1 /* 2 * CAAM/SEC 4.x QI transport/backend driver 3 * Queue Interface backend functionality 4 * 5 * Copyright 2013-2016 Freescale Semiconductor, Inc. 6 * Copyright 2016-2017 NXP 7 */ 8 9 #include <linux/cpumask.h> 10 #include <linux/kthread.h> 11 #include <soc/fsl/qman.h> 12 13 #include "regs.h" 14 #include "qi.h" 15 #include "desc.h" 16 #include "intern.h" 17 #include "desc_constr.h" 18 19 #define PREHDR_RSLS_SHIFT 31 20 21 /* 22 * Use a reasonable backlog of frames (per CPU) as congestion threshold, 23 * so that resources used by the in-flight buffers do not become a memory hog. 24 */ 25 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 26 27 /* Length of a single buffer in the QI driver memory cache */ 28 #define CAAM_QI_MEMCACHE_SIZE 512 29 30 #define CAAM_QI_ENQUEUE_RETRIES 10000 31 32 #define CAAM_NAPI_WEIGHT 63 33 34 /* 35 * caam_napi - struct holding CAAM NAPI-related params 36 * @irqtask: IRQ task for QI backend 37 * @p: QMan portal 38 */ 39 struct caam_napi { 40 struct napi_struct irqtask; 41 struct qman_portal *p; 42 }; 43 44 /* 45 * caam_qi_pcpu_priv - percpu private data structure to main list of pending 46 * responses expected on each cpu. 47 * @caam_napi: CAAM NAPI params 48 * @net_dev: netdev used by NAPI 49 * @rsp_fq: response FQ from CAAM 50 */ 51 struct caam_qi_pcpu_priv { 52 struct caam_napi caam_napi; 53 struct net_device net_dev; 54 struct qman_fq *rsp_fq; 55 } ____cacheline_aligned; 56 57 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); 58 59 /* 60 * caam_qi_priv - CAAM QI backend private params 61 * @cgr: QMan congestion group 62 * @qi_pdev: platform device for QI backend 63 */ 64 struct caam_qi_priv { 65 struct qman_cgr cgr; 66 struct platform_device *qi_pdev; 67 }; 68 69 static struct caam_qi_priv qipriv ____cacheline_aligned; 70 71 /* 72 * This is written by only one core - the one that initialized the CGR - and 73 * read by multiple cores (all the others). 74 */ 75 bool caam_congested __read_mostly; 76 EXPORT_SYMBOL(caam_congested); 77 78 #ifdef CONFIG_DEBUG_FS 79 /* 80 * This is a counter for the number of times the congestion group (where all 81 * the request and response queueus are) reached congestion. Incremented 82 * each time the congestion callback is called with congested == true. 83 */ 84 static u64 times_congested; 85 #endif 86 87 /* 88 * CPU from where the module initialised. This is required because QMan driver 89 * requires CGRs to be removed from same CPU from where they were originally 90 * allocated. 91 */ 92 static int mod_init_cpu; 93 94 /* 95 * This is a a cache of buffers, from which the users of CAAM QI driver 96 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than 97 * doing malloc on the hotpath. 98 * NOTE: A more elegant solution would be to have some headroom in the frames 99 * being processed. This could be added by the dpaa-ethernet driver. 100 * This would pose a problem for userspace application processing which 101 * cannot know of this limitation. So for now, this will work. 102 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here 103 */ 104 static struct kmem_cache *qi_cache; 105 106 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) 107 { 108 struct qm_fd fd; 109 dma_addr_t addr; 110 int ret; 111 int num_retries = 0; 112 113 qm_fd_clear_fd(&fd); 114 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); 115 116 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), 117 DMA_BIDIRECTIONAL); 118 if (dma_mapping_error(qidev, addr)) { 119 dev_err(qidev, "DMA mapping error for QI enqueue request\n"); 120 return -EIO; 121 } 122 qm_fd_addr_set64(&fd, addr); 123 124 do { 125 ret = qman_enqueue(req->drv_ctx->req_fq, &fd); 126 if (likely(!ret)) 127 return 0; 128 129 if (ret != -EBUSY) 130 