1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * CAAM/SEC 4.x QI transport/backend driver 4 * Queue Interface backend functionality 5 * 6 * Copyright 2013-2016 Freescale Semiconductor, Inc. 7 * Copyright 2016-2017 NXP 8 */ 9 10 #include <linux/cpumask.h> 11 #include <linux/kthread.h> 12 #include <soc/fsl/qman.h> 13 14 #include "regs.h" 15 #include "qi.h" 16 #include "desc.h" 17 #include "intern.h" 18 #include "desc_constr.h" 19 20 #define PREHDR_RSLS_SHIFT 31 21 22 /* 23 * Use a reasonable backlog of frames (per CPU) as congestion threshold, 24 * so that resources used by the in-flight buffers do not become a memory hog. 25 */ 26 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 27 28 #define CAAM_QI_ENQUEUE_RETRIES 10000 29 30 #define CAAM_NAPI_WEIGHT 63 31 32 /* 33 * caam_napi - struct holding CAAM NAPI-related params 34 * @irqtask: IRQ task for QI backend 35 * @p: QMan portal 36 */ 37 struct caam_napi { 38 struct napi_struct irqtask; 39 struct qman_portal *p; 40 }; 41 42 /* 43 * caam_qi_pcpu_priv - percpu private data structure to main list of pending 44 * responses expected on each cpu. 45 * @caam_napi: CAAM NAPI params 46 * @net_dev: netdev used by NAPI 47 * @rsp_fq: response FQ from CAAM 48 */ 49 struct caam_qi_pcpu_priv { 50 struct caam_napi caam_napi; 51 struct net_device net_dev; 52 struct qman_fq *rsp_fq; 53 } ____cacheline_aligned; 54 55 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); 56 static DEFINE_PER_CPU(int, last_cpu); 57 58 /* 59 * caam_qi_priv - CAAM QI backend private params 60 * @cgr: QMan congestion group 61 * @qi_pdev: platform device for QI backend 62 */ 63 struct caam_qi_priv { 64 struct qman_cgr cgr; 65 struct platform_device *qi_pdev; 66 }; 67 68 static struct caam_qi_priv qipriv ____cacheline_aligned; 69 70 /* 71 * This is written by only one core - the one that initialized the CGR - and 72 * read by multiple cores (all the others). 73 */ 74 bool caam_congested __read_mostly; 75 EXPORT_SYMBOL(caam_congested); 76 77 #ifdef CONFIG_DEBUG_FS 78 /* 79 * This is a counter for the number of times the congestion group (where all 80 * the request and response queueus are) reached congestion. Incremented 81 * each time the congestion callback is called with congested == true. 82 */ 83 static u64 times_congested; 84 #endif 85 86 /* 87 * CPU from where the module initialised. This is required because QMan driver 88 * requires CGRs to be removed from same CPU from where they were originally 89 * allocated. 90 */ 91 static int mod_init_cpu; 92 93 /* 94 * This is a a cache of buffers, from which the users of CAAM QI driver 95 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than 96 * doing malloc on the hotpath. 97 * NOTE: A more elegant solution would be to have some headroom in the frames 98 * being processed. This could be added by the dpaa-ethernet driver. 99 * This would pose a problem for userspace application processing which 100 * cannot know of this limitation. So for now, this will work. 101 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here 102 */ 103 static struct kmem_cache *qi_cache; 104 105 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) 106 { 107 struct qm_fd fd; 108 dma_addr_t addr; 109 int ret; 110 int num_retries = 0; 111 112 qm_fd_clear_fd(&fd); 113 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); 114 115 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), 116 DMA_BIDIRECTIONAL); 117 if (dma_mapping_error(qidev, addr)) { 118 dev_err(qidev, "DMA mapping error for QI enqueue request\n"); 119 return -EIO; 120 } 121 qm_fd_addr_set64(&fd, addr); 122 123 do { 124 ret = qman_enqueue(req->drv_ctx->req_fq, &fd); 125 if (likely(!ret)) 126 return 0; 127 128 if (ret != -EBUSY) 129 break; 130 num_retries++; 