux/drivers/crypto/caam/qi.c (revision 711aab1d)
1 /*
2  * CAAM/SEC 4.x QI transport/backend driver
3  * Queue Interface backend functionality
4  *
5  * Copyright 2013-2016 Freescale Semiconductor, Inc.
6  * Copyright 2016-2017 NXP
7  */
8 
9 #include <linux/cpumask.h>
10 #include <linux/kthread.h>
11 #include <soc/fsl/qman.h>
12 
13 #include "regs.h"
14 #include "qi.h"
15 #include "desc.h"
16 #include "intern.h"
17 #include "desc_constr.h"
18 
19 #define PREHDR_RSLS_SHIFT	31
20 
21 /*
22  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
23  * so that resources used by the in-flight buffers do not become a memory hog.
24  */
25 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
26 
27 #define CAAM_QI_ENQUEUE_RETRIES	10000
28 
29 #define CAAM_NAPI_WEIGHT	63
30 
31 /*
32  * caam_napi - struct holding CAAM NAPI-related params
33  * @irqtask: IRQ task for QI backend
34  * @p: QMan portal
35  */
36 struct caam_napi {
37 	struct napi_struct irqtask;
38 	struct qman_portal *p;
39 };
40 
41 /*
42  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
43  *                     responses expected on each cpu.
44  * @caam_napi: CAAM NAPI params
45  * @net_dev: netdev used by NAPI
46  * @rsp_fq: response FQ from CAAM
47  */
48 struct caam_qi_pcpu_priv {
49 	struct caam_napi caam_napi;
50 	struct net_device net_dev;
51 	struct qman_fq *rsp_fq;
52 } ____cacheline_aligned;
53 
54 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
55 static DEFINE_PER_CPU(int, last_cpu);
56 
57 /*
58  * caam_qi_priv - CAAM QI backend private params
59  * @cgr: QMan congestion group
60  * @qi_pdev: platform device for QI backend
61  */
62 struct caam_qi_priv {
63 	struct qman_cgr cgr;
64 	struct platform_device *qi_pdev;
65 };
66 
67 static struct caam_qi_priv qipriv ____cacheline_aligned;
68 
69 /*
70  * This is written by only one core - the one that initialized the CGR - and
71  * read by multiple cores (all the others).
72  */
73 bool caam_congested __read_mostly;
74 EXPORT_SYMBOL(caam_congested);
75 
76 #ifdef CONFIG_DEBUG_FS
77 /*
78  * This is a counter for the number of times the congestion group (where all
79  * the request and response queueus are) reached congestion. Incremented
80  * each time the congestion callback is called with congested == true.
81  */
82 static u64 times_congested;
83 #endif
84 
85 /*
86  * CPU from where the module initialised. This is required because QMan driver
87  * requires CGRs to be removed from same CPU from where they were originally
88  * allocated.
89  */
90 static int mod_init_cpu;
91 
92 /*
93  * This is a a cache of buffers, from which the users of CAAM QI driver
94  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
95  * doing malloc on the hotpath.
96  * NOTE: A more elegant solution would be to have some headroom in the frames
97  *       being processed. This could be added by the dpaa-ethernet driver.
98  *       This would pose a problem for userspace application processing which
99  *       cannot know of this limitation. So for now, this will work.
