1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CAAM/SEC 4.x QI transport/backend driver 4 * Queue Interface backend functionality 5 * 6 * Copyright 2013-2016 Freescale Semiconductor, Inc. 7 * Copyright 2016-2017, 2019-2020 NXP 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/kthread.h> 12 #include <soc/fsl/qman.h> 13 14 #include "debugfs.h" 15 #include "regs.h" 16 #include "qi.h" 17 #include "desc.h" 18 #include "intern.h" 19 #include "desc_constr.h" 20 21 #define PREHDR_RSLS_SHIFT 31 22 #define PREHDR_ABS BIT(25) 23 24 /* 25 * Use a reasonable backlog of frames (per CPU) as congestion threshold, 26 * so that resources used by the in-flight buffers do not become a memory hog. 27 */ 28 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 29 30 #define CAAM_QI_ENQUEUE_RETRIES 10000 31 32 #define CAAM_NAPI_WEIGHT 63 33 34 /* 35 * caam_napi - struct holding CAAM NAPI-related params 36 * @irqtask: IRQ task for QI backend 37 * @p: QMan portal 38 */ 39 struct caam_napi { 40 struct napi_struct irqtask; 41 struct qman_portal *p; 42 }; 43 44 /* 45 * caam_qi_pcpu_priv - percpu private data structure to main list of pending 46 * responses expected on each cpu. 47 * @caam_napi: CAAM NAPI params 48 * @net_dev: netdev used by NAPI 49 * @rsp_fq: response FQ from CAAM 50 */ 51 struct caam_qi_pcpu_priv { 52 struct caam_napi caam_napi; 53 struct net_device net_dev; 54 struct qman_fq *rsp_fq; 55 } ____cacheline_aligned; 56 57 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); 58 static DEFINE_PER_CPU(int, last_cpu); 59 60 /* 61 * caam_qi_priv - CAAM QI backend private params 62 * @cgr: QMan congestion group 63 */ 64 struct caam_qi_priv { 65 struct qman_cgr cgr; 66 }; 67 68 static struct caam_qi_priv qipriv ____cacheline_aligned; 69 70 /* 71 * This is written by only one core - the one that initialized the CGR - and 72 * read by multiple cores (all the others). 73 */ 74 bool caam_congested __read_mostly; 75 EXPORT_SYMBOL(caam_congested); 76 77 /* 78 * This is a a cache of buffers, from which the users of CAAM QI driver 79 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than 80 * doing malloc on the hotpath. 81 * NOTE: A more elegant solution would be to have some headroom in the frames 82 * being processed. This could be added by the dpaa-ethernet driver. 83 * This would pose a problem for userspace application processing which 84 * cannot know of this limitation. So for now, this will work. 85 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here 86 */ 87 static struct kmem_cache *qi_cache; 88 89 static void *caam_iova_to_virt(struct iommu_domain *domain, 90 dma_addr_t iova_addr) 91 { 92 phys_addr_t phys_addr; 93 94 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 95 96 return phys_to_virt(phys_addr); 97 } 98 99 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) 100 { 101 struct qm_fd fd; 102 dma_addr_t addr; 103 int ret; 104 int num_retries = 0; 105 106 qm_fd_clear_fd(&fd); 107 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); 108 109 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), 110 DMA_BIDIRECTIONAL); 111 if (dma_mapping_error(qidev, addr)) { 112 dev_err(qidev, "DMA mapping error for QI enqueue request\n"); 113 return -EIO; 114 } 115 qm_fd_addr_set64(&fd, addr); 116 117 do { 118 ret = qman_enqueue(req->drv_ctx->req_fq, &fd); 119 if (likely(!ret)) { 120 refcount_inc(&req->drv_ctx->refcnt); 121 return 0; 122 } 123 124 if (ret != -EBUSY) 125 break; 126 num_retries++; 127 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); 128 129 dev_err(qidev, "qman_enqueue failed: %d\n", ret); 130 131 return ret; 132 } 133 EXPORT_SYMBOL(caam_qi_enqueue); 134 135 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, 136 const union qm_mr_entry *msg) 137 { 138 const struct qm_fd *fd; 139 struct caam_drv_req *drv_req; 140 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 141 struct caam_drv_private *priv = dev_get_drvdata(qidev); 142 143 fd = &msg->ern.fd; 144 145 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 146 if (!drv_req) { 147 dev_err(qidev, 148 "Can't find original request for CAAM response\n"); 149 return; 150 } 151 152 