1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * caam - Freescale FSL CAAM support for Public Key Cryptography 4 * 5 * Copyright 2016 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019 NXP 7 * 8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry 9 * all the desired key parameters, input and output pointers. 10 */ 11 #include "compat.h" 12 #include "regs.h" 13 #include "intern.h" 14 #include "jr.h" 15 #include "error.h" 16 #include "desc_constr.h" 17 #include "sg_sw_sec4.h" 18 #include "caampkc.h" 19 20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) 21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ 22 SIZEOF_RSA_PRIV_F1_PDB) 23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ 24 SIZEOF_RSA_PRIV_F2_PDB) 25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ 26 SIZEOF_RSA_PRIV_F3_PDB) 27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ 28 29 /* buffer filled with zeros, used for padding */ 30 static u8 *zero_buffer; 31 32 /* 33 * variable used to avoid double free of resources in case 34 * algorithm registration was unsuccessful 35 */ 36 static bool init_done; 37 38 struct caam_akcipher_alg { 39 struct akcipher_alg akcipher; 40 bool registered; 41 }; 42 43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, 44 struct akcipher_request *req) 45 { 46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 47 48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); 49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); 50 51 if (edesc->sec4_sg_bytes) 52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, 53 DMA_TO_DEVICE); 54 } 55 56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, 57 struct akcipher_request *req) 58 { 59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 61 struct caam_rsa_key *key = &ctx->key; 62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 63 64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); 66 } 67 68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, 69 struct akcipher_request *req) 70 { 71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 73 struct caam_rsa_key *key = &ctx->key; 74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 75 76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 78 } 79 80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, 81 struct akcipher_request *req) 82 { 83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 85 struct caam_rsa_key *key = &ctx->key; 86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 87 size_t p_sz = key->p_sz; 88 size_t q_sz = key->q_sz; 89 90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 95 } 96 97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, 98 struct akcipher_request *req) 99 { 100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 102 struct caam_rsa_key *key = &ctx->key; 103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 104 size_t p_sz = key->p_sz; 105 size_t q_sz = key->q_sz; 106 107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 114 } 115 116 /* RSA Job Completion handler */ 117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) 118 { 119 struct akcipher_request *req = context; 120 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 121 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 122 struct rsa_edesc *edesc; 123 int ecode = 0; 124 125 if (err) 126 ecode = caam_jr_strstatus(dev, err); 127 128 edesc = req_ctx->edesc; 129 130 rsa_pub_unmap(dev, edesc, req); 131 rsa_io_unmap(dev, edesc, req); 132 kfree(edesc); 133 134 /* 135 * If no backlog flag, the completion of the request is done 136 * by CAAM, not crypto engine. 137 */ 138 if (!edesc->bklog) 139 akcipher_request_complete(req, ecode); 140 else 141 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 142 } 143 144 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, 145 void *context) 146 { 147 struct akcipher_request *req = context; 148 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 149 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 150 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 151 struct caam_rsa_key *key = &ctx->key; 152 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 153 struct rsa_edesc *edesc; 154 int ecode = 0; 155 156 if (err) 157 ecode = caam_jr_strstatus(dev, err); 158 159 edesc = req_ctx->edesc; 160 161 switch (key->priv_form) { 162 case FORM1: 163 rsa_priv_f1_unmap(dev, edesc, req); 164 break; 165 case FORM2: 166 rsa_priv_f2_unmap(dev, edesc, req); 167 break; 168 case FORM3: 169 rsa_priv_f3_unmap(dev, edesc, req); 170 } 171 172 rsa_io_unmap(dev, edesc, req); 173 kfree(edesc); 174 175 /* 176 * If no backlog flag, the completion of the request is done 177 * by CAAM, not crypto engine. 