100  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
101  */
102 static struct kmem_cache *qi_cache;
103 
104 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
105 {
106 	struct qm_fd fd;
107 	dma_addr_t addr;
108 	int ret;
109 	int num_retries = 0;
110 
111 	qm_fd_clear_fd(&fd);
112 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
113 
114 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
115 			      DMA_BIDIRECTIONAL);
116 	if (dma_mapping_error(qidev, addr)) {
117 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
118 		return -EIO;
119 	}
120 	qm_fd_addr_set64(&fd, addr);
121 
122 	do {
123 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
124 		if (likely(!ret))
125 			return 0;
126 
127 		if (ret != -EBUSY)
128 			break;
129 		num_retries++;
130 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
131 
132 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
133 
134 	return ret;
135 }
136 EXPORT_SYMBOL(caam_qi_enqueue);
137 
138 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
139 			   const union qm_mr_entry *msg)
140 {
141 	const struct qm_fd *fd;
142 	struct caam_drv_req *drv_req;
143 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
144 
145 	fd = &msg->ern.fd;
146 
147 	if (qm_fd_get_format(fd) != qm_fd_compound) {
148 		dev_err(qidev, "Non-compound FD from CAAM\n");
149 		return;
150 	}
151 
152 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
153 	if (!drv_req) {
154 		dev_err(qidev,
155 			"Can't find original request for CAAM response\n");
156 		return;
157 	}
158 
159 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
160 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
161 
162 	drv_req->cbk(drv_req, -EIO);
163 }
164 
165 static struct qman_fq *create_caam_req_fq(struct device *qidev,
166 					  struct qman_fq *rsp_fq,
167 					  dma_addr_t hwdesc,
168 					  int fq_sched_flag)
169 {
170 	int ret;
171 	struct qman_fq *req_fq;
172 	struct qm_mcc_initfq opts;
173 
174 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
175 	if (!req_fq)
176 		return ERR_PTR(-ENOMEM);
177 
178 	req_fq->cb.ern = caam_fq_ern_cb;
179 	req_fq->cb.fqs = NULL;
180 
181 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
182 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
183 	if (ret) {
184 		dev_err(qidev, "Failed to create session req FQ\n");
185 		goto create_req_fq_fail;
186 	}
187 
188 	memset(&opts, 0, sizeof(opts));
189 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
190 				   QM_INITFQ_WE_CONTEXTB |
191 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
192 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
193 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
194 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
195 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
196 	opts.fqd.cgid = qipriv.cgr.cgrid;
197 
198 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
199 	if (ret) {
200 		dev_err(qidev, "Failed to init session req FQ\n");
201 		goto init_req_fq_fail;
202 	}
203 
204 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
205 		smp_processor_id());
206 	return req_fq;
207 
208 init_req_fq_fail:
209 	qman_destroy_fq(req_fq);
210 create_req_fq_fail:
211 	kfree(req_fq);
212 	return ERR_PTR(ret);
213 }
214 
215 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
216 {
217 	int ret;
218 
219 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
220 				    QMAN_VOLATILE_FLAG_FINISH,
221 				    QM_VDQCR_PRECEDENCE_VDQCR |
222 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
223 	if (ret) {
224 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
225 		return ret;
226 	}
227 
228 	do {
229 		struct qman_portal *p;
230 
231 		p = qman_get_affine_portal(smp_processor_id());
232 		qman_p_poll_dqrr(p, 16);
233 	} while (fq->flags & QMAN_FQ_STATE_NE);
234 
235 	return 0;
236 }
237 
238 static int kill_fq(struct device *qidev, struct qman_fq *fq)
239 {
240 	u32 flags;
241 	int ret;
242 
243 	ret = qman_retire_fq(fq, &flags);
244 	if (ret < 0) {
245 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
246 		return ret;
247 	}
248 
249 	if (!ret)