131 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); 132 133 dev_err(qidev, "qman_enqueue failed: %d\n", ret); 134 135 return ret; 136 } 137 EXPORT_SYMBOL(caam_qi_enqueue); 138 139 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, 140 const union qm_mr_entry *msg) 141 { 142 const struct qm_fd *fd; 143 struct caam_drv_req *drv_req; 144 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 145 146 fd = &msg->ern.fd; 147 148 if (qm_fd_get_format(fd) != qm_fd_compound) { 149 dev_err(qidev, "Non-compound FD from CAAM\n"); 150 return; 151 } 152 153 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); 154 if (!drv_req) { 155 dev_err(qidev, 156 "Can't find original request for CAAM response\n"); 157 return; 158 } 159 160 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 161 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 162 163 drv_req->cbk(drv_req, -EIO); 164 } 165 166 static struct qman_fq *create_caam_req_fq(struct device *qidev, 167 struct qman_fq *rsp_fq, 168 dma_addr_t hwdesc, 169 int fq_sched_flag) 170 { 171 int ret; 172 struct qman_fq *req_fq; 173 struct qm_mcc_initfq opts; 174 175 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); 176 if (!req_fq) 177 return ERR_PTR(-ENOMEM); 178 179 req_fq->cb.ern = caam_fq_ern_cb; 180 req_fq->cb.fqs = NULL; 181 182 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | 183 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); 184 if (ret) { 185 dev_err(qidev, "Failed to create session req FQ\n"); 186 goto create_req_fq_fail; 187 } 188 189 memset(&opts, 0, sizeof(opts)); 190 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 191 QM_INITFQ_WE_CONTEXTB | 192 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 193 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 194 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); 195 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); 196 qm_fqd_context_a_set64(&opts.fqd, hwdesc); 197 opts.fqd.cgid = qipriv.cgr.cgrid; 198 199 ret = qman_init_fq(req_fq, fq_sched_flag, &opts); 200 if (ret) { 201 dev_err(qidev, "Failed to init session req FQ\n"); 202 goto init_req_fq_fail; 203 } 204 205 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, 206 smp_processor_id()); 207 return req_fq; 208 209 init_req_fq_fail: 210 qman_destroy_fq(req_fq); 211 create_req_fq_fail: 212 kfree(req_fq); 213 return ERR_PTR(ret); 214 } 215 216 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) 217 { 218 int ret; 219 220 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | 221 QMAN_VOLATILE_FLAG_FINISH, 222 QM_VDQCR_PRECEDENCE_VDQCR | 223 QM_VDQCR_NUMFRAMES_TILLEMPTY); 224 if (ret) { 225 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); 226 return ret; 227 } 228 229 do { 230 struct qman_portal *p; 231 232 p = qman_get_affine_portal(smp_processor_id()); 233 qman_p_poll_dqrr(p, 16); 234 } while (fq->flags & QMAN_FQ_STATE_NE); 235 236 return 0; 237 } 238 239 static int kill_fq(struct device *qidev, struct qman_fq *fq) 240 { 241 u32 flags; 242 int ret; 243 244 ret = qman_retire_fq(fq, &flags); 245 if (ret < 0) { 246 dev_err(qidev, "qman_retire_fq failed: %d\n", ret); 247 return ret; 248 } 249 250 if (!ret) 251 goto empty_fq; 252 253 /* Async FQ retirement condition */ 254 if (ret == 1) { 255 /* Retry till FQ gets in retired state */ 256 do { 257 msleep(20); 258 } while (fq->state != qman_fq_state_retired); 259 260 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); 261 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); 262 } 263 264 empty_fq: 265 if (fq->flags & QMAN_FQ_STATE_NE) { 266 ret = empty_retired_fq(qidev, fq); 267 if (ret) { 268 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", 269 fq->fqid); 270 return ret; 271 } 272 } 273 274 ret = qman_oos_fq(fq); 