178 */ 179 if (!edesc->bklog) 180 akcipher_request_complete(req, ecode); 181 else 182 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 183 } 184 185 /** 186 * Count leading zeros, need it to strip, from a given scatterlist 187 * 188 * @sgl : scatterlist to count zeros from 189 * @nbytes: number of zeros, in bytes, to strip 190 * @flags : operation flags 191 */ 192 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, 193 unsigned int nbytes, 194 unsigned int flags) 195 { 196 struct sg_mapping_iter miter; 197 int lzeros, ents; 198 unsigned int len; 199 unsigned int tbytes = nbytes; 200 const u8 *buff; 201 202 ents = sg_nents_for_len(sgl, nbytes); 203 if (ents < 0) 204 return ents; 205 206 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); 207 208 lzeros = 0; 209 len = 0; 210 while (nbytes > 0) { 211 /* do not strip more than given bytes */ 212 while (len && !*buff && lzeros < nbytes) { 213 lzeros++; 214 len--; 215 buff++; 216 } 217 218 if (len && *buff) 219 break; 220 221 sg_miter_next(&miter); 222 buff = miter.addr; 223 len = miter.length; 224 225 nbytes -= lzeros; 226 lzeros = 0; 227 } 228 229 miter.consumed = lzeros; 230 sg_miter_stop(&miter); 231 nbytes -= lzeros; 232 233 return tbytes - nbytes; 234 } 235 236 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, 237 size_t desclen) 238 { 239 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 240 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 241 struct device *dev = ctx->dev; 242 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 243 struct caam_rsa_key *key = &ctx->key; 244 struct rsa_edesc *edesc; 245 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 246 GFP_KERNEL : GFP_ATOMIC; 247 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; 248 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; 249 int src_nents, dst_nents; 250 int mapped_src_nents, mapped_dst_nents; 251 unsigned int diff_size = 0; 252 int lzeros; 253 254 if (req->src_len > key->n_sz) { 255 /* 256 * strip leading zeros and 257 * return the number of zeros to skip 258 */ 259 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - 260 key->n_sz, sg_flags); 261 if (lzeros < 0) 262 return ERR_PTR(lzeros); 263 264 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, 265 lzeros); 266 req_ctx->fixup_src_len = req->src_len - lzeros; 267 } else { 268 /* 269 * input src is less then n key modulus, 270 * so there will be zero padding 271 */ 272 diff_size = key->n_sz - req->src_len; 273 req_ctx->fixup_src = req->src; 274 req_ctx->fixup_src_len = req->src_len; 275 } 276 277 src_nents = sg_nents_for_len(req_ctx->fixup_src, 278 req_ctx->fixup_src_len); 279 dst_nents = sg_nents_for_len(req->dst, req->dst_len); 280 281 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents, 282 DMA_TO_DEVICE); 283 if (unlikely(!mapped_src_nents)) { 284 dev_err(dev, "unable to map source\n"); 285 return ERR_PTR(-ENOMEM); 286 } 287 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, 288 DMA_FROM_DEVICE); 289 if (unlikely(!mapped_dst_nents)) { 290 dev_err(dev, "unable to map destination\n"); 291 goto src_fail; 292 } 293 294 if (!diff_size && mapped_src_nents == 1) 295 sec4_sg_len = 0; /* no need for an input hw s/g table */ 296 else 297 sec4_sg_len = mapped_src_nents + !!diff_size; 298 sec4_sg_index = sec4_sg_len; 299 300 if (mapped_dst_nents > 1) 301 sec4_sg_len += pad_sg_nents(mapped_dst_nents); 302 else 303 sec4_sg_len = pad_sg_nents(sec4_sg_len); 304 305 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); 306 307 /* allocate space for base edesc, hw desc commands and link tables */ 308 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, 309 GFP_DMA | flags); 310 if (!edesc) 311 goto dst_fail; 312 313 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; 314 if (diff_size) 315 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 316 0); 317 318 if (sec4_sg_index) 319 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, 320 edesc->sec4_sg + !!diff_size, 0); 321 322 if (mapped_dst_nents > 1) 323 sg_to_sec4_sg_last(req->dst, req->dst_len, 324 edesc->sec4_sg + sec4_sg_index, 0); 325 326 /* Save nents for later use in Job Descriptor */ 327 edesc->src_nents = src_nents; 328 edesc->dst_nents = dst_nents; 329 330 req_ctx->edesc = edesc; 331 332 if (!sec4_sg_bytes) 333 return edesc; 334 335 edesc->mapped_src_nents = mapped_src_nents; 336 edesc->mapped_dst_nents = mapped_dst_nents; 337 338 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, 339 sec4_sg_bytes, DMA_TO_DEVICE); 340 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { 341 dev_err(dev, "unable to map S/G table\n"); 342 goto sec4_sg_fail; 343 } 344 345 edesc->sec4_sg_bytes = sec4_sg_bytes; 346 347 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", 348 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, 349 edesc->sec4_sg_bytes, 1); 350 351 return edesc; 352 353 sec4_sg_fail: 354 kfree(edesc); 355 dst_fail: 356 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 357 src_fail: 358 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 359 return ERR_PTR(-ENOMEM); 360 } 361 362 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq) 363 { 364 struct akcipher_request *req = container_of(areq, 365 struct akcipher_request, 366 base); 367 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 368 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 369 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 370 struct device *jrdev = ctx->dev; 371 u32 *desc = req_ctx->edesc->hw_desc; 372 int ret; 373 374 req_ctx->edesc->bklog = true; 375 376 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req); 377 378 if (ret != -EINPROGRESS) { 379 rsa_pub_unmap(jrdev, req_ctx->edesc, req); 380 rsa_io_unmap(jrdev, req_ctx->edesc, req); 381 kfree(req_ctx->edesc); 382 } else { 383 ret = 0; 384 } 385 386 return ret; 387 } 388 389 static int set_rsa_pub_pdb(struct akcipher_request *req, 390 struct rsa_edesc *edesc) 391 { 392 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 393 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 394 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 395 struct caam_rsa_key *key = &ctx->key; 396 struct device *dev = ctx->dev; 397 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 398 int sec4_sg_index = 0; 399 400 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 401 if (dma_mapping_error(dev, pdb->n_dma)) { 402 dev_err(dev, "Unable to map RSA modulus memory\n"); 403 return -ENOMEM; 404 } 405 406 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); 407 if (dma_mapping_error(dev, pdb->e_dma)) { 408 dev_err(dev, "Unable to map RSA public exponent memory\n"); 409 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 410 return -ENOMEM; 411 } 412 413 if (edesc->mapped_src_nents > 1) { 414 pdb->sgf |= RSA_PDB_SGF_F; 415 pdb->f_dma = edesc->sec4_sg_dma; 416 sec4_sg_index += edesc->mapped_src_nents; 417 } else { 418 pdb->f_dma = sg_dma_address(req_ctx->fixup_src); 419 } 420 421 if (edesc->mapped_dst_nents > 1) { 422 pdb->sgf |= RSA_PDB_SGF_G; 423 pdb->g_dma = edesc->sec4_sg_dma + 424 sec4_sg_index * sizeof(struct sec4_sg_entry); 425 } else { 426 pdb->g_dma = sg_dma_address(req->dst); 427 } 428 429 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; 430 pdb->f_len = req_ctx->fixup_src_len; 431 432 return 0; 433 } 434 435 static int set_rsa_priv_f1_pdb(struct akcipher_request *req, 436 struct rsa_edesc *edesc) 437 { 438 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 439 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 440 struct caam_rsa_key *key = &ctx->key; 441 struct device *dev = ctx->dev; 442 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 443 int sec4_sg_index = 0; 444 445 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 446 if (dma_mapping_error(dev, pdb->n_dma)) { 447 dev_err(dev, "Unable to map modulus memory\n"); 448 return -ENOMEM; 449 } 450 451 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 452 if (dma_mapping_error(dev, pdb->d_dma)) { 453 dev_err(dev, "Unable