xref: /openbmc/linux/drivers/crypto/caam/qi.c (revision 287dcc2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CAAM/SEC 4.x QI transport/backend driver
4  * Queue Interface backend functionality
5  *
6  * Copyright 2013-2016 Freescale Semiconductor, Inc.
7  * Copyright 2016-2017, 2019-2020 NXP
8  */
9 
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/kernel.h>
14 #include <linux/kthread.h>
15 #include <linux/netdevice.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <soc/fsl/qman.h>
19 
20 #include "debugfs.h"
21 #include "regs.h"
22 #include "qi.h"
23 #include "desc.h"
24 #include "intern.h"
25 #include "desc_constr.h"
26 
27 #define PREHDR_RSLS_SHIFT	31
28 #define PREHDR_ABS		BIT(25)
29 
30 /*
31  * Use a reasonable backlog of frames (per CPU) as congestion threshold,
32  * so that resources used by the in-flight buffers do not become a memory hog.
33  */
34 #define MAX_RSP_FQ_BACKLOG_PER_CPU	256
35 
36 #define CAAM_QI_ENQUEUE_RETRIES	10000
37 
38 #define CAAM_NAPI_WEIGHT	63
39 
40 /*
41  * caam_napi - struct holding CAAM NAPI-related params
42  * @irqtask: IRQ task for QI backend
43  * @p: QMan portal
44  */
45 struct caam_napi {
46 	struct napi_struct irqtask;
47 	struct qman_portal *p;
48 };
49 
50 /*
51  * caam_qi_pcpu_priv - percpu private data structure to main list of pending
52  *                     responses expected on each cpu.
53  * @caam_napi: CAAM NAPI params
54  * @net_dev: netdev used by NAPI
55  * @rsp_fq: response FQ from CAAM
56  */
57 struct caam_qi_pcpu_priv {
58 	struct caam_napi caam_napi;
59 	struct net_device net_dev;
60 	struct qman_fq *rsp_fq;
61 } ____cacheline_aligned;
62 
63 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
64 static DEFINE_PER_CPU(int, last_cpu);
65 
66 /*
67  * caam_qi_priv - CAAM QI backend private params
68  * @cgr: QMan congestion group
69  */
70 struct caam_qi_priv {
71 	struct qman_cgr cgr;
72 };
73 
74 static struct caam_qi_priv qipriv ____cacheline_aligned;
75 
76 /*
77  * This is written by only one core - the one that initialized the CGR - and
78  * read by multiple cores (all the others).
79  */
80 bool caam_congested __read_mostly;
81 EXPORT_SYMBOL(caam_congested);
82 
83 /*
84  * This is a cache of buffers, from which the users of CAAM QI driver
85  * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
86  * doing malloc on the hotpath.
87  * NOTE: A more elegant solution would be to have some headroom in the frames
88  *       being processed. This could be added by the dpaa-ethernet driver.
89  *       This would pose a problem for userspace application processing which
90  *       cannot know of this limitation. So for now, this will work.
91  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
92  */
93 static struct kmem_cache *qi_cache;
94 
95 static void *caam_iova_to_virt(struct iommu_domain *domain,
96 			       dma_addr_t iova_addr)
97 {
98 	phys_addr_t phys_addr;
99 
100 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
101 
102 	return phys_to_virt(phys_addr);
103 }
104 
105 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
106 {
107 	struct qm_fd fd;
108 	dma_addr_t addr;
109 	int ret;
110 	int num_retries = 0;
111 
112 	qm_fd_clear_fd(&fd);
113 	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
114 
115 	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
116 			      DMA_BIDIRECTIONAL);
117 	if (dma_mapping_error(qidev, addr)) {
118 		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
119 		return -EIO;
120 	}
121 	qm_fd_addr_set64(&fd, addr);
122 
123 	do {
124 		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
125 		if (likely(!ret)) {
126 			refcount_inc(&req->drv_ctx->refcnt);
127 			return 0;
128 		}
129 
130 		if (ret != -EBUSY)
131 			break;
132 		num_retries++;
133 	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
134 
135 	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
136 
137 	return ret;
138 }