refcount_dec(&drv_req->drv_ctx->refcnt); 153 154 if (qm_fd_get_format(fd) != qm_fd_compound) { 155 dev_err(qidev, "Non-compound FD from CAAM\n"); 156 return; 157 } 158 159 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 160 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 161 162 if (fd->status) 163 drv_req->cbk(drv_req, be32_to_cpu(fd->status)); 164 else 165 drv_req->cbk(drv_req, JRSTA_SSRC_QI); 166 } 167 168 static struct qman_fq *create_caam_req_fq(struct device *qidev, 169 struct qman_fq *rsp_fq, 170 dma_addr_t hwdesc, 171 int fq_sched_flag) 172 { 173 int ret; 174 struct qman_fq *req_fq; 175 struct qm_mcc_initfq opts; 176 177 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); 178 if (!req_fq) 179 return ERR_PTR(-ENOMEM); 180 181 req_fq->cb.ern = caam_fq_ern_cb; 182 req_fq->cb.fqs = NULL; 183 184 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | 185 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); 186 if (ret) { 187 dev_err(qidev, "Failed to create session req FQ\n"); 188 goto create_req_fq_fail; 189 } 190 191 memset(&opts, 0, sizeof(opts)); 192 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 193 QM_INITFQ_WE_CONTEXTB | 194 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 195 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 196 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); 197 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); 198 qm_fqd_context_a_set64(&opts.fqd, hwdesc); 199 opts.fqd.cgid = qipriv.cgr.cgrid; 200 201 ret = qman_init_fq(req_fq, fq_sched_flag, &opts); 202 if (ret) { 203 dev_err(qidev, "Failed to init session req FQ\n"); 204 goto init_req_fq_fail; 205 } 206 207 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, 208 smp_processor_id()); 209 return req_fq; 210 211 init_req_fq_fail: 212 qman_destroy_fq(req_fq); 213 create_req_fq_fail: 214 kfree(req_fq); 215 return ERR_PTR(ret); 216 } 217 218 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) 219 { 220 int ret; 221 222 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | 223 QMAN_VOLATILE_FLAG_FINISH, 224 QM_VDQCR_PRECEDENCE_VDQCR | 225 QM_VDQCR_NUMFRAMES_TILLEMPTY); 226 if (ret) { 227 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); 228 return ret; 229 } 230 231 do { 232 struct qman_portal *p; 233 234 p = qman_get_affine_portal(smp_processor_id()); 235 qman_p_poll_dqrr(p, 16); 236 } while (fq->flags & QMAN_FQ_STATE_NE); 237 238 return 0; 239 } 240 241 static int kill_fq(struct device *qidev, struct qman_fq *fq) 242 { 243 u32 flags; 244 int ret; 245 246 ret = qman_retire_fq(fq, &flags); 247 if (ret < 0) { 248 dev_err(qidev, "qman_retire_fq failed: %d\n", ret); 249 return ret; 250 } 251 252 if (!ret) 253 goto empty_fq; 254 255 /* Async FQ retirement condition */ 256 if (ret == 1) { 257 /* Retry till FQ gets in retired state */ 258 do { 259 msleep(20); 260 } while (fq->state != qman_fq_state_retired); 261 262 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); 263 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); 264 } 265 266 empty_fq: 267 if (fq->flags & QMAN_FQ_STATE_NE) { 268 ret = empty_retired_fq(qidev, fq); 269 if (ret) { 270 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", 271 fq->fqid); 272 return ret; 273 } 274 } 275 276 ret = qman_oos_fq(fq); 277 if (ret) 278 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); 279 280 qman_destroy_fq(fq); 281 kfree(fq); 282 283 return ret; 284 } 285 286 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) 287 { 288 int ret; 289 int retries = 10; 290 struct qm_mcr_queryfq_np np; 291 292 /* Wait till the older CAAM FQ get empty */ 293 do { 294 ret = qman_query_fq_np(fq, &np); 295 if (ret) 296 return ret; 297 298 if (!qm_mcr_np_get(&np, frm_cnt)) 299 break; 300 301 msleep(20); 302 } while (1); 303 304 /* Wait until pending jobs from this FQ are processed by CAAM */ 305 do { 306 if (refcount_read(&drv_ctx->refcnt) == 1) 307 break; 308 309 msleep(20); 310 } while (--retries); 311 312 if (!retries) 313 dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", 314 refcount_read(&drv_ctx->refcnt), fq->fqid); 315 316 return 0; 317 } 318 319 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) 