to map RSA private exponent memory\n"); 454 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 455 return -ENOMEM; 456 } 457 458 if (edesc->mapped_src_nents > 1) { 459 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 460 pdb->g_dma = edesc->sec4_sg_dma; 461 sec4_sg_index += edesc->mapped_src_nents; 462 463 } else { 464 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 465 466 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 467 } 468 469 if (edesc->mapped_dst_nents > 1) { 470 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 471 pdb->f_dma = edesc->sec4_sg_dma + 472 sec4_sg_index * sizeof(struct sec4_sg_entry); 473 } else { 474 pdb->f_dma = sg_dma_address(req->dst); 475 } 476 477 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 478 479 return 0; 480 } 481 482 static int set_rsa_priv_f2_pdb(struct akcipher_request *req, 483 struct rsa_edesc *edesc) 484 { 485 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 486 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 487 struct caam_rsa_key *key = &ctx->key; 488 struct device *dev = ctx->dev; 489 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 490 int sec4_sg_index = 0; 491 size_t p_sz = key->p_sz; 492 size_t q_sz = key->q_sz; 493 494 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 495 if (dma_mapping_error(dev, pdb->d_dma)) { 496 dev_err(dev, "Unable to map RSA private exponent memory\n"); 497 return -ENOMEM; 498 } 499 500 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 501 if (dma_mapping_error(dev, pdb->p_dma)) { 502 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 503 goto unmap_d; 504 } 505 506 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 507 if (dma_mapping_error(dev, pdb->q_dma)) { 508 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 509 goto unmap_p; 510 } 511 512 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 513 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 514 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 515 goto unmap_q; 516 } 517 518 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 519 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 520 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 521 goto unmap_tmp1; 522 } 523 524 if (edesc->mapped_src_nents > 1) { 525 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 526 pdb->g_dma = edesc->sec4_sg_dma; 527 sec4_sg_index += edesc->mapped_src_nents; 528 } else { 529 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 530 531 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 532 } 533 534 if (edesc->mapped_dst_nents > 1) { 535 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 536 pdb->f_dma = edesc->sec4_sg_dma + 537 sec4_sg_index * sizeof(struct sec4_sg_entry); 538 } else { 539 pdb->f_dma = sg_dma_address(req->dst); 540 } 541 542 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 543 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 544 545 return 0; 546 547 unmap_tmp1: 548 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 549 unmap_q: 550 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 551 unmap_p: 552 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 553 unmap_d: 554 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 555 556 return -ENOMEM; 557 } 558 559 static int set_rsa_priv_f3_pdb(struct akcipher_request *req, 560 struct rsa_edesc *edesc) 561 { 562 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 563 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 564 struct caam_rsa_key *key = &ctx->key; 565 struct device *dev = ctx->dev; 566 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 567 int sec4_sg_index = 0; 568 size_t p_sz = key->p_sz; 569 size_t q_sz = key->q_sz; 570 571 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 572 if (dma_mapping_error(dev, pdb->p_dma)) { 573 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 574 return -ENOMEM; 575 } 576 577 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 578 if (dma_mapping_error(dev, pdb->q_dma)) { 579 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 580 goto unmap_p; 581 } 582 583 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); 584 if (dma_mapping_error(dev, pdb->dp_dma)) { 585 dev_err(dev, "Unable to map