275 if (ret) 276 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); 277 278 qman_destroy_fq(fq); 279 kfree(fq); 280 281 return ret; 282 } 283 284 static int empty_caam_fq(struct qman_fq *fq) 285 { 286 int ret; 287 struct qm_mcr_queryfq_np np; 288 289 /* Wait till the older CAAM FQ get empty */ 290 do { 291 ret = qman_query_fq_np(fq, &np); 292 if (ret) 293 return ret; 294 295 if (!qm_mcr_np_get(&np, frm_cnt)) 296 break; 297 298 msleep(20); 299 } while (1); 300 301 /* 302 * Give extra time for pending jobs from this FQ in holding tanks 303 * to get processed 304 */ 305 msleep(20); 306 return 0; 307 } 308 309 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) 310 { 311 int ret; 312 u32 num_words; 313 struct qman_fq *new_fq, *old_fq; 314 struct device *qidev = drv_ctx->qidev; 315 316 num_words = desc_len(sh_desc); 317 if (num_words > MAX_SDLEN) { 318 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); 319 return -EINVAL; 320 } 321 322 /* Note down older req FQ */ 323 old_fq = drv_ctx->req_fq; 324 325 /* Create a new req FQ in parked state */ 326 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, 327 drv_ctx->context_a, 0); 328 if (unlikely(IS_ERR_OR_NULL(new_fq))) { 329 dev_err(qidev, "FQ allocation for shdesc update failed\n"); 330 return PTR_ERR(new_fq); 331 } 332 333 /* Hook up new FQ to context so that new requests keep queuing */ 334 drv_ctx->req_fq = new_fq; 335 336 /* Empty and remove the older FQ */ 337 ret = empty_caam_fq(old_fq); 338 if (ret) { 339 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); 340 341 /* We can revert to older FQ */ 342 drv_ctx->req_fq = old_fq; 343 344 if (kill_fq(qidev, new_fq)) 345 dev_warn(qidev, "New CAAM FQ kill failed\n"); 346 347 return ret; 348 } 349 350 /* 351 * Re-initialise pre-header. Set RSLS and SDLEN. 352 * Update the shared descriptor for driver context. 353 */ 354 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 355 num_words); 356 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 357 dma_sync_single_for_device(qidev, drv_ctx->context_a, 358 sizeof(drv_ctx->sh_desc) + 359 sizeof(drv_ctx->prehdr), 360 DMA_BIDIRECTIONAL); 361 362 /* Put the new FQ in scheduled state */ 363 ret = qman_schedule_fq(new_fq); 364 if (ret) { 365 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); 366 367 /* 368 * We can kill new FQ and revert to old FQ. 369 * Since the desc is already modified, it is success case 370 */ 371 372 drv_ctx->req_fq = old_fq; 373 374 if (kill_fq(qidev, new_fq)) 375 dev_warn(qidev, "New CAAM FQ kill failed\n"); 376 } else if (kill_fq(qidev, old_fq)) { 377 dev_warn(qidev, "Old CAAM FQ kill failed\n"); 378 } 379 380 return 0; 381 } 382 EXPORT_SYMBOL(caam_drv_ctx_update); 383 384 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, 385 int *cpu, 386 u32 *sh_desc) 387 { 388 size_t size; 389 u32 num_words; 390 dma_addr_t hwdesc; 391 struct caam_drv_ctx *drv_ctx; 392 const cpumask_t *cpus = qman_affine_cpus(); 393 394 num_words = desc_len(sh_desc); 395 if (num_words > MAX_SDLEN) { 396 dev_err(qidev, "Invalid descriptor len: %d words\n", 397 num_words); 398 return ERR_PTR(-EINVAL); 399 } 400 401 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); 402 if (!drv_ctx) 403 return ERR_PTR(-ENOMEM); 404 405 /* 406 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor 407 * and dma-map them. 408 */ 409 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 410 num_words); 411 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 412 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); 413 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, 414 DMA_BIDIRECTIONAL); 415 if (dma_mapping_error(qidev, hwdesc)) { 416 dev_err(qidev, "DMA map error for preheader + shdesc\n"); 417 kfree(drv_ctx); 