139 EXPORT_SYMBOL(caam_qi_enqueue);
140 
141 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
142 			   const union qm_mr_entry *msg)
143 {
144 	const struct qm_fd *fd;
145 	struct caam_drv_req *drv_req;
146 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
147 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
148 
149 	fd = &msg->ern.fd;
150 
151 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
152 	if (!drv_req) {
153 		dev_err(qidev,
154 			"Can't find original request for CAAM response\n");
155 		return;
156 	}
157 
158 	refcount_dec(&drv_req->drv_ctx->refcnt);
159 
160 	if (qm_fd_get_format(fd) != qm_fd_compound) {
161 		dev_err(qidev, "Non-compound FD from CAAM\n");
162 		return;
163 	}
164 
165 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
166 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
167 
168 	if (fd->status)
169 		drv_req->cbk(drv_req, be32_to_cpu(fd->status));
170 	else
171 		drv_req->cbk(drv_req, JRSTA_SSRC_QI);
172 }
173 
174 static struct qman_fq *create_caam_req_fq(struct device *qidev,
175 					  struct qman_fq *rsp_fq,
176 					  dma_addr_t hwdesc,
177 					  int fq_sched_flag)
178 {
179 	int ret;
180 	struct qman_fq *req_fq;
181 	struct qm_mcc_initfq opts;
182 
183 	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
184 	if (!req_fq)
185 		return ERR_PTR(-ENOMEM);
186 
187 	req_fq->cb.ern = caam_fq_ern_cb;
188 	req_fq->cb.fqs = NULL;
189 
190 	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
191 				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
192 	if (ret) {
193 		dev_err(qidev, "Failed to create session req FQ\n");
194 		goto create_req_fq_fail;
195 	}
196 
197 	memset(&opts, 0, sizeof(opts));
198 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
199 				   QM_INITFQ_WE_CONTEXTB |
200 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
201 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
202 	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
203 	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
204 	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
205 	opts.fqd.cgid = qipriv.cgr.cgrid;
206 
207 	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
208 	if (ret) {
209 		dev_err(qidev, "Failed to init session req FQ\n");
210 		goto init_req_fq_fail;
211 	}
212 
213 	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
214 		smp_processor_id());
215 	return req_fq;
216 
217 init_req_fq_fail:
218 	qman_destroy_fq(req_fq);
219 create_req_fq_fail:
220 	kfree(req_fq);
221 	return ERR_PTR(ret);
222 }
223 
224 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
225 {
226 	int ret;
227 
228 	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
229 				    QMAN_VOLATILE_FLAG_FINISH,
230 				    QM_VDQCR_PRECEDENCE_VDQCR |
231 				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
232 	if (ret) {
233 		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
234 		return ret;
235 	}
236 
237 	do {
238 		struct qman_portal *p;
239 
240 		p = qman_get_affine_portal(smp_processor_id());
241 		qman_p_poll_dqrr(p, 16);
242 	} while (fq->flags & QMAN_FQ_STATE_NE);
243 
244 	return 0;
245 }
246 
247 static int kill_fq(struct device *qidev, struct qman_fq *fq)
248 {
249 	u32 flags;
250 	int ret;
251 
252 	ret = qman_retire_fq(fq, &flags);
253 	if (ret < 0) {
254 		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
255 		return ret;
256 	}
257 
258 	if (!ret)
259 		goto empty_fq;
260 
261 	/* Async FQ retirement condition */
262 	if (ret == 1) {
263 		/* Retry till FQ gets in retired state */
264 		do {
265 			msleep(20);
266 		} while (fq->state != qman_fq_state_retired);
267 
268 		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
269 		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
270 	}
271 
272 empty_fq:
273 	if (fq->flags & QMAN_FQ_STATE_NE) {
274 		ret = empty_retired_fq(qidev, fq);
275 		if (ret) {
276 			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