RSA exponent dp memory\n"); 586 goto unmap_q; 587 } 588 589 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); 590 if (dma_mapping_error(dev, pdb->dq_dma)) { 591 dev_err(dev, "Unable to map RSA exponent dq memory\n"); 592 goto unmap_dp; 593 } 594 595 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); 596 if (dma_mapping_error(dev, pdb->c_dma)) { 597 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); 598 goto unmap_dq; 599 } 600 601 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 602 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 603 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 604 goto unmap_qinv; 605 } 606 607 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 608 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 609 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 610 goto unmap_tmp1; 611 } 612 613 if (edesc->mapped_src_nents > 1) { 614 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 615 pdb->g_dma = edesc->sec4_sg_dma; 616 sec4_sg_index += edesc->mapped_src_nents; 617 } else { 618 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 619 620 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 621 } 622 623 if (edesc->mapped_dst_nents > 1) { 624 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 625 pdb->f_dma = edesc->sec4_sg_dma + 626 sec4_sg_index * sizeof(struct sec4_sg_entry); 627 } else { 628 pdb->f_dma = sg_dma_address(req->dst); 629 } 630 631 pdb->sgf |= key->n_sz; 632 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 633 634 return 0; 635 636 unmap_tmp1: 637 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 638 unmap_qinv: 639 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 640 unmap_dq: 641 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 642 unmap_dp: 643 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 644 unmap_q: 645 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 646 unmap_p: 647 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 648 649 return -ENOMEM; 650 } 651 652 static int akcipher_enqueue_req(struct device *jrdev, 653 void (*cbk)(struct device *jrdev, u32 *desc, 654 u32 err, void *context), 655 struct akcipher_request *req) 656 { 657 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 658 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 659 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 660 struct caam_rsa_key *key = &ctx->key; 661 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 662 struct rsa_edesc *edesc = req_ctx->edesc; 663 u32 *desc = edesc->hw_desc; 664 int ret; 665 666 req_ctx->akcipher_op_done = cbk; 667 /* 668 * Only the backlog request are sent to crypto-engine since the others 669 * can be handled by CAAM, if free, especially since JR has up to 1024 670 * entries (more than the 10 entries from crypto-engine). 671 */ 672 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 673 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine, 674 req); 675 else 676 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 677 678 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 679 switch (key->priv_form) { 680 case FORM1: 681 rsa_priv_f1_unmap(jrdev, edesc, req); 682 break; 683 case FORM2: 684 rsa_priv_f2_unmap(jrdev, edesc, req); 685 break; 686 case FORM3: 687 rsa_priv_f3_unmap(jrdev, edesc, req); 688 break; 689 default: 690 rsa_pub_unmap(jrdev, edesc, req); 691 } 692 rsa_io_unmap(jrdev, edesc, req); 693 kfree(edesc); 694 } 695 696 return ret; 697 } 698 699 static int caam_rsa_enc(struct akcipher_request *req) 700 { 701 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 702 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 703 struct caam_rsa_key *key = &ctx->key; 704 struct device *jrdev = ctx->dev; 705 struct rsa_edesc *edesc; 706 int ret; 707 708 if (unlikely(!key->n || !key->e)) 709 return -EINVAL; 710 711 if (req->dst_len < key->n_sz) { 712 req->dst_len = key->n_sz; 713 dev_err(jrdev, "Output buffer length less than parameter n\n"); 714 return -EOVERFLOW; 715 } 716 717 /* Allocate extended descriptor */ 718 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); 719 if (IS_ERR(edesc)) 720 return PTR_ERR(edesc); 721 722 /* Set RSA Encrypt Protocol Data Block */ 723 ret = set_rsa_pub_pdb(req, edesc); 