break; 131 num_retries++; 132 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); 133 134 dev_err(qidev, "qman_enqueue failed: %d\n", ret); 135 136 return ret; 137 } 138 EXPORT_SYMBOL(caam_qi_enqueue); 139 140 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, 141 const union qm_mr_entry *msg) 142 { 143 const struct qm_fd *fd; 144 struct caam_drv_req *drv_req; 145 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 146 147 fd = &msg->ern.fd; 148 149 if (qm_fd_get_format(fd) != qm_fd_compound) { 150 dev_err(qidev, "Non-compound FD from CAAM\n"); 151 return; 152 } 153 154 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); 155 if (!drv_req) { 156 dev_err(qidev, 157 "Can't find original request for CAAM response\n"); 158 return; 159 } 160 161 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 162 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 163 164 drv_req->cbk(drv_req, -EIO); 165 } 166 167 static struct qman_fq *create_caam_req_fq(struct device *qidev, 168 struct qman_fq *rsp_fq, 169 dma_addr_t hwdesc, 170 int fq_sched_flag) 171 { 172 int ret; 173 struct qman_fq *req_fq; 174 struct qm_mcc_initfq opts; 175 176 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); 177 if (!req_fq) 178 return ERR_PTR(-ENOMEM); 179 180 req_fq->cb.ern = caam_fq_ern_cb; 181 req_fq->cb.fqs = NULL; 182 183 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | 184 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); 185 if (ret) { 186 dev_err(qidev, "Failed to create session req FQ\n"); 187 goto create_req_fq_fail; 188 } 189 190 memset(&opts, 0, sizeof(opts)); 191 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 192 QM_INITFQ_WE_CONTEXTB | 193 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 194 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 195 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); 196 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); 197 qm_fqd_context_a_set64(&opts.fqd, hwdesc); 198 opts.fqd.cgid = qipriv.cgr.cgrid; 199 200 ret = qman_init_fq(req_fq, fq_sched_flag, &opts); 201 if (ret) { 202 dev_err(qidev, "Failed to init session req FQ\n"); 203 goto init_req_fq_fail; 204 } 205 206 dev_info(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, 207 smp_processor_id()); 208 return req_fq; 209 210 init_req_fq_fail: 211 qman_destroy_fq(req_fq); 212 create_req_fq_fail: 213 kfree(req_fq); 214 return ERR_PTR(ret); 215 } 216 217 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) 218 { 219 int ret; 220 221 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | 222 QMAN_VOLATILE_FLAG_FINISH, 223 QM_VDQCR_PRECEDENCE_VDQCR | 224 QM_VDQCR_NUMFRAMES_TILLEMPTY); 225 if (ret) { 226 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); 227 return ret; 228 } 229 230 do { 231 struct qman_portal *p; 232 233 p = qman_get_affine_portal(smp_processor_id()); 234 qman_p_poll_dqrr(p, 16); 235 } while (fq->flags & QMAN_FQ_STATE_NE); 236 237 return 0; 238 } 239 240 static int kill_fq(struct device *qidev, struct qman_fq *fq) 241 { 242 u32 flags; 243 int ret; 244 245 ret = qman_retire_fq(fq, &flags); 246 if (ret < 0) { 247 dev_err(qidev, "qman_retire_fq failed: %d\n", ret); 248 return ret; 249 } 250 251 if (!ret) 252 goto empty_fq; 253 254 /* Async FQ retirement condition */ 255 if (ret == 1) { 256 /* Retry till FQ gets in retired state */ 257 do { 258 msleep(20); 259 } while (fq->state != qman_fq_state_retired); 260 261 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); 262 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); 263 } 264 265 empty_fq: 266 if (fq->flags & QMAN_FQ_STATE_NE) { 267 ret = empty_retired_fq(qidev, fq); 268 if (ret) { 269 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", 270 fq->fqid); 271 return ret; 