277 				fq->fqid);
278 			return ret;
279 		}
280 	}
281 
282 	ret = qman_oos_fq(fq);
283 	if (ret)
284 		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
285 
286 	qman_destroy_fq(fq);
287 	kfree(fq);
288 
289 	return ret;
290 }
291 
292 static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx)
293 {
294 	int ret;
295 	int retries = 10;
296 	struct qm_mcr_queryfq_np np;
297 
298 	/* Wait till the older CAAM FQ get empty */
299 	do {
300 		ret = qman_query_fq_np(fq, &np);
301 		if (ret)
302 			return ret;
303 
304 		if (!qm_mcr_np_get(&np, frm_cnt))
305 			break;
306 
307 		msleep(20);
308 	} while (1);
309 
310 	/* Wait until pending jobs from this FQ are processed by CAAM */
311 	do {
312 		if (refcount_read(&drv_ctx->refcnt) == 1)
313 			break;
314 
315 		msleep(20);
316 	} while (--retries);
317 
318 	if (!retries)
319 		dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n",
320 			      refcount_read(&drv_ctx->refcnt), fq->fqid);
321 
322 	return 0;
323 }
324 
325 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
326 {
327 	int ret;
328 	u32 num_words;
329 	struct qman_fq *new_fq, *old_fq;
330 	struct device *qidev = drv_ctx->qidev;
331 
332 	num_words = desc_len(sh_desc);
333 	if (num_words > MAX_SDLEN) {
334 		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
335 		return -EINVAL;
336 	}
337 
338 	/* Note down older req FQ */
339 	old_fq = drv_ctx->req_fq;
340 
341 	/* Create a new req FQ in parked state */
342 	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
343 				    drv_ctx->context_a, 0);
344 	if (IS_ERR(new_fq)) {
345 		dev_err(qidev, "FQ allocation for shdesc update failed\n");
346 		return PTR_ERR(new_fq);
347 	}
348 
349 	/* Hook up new FQ to context so that new requests keep queuing */
350 	drv_ctx->req_fq = new_fq;
351 
352 	/* Empty and remove the older FQ */
353 	ret = empty_caam_fq(old_fq, drv_ctx);
354 	if (ret) {
355 		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
356 
357 		/* We can revert to older FQ */
358 		drv_ctx->req_fq = old_fq;
359 
360 		if (kill_fq(qidev, new_fq))
361 			dev_warn(qidev, "New CAAM FQ kill failed\n");
362 
363 		return ret;
364 	}
365 
366 	/*
367 	 * Re-initialise pre-header. Set RSLS and SDLEN.
368 	 * Update the shared descriptor for driver context.
369 	 */
370 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
371 					   num_words);
372 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
373 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
374 	dma_sync_single_for_device(qidev, drv_ctx->context_a,
375 				   sizeof(drv_ctx->sh_desc) +
376 				   sizeof(drv_ctx->prehdr),
377 				   DMA_BIDIRECTIONAL);
378 
379 	/* Put the new FQ in scheduled state */
380 	ret = qman_schedule_fq(new_fq);
381 	if (ret) {
382 		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
383 
384 		/*
385 		 * We can kill new FQ and revert to old FQ.
386 		 * Since the desc is already modified, it is success case
387 		 */
388 
389 		drv_ctx->req_fq = old_fq;
390 
391 		if (kill_fq(qidev, new_fq))
392 			dev_warn(qidev, "New CAAM FQ kill failed\n");
393 	} else if (kill_fq(qidev, old_fq)) {
394 		dev_warn(qidev, "Old CAAM FQ kill failed\n");
395 	}
396 
397 	return 0;
398 }
399 EXPORT_SYMBOL(caam_drv_ctx_update);
400 
401 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
402 				       int *cpu,
403 				       u32 *sh_desc)
404 {
405 	size_t size;
406 	u32 num_words;
407 	dma_addr_t hwdesc;
408 	struct caam_drv_ctx *drv_ctx;
409 	const cpumask_t *cpus = qman_affine_cpus();
410 
411 	num_words = desc_len(sh_desc);
412 	if (num_words > MAX_SDLEN) {
413 		dev_err(qidev, "Invalid descriptor len: %d words\n",
414 			num_words);
415 		return ERR_PTR(-EINVAL);
416 	}
417 
418 	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
419 	if (!drv_ctx)
420 		return ERR_PTR(-ENOMEM);
421 
422 	/*
423 	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
424 	 * and dma-map them.
