1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * caam - Freescale FSL CAAM support for ahash functions of crypto API 4 * 5 * Copyright 2011 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019, 2023 NXP 7 * 8 * Based on caamalg.c crypto API driver. 9 * 10 * relationship of digest job descriptor or first job descriptor after init to 11 * shared descriptors: 12 * 13 * --------------- --------------- 14 * | JobDesc #1 |-------------------->| ShareDesc | 15 * | *(packet 1) | | (hashKey) | 16 * --------------- | (operation) | 17 * --------------- 18 * 19 * relationship of subsequent job descriptors to shared descriptors: 20 * 21 * --------------- --------------- 22 * | JobDesc #2 |-------------------->| ShareDesc | 23 * | *(packet 2) | |------------->| (hashKey) | 24 * --------------- | |-------->| (operation) | 25 * . | | | (load ctx2) | 26 * . | | --------------- 27 * --------------- | | 28 * | JobDesc #3 |------| | 29 * | *(packet 3) | | 30 * --------------- | 31 * . | 32 * . | 33 * --------------- | 34 * | JobDesc #4 |------------ 35 * | *(packet 4) | 36 * --------------- 37 * 38 * The SharedDesc never changes for a connection unless rekeyed, but 39 * each packet will likely be in a different place. So all we need 40 * to know to process the packet is where the input is, where the 41 * output goes, and what context we want to process with. Context is 42 * in the SharedDesc, packet references in the JobDesc. 43 * 44 * So, a job desc looks like: 45 * 46 * --------------------- 47 * | Header | 48 * | ShareDesc Pointer | 49 * | SEQ_OUT_PTR | 50 * | (output buffer) | 51 * | (output length) | 52 * | SEQ_IN_PTR | 53 * | (input buffer) | 54 * | (input length) | 55 * --------------------- 56 */ 57 58 #include "compat.h" 59 60 #include "regs.h" 61 #include "intern.h" 62 #include "desc_constr.h" 63 #include "jr.h" 64 #include "error.h" 65 #include "sg_sw_sec4.h" 66 #include "key_gen.h" 67 #include "caamhash_desc.h" 68 #include <crypto/engine.h> 69 #include <linux/dma-mapping.h> 70 #include <linux/kernel.h> 71 72 #define CAAM_CRA_PRIORITY 3000 73 74 /* max hash key is max split key size */ 75 #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) 76 77 #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE 78 #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE 79 80 #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \ 81 CAAM_MAX_HASH_KEY_SIZE) 82 #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ) 83 84 /* caam context sizes for hashes: running digest + 8 */ 85 #define HASH_MSG_LEN 8 86 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) 87 88 static struct list_head hash_list; 89 90 /* ahash per-session context */ 91 struct caam_hash_ctx { 92 struct crypto_engine_ctx enginectx; 93 u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 94 u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 95 u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 96 u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 97 u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned; 98 dma_addr_t sh_desc_update_dma ____cacheline_aligned; 99 dma_addr_t sh_desc_update_first_dma; 100 dma_addr_t sh_desc_fin_dma; 101 dma_addr_t sh_desc_digest_dma; 102 enum dma_data_direction dir; 103 enum dma_data_direction key_dir; 104 struct device *jrdev; 105 int ctx_len; 106 struct alginfo adata; 107 }; 108 109 /* ahash state */ 110 struct caam_hash_state { 111 dma_addr_t buf_dma; 112 dma_addr_t ctx_dma; 113 int ctx_dma_len; 114 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; 115 int buflen; 116 int next_buflen; 117 u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; 118 int (*update)(struct ahash_request *req) ____cacheline_aligned; 119 int (*final)(struct ahash_request *req); 120 int (*finup)(struct ahash_request *req); 121 struct ahash_edesc *edesc; 122 void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err, 123 void *context); 124 }; 125 126 struct caam_export_state { 127 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; 128 u8 caam_ctx[MAX_CTX_LEN]; 129 int buflen; 130 int (*update)(struct ahash_request *req); 131 int (*final)(struct ahash_request *req); 132 int (*finup)(struct ahash_request *req); 133 }; 134 135 static inline bool is_cmac_aes(u32 algtype) 136 { 137 return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) == 138 (OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC); 139 } 140 /* Common job descriptor seq in/out ptr routines */ 141 142 /* Map state->caam_ctx, and append seq_out_ptr command that points to it */ 143 static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev, 144 struct caam_hash_state *state, 145 int ctx_len) 146 { 147 state->ctx_dma_len = ctx_len; 148 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, 149 ctx_len, DMA_FROM_DEVICE); 150 if (dma_mapping_error(jrdev, state->ctx_dma)) { 151 dev_err(jrdev, "unable to map ctx\n"); 152 state->ctx_dma = 0; 153 return -ENOMEM; 154 } 155 156 append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0); 157 158 return 0; 159 } 160 161 /* Map current buffer in state (if length > 0) and put it in link table */ 162 static inline int buf_map_to_sec4_sg(struct device *jrdev, 163 struct sec4_sg_entry *sec4_sg, 164 struct caam_hash_state *state) 165 { 166 int buflen = state->buflen; 167 168 if (!buflen) 169 return 0; 170 171 state->buf_dma = dma_map_single(jrdev, state->buf, buflen, 172 DMA_TO_DEVICE); 173 if (dma_mapping_error(jrdev, state->buf_dma)) { 174 dev_err(jrdev, "unable to map buf\n"); 175 state->buf_dma = 0; 176 return -ENOMEM; 177 } 178 179 dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0); 180 181 return 0; 182 } 183 184 /* Map state->caam_ctx, and add it to link table */ 185 static inline int ctx_map_to_sec4_sg(struct device *jrdev, 186 struct caam_hash_state *state, int ctx_len, 187 struct sec4_sg_entry *sec4_sg, u32 flag) 188 { 189 state->ctx_dma_len = ctx_len; 190 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag); 191 if (dma_mapping_error(jrdev, state->ctx_dma)) { 192 dev_err(jrdev, "unable to map ctx\n"); 193 state->ctx_dma = 0; 194 return -ENOMEM; 195 } 196 197 dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0); 198 199 return 0; 200 } 201 202 static int ahash_set_sh_desc(struct crypto_ahash *ahash) 203 { 204 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 205 int digestsize = crypto_ahash_digestsize(ahash); 206 struct device *jrdev = ctx->jrdev; 207 struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); 208 u32 *desc; 209 210 ctx->adata.key_virt = ctx->key; 211 212 /* ahash_update shared descriptor */ 213 desc = ctx->sh_desc_update; 214 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, 215 ctx->ctx_len, true, ctrlpriv->era); 216 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 217 desc_bytes(desc), ctx->dir); 218 219 print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ", 220 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 221 1); 222 223 /* ahash_update_first shared descriptor */ 224 desc = ctx->sh_desc_update_first; 225 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 226 ctx->ctx_len, false, ctrlpriv->era); 227 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 228 desc_bytes(desc), ctx->dir); 229 print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__) 230 ": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 231 desc_bytes(desc), 1); 232 233 /* ahash_final shared descriptor */ 234 desc = ctx->sh_desc_fin; 235 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, 236 ctx->ctx_len, true, ctrlpriv->era); 237 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 238 desc_bytes(desc), ctx->dir); 239 240 print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ", 241 DUMP_PREFIX_ADDRESS, 16, 4, desc, 242 desc_bytes(desc), 1); 243 244 /* ahash_digest shared descriptor */ 245 desc = ctx->sh_desc_digest; 246 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, 247 ctx->ctx_len, false, ctrlpriv->era); 248 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 249 desc_bytes(desc), ctx->dir); 250 251 print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ", 252 DUMP_PREFIX_ADDRESS, 16, 4, desc, 253 desc_bytes(desc), 1); 254 255 return 0; 256 } 257 258 static int axcbc_set_sh_desc(struct crypto_ahash *ahash) 259 { 260 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 261 int digestsize = crypto_ahash_digestsize(ahash); 262 struct device *jrdev = ctx->jrdev; 263 u32 *desc; 264 265 /* shared descriptor for ahash_update */ 266 desc = ctx->sh_desc_update; 267 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 268 ctx->ctx_len, ctx->ctx_len); 269 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 270 desc_bytes(desc), ctx->dir); 271 print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ", 272 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 273 1); 274 275 /* shared descriptor for ahash_{final,finup} */ 276 desc = ctx->sh_desc_fin; 277 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 278 digestsize, ctx->ctx_len); 279 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 280 desc_bytes(desc), ctx->dir); 281 print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ", 282 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 283 1); 284 285 /* key is immediate data for INIT and INITFINAL states */ 286 ctx->adata.key_virt = ctx->key; 287 288 /* shared descriptor for first invocation of ahash_update */ 289 desc = ctx->sh_desc_update_first; 290 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 291 ctx->ctx_len); 292 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 293 desc_bytes(desc), ctx->dir); 294 print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__) 295 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 296 desc_bytes(desc), 1); 297 298 /* shared descriptor for ahash_digest */ 299 desc = ctx->sh_desc_digest; 300 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 301 digestsize, ctx->ctx_len); 302 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 303 desc_bytes(desc), ctx->dir); 304 print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ", 305 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 306 1); 307 return 0; 308 } 309 310 static int acmac_set_sh_desc(struct crypto_ahash *ahash) 311 { 312 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 313 int digestsize = crypto_ahash_digestsize(ahash); 314 struct device *jrdev = ctx->jrdev; 315 u32 *desc; 316 317 /* shared descriptor for ahash_update */ 318 desc = ctx->sh_desc_update; 319 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 320 ctx->ctx_len, ctx->ctx_len); 321 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 322 desc_bytes(desc), ctx->dir); 323 print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ", 324 DUMP_PREFIX_ADDRESS, 16, 4, desc, 325 desc_bytes(desc), 1); 326 327 /* shared descriptor for ahash_{final,finup} */ 328 desc = ctx->sh_desc_fin; 329 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 330 digestsize, ctx->ctx_len); 331 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 332 desc_bytes(desc), ctx->dir); 333 print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ", 334 DUMP_PREFIX_ADDRESS, 16, 4, desc, 335 desc_bytes(desc), 1); 336 337 /* shared descriptor for first invocation of ahash_update */ 338 desc = ctx->sh_desc_update_first; 339 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 340 ctx->ctx_len); 341 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 342 desc_bytes(desc), ctx->dir); 343 print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__) 344 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 345 desc_bytes(desc), 1); 346 347 /* shared descriptor for ahash_digest */ 348 desc = ctx->sh_desc_digest; 349 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 350 digestsize, ctx->ctx_len); 351 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 352 desc_bytes(desc), ctx->dir); 353 print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ", 354 DUMP_PREFIX_ADDRESS, 16, 4, desc, 355 desc_bytes(desc), 1); 356 357 return 0; 358 } 359 360 /* Digest hash size if it is too large */ 361 static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, 362 u32 digestsize) 363 { 364 struct device *jrdev = ctx->jrdev; 365 u32 *desc; 366 struct split_key_result result; 367 dma_addr_t key_dma; 368 int ret; 369 370 desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL); 371 if (!desc) 372 return -ENOMEM; 373 374 init_job_desc(desc, 0); 375 376 key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL); 377 if (dma_mapping_error(jrdev, key_dma)) { 378 dev_err(jrdev, "unable to map key