1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * caam - Freescale FSL CAAM support for Public Key Cryptography 4 * 5 * Copyright 2016 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019 NXP 7 * 8 * There is no Shared Descriptor for PKC so that the Job Descriptor must carry 9 * all the desired key parameters, input and output pointers. 10 */ 11 #include "compat.h" 12 #include "regs.h" 13 #include "intern.h" 14 #include "jr.h" 15 #include "error.h" 16 #include "desc_constr.h" 17 #include "sg_sw_sec4.h" 18 #include "caampkc.h" 19 20 #define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB) 21 #define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \ 22 SIZEOF_RSA_PRIV_F1_PDB) 23 #define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \ 24 SIZEOF_RSA_PRIV_F2_PDB) 25 #define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \ 26 SIZEOF_RSA_PRIV_F3_PDB) 27 #define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */ 28 29 /* buffer filled with zeros, used for padding */ 30 static u8 *zero_buffer; 31 32 /* 33 * variable used to avoid double free of resources in case 34 * algorithm registration was unsuccessful 35 */ 36 static bool init_done; 37 38 struct caam_akcipher_alg { 39 struct akcipher_alg akcipher; 40 bool registered; 41 }; 42 43 static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, 44 struct akcipher_request *req) 45 { 46 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 47 48 dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); 49 dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE); 50 51 if (edesc->sec4_sg_bytes) 52 dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, 53 DMA_TO_DEVICE); 54 } 55 56 static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, 57 struct akcipher_request *req) 58 { 59 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 60 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 61 struct caam_rsa_key *key = &ctx->key; 62 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 63 64 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 65 dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); 66 } 67 68 static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, 69 struct akcipher_request *req) 70 { 71 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 72 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 73 struct caam_rsa_key *key = &ctx->key; 74 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 75 76 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 77 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 78 } 79 80 static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, 81 struct akcipher_request *req) 82 { 83 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 84 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 85 struct caam_rsa_key *key = &ctx->key; 86 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 87 size_t p_sz = key->p_sz; 88 size_t q_sz = key->q_sz; 89 90 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 91 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 92 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 93 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 94 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 95 } 96 97 static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, 98 struct akcipher_request *req) 99 { 100 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 101 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 102 struct caam_rsa_key *key = &ctx->key; 103 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 104 size_t p_sz = key->p_sz; 105 size_t q_sz = key->q_sz; 106 107 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 108 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 109 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 110 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 111 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 112 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 113 dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); 114 } 115 116 /* RSA Job Completion handler */ 117 static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) 118 { 119 struct akcipher_request *req = context; 120 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 121 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 122 struct rsa_edesc *edesc; 123 int ecode = 0; 124 bool has_bklog; 125 126 if (err) 127 ecode = caam_jr_strstatus(dev, err); 128 129 edesc = req_ctx->edesc; 130 has_bklog = edesc->bklog; 131 132 rsa_pub_unmap(dev, edesc, req); 133 rsa_io_unmap(dev, edesc, req); 134 kfree(edesc); 135 136 /* 137 * If no backlog flag, the completion of the request is done 138 * by CAAM, not crypto engine. 