724 if (ret) 725 goto init_fail; 726 727 /* Initialize Job Descriptor */ 728 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); 729 730 return akcipher_enqueue_req(jrdev, rsa_pub_done, req); 731 732 init_fail: 733 rsa_io_unmap(jrdev, edesc, req); 734 kfree(edesc); 735 return ret; 736 } 737 738 static int caam_rsa_dec_priv_f1(struct akcipher_request *req) 739 { 740 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 741 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 742 struct device *jrdev = ctx->dev; 743 struct rsa_edesc *edesc; 744 int ret; 745 746 /* Allocate extended descriptor */ 747 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); 748 if (IS_ERR(edesc)) 749 return PTR_ERR(edesc); 750 751 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ 752 ret = set_rsa_priv_f1_pdb(req, edesc); 753 if (ret) 754 goto init_fail; 755 756 /* Initialize Job Descriptor */ 757 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); 758 759 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 760 761 init_fail: 762 rsa_io_unmap(jrdev, edesc, req); 763 kfree(edesc); 764 return ret; 765 } 766 767 static int caam_rsa_dec_priv_f2(struct akcipher_request *req) 768 { 769 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 770 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 771 struct device *jrdev = ctx->dev; 772 struct rsa_edesc *edesc; 773 int ret; 774 775 /* Allocate extended descriptor */ 776 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); 777 if (IS_ERR(edesc)) 778 return PTR_ERR(edesc); 779 780 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ 781 ret = set_rsa_priv_f2_pdb(req, edesc); 782 if (ret) 783 goto init_fail; 784 785 /* Initialize Job Descriptor */ 786 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); 787 788 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 789 790 init_fail: 791 rsa_io_unmap(jrdev, edesc, req); 792 kfree(edesc); 793 return ret; 794 } 795 796 static int caam_rsa_dec_priv_f3(struct akcipher_request *req) 797 { 798 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 799 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 800 struct device *jrdev = ctx->dev; 801 struct rsa_edesc *edesc; 802 int ret; 803 804 /* Allocate extended descriptor */ 805 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); 806 if (IS_ERR(edesc)) 807 return PTR_ERR(edesc); 808 809 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ 810 ret = set_rsa_priv_f3_pdb(req, edesc); 811 if (ret) 812 goto init_fail; 813 814 /* Initialize Job Descriptor */ 815 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); 816 817 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 818 819 init_fail: 820 rsa_io_unmap(jrdev, edesc, req); 821 kfree(edesc); 822 return ret; 823 } 824 825 static int caam_rsa_dec(struct akcipher_request *req) 826 { 827 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 828 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 829 struct caam_rsa_key *key = &ctx->key; 830 int ret; 831 832 if (unlikely(!key->n || !key->d)) 833 return -EINVAL; 834 835 if (req->dst_len < key->n_sz) { 836 req->dst_len = key->n_sz; 837 dev_err(ctx->dev, "Output buffer length less than parameter n\n"); 838 return -EOVERFLOW; 839 } 840 841 if (key->priv_form == FORM3) 842 ret = caam_rsa_dec_priv_f3(req); 843 else if (key->priv_form == FORM2) 844 ret = caam_rsa_dec_priv_f2(req); 845 else 846 ret = caam_rsa_dec_priv_f1(req); 847 848 return ret; 849 } 850 851 static void caam_rsa_free_key(struct caam_rsa_key *key) 852 { 853 kzfree(key->d); 854 kzfree(key->p); 855 kzfree(key->q); 856 kzfree(key->dp); 857 kzfree(key->dq); 858 kzfree(key->qinv); 859 kzfree(key->tmp1); 860 kzfree(key->tmp2); 861 kfree(key->e); 862 kfree(key->n); 863 memset(key, 0, sizeof(*key)); 864 } 865 866 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) 867 { 868 while (!**ptr && *nbytes) { 869 (*ptr)++; 870 (*nbytes)--; 871 } 872 } 873 874 /** 875 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. 876 * dP, dQ and qInv could decode to less than corresponding p, q length, as the 877 * BER-encoding requires that the minimum number of bytes be used to encode the 878 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate 879 * length. 