272 } 273 } 274 275 ret = qman_oos_fq(fq); 276 if (ret) 277 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); 278 279 qman_destroy_fq(fq); 280 281 return ret; 282 } 283 284 static int empty_caam_fq(struct qman_fq *fq) 285 { 286 int ret; 287 struct qm_mcr_queryfq_np np; 288 289 /* Wait till the older CAAM FQ get empty */ 290 do { 291 ret = qman_query_fq_np(fq, &np); 292 if (ret) 293 return ret; 294 295 if (!qm_mcr_np_get(&np, frm_cnt)) 296 break; 297 298 msleep(20); 299 } while (1); 300 301 /* 302 * Give extra time for pending jobs from this FQ in holding tanks 303 * to get processed 304 */ 305 msleep(20); 306 return 0; 307 } 308 309 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) 310 { 311 int ret; 312 u32 num_words; 313 struct qman_fq *new_fq, *old_fq; 314 struct device *qidev = drv_ctx->qidev; 315 316 num_words = desc_len(sh_desc); 317 if (num_words > MAX_SDLEN) { 318 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); 319 return -EINVAL; 320 } 321 322 /* Note down older req FQ */ 323 old_fq = drv_ctx->req_fq; 324 325 /* Create a new req FQ in parked state */ 326 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, 327 drv_ctx->context_a, 0); 328 if (unlikely(IS_ERR_OR_NULL(new_fq))) { 329 dev_err(qidev, "FQ allocation for shdesc update failed\n"); 330 return PTR_ERR(new_fq); 331 } 332 333 /* Hook up new FQ to context so that new requests keep queuing */ 334 drv_ctx->req_fq = new_fq; 335 336 /* Empty and remove the older FQ */ 337 ret = empty_caam_fq(old_fq); 338 if (ret) { 339 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); 340 341 /* We can revert to older FQ */ 342 drv_ctx->req_fq = old_fq; 343 344 if (kill_fq(qidev, new_fq)) 345 dev_warn(qidev, "New CAAM FQ: %u kill failed\n", 346 new_fq->fqid); 347 348 return ret; 349 } 350 351 /* 352 * Re-initialise pre-header. Set RSLS and SDLEN. 353 * Update the shared descriptor for driver context. 354 */ 355 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 356 num_words); 357 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 358 dma_sync_single_for_device(qidev, drv_ctx->context_a, 359 sizeof(drv_ctx->sh_desc) + 360 sizeof(drv_ctx->prehdr), 361 DMA_BIDIRECTIONAL); 362 363 /* Put the new FQ in scheduled state */ 364 ret = qman_schedule_fq(new_fq); 365 if (ret) { 366 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); 367 368 /* 369 * We can kill new FQ and revert to old FQ. 370 * Since the desc is already modified, it is success case 371 */ 372 373 drv_ctx->req_fq = old_fq; 374 375 if (kill_fq(qidev, new_fq)) 376 dev_warn(qidev, "New CAAM FQ: %u kill failed\n", 377 new_fq->fqid); 378 } else if (kill_fq(qidev, old_fq)) { 379 dev_warn(qidev, "Old CAAM FQ: %u kill failed\n", old_fq->fqid); 380 } 381 382 return 0; 383 } 384 EXPORT_SYMBOL(caam_drv_ctx_update); 385 386 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, 387 int *cpu, 388 u32 *sh_desc) 389 { 390 size_t size; 391 u32 num_words; 392 dma_addr_t hwdesc; 393 struct caam_drv_ctx *drv_ctx; 394 const cpumask_t *cpus = qman_affine_cpus(); 395 static DEFINE_PER_CPU(int, last_cpu); 396 397 num_words = desc_len(sh_desc); 398 if (num_words > MAX_SDLEN) { 399 dev_err(qidev, "Invalid descriptor len: %d words\n", 400 num_words); 401 return ERR_PTR(-EINVAL); 402 } 403 404 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); 405 if (!drv_ctx) 406 return ERR_PTR(-ENOMEM); 407 408 /* 409 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor 410 * and dma-map them. 411 */ 412 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | 413 num_words); 414 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); 415 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); 416 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, 417 