425 	 */
426 	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
427 					   num_words);
428 	drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS);
429 	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
430 	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
431 	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
432 				DMA_BIDIRECTIONAL);
433 	if (dma_mapping_error(qidev, hwdesc)) {
434 		dev_err(qidev, "DMA map error for preheader + shdesc\n");
435 		kfree(drv_ctx);
436 		return ERR_PTR(-ENOMEM);
437 	}
438 	drv_ctx->context_a = hwdesc;
439 
440 	/* If given CPU does not own the portal, choose another one that does */
441 	if (!cpumask_test_cpu(*cpu, cpus)) {
442 		int *pcpu = &get_cpu_var(last_cpu);
443 
444 		*pcpu = cpumask_next(*pcpu, cpus);
445 		if (*pcpu >= nr_cpu_ids)
446 			*pcpu = cpumask_first(cpus);
447 		*cpu = *pcpu;
448 
449 		put_cpu_var(last_cpu);
450 	}
451 	drv_ctx->cpu = *cpu;
452 
453 	/* Find response FQ hooked with this CPU */
454 	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
455 
456 	/* Attach request FQ */
457 	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
458 					     QMAN_INITFQ_FLAG_SCHED);
459 	if (IS_ERR(drv_ctx->req_fq)) {
460 		dev_err(qidev, "create_caam_req_fq failed\n");
461 		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
462 		kfree(drv_ctx);
463 		return ERR_PTR(-ENOMEM);
464 	}
465 
466 	/* init reference counter used to track references to request FQ */
467 	refcount_set(&drv_ctx->refcnt, 1);
468 
469 	drv_ctx->qidev = qidev;
470 	return drv_ctx;
471 }
472 EXPORT_SYMBOL(caam_drv_ctx_init);
473 
474 void *qi_cache_alloc(gfp_t flags)
475 {
476 	return kmem_cache_alloc(qi_cache, flags);
477 }
478 EXPORT_SYMBOL(qi_cache_alloc);
479 
480 void qi_cache_free(void *obj)
481 {
482 	kmem_cache_free(qi_cache, obj);
483 }
484 EXPORT_SYMBOL(qi_cache_free);
485 
486 static int caam_qi_poll(struct napi_struct *napi, int budget)
487 {
488 	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
489 
490 	int cleaned = qman_p_poll_dqrr(np->p, budget);
491 
492 	if (cleaned < budget) {
493 		napi_complete(napi);
494 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
495 	}
496 
497 	return cleaned;
498 }
499 
500 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
501 {
502 	if (IS_ERR_OR_NULL(drv_ctx))
503 		return;
504 
505 	/* Remove request FQ */
506 	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
507 		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
508 
509 	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
510 			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
511 			 DMA_BIDIRECTIONAL);
512 	kfree(drv_ctx);
513 }
514 EXPORT_SYMBOL(caam_drv_ctx_rel);
515 
516 static void caam_qi_shutdown(void *data)
517 {
518 	int i;
519 	struct device *qidev = data;
520 	struct caam_qi_priv *priv = &qipriv;
521 	const cpumask_t *cpus = qman_affine_cpus();
522 
523 	for_each_cpu(i, cpus) {
524 		struct napi_struct *irqtask;
525 
526 		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
527 		napi_disable(irqtask);
528 		netif_napi_del(irqtask);
529 
530 		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
531 			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
532 	}
533 
534 	qman_delete_cgr_safe(&priv->cgr);
535 	qman_release_cgrid(priv->cgr.cgrid);
536 
537 	kmem_cache_destroy(qi_cache);
538 }
539 
540 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
541 {
542 	caam_congested = congested;
543 
544 	if (congested) {
545 		caam_debugfs_qi_congested();
546 
547 		pr_debug_ratelimited("CAAM entered congestion\n");
548 
549 	} else {
550 		pr_debug_ratelimited("CAAM exited congestion\n");
551 	}
552 }
553 
554 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np,
555 				 bool sched_napi)
556 {
557 	if (sched_napi) {
558 		/* Disable QMan IRQ source and invoke NAPI */
559 		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
560 		np->p = p;
561 		napi_schedule(&np->irqtask);
562 		return 1;
563 	}
564 	return 0;
565 }
566 
567 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
568 						    struct qman_fq *rsp_fq,
569 						    const struct qm_dqrr_entry *dqrr,
570 						    bool sched_napi)
571 {
572 	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
573 	struct caam_drv_req *drv_req;
574 	const struct qm_fd *fd;
575 	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
576 	struct caam_drv_private *priv = dev_get_drvdata(qidev);
577 	u32 status;
578 
579 	if (caam_qi_napi_schedule(p, caam_napi, sched_napi))
580 		return qman_cb_dqrr_stop;
581 
582 	fd = &dqrr->fd;
583 
584 	drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd));
585 	if (unlikely(!drv_req)) {
586 		dev_err(qidev,
587 			"Can't find original request for caam response\n");
588 		return qman_cb_dqrr_consume;
589 	}
590 
591 	refcount_dec(&drv_req->drv_ctx->refcnt);
592 
593 	status = be32_to_cpu(fd->status);
594 	if (unlikely(status)) {
595 		u32 ssrc = status & JRSTA_SSRC_MASK;
596 		u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
597 
598 		if (ssrc != JRSTA_SSRC_CCB_ERROR ||
599 		    err_id != JRSTA_CCBERR_ERRID_ICVCHK)
600 			dev_err_ratelimited(qidev,