139 */ 140 if (!has_bklog) 141 akcipher_request_complete(req, ecode); 142 else 143 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 144 } 145 146 static void rsa_priv_f_done(struct device *dev, u32 *desc, u32 err, 147 void *context) 148 { 149 struct akcipher_request *req = context; 150 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 151 struct caam_drv_private_jr *jrp = dev_get_drvdata(dev); 152 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 153 struct caam_rsa_key *key = &ctx->key; 154 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 155 struct rsa_edesc *edesc; 156 int ecode = 0; 157 bool has_bklog; 158 159 if (err) 160 ecode = caam_jr_strstatus(dev, err); 161 162 edesc = req_ctx->edesc; 163 has_bklog = edesc->bklog; 164 165 switch (key->priv_form) { 166 case FORM1: 167 rsa_priv_f1_unmap(dev, edesc, req); 168 break; 169 case FORM2: 170 rsa_priv_f2_unmap(dev, edesc, req); 171 break; 172 case FORM3: 173 rsa_priv_f3_unmap(dev, edesc, req); 174 } 175 176 rsa_io_unmap(dev, edesc, req); 177 kfree(edesc); 178 179 /* 180 * If no backlog flag, the completion of the request is done 181 * by CAAM, not crypto engine. 182 */ 183 if (!has_bklog) 184 akcipher_request_complete(req, ecode); 185 else 186 crypto_finalize_akcipher_request(jrp->engine, req, ecode); 187 } 188 189 /** 190 * Count leading zeros, need it to strip, from a given scatterlist 191 * 192 * @sgl : scatterlist to count zeros from 193 * @nbytes: number of zeros, in bytes, to strip 194 * @flags : operation flags 195 */ 196 static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, 197 unsigned int nbytes, 198 unsigned int flags) 199 { 200 struct sg_mapping_iter miter; 201 int lzeros, ents; 202 unsigned int len; 203 unsigned int tbytes = nbytes; 204 const u8 *buff; 205 206 ents = sg_nents_for_len(sgl, nbytes); 207 if (ents < 0) 208 return ents; 209 210 sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); 211 212 lzeros = 0; 213 len = 0; 214 while (nbytes > 0) { 215 /* do not strip more than given bytes */ 216 while (len && !*buff && lzeros < nbytes) { 217 lzeros++; 218 len--; 219 buff++; 220 } 221 222 if (len && *buff) 223 break; 224 225 sg_miter_next(&miter); 226 buff = miter.addr; 227 len = miter.length; 228 229 nbytes -= lzeros; 230 lzeros = 0; 231 } 232 233 miter.consumed = lzeros; 234 sg_miter_stop(&miter); 235 nbytes -= lzeros; 236 237 return tbytes - nbytes; 238 } 239 240 static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, 241 size_t desclen) 242 { 243 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 244 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 245 struct device *dev = ctx->dev; 246 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 247 struct caam_rsa_key *key = &ctx->key; 248 struct rsa_edesc *edesc; 249 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 250 GFP_KERNEL : GFP_ATOMIC; 251 int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; 252 int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; 253 int src_nents, dst_nents; 254 int mapped_src_nents, mapped_dst_nents; 255 unsigned int diff_size = 0; 256 int lzeros; 257 258 if (req->src_len > key->n_sz) { 259 /* 260 * strip leading zeros and 261 * return the number of zeros to skip 262 */ 263 lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len - 264 key->n_sz, sg_flags); 265 if (lzeros < 0) 266 return ERR_PTR(lzeros); 267 268 req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src, 269 lzeros); 270 req_ctx->fixup_src_len = req->src_len - lzeros; 271 } else { 272 /* 273 * input src is less then n key modulus, 274 * so there will be zero padding 275 */ 276 diff_size = key->n_sz - req->src_len; 277 req_ctx->fixup_src = req->src; 278 req_ctx->fixup_src_len = req->src_len; 279 } 280 281 src_nents = sg_nents_for_len(req_ctx->fixup_src, 282 req_ctx->fixup_src_len); 283 dst_nents = sg_nents_for_len(req->dst, req->dst_len); 284 285 mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents, 286 DMA_TO_DEVICE); 287 if (unlikely(!mapped_src_nents)) { 288 dev_err(dev, "unable to map source\n"); 289 return ERR_PTR(-ENOMEM); 290 } 291 mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents, 