DMA_BIDIRECTIONAL); 418 if (dma_mapping_error(qidev, hwdesc)) { 419 dev_err(qidev, "DMA map error for preheader + shdesc\n"); 420 kfree(drv_ctx); 421 return ERR_PTR(-ENOMEM); 422 } 423 drv_ctx->context_a = hwdesc; 424 425 /* If given CPU does not own the portal, choose another one that does */ 426 if (!cpumask_test_cpu(*cpu, cpus)) { 427 int *pcpu = &get_cpu_var(last_cpu); 428 429 *pcpu = cpumask_next(*pcpu, cpus); 430 if (*pcpu >= nr_cpu_ids) 431 *pcpu = cpumask_first(cpus); 432 *cpu = *pcpu; 433 434 put_cpu_var(last_cpu); 435 } 436 drv_ctx->cpu = *cpu; 437 438 /* Find response FQ hooked with this CPU */ 439 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); 440 441 /* Attach request FQ */ 442 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, 443 QMAN_INITFQ_FLAG_SCHED); 444 if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) { 445 dev_err(qidev, "create_caam_req_fq failed\n"); 446 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); 447 kfree(drv_ctx); 448 return ERR_PTR(-ENOMEM); 449 } 450 451 drv_ctx->qidev = qidev; 452 return drv_ctx; 453 } 454 EXPORT_SYMBOL(caam_drv_ctx_init); 455 456 void *qi_cache_alloc(gfp_t flags) 457 { 458 return kmem_cache_alloc(qi_cache, flags); 459 } 460 EXPORT_SYMBOL(qi_cache_alloc); 461 462 void qi_cache_free(void *obj) 463 { 464 kmem_cache_free(qi_cache, obj); 465 } 466 EXPORT_SYMBOL(qi_cache_free); 467 468 static int caam_qi_poll(struct napi_struct *napi, int budget) 469 { 470 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); 471 472 int cleaned = qman_p_poll_dqrr(np->p, budget); 473 474 if (cleaned < budget) { 475 napi_complete(napi); 476 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 477 } 478 479 return cleaned; 480 } 481 482 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) 483 { 484 if (IS_ERR_OR_NULL(drv_ctx)) 485 return; 486 487 /* Remove request FQ */ 488 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) 489 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); 490 491 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, 492 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), 493 DMA_BIDIRECTIONAL); 494 kfree(drv_ctx); 495 } 496 EXPORT_SYMBOL(caam_drv_ctx_rel); 497 498 int caam_qi_shutdown(struct device *qidev) 499 { 500 int i, ret; 501 struct caam_qi_priv *priv = dev_get_drvdata(qidev); 502 const cpumask_t *cpus = qman_affine_cpus(); 503 struct cpumask old_cpumask = current->cpus_allowed; 504 505 for_each_cpu(i, cpus) { 506 struct napi_struct *irqtask; 507 508 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; 509 napi_disable(irqtask); 510 netif_napi_del(irqtask); 511 512 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) 513 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); 514 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 515 } 516 517 /* 518 * QMan driver requires CGRs to be deleted from same CPU from where they 519 * were instantiated. Hence we get the module removal execute from the 520 * same CPU from where it was originally inserted. 521 */ 522 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); 523 524 ret = qman_delete_cgr(&priv->cgr); 525 if (ret) 526 dev_err(qidev, "Deletion of CGR failed: %d\n", ret); 527 else 528 qman_release_cgrid(priv->cgr.cgrid); 529 530 kmem_cache_destroy(qi_cache); 531 532 /* Now that we're done with the CGRs, restore the cpus allowed mask */ 533 set_cpus_allowed_ptr(current, &old_cpumask); 534 535 platform_device_unregister(priv->qi_pdev); 536 return ret; 537 } 538 539 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) 540 { 541 caam_congested = congested; 542 543 if (congested) { 544 #ifdef CONFIG_DEBUG_FS 545 times_congested++; 546 #endif 547 pr_debug_ratelimited("CAAM entered congestion\n"); 548 549 } else { 550 pr_debug_ratelimited("CAAM exited congestion\n"); 551 } 552 } 553 554 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np) 555 { 556 /* 557 * In case of threaded ISR, for RT kernels in_irq() does not return 558 * appropriate value, so use in_serving_softirq to distinguish between 559 * softirq and irq contexts. 