320 { 321 int ret; 322 u32 num_words; 323 struct qman_fq *new_fq, *old_fq; 324 struct device *qidev = drv_ctx->qidev; 325 326 num_words = desc_len(sh_desc); 327 if (num_words > MAX_SDLEN) { 328 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); 329 return -EINVAL; 330 } 331 332 /* Note down older req FQ */ 333 old_fq = drv_ctx->req_fq; 334 335 /* Create a new req FQ in parked state */ 336 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, 337 drv_ctx->context_a, 0); 338 if (IS_ERR(new_fq)) { 339 dev_err(qidev, "FQ allocation for shdesc update failed\n"); 340 return PTR_ERR(new_fq); 341 } 342 343 /* Hook up new FQ to context so that new requests keep queuing */ 344 drv_ctx->req_fq = new_fq; 345 346 /* Empty and remove the older FQ */ 347 ret = empty_caam_fq(old_fq, drv_ctx); 348 if (ret) { 349 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); 350 351 /* We can revert to older FQ */ 352 drv_ctx->req_fq = old_fq; 353 354 if (kill_fq(qidev, new_fq)) 355 dev_warn(qidev, "New CAAM FQ kill failed\n"); 356 357 return ret; 358 } 359 360 /* 361 * Re-initialise pre-header. Set RSLS and SDLEN. 362 * Update the shared descriptor for driver context. 363 */ 364 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 365 num_words); 366 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 367 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 368 dma_sync_single_for_device(qidev, drv_ctx->context_a, 369 sizeof(drv_ctx->sh_desc) + 370 sizeof(drv_ctx->prehdr), 371 DMA_BIDIRECTIONAL); 372 373 /* Put the new FQ in scheduled state */ 374 ret = qman_schedule_fq(new_fq); 375 if (ret) { 376 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); 377 378 /* 379 * We can kill new FQ and revert to old FQ. 380 * Since the desc is already modified, it is success case 381 */ 382 383 drv_ctx->req_fq = old_fq; 384 385 if (kill_fq(qidev, new_fq)) 386 dev_warn(qidev, "New CAAM FQ kill failed\n"); 387 } else if (kill_fq(qidev, old_fq)) { 388 dev_warn(qidev, "Old CAAM FQ kill failed\n"); 389 } 390 391 return 0; 392 } 393 EXPORT_SYMBOL(caam_drv_ctx_update); 394 395 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, 396 int *cpu, 397 u32 *sh_desc) 398 { 399 size_t size; 400 u32 num_words; 401 dma_addr_t hwdesc; 402 struct caam_drv_ctx *drv_ctx; 403 const cpumask_t *cpus = qman_affine_cpus(); 404 405 num_words = desc_len(sh_desc); 406 if (num_words > MAX_SDLEN) { 407 dev_err(qidev, "Invalid descriptor len: %d words\n", 408 num_words); 409 return ERR_PTR(-EINVAL); 410 } 411 412 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); 413 if (!drv_ctx) 414 return ERR_PTR(-ENOMEM); 415 416 /* 417 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor 418 * and dma-map them. 419 */ 420 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 421 num_words); 422 drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); 423 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 424 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); 425 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, 426 DMA_BIDIRECTIONAL); 427 if (dma_mapping_error(qidev, hwdesc)) { 428 dev_err(qidev, "DMA map error for preheader + shdesc\n"); 429 kfree(drv_ctx); 430 return ERR_PTR(-ENOMEM); 431 } 432 drv_ctx->context_a = hwdesc; 433 434 /* If given CPU does not own the portal, choose another one that does */ 435 if (!cpumask_test_cpu(*cpu, cpus)) { 436 int *pcpu = &get_cpu_var(last_cpu); 437 438 *pcpu = cpumask_next(*pcpu, cpus); 439 if (*pcpu >= nr_cpu_ids) 440 *pcpu = cpumask_first(cpus); 441 *cpu = *pcpu; 442 443 put_cpu_var(last_cpu); 444 } 445 drv_ctx->cpu = *cpu; 446 447 /* Find response FQ hooked with this CPU */ 448 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); 449 450 /* Attach request FQ */ 451 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, 452 QMAN_INITFQ_FLAG_SCHED); 453 if (IS_ERR(drv_ctx->req_fq)) { 454 dev_err(qidev, "create_caam_req_fq failed\n"); 455 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); 456 kfree(drv_ctx); 457 return ERR_PTR(-ENOMEM); 458 } 459 460 /* init reference counter used to track references to request FQ */ 461 refcount_set(&drv_ctx->refcnt, 1); 