418 return ERR_PTR(-ENOMEM); 419 } 420 drv_ctx->context_a = hwdesc; 421 422 /* If given CPU does not own the portal, choose another one that does */ 423 if (!cpumask_test_cpu(*cpu, cpus)) { 424 int *pcpu = &get_cpu_var(last_cpu); 425 426 *pcpu = cpumask_next(*pcpu, cpus); 427 if (*pcpu >= nr_cpu_ids) 428 *pcpu = cpumask_first(cpus); 429 *cpu = *pcpu; 430 431 put_cpu_var(last_cpu); 432 } 433 drv_ctx->cpu = *cpu; 434 435 /* Find response FQ hooked with this CPU */ 436 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); 437 438 /* Attach request FQ */ 439 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, 440 QMAN_INITFQ_FLAG_SCHED); 441 if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) { 442 dev_err(qidev, "create_caam_req_fq failed\n"); 443 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); 444 kfree(drv_ctx); 445 return ERR_PTR(-ENOMEM); 446 } 447 448 drv_ctx->qidev = qidev; 449 return drv_ctx; 450 } 451 EXPORT_SYMBOL(caam_drv_ctx_init); 452 453 void *qi_cache_alloc(gfp_t flags) 454 { 455 return kmem_cache_alloc(qi_cache, flags); 456 } 457 EXPORT_SYMBOL(qi_cache_alloc); 458 459 void qi_cache_free(void *obj) 460 { 461 kmem_cache_free(qi_cache, obj); 462 } 463 EXPORT_SYMBOL(qi_cache_free); 464 465 static int caam_qi_poll(struct napi_struct *napi, int budget) 466 { 467 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); 468 469 int cleaned = qman_p_poll_dqrr(np->p, budget); 470 471 if (cleaned < budget) { 472 napi_complete(napi); 473 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 474 } 475 476 return cleaned; 477 } 478 479 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) 480 { 481 if (IS_ERR_OR_NULL(drv_ctx)) 482 return; 483 484 /* Remove request FQ */ 485 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) 486 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); 487 488 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, 489 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), 490 DMA_BIDIRECTIONAL); 491 kfree(drv_ctx); 492 } 493 EXPORT_SYMBOL(caam_drv_ctx_rel); 494 495 int caam_qi_shutdown(struct device *qidev) 496 { 497 int i, ret; 498 struct caam_qi_priv *priv = dev_get_drvdata(qidev); 499 const cpumask_t *cpus = qman_affine_cpus(); 500 struct cpumask old_cpumask = current->cpus_allowed; 501 502 for_each_cpu(i, cpus) { 503 struct napi_struct *irqtask; 504 505 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; 506 napi_disable(irqtask); 507 netif_napi_del(irqtask); 508 509 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) 510 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); 511 } 512 513 /* 514 * QMan driver requires CGRs to be deleted from same CPU from where they 515 * were instantiated. Hence we get the module removal execute from the 516 * same CPU from where it was originally inserted. 517 */ 518 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); 519 520 ret = qman_delete_cgr(&priv->cgr); 521 if (ret) 522 dev_err(qidev, "Deletion of CGR failed: %d\n", ret); 523 else 524 qman_release_cgrid(priv->cgr.cgrid); 525 526 kmem_cache_destroy(qi_cache); 527 528 /* Now that we're done with the CGRs, restore the cpus allowed mask */ 529 set_cpus_allowed_ptr(current, &old_cpumask); 530 531 platform_device_unregister(priv->qi_pdev); 532 return ret; 533 } 534 535 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) 536 { 537 caam_congested = congested; 538 539 if (congested) { 540 #ifdef CONFIG_DEBUG_FS 541 times_congested++; 542 #endif 543 pr_debug_ratelimited("CAAM entered congestion\n"); 544 545 } else { 546 pr_debug_ratelimited("CAAM exited congestion\n"); 547 } 548 } 549 550 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np) 551 { 552 /* 553 * In case of threaded ISR, for RT kernels in_irq() does not return 554 * appropriate value, so use in_serving_softirq to distinguish between 555 * softirq and irq contexts. 