560 */ 561 if (unlikely(in_irq() || !in_serving_softirq())) { 562 /* Disable QMan IRQ source and invoke NAPI */ 563 qman_p_irqsource_remove(p, QM_PIRQ_DQRI); 564 np->p = p; 565 napi_schedule(&np->irqtask); 566 return 1; 567 } 568 return 0; 569 } 570 571 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, 572 struct qman_fq *rsp_fq, 573 const struct qm_dqrr_entry *dqrr) 574 { 575 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); 576 struct caam_drv_req *drv_req; 577 const struct qm_fd *fd; 578 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); 579 u32 status; 580 581 if (caam_qi_napi_schedule(p, caam_napi)) 582 return qman_cb_dqrr_stop; 583 584 fd = &dqrr->fd; 585 status = be32_to_cpu(fd->status); 586 if (unlikely(status)) 587 dev_err(qidev, "Error: %#x in CAAM response FD\n", status); 588 589 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { 590 dev_err(qidev, "Non-compound FD from CAAM\n"); 591 return qman_cb_dqrr_consume; 592 } 593 594 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd)); 595 if (unlikely(!drv_req)) { 596 dev_err(qidev, 597 "Can't find original request for caam response\n"); 598 return qman_cb_dqrr_consume; 599 } 600 601 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), 602 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); 603 604 drv_req->cbk(drv_req, status); 605 return qman_cb_dqrr_consume; 606 } 607 608 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) 609 { 610 struct qm_mcc_initfq opts; 611 struct qman_fq *fq; 612 int ret; 613 614 fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); 615 if (!fq) 616 return -ENOMEM; 617 618 fq->cb.dqrr = caam_rsp_fq_dqrr_cb; 619 620 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | 621 QMAN_FQ_FLAG_DYNAMIC_FQID, fq); 622 if (ret) { 623 dev_err(qidev, "Rsp FQ create failed\n"); 624 kfree(fq); 625 return -ENODEV; 626 } 627 628 memset(&opts, 0, sizeof(opts)); 629 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | 630 QM_INITFQ_WE_CONTEXTB | 631 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); 632 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | 633 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); 634 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); 635 opts.fqd.cgid = qipriv.cgr.cgrid; 636 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | 637 QM_STASHING_EXCL_DATA; 638 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); 639 640 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); 641 if (ret) { 642 dev_err(qidev, "Rsp FQ init failed\n"); 643 kfree(fq); 644 return -ENODEV; 645 } 646 647 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; 648 649 dev_info(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); 650 return 0; 651 } 652 653 static int init_cgr(struct device *qidev) 654 { 655 int ret; 656 struct qm_mcc_initcgr opts; 657 const u64 cpus = *(u64 *)qman_affine_cpus(); 658 const int num_cpus = hweight64(cpus); 659 const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU; 660 661 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); 662 if (ret) { 663 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); 664 return ret; 665 } 666 667 qipriv.cgr.cb = cgr_cb; 668 memset(&opts, 0, sizeof(opts)); 669 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | 670 QM_CGR_WE_MODE); 671 opts.cgr.cscn_en = QM_CGR_EN; 672 opts.cgr.mode = QMAN_CGR_MODE_FRAME; 673 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); 