292 DMA_FROM_DEVICE); 293 if (unlikely(!mapped_dst_nents)) { 294 dev_err(dev, "unable to map destination\n"); 295 goto src_fail; 296 } 297 298 if (!diff_size && mapped_src_nents == 1) 299 sec4_sg_len = 0; /* no need for an input hw s/g table */ 300 else 301 sec4_sg_len = mapped_src_nents + !!diff_size; 302 sec4_sg_index = sec4_sg_len; 303 304 if (mapped_dst_nents > 1) 305 sec4_sg_len += pad_sg_nents(mapped_dst_nents); 306 else 307 sec4_sg_len = pad_sg_nents(sec4_sg_len); 308 309 sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); 310 311 /* allocate space for base edesc, hw desc commands and link tables */ 312 edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, 313 GFP_DMA | flags); 314 if (!edesc) 315 goto dst_fail; 316 317 edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; 318 if (diff_size) 319 dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size, 320 0); 321 322 if (sec4_sg_index) 323 sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len, 324 edesc->sec4_sg + !!diff_size, 0); 325 326 if (mapped_dst_nents > 1) 327 sg_to_sec4_sg_last(req->dst, req->dst_len, 328 edesc->sec4_sg + sec4_sg_index, 0); 329 330 /* Save nents for later use in Job Descriptor */ 331 edesc->src_nents = src_nents; 332 edesc->dst_nents = dst_nents; 333 334 req_ctx->edesc = edesc; 335 336 if (!sec4_sg_bytes) 337 return edesc; 338 339 edesc->mapped_src_nents = mapped_src_nents; 340 edesc->mapped_dst_nents = mapped_dst_nents; 341 342 edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, 343 sec4_sg_bytes, DMA_TO_DEVICE); 344 if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { 345 dev_err(dev, "unable to map S/G table\n"); 346 goto sec4_sg_fail; 347 } 348 349 edesc->sec4_sg_bytes = sec4_sg_bytes; 350 351 print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ", 352 DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg, 353 edesc->sec4_sg_bytes, 1); 354 355 return edesc; 356 357 sec4_sg_fail: 358 kfree(edesc); 359 dst_fail: 360 dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); 361 src_fail: 362 dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE); 363 return ERR_PTR(-ENOMEM); 364 } 365 366 static int akcipher_do_one_req(struct crypto_engine *engine, void *areq) 367 { 368 struct akcipher_request *req = container_of(areq, 369 struct akcipher_request, 370 base); 371 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 372 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 373 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 374 struct device *jrdev = ctx->dev; 375 u32 *desc = req_ctx->edesc->hw_desc; 376 int ret; 377 378 req_ctx->edesc->bklog = true; 379 380 ret = caam_jr_enqueue(jrdev, desc, req_ctx->akcipher_op_done, req); 381 382 if (ret != -EINPROGRESS) { 383 rsa_pub_unmap(jrdev, req_ctx->edesc, req); 384 rsa_io_unmap(jrdev, req_ctx->edesc, req); 385 kfree(req_ctx->edesc); 386 } else { 387 ret = 0; 388 } 389 390 return ret; 391 } 392 393 static int set_rsa_pub_pdb(struct akcipher_request *req, 394 struct rsa_edesc *edesc) 395 { 396 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 397 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 398 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 399 struct caam_rsa_key *key = &ctx->key; 400 struct device *dev = ctx->dev; 401 struct rsa_pub_pdb *pdb = &edesc->pdb.pub; 402 int sec4_sg_index = 0; 403 404 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 405 if (dma_mapping_error(dev, pdb->n_dma)) { 406 dev_err(dev, "Unable to map RSA modulus memory\n"); 407 return -ENOMEM; 408 } 409 410 pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); 411 if (dma_mapping_error(dev, pdb->e_dma)) { 412 dev_err(dev, "Unable to map RSA public exponent memory\n"); 413 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 414 return -ENOMEM; 415 } 416 417 if (edesc->mapped_src_nents > 1) { 418 pdb->sgf |= RSA_PDB_SGF_F; 419 pdb->f_dma = edesc->sec4_sg_dma; 420 sec4_sg_index += edesc->mapped_src_nents; 421 } else { 422 pdb->f_dma = sg_dma_address(req_ctx->fixup_src); 423 } 424 425 if (edesc->mapped_dst_nents > 1) { 426 pdb->sgf |= RSA_PDB_SGF_G; 427 pdb->g_dma = edesc->sec4_sg_dma + 428 sec4_sg_index * sizeof(struct sec4_sg_entry); 429 } else { 430 pdb->g_dma = sg_dma_address(req->dst); 431 } 432 433 pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; 434 pdb->f_len = req_ctx->fixup_src_len; 435 436 return 0; 437 } 438 439 static int