556 */ 557 if (unlikely(in_irq() || !in_serving_softirq())) { 558 /* Disable QMan IRQ source and invoke NAPI */ 559 qman_p_irqsource_remove(p, QM_PIRQ_DQRI); 560 np->p = p; 561 napi_schedule(&np->irqtask); 562 return 1; 563 } 564 return 0; 565 } 566 567 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, 568 struct qman_fq *rsp_fq, 569 const struct qm_dqrr_entry *dqrr) 570 { 571 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); 572 struct caam_drv_req *drv_req; 573 const struct qm_fd *fd; 574 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 575 u32 status; 576 577 if (caam_qi_napi_schedule(p, caam_napi)) 578 return qman_cb_dqrr_stop; 579 580 fd = &dqrr->fd; 581 status = be32_to_cpu(fd->status); 582 if (unlikely(status)) { 583 u32 ssrc = status & JRSTA_SSRC_MASK; 584 u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; 585 586 if (ssrc != JRSTA_SSRC_CCB_ERROR || 587 err_id != JRSTA_CCBERR_ERRID_ICVCHK) 588 dev_err(qidev, "Error: %#x in CAAM response FD\n", 589 status); 590 } 591 592 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { 593 dev_err(qidev, "Non-compound FD from CAAM\n"); 594 return qman_cb_dqrr_consume; 595 } 596 597 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); 598 if (unlikely(!drv_req)) { 599 dev_err(qidev, 600 "Can't find original request for caam response\n"); 601 return qman_cb_dqrr_consume; 602 } 603 604 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 605 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 606 607 drv_req->cbk(drv_req, status); 608 return qman_cb_dqrr_consume; 609 } 610 611 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) 612 { 613 struct qm_mcc_initfq opts; 614 struct qman_fq *fq; 615 int ret; 616 617 fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); 618 if (!fq) 619 return -ENOMEM; 620 621 fq->cb.dqrr = caam_rsp_fq_dqrr_cb; 622 623 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | 624 QMAN_FQ_FLAG_DYNAMIC_FQID, fq); 625 if (ret) { 626 dev_err(qidev, "Rsp FQ create failed\n"); 627 kfree(fq); 628 return -ENODEV; 629 } 630 631 memset(&opts, 0, sizeof(opts)); 632 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 633 QM_INITFQ_WE_CONTEXTB | 634 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 635 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | 636 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 637 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); 638 opts.fqd.cgid = qipriv.cgr.cgrid; 639 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | 640 QM_STASHING_EXCL_DATA; 641 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); 642 643 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); 644 if (ret) { 645 dev_err(qidev, "Rsp FQ init failed\n"); 646 kfree(fq); 647 return -ENODEV; 648 } 649 650 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; 651 652 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); 653 return 0; 654 } 655 656 static int init_cgr(struct device *qidev) 657 { 658 int ret; 659 struct qm_mcc_initcgr opts; 660 const u64 cpus = *(u64 *)qman_affine_cpus(); 661 const int num_cpus = hweight64(cpus); 662 const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU; 663 664 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); 665 if (ret) { 666 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); 667 return ret; 668 } 669 670 qipriv.cgr.cb = cgr_cb; 671 memset(&opts, 0, sizeof(opts)); 672 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | 673 QM_CGR_WE_MODE); 674 opts.cgr.cscn_en = QM_CGR_EN; 675 opts.cgr.mode = QMAN_CGR_MODE_FRAME; 676 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); 677 678 