462 463 drv_ctx->qidev = qidev; 464 return drv_ctx; 465 } 466 EXPORT_SYMBOL(caam_drv_ctx_init); 467 468 void *qi_cache_alloc(gfp_t flags) 469 { 470 return kmem_cache_alloc(qi_cache, flags); 471 } 472 EXPORT_SYMBOL(qi_cache_alloc); 473 474 void qi_cache_free(void *obj) 475 { 476 kmem_cache_free(qi_cache, obj); 477 } 478 EXPORT_SYMBOL(qi_cache_free); 479 480 static int caam_qi_poll(struct napi_struct *napi, int budget) 481 { 482 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); 483 484 int cleaned = qman_p_poll_dqrr(np->p, budget); 485 486 if (cleaned < budget) { 487 napi_complete(napi); 488 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 489 } 490 491 return cleaned; 492 } 493 494 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) 495 { 496 if (IS_ERR_OR_NULL(drv_ctx)) 497 return; 498 499 /* Remove request FQ */ 500 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) 501 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); 502 503 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, 504 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), 505 DMA_BIDIRECTIONAL); 506 kfree(drv_ctx); 507 } 508 EXPORT_SYMBOL(caam_drv_ctx_rel); 509 510 static void caam_qi_shutdown(void *data) 511 { 512 int i; 513 struct device *qidev = data; 514 struct caam_qi_priv *priv = &qipriv; 515 const cpumask_t *cpus = qman_affine_cpus(); 516 517 for_each_cpu(i, cpus) { 518 struct napi_struct *irqtask; 519 520 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; 521 napi_disable(irqtask); 522 netif_napi_del(irqtask); 523 524 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) 525 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); 526 } 527 528 qman_delete_cgr_safe(&priv->cgr); 529 qman_release_cgrid(priv->cgr.cgrid); 530 531 kmem_cache_destroy(qi_cache); 532 } 533 534 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) 535 { 536 caam_congested = congested; 537 538 if (congested) { 539 caam_debugfs_qi_congested(); 540 541 pr_debug_ratelimited("CAAM entered congestion\n"); 542 543 } else { 544 pr_debug_ratelimited("CAAM exited congestion\n"); 545 } 546 } 547 548 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np, 549 bool sched_napi) 550 { 551 if (sched_napi) { 552 /* Disable QMan IRQ source and invoke NAPI */ 553 qman_p_irqsource_remove(p, QM_PIRQ_DQRI); 554 np->p = p; 555 napi_schedule(&np->irqtask); 556 return 1; 557 } 558 return 0; 559 } 560 561 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, 562 struct qman_fq *rsp_fq, 563 const struct qm_dqrr_entry *dqrr, 564 bool sched_napi) 565 { 566 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); 567 struct caam_drv_req *drv_req; 568 const struct qm_fd *fd; 569 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 570 struct caam_drv_private *priv = dev_get_drvdata(qidev); 571 u32 status; 572 573 if (caam_qi_napi_schedule(p, caam_napi, sched_napi)) 574 return qman_cb_dqrr_stop; 575 576 fd = &dqrr->fd; 577 578 drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); 579 if (unlikely(!drv_req)) { 580 dev_err(qidev, 581 "Can't find original request for caam response\n"); 582 return qman_cb_dqrr_consume; 583 } 584 585 refcount_dec(&drv_req->drv_ctx->refcnt); 586 587 status = be32_to_cpu(fd->status); 588 if (unlikely(status)) { 589 u32 ssrc = status & JRSTA_SSRC_MASK; 590 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; 591 592 if (ssrc != JRSTA_SSRC_CCB_ERROR || 593 err_id != JRSTA_CCBERR_ERRID_ICVCHK) 594 dev_err_ratelimited(qidev, 595 "Error: %#x in CAAM response FD\n", 596 status); 597 } 598 599 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { 600 dev_err(qidev, "Non-compound FD from CAAM\n"); 601 return qman_cb_dqrr_consume; 602 } 603 604 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 605 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 606 607 drv_req->cbk(drv_req, status); 608 return qman_cb_dqrr_consume; 609 } 610 611 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) 612 { 613 struct qm_mcc_initfq opts; 614 struct qman_fq *fq; 615 int ret; 616 617 fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); 618 if (!fq) 619 return -ENOMEM; 620 621 fq->cb.dqrr = caam_rsp_fq_dqrr_cb; 