memory\n"); 379 kfree(desc); 380 return -ENOMEM; 381 } 382 383 /* Job descriptor to perform unkeyed hash on key_in */ 384 append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | 385 OP_ALG_AS_INITFINAL); 386 append_seq_in_ptr(desc, key_dma, *keylen, 0); 387 append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | 388 FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); 389 append_seq_out_ptr(desc, key_dma, digestsize, 0); 390 append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | 391 LDST_SRCDST_BYTE_CONTEXT); 392 393 print_hex_dump_debug("key_in@"__stringify(__LINE__)": ", 394 DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); 395 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 396 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 397 1); 398 399 result.err = 0; 400 init_completion(&result.completion); 401 402 ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); 403 if (ret == -EINPROGRESS) { 404 /* in progress */ 405 wait_for_completion(&result.completion); 406 ret = result.err; 407 408 print_hex_dump_debug("digested key@"__stringify(__LINE__)": ", 409 DUMP_PREFIX_ADDRESS, 16, 4, key, 410 digestsize, 1); 411 } 412 dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL); 413 414 *keylen = digestsize; 415 416 kfree(desc); 417 418 return ret; 419 } 420 421 static int ahash_setkey(struct crypto_ahash *ahash, 422 const u8 *key, unsigned int keylen) 423 { 424 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 425 struct device *jrdev = ctx->jrdev; 426 int blocksize = crypto_tfm_alg_blocksize(&ahash->base); 427 int digestsize = crypto_ahash_digestsize(ahash); 428 struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); 429 int ret; 430 u8 *hashed_key = NULL; 431 432 dev_dbg(jrdev, "keylen %d\n", keylen); 433 434 if (keylen > blocksize) { 435 unsigned int aligned_len = 436 ALIGN(keylen, dma_get_cache_alignment()); 437 438 if (aligned_len < keylen) 439 return -EOVERFLOW; 440 441 hashed_key = kmemdup(key, keylen, GFP_KERNEL); 442 if (!hashed_key) 443 return -ENOMEM; 444 ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); 445 if (ret) 446 goto bad_free_key; 447 key = hashed_key; 448 } 449 450 /* 451 * If DKP is supported, use it in the shared descriptor to generate 452 * the split key. 453 */ 454 if (ctrlpriv->era >= 6) { 455 ctx->adata.key_inline = true; 456 ctx->adata.keylen = keylen; 457 ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & 458 OP_ALG_ALGSEL_MASK); 459 460 if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) 461 goto bad_free_key; 462 463 memcpy(ctx->key, key, keylen); 464 465 /* 466 * In case |user key| > |derived key|, using DKP<imm,imm> 467 * would result in invalid opcodes (last bytes of user key) in 468 * the resulting descriptor. Use DKP<ptr,imm> instead => both 469 * virtual and dma key addresses are needed. 470 */ 471 if (keylen > ctx->adata.keylen_pad) 472 dma_sync_single_for_device(ctx->jrdev, 473 ctx->adata.key_dma, 474 ctx->adata.keylen_pad, 475 DMA_TO_DEVICE); 476 } else { 477 ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, 478 keylen, CAAM_MAX_HASH_KEY_SIZE); 479 if (ret) 480 goto bad_free_key; 481 } 482 483 kfree(hashed_key); 484 return ahash_set_sh_desc(ahash); 485 bad_free_key: 486 kfree(hashed_key); 487 return -EINVAL; 488 } 489 490 static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key, 491 unsigned int keylen) 492 { 493 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 494 struct device *jrdev = ctx->jrdev; 495 496 if (keylen != AES_KEYSIZE_128) 497 return -EINVAL; 498 499 memcpy(ctx->key, key, keylen); 500 dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen, 501 DMA_TO_DEVICE); 502 ctx->adata.keylen = keylen; 503 504 print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ", 505 DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1); 506 507 return axcbc_set_sh_desc(ahash); 508 } 509 510 static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key, 511 unsigned int keylen) 512 { 513 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 514 int err; 515 516 err = aes_check_keylen(keylen); 517 if (err) 518 return err; 519 520 /* key is immediate data for all cmac shared descriptors */ 521 ctx->adata.key_virt = key; 522 ctx->adata.keylen = keylen; 523 524 print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ", 525 DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); 526 527 return acmac_set_sh_desc(ahash); 528 } 529 530 /* 531 * ahash_edesc - s/w-extended ahash descriptor 532 * @sec4_sg_dma: physical mapped address of h/w link table 533 * @src_nents: number of segments in input scatterlist 534 * @sec4_sg_bytes: length of dma mapped sec4_sg space 535 * @bklog: stored to determine if the request needs backlog 536 * @hw_desc: the h/w job descriptor followed by any referenced link tables 537 * @sec4_sg: h/w link table 538 */ 539 struct ahash_edesc { 540 dma_addr_t sec4_sg_dma; 541 int src_nents; 542 int sec4_sg_bytes; 543 bool bklog; 544 u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned; 545 struct sec4_sg_entry sec4_sg[]; 546 }; 547 548 static inline void ahash_unmap(struct device *dev, 549 struct ahash_edesc *edesc, 550 struct ahash_request *req, int dst_len) 551 { 552 struct caam_hash_state *state = ahash_request_ctx_dma(req); 553 554 if (edesc->src_nents) 555 dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); 556 557 if (edesc->sec4_sg_bytes) 558 dma_unmap_single(dev, edesc->sec4_sg_dma, 559 edesc->sec4_sg_bytes, DMA_TO_DEVICE); 560 561 if (state->buf_dma) { 562 dma_unmap_single(dev, state->buf_dma, state->buflen, 563 DMA_TO_DEVICE); 564 state->buf_dma = 0; 565 } 566 } 567 568 static inline void ahash_unmap_ctx(struct device *dev, 569 struct ahash_edesc *edesc, 570 struct ahash_request *req, int dst_len, u32 flag) 571 { 572 struct caam_hash_state *state = ahash_request_ctx_dma(req); 573 574 if (state->ctx_dma) { 575 dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); 576 state->ctx_dma = 0; 577 } 578 ahash_unmap(dev, edesc, req, dst_len); 579 } 580 581 static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err, 582 void *context, enum dma_data_direction dir) 583 { 584 struct ahash_request *req = context; 585 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 586 struct ahash_edesc *edesc; 587 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 588 int digestsize = crypto_ahash_digestsize(ahash); 589 struct caam_hash_state *state = ahash_request_ctx_dma(req); 590 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 591 int ecode = 0; 592 bool has_bklog; 593 594 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 595 596 edesc = state->edesc; 597 has_bklog = edesc->bklog; 598 599 if (err) 600 ecode = caam_jr_strstatus(jrdev, err); 601 602 ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir); 603 memcpy(req->result, state->caam_ctx, digestsize); 604 kfree(edesc); 605 606 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 607 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 608 ctx->ctx_len, 1); 609 610 /* 611 * If no backlog flag, the completion of the request is done 612 * by CAAM, not crypto engine. 613 */ 614 if (!has_bklog) 615 ahash_request_complete(req, ecode); 616 else 617 crypto_finalize_hash_request(jrp->engine, req, ecode); 618 } 619 620 static void ahash_done(struct device *jrdev, u32 *desc, u32 err, 621 void *context) 622 { 623 ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE); 624 } 625 626 static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err, 627 void *context) 628 { 629 ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 630 } 631 632 static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err, 633 void *context, enum dma_data_direction dir) 634 { 635 struct ahash_request *req = context; 636 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 637 struct ahash_edesc *edesc; 638 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 639 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 640 struct caam_hash_state *state = ahash_request_ctx_dma(req); 641 int digestsize = crypto_ahash_digestsize(ahash); 642 int ecode = 0; 643 bool has_bklog; 644 645 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 646 647 edesc = state->edesc; 648 has_bklog = edesc->bklog; 649 if (err) 650 ecode = caam_jr_strstatus(jrdev, err); 651 652 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir); 653 kfree(edesc); 654 655 