set_rsa_priv_f1_pdb(struct akcipher_request *req, 440 struct rsa_edesc *edesc) 441 { 442 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 443 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 444 struct caam_rsa_key *key = &ctx->key; 445 struct device *dev = ctx->dev; 446 struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; 447 int sec4_sg_index = 0; 448 449 pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); 450 if (dma_mapping_error(dev, pdb->n_dma)) { 451 dev_err(dev, "Unable to map modulus memory\n"); 452 return -ENOMEM; 453 } 454 455 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 456 if (dma_mapping_error(dev, pdb->d_dma)) { 457 dev_err(dev, "Unable to map RSA private exponent memory\n"); 458 dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); 459 return -ENOMEM; 460 } 461 462 if (edesc->mapped_src_nents > 1) { 463 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 464 pdb->g_dma = edesc->sec4_sg_dma; 465 sec4_sg_index += edesc->mapped_src_nents; 466 467 } else { 468 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 469 470 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 471 } 472 473 if (edesc->mapped_dst_nents > 1) { 474 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 475 pdb->f_dma = edesc->sec4_sg_dma + 476 sec4_sg_index * sizeof(struct sec4_sg_entry); 477 } else { 478 pdb->f_dma = sg_dma_address(req->dst); 479 } 480 481 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 482 483 return 0; 484 } 485 486 static int set_rsa_priv_f2_pdb(struct akcipher_request *req, 487 struct rsa_edesc *edesc) 488 { 489 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 490 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 491 struct caam_rsa_key *key = &ctx->key; 492 struct device *dev = ctx->dev; 493 struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; 494 int sec4_sg_index = 0; 495 size_t p_sz = key->p_sz; 496 size_t q_sz = key->q_sz; 497 498 pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); 499 if (dma_mapping_error(dev, pdb->d_dma)) { 500 dev_err(dev, "Unable to map RSA private exponent memory\n"); 501 return -ENOMEM; 502 } 503 504 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 505 if (dma_mapping_error(dev, pdb->p_dma)) { 506 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 507 goto unmap_d; 508 } 509 510 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 511 if (dma_mapping_error(dev, pdb->q_dma)) { 512 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 513 goto unmap_p; 514 } 515 516 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 517 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 518 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 519 goto unmap_q; 520 } 521 522 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 523 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 524 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 525 goto unmap_tmp1; 526 } 527 528 if (edesc->mapped_src_nents > 1) { 529 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 530 pdb->g_dma = edesc->sec4_sg_dma; 531 sec4_sg_index += edesc->mapped_src_nents; 532 } else { 533 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 534 535 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 536 } 537 538 if (edesc->mapped_dst_nents > 1) { 539 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 540 pdb->f_dma = edesc->sec4_sg_dma + 541 sec4_sg_index * sizeof(struct sec4_sg_entry); 542 } else { 543 pdb->f_dma = sg_dma_address(req->dst); 544 } 545 546 pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; 547 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 548 549 return 0; 550 551 unmap_tmp1: 552 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 553 unmap_q: 554 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 555 unmap_p: 556 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 557 unmap_d: 558 dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); 559 560 return -ENOMEM; 561 } 562 563 static int set_rsa_priv_f3_pdb(struct akcipher_request *req, 564 struct rsa_edesc *edesc) 565 { 566 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 567 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 568 struct caam_rsa_key *key = &ctx->key; 569 struct device *dev = ctx->dev; 570 struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; 571 int sec4_sg_index = 0; 572 size_t p_sz = key->p_sz; 573 size_t q_sz = key->q_sz; 574 