601 					    "Error: %#x in CAAM response FD\n",
602 					    status);
603 	}
604 
605 	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
606 		dev_err(qidev, "Non-compound FD from CAAM\n");
607 		return qman_cb_dqrr_consume;
608 	}
609 
610 	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
611 			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
612 
613 	drv_req->cbk(drv_req, status);
614 	return qman_cb_dqrr_consume;
615 }
616 
617 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
618 {
619 	struct qm_mcc_initfq opts;
620 	struct qman_fq *fq;
621 	int ret;
622 
623 	fq = kzalloc(sizeof(*fq), GFP_KERNEL);
624 	if (!fq)
625 		return -ENOMEM;
626 
627 	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
628 
629 	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
630 			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
631 	if (ret) {
632 		dev_err(qidev, "Rsp FQ create failed\n");
633 		kfree(fq);
634 		return -ENODEV;
635 	}
636 
637 	memset(&opts, 0, sizeof(opts));
638 	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
639 				   QM_INITFQ_WE_CONTEXTB |
640 				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
641 	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
642 				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
643 	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
644 	opts.fqd.cgid = qipriv.cgr.cgrid;
645 	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
646 						QM_STASHING_EXCL_DATA;
647 	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
648 
649 	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
650 	if (ret) {
651 		dev_err(qidev, "Rsp FQ init failed\n");
652 		kfree(fq);
653 		return -ENODEV;
654 	}
655 
656 	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
657 
658 	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
659 	return 0;
660 }
661 
662 static int init_cgr(struct device *qidev)
663 {
664 	int ret;
665 	struct qm_mcc_initcgr opts;
666 	const u64 val = (u64)cpumask_weight(qman_affine_cpus()) *
667 			MAX_RSP_FQ_BACKLOG_PER_CPU;
668 
669 	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
670 	if (ret) {
671 		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
672 		return ret;
673 	}
674 
675 	qipriv.cgr.cb = cgr_cb;
676 	memset(&opts, 0, sizeof(opts));
677 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
678 				   QM_CGR_WE_MODE);
679 	opts.cgr.cscn_en = QM_CGR_EN;
680 	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
681 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
682 
683 	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
684 	if (ret) {
685 		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
686 			qipriv.cgr.cgrid);
687 		return ret;
688 	}
689 
690 	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
691 	return 0;
692 }
693 
694 static int alloc_rsp_fqs(struct device *qidev)
695 {
696 	int ret, i;
697 	const cpumask_t *cpus = qman_affine_cpus();
698 
699 	/*Now create response FQs*/
700 	for_each_cpu(i, cpus) {
701 		ret = alloc_rsp_fq_cpu(qidev, i);
702 		if (ret) {
703 			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
704 			return ret;
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 static void free_rsp_fqs(void)
712 {
713 	int i;
714 	const cpumask_t *cpus = qman_affine_cpus();
715 
716 	for_each_cpu(i, cpus)
717 		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
718 }
719 
720 int caam_qi_init(struct platform_device *caam_pdev)
721 {
722 	int err, i;
723 	struct device *ctrldev = &caam_pdev->dev, *qidev;
724 	struct caam_drv_private *ctrlpriv;
725 	const cpumask_t *cpus = qman_affine_cpus();
726 
727 	ctrlpriv = dev_get_drvdata(ctrldev);
728 	qidev = ctrldev;
729 
730 	/* Initialize the congestion detection */
731 	err = init_cgr(qidev);
732 	if (err) {
733 		dev_err(qidev, "CGR initialization failed: %d\n", err);
734 		return err;
735 	}
736 
737 	/* Initialise response FQs */
738 	err = alloc_rsp_fqs(qidev);
739 	if (err) {
740 		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
741 		free_rsp_fqs();
742 		return err;
743 	}
744 
745 	/*
746 	 * Enable the NAPI contexts on each of the core which has an affine
747 	 * portal.
748 	 */
749 	for_each_cpu(i, cpus) {
750 		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
751 		struct caam_napi *caam_napi = &priv->caam_napi;
752 		struct napi_struct *irqtask = &caam_napi->irqtask;
753 		struct net_device *net_dev = &priv->net_dev;
754 
755 		net_dev->dev = *qidev;
756 		INIT_LIST_HEAD(&net_dev->napi_list);
757 
758 		netif_napi_add_tx_weight(net_dev, irqtask, caam_qi_poll,
759 					 CAAM_NAPI_WEIGHT);
760 
761 		napi_enable(irqtask);
762 	}
763 
764 	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE,
765 				     dma_get_cache_alignment(), 0, NULL);
766 	if (!qi_cache) {
767 		dev_err(qidev, "Can't allocate CAAM cache\n");
768 		free_rsp_fqs();
769 		return -ENOMEM;
770 	}
771 
772 	caam_debugfs_qi_init(ctrlpriv);
773 
774 	err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv);
775 	if (err)
776 		return err;
777 
778 	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
779 	return 0;
780 }
781