250 		goto empty_fq;
251 
252 	/* Async FQ retirement condition */
253 	if (ret == 1) {
254 		/* Retry till FQ gets in retired state */
255 		do {
256 			msleep(20);
257 		} while (fq->state != qman_fq_state_retired);
258 
259 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
260 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
261 	}
262 
263 empty_fq:
264 	if (fq->flags & QMAN_FQ_STATE_NE) {
265 		ret = empty_retired_fq(qidev, fq);
266 		if (ret) {
267 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
268 				fq->fqid);
269 			return ret;
270 		}
271 	}
272 
273 	ret = qman_oos_fq(fq);
274 	if (ret)
275 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
276 
277 	qman_destroy_fq(fq);
278 	kfree(fq);
279 
280 	return ret;
281 }
282 
283 static int empty_caam_fq(struct qman_fq *fq)
284 {
285 	int ret;
286 	struct qm_mcr_queryfq_np np;
287 
288 	/* Wait till the older CAAM FQ get empty */
289 	do {
290 		ret = qman_query_fq_np(fq, &np);
291 		if (ret)
292 			return ret;
293 
294 		if (!qm_mcr_np_get(&np, frm_cnt))
295 			break;
296 
297 		msleep(20);
298 	} while (1);
299 
300 	/*
301 	 * Give extra time for pending jobs from this FQ in holding tanks
302 	 * to get processed
303 	 */
304 	msleep(20);
305 	return 0;
306 }
307 
308 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
309 {
310 	int ret;
311 	u32 num_words;
312 	struct qman_fq *new_fq, *old_fq;
313 	struct device *qidev = drv_ctx->qidev;
314 
315 	num_words = desc_len(sh_desc);
316 	if (num_words > MAX_SDLEN) {
317 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
318 		return -EINVAL;
319 	}
320 
321 	/* Note down older req FQ */
322 	old_fq = drv_ctx->req_fq;
323 
324 	/* Create a new req FQ in parked state */
325 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
326 				    drv_ctx->context_a, 0);
327 	if (unlikely(IS_ERR_OR_NULL(new_fq))) {
328 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
329 		return PTR_ERR(new_fq);
330 	}
331 
332 	/* Hook up new FQ to context so that new requests keep queuing */
333 	drv_ctx->req_fq = new_fq;
334 
335 	/* Empty and remove the older FQ */
336 	ret = empty_caam_fq(old_fq);
337 	if (ret) {
338 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
339 
340 		/* We can revert to older FQ */
341 		drv_ctx->req_fq = old_fq;
342 
343 		if (kill_fq(qidev, new_fq))
344 			dev_warn(qidev, "New CAAM FQ kill failed\n");
345 
346 		return ret;
347 	}
348 
349 	/*
350 	 * Re-initialise pre-header. Set RSLS and SDLEN.
351 	 * Update the shared descriptor for driver context.
352 	 */
353 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
354 					   num_words);
355 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
356 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
357 				   sizeof(drv_ctx->sh_desc) +
358 				   sizeof(drv_ctx->prehdr),
359 				   DMA_BIDIRECTIONAL);
360 
361 	/* Put the new FQ in scheduled state */
362 	ret = qman_schedule_fq(new_fq);
363 	if (ret) {
364 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
365 
366 		/*
367 		 * We can kill new FQ and revert to old FQ.
368 		 * Since the desc is already modified, it is success case
369 		 */
370 
371 		drv_ctx->req_fq = old_fq;
372 
373 		if (kill_fq(qidev, new_fq))
374 			dev_warn(qidev, "New CAAM FQ kill failed\n");
375 	} else if (kill_fq(qidev, old_fq)) {
376 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
377 	}
378 
379 	return 0;
380 }
381 EXPORT_SYMBOL(caam_drv_ctx_update);
382 
383 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
384 				       int *cpu,
385 				       u32 *sh_desc)
386 {
387 	size_t size;
388 	u32 num_words;
389 	dma_addr_t hwdesc;
390 	struct caam_drv_ctx *drv_ctx;
391 	const cpumask_t *cpus = qman_affine_cpus();
392 
393 	num_words = desc_len(sh_desc);
394 	if (num_words > MAX_SDLEN) {
395 		dev_err(qidev, "Invalid descriptor len: %d words\n",
396 			num_words);
397 		return ERR_PTR(-EINVAL);
398 	}
399 
400 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
401 	if (!drv_ctx)
402 		return ERR_PTR(-ENOMEM);
403 
404 	/*
405 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
406 	 * and dma-map them.