575 pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); 576 if (dma_mapping_error(dev, pdb->p_dma)) { 577 dev_err(dev, "Unable to map RSA prime factor p memory\n"); 578 return -ENOMEM; 579 } 580 581 pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); 582 if (dma_mapping_error(dev, pdb->q_dma)) { 583 dev_err(dev, "Unable to map RSA prime factor q memory\n"); 584 goto unmap_p; 585 } 586 587 pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); 588 if (dma_mapping_error(dev, pdb->dp_dma)) { 589 dev_err(dev, "Unable to map RSA exponent dp memory\n"); 590 goto unmap_q; 591 } 592 593 pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); 594 if (dma_mapping_error(dev, pdb->dq_dma)) { 595 dev_err(dev, "Unable to map RSA exponent dq memory\n"); 596 goto unmap_dp; 597 } 598 599 pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); 600 if (dma_mapping_error(dev, pdb->c_dma)) { 601 dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); 602 goto unmap_dq; 603 } 604 605 pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); 606 if (dma_mapping_error(dev, pdb->tmp1_dma)) { 607 dev_err(dev, "Unable to map RSA tmp1 memory\n"); 608 goto unmap_qinv; 609 } 610 611 pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); 612 if (dma_mapping_error(dev, pdb->tmp2_dma)) { 613 dev_err(dev, "Unable to map RSA tmp2 memory\n"); 614 goto unmap_tmp1; 615 } 616 617 if (edesc->mapped_src_nents > 1) { 618 pdb->sgf |= RSA_PRIV_PDB_SGF_G; 619 pdb->g_dma = edesc->sec4_sg_dma; 620 sec4_sg_index += edesc->mapped_src_nents; 621 } else { 622 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 623 624 pdb->g_dma = sg_dma_address(req_ctx->fixup_src); 625 } 626 627 if (edesc->mapped_dst_nents > 1) { 628 pdb->sgf |= RSA_PRIV_PDB_SGF_F; 629 pdb->f_dma = edesc->sec4_sg_dma + 630 sec4_sg_index * sizeof(struct sec4_sg_entry); 631 } else { 632 pdb->f_dma = sg_dma_address(req->dst); 633 } 634 635 pdb->sgf |= key->n_sz; 636 pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; 637 638 return 0; 639 640 unmap_tmp1: 641 dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); 642 unmap_qinv: 643 dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); 644 unmap_dq: 645 dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); 646 unmap_dp: 647 dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); 648 unmap_q: 649 dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); 650 unmap_p: 651 dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); 652 653 return -ENOMEM; 654 } 655 656 static int akcipher_enqueue_req(struct device *jrdev, 657 void (*cbk)(struct device *jrdev, u32 *desc, 658 u32 err, void *context), 659 struct akcipher_request *req) 660 { 661 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 662 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 663 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 664 struct caam_rsa_key *key = &ctx->key; 665 struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); 666 struct rsa_edesc *edesc = req_ctx->edesc; 667 u32 *desc = edesc->hw_desc; 668 int ret; 669 670 req_ctx->akcipher_op_done = cbk; 671 /* 672 * Only the backlog request are sent to crypto-engine since the others 673 * can be handled by CAAM, if free, especially since JR has up to 1024 674 * entries (more than the 10 entries from crypto-engine). 675 */ 676 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 677 ret = crypto_transfer_akcipher_request_to_engine(jrpriv->engine, 678 req); 679 else 680 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 681 682 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 683 switch (key->priv_form) { 684 case FORM1: 685 rsa_priv_f1_unmap(jrdev, edesc, req); 686 break; 687 case FORM2: 688 rsa_priv_f2_unmap(jrdev, edesc, req); 689 break; 690 case FORM3: 691 rsa_priv_f3_unmap(jrdev, edesc, req); 692 break; 693 default: 694 rsa_pub_unmap(jrdev, edesc, req); 695 } 696 rsa_io_unmap(jrdev, edesc, req); 697 kfree(edesc); 698 } 699 700 return ret; 701 } 702 703 static int caam_rsa_enc(struct akcipher_request *req) 704 { 705 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 706 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 707 struct caam_rsa_key *key = &ctx->key; 708 struct device *jrdev = ctx->dev; 709 struct rsa_edesc *edesc; 710 int ret; 711 712 if (unlikely(!key->n || !key->e)) 713 return -EINVAL; 714 715 if (req->dst_len < key->n_sz) { 716 req->dst_len = key->n_sz; 717 