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); 679 if (ret) { 680 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, 681 qipriv.cgr.cgrid); 682 return ret; 683 } 684 685 dev_dbg(qidev, "Congestion threshold set to %llu\n", val); 686 return 0; 687 } 688 689 static int alloc_rsp_fqs(struct device *qidev) 690 { 691 int ret, i; 692 const cpumask_t *cpus = qman_affine_cpus(); 693 694 /*Now create response FQs*/ 695 for_each_cpu(i, cpus) { 696 ret = alloc_rsp_fq_cpu(qidev, i); 697 if (ret) { 698 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); 699 return ret; 700 } 701 } 702 703 return 0; 704 } 705 706 static void free_rsp_fqs(void) 707 { 708 int i; 709 const cpumask_t *cpus = qman_affine_cpus(); 710 711 for_each_cpu(i, cpus) 712 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 713 } 714 715 int caam_qi_init(struct platform_device *caam_pdev) 716 { 717 int err, i; 718 struct platform_device *qi_pdev; 719 struct device *ctrldev = &caam_pdev->dev, *qidev; 720 struct caam_drv_private *ctrlpriv; 721 const cpumask_t *cpus = qman_affine_cpus(); 722 struct cpumask old_cpumask = current->cpus_allowed; 723 static struct platform_device_info qi_pdev_info = { 724 .name = "caam_qi", 725 .id = PLATFORM_DEVID_NONE 726 }; 727 728 /* 729 * QMAN requires CGRs to be removed from same CPU+portal from where it 730 * was originally allocated. Hence we need to note down the 731 * initialisation CPU and use the same CPU for module exit. 732 * We select the first CPU to from the list of portal owning CPUs. 733 * Then we pin module init to this CPU. 734 */ 735 mod_init_cpu = cpumask_first(cpus); 736 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); 737 738 qi_pdev_info.parent = ctrldev; 739 qi_pdev_info.dma_mask = dma_get_mask(ctrldev); 740 qi_pdev = platform_device_register_full(&qi_pdev_info); 741 if (IS_ERR(qi_pdev)) 742 return PTR_ERR(qi_pdev); 743 set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev)); 744 745 ctrlpriv = dev_get_drvdata(ctrldev); 746 qidev = &qi_pdev->dev; 747 748 qipriv.qi_pdev = qi_pdev; 749 dev_set_drvdata(qidev, &qipriv); 750 751 /* Initialize the congestion detection */ 752 err = init_cgr(qidev); 753 if (err) { 754 dev_err(qidev, "CGR initialization failed: %d\n", err); 755 platform_device_unregister(qi_pdev); 756 return err; 757 } 758 759 /* Initialise response FQs */ 760 err = alloc_rsp_fqs(qidev); 761 if (err) { 762 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); 763 free_rsp_fqs(); 764 platform_device_unregister(qi_pdev); 765 return err; 766 } 767 768 /* 769 * Enable the NAPI contexts on each of the core which has an affine 770 * portal. 771 */ 772 for_each_cpu(i, cpus) { 773 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); 774 struct caam_napi *caam_napi = &priv->caam_napi; 775 struct napi_struct *irqtask = &caam_napi->irqtask; 776 struct net_device *net_dev = &priv->net_dev; 777 778 net_dev->dev = *qidev; 779 INIT_LIST_HEAD(&net_dev->napi_list); 780 781 netif_napi_add(net_dev, irqtask, caam_qi_poll, 782 CAAM_NAPI_WEIGHT); 783 784 napi_enable(irqtask); 785 } 786 787 /* Hook up QI device to parent controlling caam device */ 788 ctrlpriv->qidev = qidev; 789 790 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, 791 SLAB_CACHE_DMA, NULL); 792 if (!qi_cache) { 793 dev_err(qidev, "Can't allocate CAAM cache\n"); 794 free_rsp_fqs(); 795 platform_device_unregister(qi_pdev); 796 return -ENOMEM; 797 } 798 799 /* Done with the CGRs; restore the cpus allowed mask */ 800 set_cpus_allowed_ptr(current, &old_cpumask); 801 #ifdef CONFIG_DEBUG_FS 802 debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl, 803 ×_congested, &caam_fops_u64_ro); 804 #endif 805 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); 806 return 0; 807 } 808