scatterwalk_map_and_copy(state->buf, req->src, 656 req->nbytes - state->next_buflen, 657 state->next_buflen, 0); 658 state->buflen = state->next_buflen; 659 660 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 661 DUMP_PREFIX_ADDRESS, 16, 4, state->buf, 662 state->buflen, 1); 663 664 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 665 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 666 ctx->ctx_len, 1); 667 if (req->result) 668 print_hex_dump_debug("result@"__stringify(__LINE__)": ", 669 DUMP_PREFIX_ADDRESS, 16, 4, req->result, 670 digestsize, 1); 671 672 /* 673 * If no backlog flag, the completion of the request is done 674 * by CAAM, not crypto engine. 675 */ 676 if (!has_bklog) 677 ahash_request_complete(req, ecode); 678 else 679 crypto_finalize_hash_request(jrp->engine, req, ecode); 680 681 } 682 683 static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err, 684 void *context) 685 { 686 ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 687 } 688 689 static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err, 690 void *context) 691 { 692 ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE); 693 } 694 695 /* 696 * Allocate an enhanced descriptor, which contains the hardware descriptor 697 * and space for hardware scatter table containing sg_num entries. 698 */ 699 static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req, 700 int sg_num, u32 *sh_desc, 701 dma_addr_t sh_desc_dma) 702 { 703 struct caam_hash_state *state = ahash_request_ctx_dma(req); 704 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 705 GFP_KERNEL : GFP_ATOMIC; 706 struct ahash_edesc *edesc; 707 708 edesc = kzalloc(struct_size(edesc, sec4_sg, sg_num), flags); 709 if (!edesc) 710 return NULL; 711 712 state->edesc = edesc; 713 714 init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc), 715 HDR_SHARE_DEFER | HDR_REVERSE); 716 717 return edesc; 718 } 719 720 static int ahash_edesc_add_src(struct caam_hash_ctx *ctx, 721 struct ahash_edesc *edesc, 722 struct ahash_request *req, int nents, 723 unsigned int first_sg, 724 unsigned int first_bytes, size_t to_hash) 725 { 726 dma_addr_t src_dma; 727 u32 options; 728 729 if (nents > 1 || first_sg) { 730 struct sec4_sg_entry *sg = edesc->sec4_sg; 731 unsigned int sgsize = sizeof(*sg) * 732 pad_sg_nents(first_sg + nents); 733 734 sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0); 735 736 src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE); 737 if (dma_mapping_error(ctx->jrdev, src_dma)) { 738 dev_err(ctx->jrdev, "unable to map S/G table\n"); 739 return -ENOMEM; 740 } 741 742 edesc->sec4_sg_bytes = sgsize; 743 edesc->sec4_sg_dma = src_dma; 744 options = LDST_SGF; 745 } else { 746 src_dma = sg_dma_address(req->src); 747 options = 0; 748 } 749 750 append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash, 751 options); 752 753 return 0; 754 } 755 756 static int ahash_do_one_req(struct crypto_engine *engine, void *areq) 757 { 758 struct ahash_request *req = ahash_request_cast(areq); 759 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req)); 760 struct caam_hash_state *state = ahash_request_ctx_dma(req); 761 struct device *jrdev = ctx->jrdev; 762 u32 *desc = state->edesc->hw_desc; 763 int ret; 764 765 state->edesc->bklog = true; 766 767 ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req); 768 769 if (ret == -ENOSPC && engine->retry_support) 770 return ret; 771 772 if (ret != -EINPROGRESS) { 773 ahash_unmap(jrdev, state->edesc, req, 0); 774 kfree(state->edesc); 775 } else { 776 ret = 0; 777 } 778 779 return ret; 780 } 781 782 static int ahash_enqueue_req(struct device *jrdev, 783 void (*cbk)(struct device *jrdev, u32 *desc, 784 u32 err, void *context), 785 struct ahash_request *req, 786 int dst_len, enum dma_data_direction dir) 787 { 788 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 789 struct caam_hash_state *state = ahash_request_ctx_dma(req); 790 struct ahash_edesc *edesc = state->edesc; 791 u32 *desc = edesc->hw_desc; 792 int ret; 793 794 state->ahash_op_done = cbk; 795 796 /* 797 * Only the backlog request are sent to crypto-engine since the others 798 * can be handled by CAAM, if free, especially since JR has up to 1024 799 * entries (more than the 10 entries from crypto-engine). 