dev_err(jrdev, "Output buffer length less than parameter n\n"); 718 return -EOVERFLOW; 719 } 720 721 /* Allocate extended descriptor */ 722 edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); 723 if (IS_ERR(edesc)) 724 return PTR_ERR(edesc); 725 726 /* Set RSA Encrypt Protocol Data Block */ 727 ret = set_rsa_pub_pdb(req, edesc); 728 if (ret) 729 goto init_fail; 730 731 /* Initialize Job Descriptor */ 732 init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); 733 734 return akcipher_enqueue_req(jrdev, rsa_pub_done, req); 735 736 init_fail: 737 rsa_io_unmap(jrdev, edesc, req); 738 kfree(edesc); 739 return ret; 740 } 741 742 static int caam_rsa_dec_priv_f1(struct akcipher_request *req) 743 { 744 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 745 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 746 struct device *jrdev = ctx->dev; 747 struct rsa_edesc *edesc; 748 int ret; 749 750 /* Allocate extended descriptor */ 751 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); 752 if (IS_ERR(edesc)) 753 return PTR_ERR(edesc); 754 755 /* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ 756 ret = set_rsa_priv_f1_pdb(req, edesc); 757 if (ret) 758 goto init_fail; 759 760 /* Initialize Job Descriptor */ 761 init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); 762 763 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 764 765 init_fail: 766 rsa_io_unmap(jrdev, edesc, req); 767 kfree(edesc); 768 return ret; 769 } 770 771 static int caam_rsa_dec_priv_f2(struct akcipher_request *req) 772 { 773 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 774 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 775 struct device *jrdev = ctx->dev; 776 struct rsa_edesc *edesc; 777 int ret; 778 779 /* Allocate extended descriptor */ 780 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); 781 if (IS_ERR(edesc)) 782 return PTR_ERR(edesc); 783 784 /* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ 785 ret = set_rsa_priv_f2_pdb(req, edesc); 786 if (ret) 787 goto init_fail; 788 789 /* Initialize Job Descriptor */ 790 init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); 791 792 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 793 794 init_fail: 795 rsa_io_unmap(jrdev, edesc, req); 796 kfree(edesc); 797 return ret; 798 } 799 800 static int caam_rsa_dec_priv_f3(struct akcipher_request *req) 801 { 802 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 803 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 804 struct device *jrdev = ctx->dev; 805 struct rsa_edesc *edesc; 806 int ret; 807 808 /* Allocate extended descriptor */ 809 edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); 810 if (IS_ERR(edesc)) 811 return PTR_ERR(edesc); 812 813 /* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ 814 ret = set_rsa_priv_f3_pdb(req, edesc); 815 if (ret) 816 goto init_fail; 817 818 /* Initialize Job Descriptor */ 819 init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); 820 821 return akcipher_enqueue_req(jrdev, rsa_priv_f_done, req); 822 823 init_fail: 824 rsa_io_unmap(jrdev, edesc, req); 825 kfree(edesc); 826 return ret; 827 } 828 829 static int caam_rsa_dec(struct akcipher_request *req) 830 { 831 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); 832 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 833 struct caam_rsa_key *key = &ctx->key; 834 int ret; 835 836 if (unlikely(!key->n || !key->d)) 837 return -EINVAL; 838 839 if (req->dst_len < key->n_sz) { 840 req->dst_len = key->n_sz; 841 dev_err(ctx->dev, "Output buffer length less than parameter n\n"); 842 return -EOVERFLOW; 843 } 844 845 if (key->priv_form == FORM3) 846 ret = caam_rsa_dec_priv_f3(req); 847 else if (key->priv_form == FORM2) 848 ret = caam_rsa_dec_priv_f2(req); 849 else 850 ret = caam_rsa_dec_priv_f1(req); 851 852 return ret; 853 } 854 855 static void caam_rsa_free_key(struct caam_rsa_key *key) 856 { 857 kfree_sensitive(key->d); 858 kfree_sensitive(key->p); 859 kfree_sensitive(key->q); 860 kfree_sensitive(key->dp); 861 kfree_sensitive(key->dq); 862 kfree_sensitive(key->qinv); 863 kfree_sensitive(key->tmp1); 864 kfree_sensitive(key->tmp2); 865 kfree(key->e); 866 kfree(key->n); 867 memset(key, 0, sizeof(*key)); 868 } 869 870 static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) 871 { 872 while (!**ptr && *nbytes) { 873 (*ptr)++; 874 (*nbytes)--; 875 } 876 } 877 878 /** 879 * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. 