622 623 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | 624 QMAN_FQ_FLAG_DYNAMIC_FQID, fq); 625 if (ret) { 626 dev_err(qidev, "Rsp FQ create failed\n"); 627 kfree(fq); 628 return -ENODEV; 629 } 630 631 memset(&opts, 0, sizeof(opts)); 632 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 633 QM_INITFQ_WE_CONTEXTB | 634 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 635 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | 636 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 637 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); 638 opts.fqd.cgid = qipriv.cgr.cgrid; 639 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | 640 QM_STASHING_EXCL_DATA; 641 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); 642 643 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); 644 if (ret) { 645 dev_err(qidev, "Rsp FQ init failed\n"); 646 kfree(fq); 647 return -ENODEV; 648 } 649 650 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; 651 652 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); 653 return 0; 654 } 655 656 static int init_cgr(struct device *qidev) 657 { 658 int ret; 659 struct qm_mcc_initcgr opts; 660 const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * 661 MAX_RSP_FQ_BACKLOG_PER_CPU; 662 663 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); 664 if (ret) { 665 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); 666 return ret; 667 } 668 669 qipriv.cgr.cb = cgr_cb; 670 memset(&opts, 0, sizeof(opts)); 671 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | 672 QM_CGR_WE_MODE); 673 opts.cgr.cscn_en = QM_CGR_EN; 674 opts.cgr.mode = QMAN_CGR_MODE_FRAME; 675 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); 676 677 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); 678 if (ret) { 679 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, 680 qipriv.cgr.cgrid); 681 return ret; 682 } 683 684 dev_dbg(qidev, "Congestion threshold set to %llu\n", val); 685 return 0; 686 } 687 688 static int alloc_rsp_fqs(struct device *qidev) 689 { 690 int ret, i; 691 const cpumask_t *cpus = qman_affine_cpus(); 692 693 /*Now create response FQs*/ 694 for_each_cpu(i, cpus) { 695 ret = alloc_rsp_fq_cpu(qidev, i); 696 if (ret) { 697 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); 698 return ret; 699 } 700 } 701 702 return 0; 703 } 704 705 static void free_rsp_fqs(void) 706 { 707 int i; 708 const cpumask_t *cpus = qman_affine_cpus(); 709 710 for_each_cpu(i, cpus) 711 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 712 } 713 714 int caam_qi_init(struct platform_device *caam_pdev) 715 { 716 int err, i; 717 struct device *ctrldev = &caam_pdev->dev, *qidev; 718 struct caam_drv_private *ctrlpriv; 719 const cpumask_t *cpus = qman_affine_cpus(); 720 721 ctrlpriv = dev_get_drvdata(ctrldev); 722 qidev = ctrldev; 723 724 /* Initialize the congestion detection */ 725 err = init_cgr(qidev); 726 if (err) { 727 dev_err(qidev, "CGR initialization failed: %d\n", err); 728 return err; 729 } 730 731 /* Initialise response FQs */ 732 err = alloc_rsp_fqs(qidev); 733 if (err) { 734 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); 735 free_rsp_fqs(); 736 return err; 737 } 738 739 /* 740 * Enable the NAPI contexts on each of the core which has an affine 741 * portal. 742 */ 743 for_each_cpu(i, cpus) { 744 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); 745 struct caam_napi *caam_napi = &priv->caam_napi; 746 struct napi_struct *irqtask = &caam_napi->irqtask; 747 struct net_device *net_dev = &priv->net_dev; 748 749 net_dev->dev = *qidev; 750 INIT_LIST_HEAD(&net_dev->napi_list); 751 752 netif_napi_add(net_dev, irqtask, caam_qi_poll, 753 CAAM_NAPI_WEIGHT); 754 755 napi_enable(irqtask); 756 } 757 758 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, 759 SLAB_CACHE_DMA, NULL); 760 if (!qi_cache) { 761 dev_err(qidev, "Can't allocate CAAM cache\n"); 762 free_rsp_fqs(); 763 return -ENOMEM; 764 } 765 766 caam_debugfs_qi_init(ctrlpriv); 767 768 err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv); 769 if (err) 770 return err; 771 772 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); 773 return 0; 774 } 775