800 */ 801 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 802 ret = crypto_transfer_hash_request_to_engine(jrpriv->engine, 803 req); 804 else 805 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 806 807 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 808 ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir); 809 kfree(edesc); 810 } 811 812 return ret; 813 } 814 815 /* submit update job descriptor */ 816 static int ahash_update_ctx(struct ahash_request *req) 817 { 818 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 819 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 820 struct caam_hash_state *state = ahash_request_ctx_dma(req); 821 struct device *jrdev = ctx->jrdev; 822 u8 *buf = state->buf; 823 int *buflen = &state->buflen; 824 int *next_buflen = &state->next_buflen; 825 int blocksize = crypto_ahash_blocksize(ahash); 826 int in_len = *buflen + req->nbytes, to_hash; 827 u32 *desc; 828 int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index; 829 struct ahash_edesc *edesc; 830 int ret = 0; 831 832 *next_buflen = in_len & (blocksize - 1); 833 to_hash = in_len - *next_buflen; 834 835 /* 836 * For XCBC and CMAC, if to_hash is multiple of block size, 837 * keep last block in internal buffer 838 */ 839 if ((is_xcbc_aes(ctx->adata.algtype) || 840 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 841 (*next_buflen == 0)) { 842 *next_buflen = blocksize; 843 to_hash -= blocksize; 844 } 845 846 if (to_hash) { 847 int pad_nents; 848 int src_len = req->nbytes - *next_buflen; 849 850 src_nents = sg_nents_for_len(req->src, src_len); 851 if (src_nents < 0) { 852 dev_err(jrdev, "Invalid number of src SG.\n"); 853 return src_nents; 854 } 855 856 if (src_nents) { 857 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 858 DMA_TO_DEVICE); 859 if (!mapped_nents) { 860 dev_err(jrdev, "unable to DMA map source\n"); 861 return -ENOMEM; 862 } 863 } else { 864 mapped_nents = 0; 865 } 866 867 sec4_sg_src_index = 1 + (*buflen ? 1 : 0); 868 pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents); 869 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 870 871 /* 872 * allocate space for base edesc and hw desc commands, 873 * link tables 874 */ 875 edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update, 876 ctx->sh_desc_update_dma); 877 if (!edesc) { 878 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 879 return -ENOMEM; 880 } 881 882 edesc->src_nents = src_nents; 883 edesc->sec4_sg_bytes = sec4_sg_bytes; 884 885 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 886 edesc->sec4_sg, DMA_BIDIRECTIONAL); 887 if (ret) 888 goto unmap_ctx; 889 890 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 891 if (ret) 892 goto unmap_ctx; 893 894 if (mapped_nents) 895 sg_to_sec4_sg_last(req->src, src_len, 896 edesc->sec4_sg + sec4_sg_src_index, 897 0); 898 else 899 sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 900 1); 901 902 desc = edesc->hw_desc; 903 904 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 905 sec4_sg_bytes, 906 DMA_TO_DEVICE); 907 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 908 dev_err(jrdev, "unable to map S/G table\n"); 909 ret = -ENOMEM; 910 goto unmap_ctx; 911 } 912 913 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + 914 to_hash, LDST_SGF); 915 916 append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0); 917 918 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 919 DUMP_PREFIX_ADDRESS, 16, 4, desc, 920 desc_bytes(desc), 1); 921 922 ret = ahash_enqueue_req(jrdev, ahash_done_bi, req, 923 ctx->ctx_len, DMA_BIDIRECTIONAL); 924 } else if (*next_buflen) { 925 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 926 req->nbytes, 0); 927 *buflen = *next_buflen; 928 929 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 930 DUMP_PREFIX_ADDRESS, 16, 4, buf, 931 *buflen, 1); 932 } 933 934 return ret; 935 unmap_ctx: 936 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL); 937 kfree(edesc); 938 return ret; 939 } 940 941 static int ahash_final_ctx(struct ahash_request *req) 942 { 943 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 944 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 