880 * dP, dQ and qInv could decode to less than corresponding p, q length, as the 881 * BER-encoding requires that the minimum number of bytes be used to encode the 882 * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate 883 * length. 884 * 885 * @ptr : pointer to {dP, dQ, qInv} CRT member 886 * @nbytes: length in bytes of {dP, dQ, qInv} CRT member 887 * @dstlen: length in bytes of corresponding p or q prime factor 888 */ 889 static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) 890 { 891 u8 *dst; 892 893 caam_rsa_drop_leading_zeros(&ptr, &nbytes); 894 if (!nbytes) 895 return NULL; 896 897 dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); 898 if (!dst) 899 return NULL; 900 901 memcpy(dst + (dstlen - nbytes), ptr, nbytes); 902 903 return dst; 904 } 905 906 /** 907 * caam_read_raw_data - Read a raw byte stream as a positive integer. 908 * The function skips buffer's leading zeros, copies the remained data 909 * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns 910 * the address of the new buffer. 911 * 912 * @buf : The data to read 913 * @nbytes: The amount of data to read 914 */ 915 static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) 916 { 917 918 caam_rsa_drop_leading_zeros(&buf, nbytes); 919 if (!*nbytes) 920 return NULL; 921 922 return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL); 923 } 924 925 static int caam_rsa_check_key_length(unsigned int len) 926 { 927 if (len > 4096) 928 return -EINVAL; 929 return 0; 930 } 931 932 static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, 933 unsigned int keylen) 934 { 935 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 936 struct rsa_key raw_key = {NULL}; 937 struct caam_rsa_key *rsa_key = &ctx->key; 938 int ret; 939 940 /* Free the old RSA key if any */ 941 caam_rsa_free_key(rsa_key); 942 943 ret = rsa_parse_pub_key(&raw_key, key, keylen); 944 if (ret) 945 return ret; 946 947 /* Copy key in DMA zone */ 948 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 949 if (!rsa_key->e) 950 goto err; 951 952 /* 953 * Skip leading zeros and copy the positive integer to a buffer 954 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 955 * expects a positive integer for the RSA modulus and uses its length as 956 * decryption output length. 957 */ 958 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 959 if (!rsa_key->n) 960 goto err; 961 962 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 963 caam_rsa_free_key(rsa_key); 964 return -EINVAL; 965 } 966 967 rsa_key->e_sz = raw_key.e_sz; 968 rsa_key->n_sz = raw_key.n_sz; 969 970 return 0; 971 err: 972 caam_rsa_free_key(rsa_key); 973 return -ENOMEM; 974 } 975 976 static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, 977 struct rsa_key *raw_key) 978 { 979 struct caam_rsa_key *rsa_key = &ctx->key; 980 size_t p_sz = raw_key->p_sz; 981 size_t q_sz = raw_key->q_sz; 982 983 rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); 984 if (!rsa_key->p) 985 return; 986 rsa_key->p_sz = p_sz; 987 988 rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); 989 if (!rsa_key->q) 990 goto free_p; 991 rsa_key->q_sz = q_sz; 992 993 rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); 994 if (!rsa_key->tmp1) 995 goto free_q; 996 997 rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); 998 if (!rsa_key->tmp2) 999 goto free_tmp1; 1000 1001 rsa_key->priv_form = FORM2; 1002 1003 rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); 1004 if (!rsa_key->dp) 1005 goto free_tmp2; 1006 1007 rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); 1008 if (!rsa_key->dq) 1009 goto free_dp; 1010 1011 rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, 1012 q_sz); 1013 if (!rsa_key->qinv) 1014 goto free_dq; 1015 1016 rsa_key->priv_form = FORM3; 1017 1018 return; 1019 1020 free_dq: 1021 kfree_sensitive(rsa_key->dq); 1022 free_dp: 1023 kfree_sensitive(rsa_key->dp); 1024 free_tmp2: 1025 kfree_sensitive(rsa_key->tmp2); 1026 free_tmp1: 1027 kfree_sensitive(rsa_key->tmp1); 1028 free_q: 1029 kfree_sensitive(rsa_key->q); 1030 free_p: 1031 kfree_sensitive(rsa_key->p); 1032 } 1033 1034 static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, 1035 unsigned int keylen) 1036 { 1037 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1038 struct rsa_key raw_key = {NULL}; 1039 struct caam_rsa_key *rsa_key = &ctx->key; 1040 int ret; 1041 1042 /* Free the old RSA key if any */ 1043 caam_rsa_free_key(rsa_key); 1044 1045 ret = rsa_parse_priv_key(&raw_key, key, keylen); 1046 if (ret) 1047 return ret; 1048 1049 /* Copy key in DMA zone */ 1050 rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL); 1051 if (!rsa_key->d) 1052 goto err; 1053 1054 rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL); 1055 if (!rsa_key->e) 1056 goto err; 1057 1058 /* 1059 * Skip leading zeros and copy the positive integer to a buffer 1060 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor 1061 * expects a positive integer for the RSA modulus and uses its length as 1062 * decryption output length. 