880 * 881 * @ptr : pointer to {dP, dQ, qInv} CRT member 882 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member 883 * @dstlen: length in bytes of corresponding p or q prime factor 884 */ 885 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) 886 { 887 u8 *dst; 888 889 caam_rsa_drop_leading_zeros(&ptr, &nbytes); 890 if (!nbytes) 891 return NULL; 892 893 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); 894 if (!dst) 895 return NULL; 896 897 memcpy(dst + (dstlen - nbytes), ptr, nbytes); 898 899 return dst; 900 } 901 902 /** 903 * caam_read_raw_data - Read a raw byte stream as a positive integer. 904 * The function skips buffer's leading zeros, copies the remained data 905 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns 906 * the address of the new buffer. 907 * 908 * @buf : The data to read 909 * @nbytes: The amount of data to read 910 */ 911 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) 912 { 913 914 caam_rsa_drop_leading_zeros(&buf, nbytes); 915 if (!*nbytes) 916 return NULL; 917 918 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL); 919 } 920 921 static int caam_rsa_check_key_length(unsigned int len) 922 { 923 if (len > 4096) 924 return -EINVAL; 925 return 0; 926 } 927 928 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, 929 unsigned int keylen) 930 { 931 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 932 struct rsa_key raw_key = {NULL}; 933 struct caam_rsa_key *rsa_key = &ctx->key; 934 int ret; 935 936 /* Free the old RSA key if any */ 937 caam_rsa_free_key(rsa_key); 938 939 ret = rsa_parse_pub_key(&raw_key, key, keylen); 940 if (ret) 941 return ret; 942 943 /* Copy key in DMA zone */ 944 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 945 if (!rsa_key->e) 946 goto err; 947 948 /* 949 * Skip leading zeros and copy the positive integer to a buffer 950 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 951 * expects a positive integer for the RSA modulus and uses its length as 952 * decryption output length. 953 */ 954 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 955 if (!rsa_key->n) 956 goto err; 957 958 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 959 caam_rsa_free_key(rsa_key); 960 return -EINVAL; 961 } 962 963 rsa_key->e_sz = raw_key.e_sz; 964 rsa_key->n_sz = raw_key.n_sz; 965 966 return 0; 967 err: 968 caam_rsa_free_key(rsa_key); 969 return -ENOMEM; 970 } 971 972 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, 973 struct rsa_key *raw_key) 974 { 975 struct caam_rsa_key *rsa_key = &ctx->key; 976 size_t p_sz = raw_key->p_sz; 977 size_t q_sz = raw_key->q_sz; 978 979 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); 980 if (!rsa_key->p) 981 return; 982 rsa_key->p_sz = p_sz; 983 984 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); 985 if (!rsa_key->q) 986 goto free_p; 987 rsa_key->q_sz = q_sz; 988 989 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); 990 if (!rsa_key->tmp1) 991 goto free_q; 992 993 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); 994 if (!rsa_key->tmp2) 995 goto free_tmp1; 996 997 rsa_key->priv_form = FORM2; 998 999 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); 1000 if (!rsa_key->dp) 1001 goto free_tmp2; 1002 1003 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); 1004 if (!rsa_key->dq) 1005 goto free_dp; 1006 1007 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, 1008 q_sz); 1009 if (!rsa_key->qinv) 1010 goto free_dq; 1011 1012 rsa_key->priv_form = FORM3; 1013 1014 return; 1015 1016 free_dq: 1017 kzfree(rsa_key->dq); 1018 free_dp: 1019 kzfree(rsa_key->dp); 1020 free_tmp2: 1021 kzfree(rsa_key->tmp2); 1022 free_tmp1: 1023 kzfree(rsa_key->tmp1); 1024 free_q: 1025 kzfree(rsa_key->q); 1026 free_p: 1027 kzfree(rsa_key->p); 1028 } 1029 1030 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, 1031 unsigned int keylen) 1032 { 1033 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1034 struct rsa_key raw_key = {NULL}; 1035 struct caam_rsa_key *rsa_key = &ctx->key; 1036 int ret; 1037 1038 /* Free the old RSA key if any */ 1039 caam_rsa_free_key(rsa_key); 1040 1041 ret = rsa_parse_priv_key(&raw_key, key, keylen); 1042 if (ret) 1043 return ret; 1044 1045 /* Copy key in DMA zone */ 1046 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL); 1047 if (!rsa_key->d) 1048 goto err; 1049 1050 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 1051 if (!rsa_key->e) 1052 goto err; 1053 1054 /* 1055 * Skip leading zeros and copy the positive integer to a buffer 1056 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 1057 * expects a positive integer for the RSA modulus and uses its length as 1058 * decryption output length. 