674 675 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); 676 if (ret) { 677 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, 678 qipriv.cgr.cgrid); 679 return ret; 680 } 681 682 dev_info(qidev, "Congestion threshold set to %llu\n", val); 683 return 0; 684 } 685 686 static int alloc_rsp_fqs(struct device *qidev) 687 { 688 int ret, i; 689 const cpumask_t *cpus = qman_affine_cpus(); 690 691 /*Now create response FQs*/ 692 for_each_cpu(i, cpus) { 693 ret = alloc_rsp_fq_cpu(qidev, i); 694 if (ret) { 695 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); 696 return ret; 697 } 698 } 699 700 return 0; 701 } 702 703 static void free_rsp_fqs(void) 704 { 705 int i; 706 const cpumask_t *cpus = qman_affine_cpus(); 707 708 for_each_cpu(i, cpus) 709 kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); 710 } 711 712 int caam_qi_init(struct platform_device *caam_pdev) 713 { 714 int err, i; 715 struct platform_device *qi_pdev; 716 struct device *ctrldev = &caam_pdev->dev, *qidev; 717 struct caam_drv_private *ctrlpriv; 718 const cpumask_t *cpus = qman_affine_cpus(); 719 struct cpumask old_cpumask = current->cpus_allowed; 720 static struct platform_device_info qi_pdev_info = { 721 .name = "caam_qi", 722 .id = PLATFORM_DEVID_NONE 723 }; 724 725 /* 726 * QMAN requires CGRs to be removed from same CPU+portal from where it 727 * was originally allocated. Hence we need to note down the 728 * initialisation CPU and use the same CPU for module exit. 729 * We select the first CPU to from the list of portal owning CPUs. 730 * Then we pin module init to this CPU. 731 */ 732 mod_init_cpu = cpumask_first(cpus); 733 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu)); 734 735 qi_pdev_info.parent = ctrldev; 736 qi_pdev_info.dma_mask = dma_get_mask(ctrldev); 737 qi_pdev = platform_device_register_full(&qi_pdev_info); 738 if (IS_ERR(qi_pdev)) 739 return PTR_ERR(qi_pdev); 740 741 ctrlpriv = dev_get_drvdata(ctrldev); 742 qidev = &qi_pdev->dev; 743 744 qipriv.qi_pdev = qi_pdev; 745 dev_set_drvdata(qidev, &qipriv); 746 747 /* Initialize the congestion detection */ 748 err = init_cgr(qidev); 749 if (err) { 750 dev_err(qidev, "CGR initialization failed: %d\n", err); 751 platform_device_unregister(qi_pdev); 752 return err; 753 } 754 755 /* Initialise response FQs */ 756 err = alloc_rsp_fqs(qidev); 757 if (err) { 758 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); 759 free_rsp_fqs(); 760 platform_device_unregister(qi_pdev); 761 return err; 762 } 763 764 /* 765 * Enable the NAPI contexts on each of the core which has an affine 766 * portal. 767 */ 768 for_each_cpu(i, cpus) { 769 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); 770 struct caam_napi *caam_napi = &priv->caam_napi; 771 struct napi_struct *irqtask = &caam_napi->irqtask; 772 struct net_device *net_dev = &priv->net_dev; 773 774 net_dev->dev = *qidev; 775 INIT_LIST_HEAD(&net_dev->napi_list); 776 777 netif_napi_add(net_dev, irqtask, caam_qi_poll, 778 CAAM_NAPI_WEIGHT); 779 780 napi_enable(irqtask); 781 } 782 783 /* Hook up QI device to parent controlling caam device */ 784 ctrlpriv->qidev = qidev; 785 786 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, 787 SLAB_CACHE_DMA, NULL); 788 if (!qi_cache) { 789 dev_err(qidev, "Can't allocate CAAM cache\n"); 790 free_rsp_fqs(); 791 platform_device_unregister(qi_pdev); 792 return -ENOMEM; 793 } 794 795 /* Done with the CGRs; restore the cpus allowed mask */ 796 set_cpus_allowed_ptr(current, &old_cpumask); 797 #ifdef CONFIG_DEBUG_FS 798 ctrlpriv->qi_congested = debugfs_create_file("qi_congested", 0444, 799 ctrlpriv->ctl, 800 ×_congested, 801 &caam_fops_u64_ro); 802 #endif 803 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); 804 return 0; 805 } 806