1063 */ 1064 rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); 1065 if (!rsa_key->n) 1066 goto err; 1067 1068 if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { 1069 caam_rsa_free_key(rsa_key); 1070 return -EINVAL; 1071 } 1072 1073 rsa_key->d_sz = raw_key.d_sz; 1074 rsa_key->e_sz = raw_key.e_sz; 1075 rsa_key->n_sz = raw_key.n_sz; 1076 1077 caam_rsa_set_priv_key_form(ctx, &raw_key); 1078 1079 return 0; 1080 1081 err: 1082 caam_rsa_free_key(rsa_key); 1083 return -ENOMEM; 1084 } 1085 1086 static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) 1087 { 1088 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1089 1090 return ctx->key.n_sz; 1091 } 1092 1093 /* Per session pkc's driver context creation function */ 1094 static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) 1095 { 1096 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1097 1098 ctx->dev = caam_jr_alloc(); 1099 1100 if (IS_ERR(ctx->dev)) { 1101 pr_err("Job Ring Device allocation for transform failed\n"); 1102 return PTR_ERR(ctx->dev); 1103 } 1104 1105 ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer, 1106 CAAM_RSA_MAX_INPUT_SIZE - 1, 1107 DMA_TO_DEVICE); 1108 if (dma_mapping_error(ctx->dev, ctx->padding_dma)) { 1109 dev_err(ctx->dev, "unable to map padding\n"); 1110 caam_jr_free(ctx->dev); 1111 return -ENOMEM; 1112 } 1113 1114 ctx->enginectx.op.do_one_request = akcipher_do_one_req; 1115 1116 return 0; 1117 } 1118 1119 /* Per session pkc's driver context cleanup function */ 1120 static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) 1121 { 1122 struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); 1123 struct caam_rsa_key *key = &ctx->key; 1124 1125 dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE - 1126 1, DMA_TO_DEVICE); 1127 caam_rsa_free_key(key); 1128 caam_jr_free(ctx->dev); 1129 } 1130 1131 static struct caam_akcipher_alg caam_rsa = { 1132 .akcipher = { 1133 .encrypt = caam_rsa_enc, 1134 .decrypt = caam_rsa_dec, 1135 .set_pub_key = caam_rsa_set_pub_key, 1136 .set_priv_key = caam_rsa_set_priv_key, 1137 .max_size = caam_rsa_max_size, 1138 .init = caam_rsa_init_tfm, 1139 .exit = caam_rsa_exit_tfm, 1140 .reqsize = sizeof(struct caam_rsa_req_ctx), 1141 .base = { 1142 .cra_name = "rsa", 1143 .cra_driver_name = "rsa-caam", 1144 .cra_priority = 3000, 1145 .cra_module = THIS_MODULE, 1146 .cra_ctxsize = sizeof(struct caam_rsa_ctx), 1147 }, 1148 } 1149 }; 1150 1151 /* Public Key Cryptography module initialization handler */ 1152 int caam_pkc_init(struct device *ctrldev) 1153 { 1154 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1155 u32 pk_inst; 1156 int err; 1157 init_done = false; 1158 1159 /* Determine public key hardware accelerator presence. */ 1160 if (priv->era < 10) 1161 pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & 1162 CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; 1163 else 1164 pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK; 1165 1166 /* Do not register algorithms if PKHA is not present. */ 1167 if (!pk_inst) 1168 return 0; 1169 1170 /* allocate zero buffer, used for padding input */ 1171 zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA | 1172 GFP_KERNEL); 1173 if (!zero_buffer) 1174 return -ENOMEM; 1175 1176 err = crypto_register_akcipher(&caam_rsa.akcipher); 1177 1178 if (err) { 1179 kfree(zero_buffer); 1180 dev_warn(ctrldev, "%s alg registration failed\n", 1181 caam_rsa.akcipher.base.cra_driver_name); 1182 } else { 1183 init_done = true; 1184 caam_rsa.registered = true; 1185 dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); 1186 } 1187 1188 return err; 1189 } 1190 1191 void caam_pkc_exit(void) 1192 { 1193 if (!init_done) 1194 return; 1195 1196 if (caam_rsa.registered) 1197 crypto_unregister_akcipher(&caam_rsa.akcipher); 1198 1199 kfree(zero_buffer); 1200 } 1201