1059 */ 1060 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 1061 if (!rsa_key->n) 1062 goto err; 1063 1064 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 1065 caam_rsa_free_key(rsa_key); 1066 return -EINVAL; 1067 } 1068 1069 rsa_key->d_sz = raw_key.d_sz; 1070 rsa_key->e_sz = raw_key.e_sz; 1071 rsa_key->n_sz = raw_key.n_sz; 1072 1073 caam_rsa_set_priv_key_form(ctx, &raw_key); 1074 1075 return 0; 1076 1077 err: 1078 caam_rsa_free_key(rsa_key); 1079 return -ENOMEM; 1080 } 1081 1082 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) 1083 { 1084 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1085 1086 return ctx->key.n_sz; 1087 } 1088 1089 /* Per session pkc's driver context creation function */ 1090 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) 1091 { 1092 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1093 1094 ctx->dev = caam_jr_alloc(); 1095 1096 if (IS_ERR(ctx->dev)) { 1097 pr_err("Job Ring Device allocation for transform failed\n"); 1098 return PTR_ERR(ctx->dev); 1099 } 1100 1101 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, 1102 CAAM_RSA_MAX_INPUT_SIZE - 1, 1103 DMA_TO_DEVICE); 1104 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { 1105 dev_err(ctx->dev, "unable to map padding\n"); 1106 caam_jr_free(ctx->dev); 1107 return -ENOMEM; 1108 } 1109 1110 ctx->enginectx.op.do_one_request = akcipher_do_one_req; 1111 1112 return 0; 1113 } 1114 1115 /* Per session pkc's driver context cleanup function */ 1116 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) 1117 { 1118 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1119 struct caam_rsa_key *key = &ctx->key; 1120 1121 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1122 1, DMA_TO_DEVICE); 1123 caam_rsa_free_key(key); 1124 caam_jr_free(ctx->dev); 1125 } 1126 1127 static struct caam_akcipher_alg caam_rsa = { 1128 .akcipher = { 1129 .encrypt = caam_rsa_enc, 1130 .decrypt = caam_rsa_dec, 1131 .set_pub_key = caam_rsa_set_pub_key, 1132 .set_priv_key = caam_rsa_set_priv_key, 1133 .max_size = caam_rsa_max_size, 1134 .init = caam_rsa_init_tfm, 1135 .exit = caam_rsa_exit_tfm, 1136 .reqsize = sizeof(struct caam_rsa_req_ctx), 1137 .base = { 1138 .cra_name = "rsa", 1139 .cra_driver_name = "rsa-caam", 1140 .cra_priority = 3000, 1141 .cra_module = THIS_MODULE, 1142 .cra_ctxsize = sizeof(struct caam_rsa_ctx), 1143 }, 1144 } 1145 }; 1146 1147 /* Public Key Cryptography module initialization handler */ 1148 int caam_pkc_init(struct device *ctrldev) 1149 { 1150 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1151 u32 pk_inst; 1152 int err; 1153 init_done = false; 1154 1155 /* Determine public key hardware accelerator presence. */ 1156 if (priv->era < 10) 1157 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & 1158 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; 1159 else 1160 pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK; 1161 1162 /* Do not register algorithms if PKHA is not present. */ 1163 if (!pk_inst) 1164 return 0; 1165 1166 /* allocate zero buffer, used for padding input */ 1167 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA | 1168 GFP_KERNEL); 1169 if (!zero_buffer) 1170 return -ENOMEM; 1171 1172 err = crypto_register_akcipher(&caam_rsa.akcipher); 1173 1174 if (err) { 1175 kfree(zero_buffer); 1176 dev_warn(ctrldev, "%s alg registration failed\n", 1177 caam_rsa.akcipher.base.cra_driver_name); 1178 } else { 1179 init_done = true; 1180 caam_rsa.registered = true; 1181 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); 1182 } 1183 1184 return err; 1185 } 1186 1187 void caam_pkc_exit(void) 1188 { 1189 if (!init_done) 1190 return; 1191 1192 if (caam_rsa.registered) 1193 crypto_unregister_akcipher(&caam_rsa.akcipher); 1194 1195 kfree(zero_buffer); 1196 } 1197