407 	 */
408 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
409 					   num_words);
410 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
411 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
412 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
413 				DMA_BIDIRECTIONAL);
414 	if (dma_mapping_error(qidev, hwdesc)) {
415 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
416 		kfree(drv_ctx);
417 		return ERR_PTR(-ENOMEM);
418 	}
419 	drv_ctx->context_a = hwdesc;
420 
421 	/* If given CPU does not own the portal, choose another one that does */
422 	if (!cpumask_test_cpu(*cpu, cpus)) {
423 		int *pcpu = &get_cpu_var(last_cpu);
424 
425 		*pcpu = cpumask_next(*pcpu, cpus);
426 		if (*pcpu >= nr_cpu_ids)
427 			*pcpu = cpumask_first(cpus);
428 		*cpu = *pcpu;
429 
430 		put_cpu_var(last_cpu);
431 	}
432 	drv_ctx->cpu = *cpu;
433 
434 	/* Find response FQ hooked with this CPU */
435 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
436 
437 	/* Attach request FQ */
438 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
439 					     QMAN_INITFQ_FLAG_SCHED);
440 	if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) {
441 		dev_err(qidev, "create_caam_req_fq failed\n");
442 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
443 		kfree(drv_ctx);
444 		return ERR_PTR(-ENOMEM);
445 	}
446 
447 	drv_ctx->qidev = qidev;
448 	return drv_ctx;
449 }
450 EXPORT_SYMBOL(caam_drv_ctx_init);
451 
452 void *qi_cache_alloc(gfp_t flags)
453 {
454 	return kmem_cache_alloc(qi_cache, flags);
455 }
456 EXPORT_SYMBOL(qi_cache_alloc);
457 
458 void qi_cache_free(void *obj)
459 {
460 	kmem_cache_free(qi_cache, obj);
461 }
462 EXPORT_SYMBOL(qi_cache_free);
463 
464 static int caam_qi_poll(struct napi_struct *napi, int budget)
465 {
466 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
467 
468 	int cleaned = qman_p_poll_dqrr(np->p, budget);
469 
470 	if (cleaned < budget) {
471 		napi_complete(napi);
472 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
473 	}
474 
475 	return cleaned;
476 }
477 
478 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
479 {
480 	if (IS_ERR_OR_NULL(drv_ctx))
481 		return;
482 
483 	/* Remove request FQ */
484 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
485 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
486 
487 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
488 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
489 			 DMA_BIDIRECTIONAL);
490 	kfree(drv_ctx);
491 }
492 EXPORT_SYMBOL(caam_drv_ctx_rel);
493 
494 int caam_qi_shutdown(struct device *qidev)
495 {
496 	int i, ret;
497 	struct caam_qi_priv *priv = dev_get_drvdata(qidev);
498 	const cpumask_t *cpus = qman_affine_cpus();
499 	struct cpumask old_cpumask = current->cpus_allowed;
500 
501 	for_each_cpu(i, cpus) {
502 		struct napi_struct *irqtask;
503 
504 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
505 		napi_disable(irqtask);
506 		netif_napi_del(irqtask);
507 
508 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
509 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
510 	}
511 
512 	/*
513 	 * QMan driver requires CGRs to be deleted from same CPU from where they
514 	 * were instantiated. Hence we get the module removal execute from the
515 	 * same CPU from where it was originally inserted.
516 	 */
517 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
518 
519 	ret = qman_delete_cgr(&priv->cgr);
520 	if (ret)
521 		dev_err(qidev, "Deletion of CGR failed: %d\n", ret);
522 	else
523 		qman_release_cgrid(priv->cgr.cgrid);
524 
525 	kmem_cache_destroy(qi_cache);
526 
527 	/* Now that we're done with the CGRs, restore the cpus allowed mask */
528 	set_cpus_allowed_ptr(current, &old_cpumask);
529 
530 	platform_device_unregister(priv->qi_pdev);
531 	return ret;
532 }
533 
534 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
535 {
536 	caam_congested = congested;
537 
538 	if (congested) {
539 #ifdef CONFIG_DEBUG_FS
540 		times_congested++;
541 #endif
542 		pr_debug_ratelimited("CAAM entered congestion\n");
543 
544 	} else {
545 		pr_debug_ratelimited("CAAM exited congestion\n");
546 	}
547 }
548 
549 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
550 {
551 	/*
552 	 * In case of threaded ISR, for RT kernels in_irq() does not return
553 	 * appropriate value, so use in_serving_softirq to distinguish between
554 	 * softirq and irq contexts.
555 	 */
556 	if (unlikely(in_irq() || !in_serving_softirq())) {
557 		/* Disable QMan IRQ source and invoke NAPI */
558 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
559 		np->p = p;
560 		napi_schedule(&np->irqtask);
561 		return 1;
562 	}
563 	return 0;
564 }
565 
566 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
567 						    struct qman_fq *rsp_fq,
568 						    const struct qm_dqrr_entry *dqrr)
569 {
570 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
571 	struct caam_drv_req *drv_req;
572 	const struct qm_fd *fd;
573 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
574 	u32 status;
575 
576 	if (caam_qi_napi_schedule(p, caam_napi))
577 		return qman_cb_dqrr_stop;
578 
579 	fd = &dqrr->fd;
580 	status = be32_to_cpu(fd->status);
581 	if (unlikely(status))
582 		dev_err(qidev, "Error: %#x in CAAM response FD\n", status);
583 
584 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
585 		dev_err(qidev, "Non-compound FD from CAAM\n");
586 		return qman_cb_dqrr_consume;
587 	}
588 
589 	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
590 	if (unlikely(!drv_req)) {
591 		dev_err(qidev,
592 			"Can't find original request for caam response\n");
593 		return qman_cb_dqrr_consume;
594 	}
595 
596 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
597 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
598 
599 	drv_req->cbk(drv_req, status);
600 	return qman_cb_dqrr_consume;
601 }
602 
603 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
604 {
605 	struct qm_mcc_initfq opts;
606 	struct qman_fq *fq;
607 	int ret;
608 
609 	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
610 	if (!fq)
611 		return -ENOMEM;
612 
613 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
614 
615 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
616 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
617 	if (ret) {
618 		dev_err(qidev, "Rsp FQ create failed\n");
619 		kfree(fq);
620 		return -ENODEV;
621 	}
622 
623 	memset(&opts, 0, sizeof(opts));
624 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
625 				   QM_INITFQ_WE_CONTEXTB |
626 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
627 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
628 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
629 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
630 	opts.fqd.cgid = qipriv.cgr.cgrid;
631 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
632 						QM_STASHING_EXCL_DATA;
633 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
634 
635 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
636 	if (ret) {
637 		dev_err(qidev, "Rsp FQ init failed\n");
638 		kfree(fq);
639 		return -ENODEV;
640 	}
641 
642 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
643 
644 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
645 	return 0;
646 }
647 
648 static int init_cgr(struct device *qidev)
649 {
650 	int ret;
651 	struct qm_mcc_initcgr opts;
652 	const u64 cpus = *(u64 *)qman_affine_cpus();
653 	const int num_cpus = hweight64(cpus);
654 	const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU;
655 
656 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
657 	if (ret) {
658 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
659 		return ret;
660 	}
661 
662 	qipriv.cgr.cb = cgr_cb;
663 	memset(&opts, 0, sizeof(opts));
664 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
665 				   QM_CGR_WE_MODE);
666 	opts.cgr.cscn_en = QM_CGR_EN;
667 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
668 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
669 
670 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
671 	if (ret) {
672 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
673 			qipriv.cgr.cgrid);
674 		return ret;
675 	}
676 
677 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
678 	return 0;
679 }
680 
681 static int alloc_rsp_fqs(struct device *qidev)
682 {
683 	int ret, i;
684 	const cpumask_t *cpus = qman_affine_cpus();
685 
686 	/*Now create response FQs*/
687 	for_each_cpu(i, cpus) {
688 		ret = alloc_rsp_fq_cpu(qidev, i);
689 		if (ret) {
690 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
691 			return ret;
692 		}
693 	}
694 
695 	return 0;
696 }
697 
698 static void free_rsp_fqs(void)
699 {
700 	int i;
701 	const cpumask_t *cpus = qman_affine_cpus();
702 
703 	for_each_cpu(i, cpus)
704 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
705 }
706 
707 int caam_qi_init(struct platform_device *caam_pdev)
708 {
709 	int err, i;
710 	struct platform_device *qi_pdev;
711 	struct device *ctrldev = &caam_pdev->dev, *qidev;
712 	struct caam_drv_private *ctrlpriv;
713 	const cpumask_t *cpus = qman_affine_cpus();
714 	struct cpumask old_cpumask = current->cpus_allowed;
715 	static struct platform_device_info qi_pdev_info = {
716 		.name = "caam_qi",
717 		.id = PLATFORM_DEVID_NONE
718 	};
719 
720 	/*
721 	 * QMAN requires CGRs to be removed from same CPU+portal from where it
722 	 * was originally allocated. Hence we need to note down the
723 	 * initialisation CPU and use the same CPU for module exit.
724 	 * We select the first CPU to from the list of portal owning CPUs.
725 	 * Then we pin module init to this CPU.
726 	 */
727 	mod_init_cpu = cpumask_first(cpus);
728 	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
729 
730 	qi_pdev_info.parent = ctrldev;
731 	qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
732 	qi_pdev = platform_device_register_full(&qi_pdev_info);
733 	if (IS_ERR(qi_pdev))
734 		return PTR_ERR(qi_pdev);
735 	set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
736 
737 	ctrlpriv = dev_get_drvdata(ctrldev);
738 	qidev = &qi_pdev->dev;
739 
740 	qipriv.qi_pdev = qi_pdev;
741 	dev_set_drvdata(qidev, &qipriv);
742 
743 	/* Initialize the congestion detection */
744 	err = init_cgr(qidev);
745 	if (err) {
746 		dev_err(qidev, "CGR initialization failed: %d\n", err);
747 		platform_device_unregister(qi_pdev);
748 		return err;
749 	}
750 
751 	/* Initialise response FQs */
752 	err = alloc_rsp_fqs(qidev);
753 	if (err) {
754 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
755 		free_rsp_fqs();
756 		platform_device_unregister(qi_pdev);
757 		return err;
758 	}
759 
760 	/*
761 	 * Enable the NAPI contexts on each of the core which has an affine
762 	 * portal.
763 	 */
764 	for_each_cpu(i, cpus) {
765 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
766 		struct caam_napi *caam_napi = &priv->caam_napi;
767 		struct napi_struct *irqtask = &caam_napi->irqtask;
768 		struct net_device *net_dev = &priv->net_dev;
769 
770 		net_dev->dev = *qidev;
771 		INIT_LIST_HEAD(&net_dev->napi_list);
772 
773 		netif_napi_add(net_dev, irqtask, caam_qi_poll,
774 			       CAAM_NAPI_WEIGHT);
775 
776 		napi_enable(irqtask);
777 	}
778 
779 	/* Hook up QI device to parent controlling caam device */
780 	ctrlpriv->qidev = qidev;
781 
782 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
783 				     SLAB_CACHE_DMA, NULL);
784 	if (!qi_cache) {
785 		dev_err(qidev, "Can't allocate CAAM cache\n");
786 		free_rsp_fqs();
787 		platform_device_unregister(qi_pdev);
788 		return -ENOMEM;
789 	}
790 
791 	/* Done with the CGRs; restore the cpus allowed mask */
792 	set_cpus_allowed_ptr(current, &old_cpumask);
793 #ifdef CONFIG_DEBUG_FS
794 	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
795 			    &times_congested, &caam_fops_u64_ro);
796 #endif
797 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
798 	return 0;
799 }
800