945 struct caam_hash_state *state = ahash_request_ctx_dma(req); 946 struct device *jrdev = ctx->jrdev; 947 int buflen = state->buflen; 948 u32 *desc; 949 int sec4_sg_bytes; 950 int digestsize = crypto_ahash_digestsize(ahash); 951 struct ahash_edesc *edesc; 952 int ret; 953 954 sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * 955 sizeof(struct sec4_sg_entry); 956 957 /* allocate space for base edesc and hw desc commands, link tables */ 958 edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin, 959 ctx->sh_desc_fin_dma); 960 if (!edesc) 961 return -ENOMEM; 962 963 desc = edesc->hw_desc; 964 965 edesc->sec4_sg_bytes = sec4_sg_bytes; 966 967 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 968 edesc->sec4_sg, DMA_BIDIRECTIONAL); 969 if (ret) 970 goto unmap_ctx; 971 972 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 973 if (ret) 974 goto unmap_ctx; 975 976 sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0)); 977 978 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 979 sec4_sg_bytes, DMA_TO_DEVICE); 980 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 981 dev_err(jrdev, "unable to map S/G table\n"); 982 ret = -ENOMEM; 983 goto unmap_ctx; 984 } 985 986 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen, 987 LDST_SGF); 988 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 989 990 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 991 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 992 1); 993 994 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 995 digestsize, DMA_BIDIRECTIONAL); 996 unmap_ctx: 997 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 998 kfree(edesc); 999 return ret; 1000 } 1001 1002 static int ahash_finup_ctx(struct ahash_request *req) 1003 { 1004 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1005 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1006 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1007 struct device *jrdev = ctx->jrdev; 1008 int buflen = state->buflen; 1009 u32 *desc; 1010 int sec4_sg_src_index; 1011 int src_nents, mapped_nents; 1012 int digestsize = crypto_ahash_digestsize(ahash); 1013 struct ahash_edesc *edesc; 1014 int ret; 1015 1016 src_nents = sg_nents_for_len(req->src, req->nbytes); 1017 if (src_nents < 0) { 1018 dev_err(jrdev, "Invalid number of src SG.\n"); 1019 return src_nents; 1020 } 1021 1022 if (src_nents) { 1023 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1024 DMA_TO_DEVICE); 1025 if (!mapped_nents) { 1026 dev_err(jrdev, "unable to DMA map source\n"); 1027 return -ENOMEM; 1028 } 1029 } else { 1030 mapped_nents = 0; 1031 } 1032 1033 sec4_sg_src_index = 1 + (buflen ? 1 : 0); 1034 1035 /* allocate space for base edesc and hw desc commands, link tables */ 1036 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1037 ctx->sh_desc_fin, ctx->sh_desc_fin_dma); 1038 if (!edesc) { 1039 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1040 return -ENOMEM; 1041 } 1042 1043 desc = edesc->hw_desc; 1044 1045 edesc->src_nents = src_nents; 1046 1047 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 1048 edesc->sec4_sg, DMA_BIDIRECTIONAL); 1049 if (ret) 1050 goto unmap_ctx; 1051 1052 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 1053 if (ret) 1054 goto unmap_ctx; 1055 1056 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1057 sec4_sg_src_index, ctx->ctx_len + buflen, 1058 req->nbytes); 1059 if (ret) 1060 goto unmap_ctx; 1061 1062 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 1063 1064 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1065 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1066 1); 1067 1068 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 1069 digestsize, DMA_BIDIRECTIONAL); 1070 unmap_ctx: 1071 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1072 kfree(edesc); 1073 return ret; 1074 } 1075 1076 static int ahash_digest(struct ahash_request *req) 1077 { 1078 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1079 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1080 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1081 struct device *jrdev = ctx->jrdev; 1082 u32 *desc; 1083 int digestsize = crypto_ahash_digestsize(ahash); 1084 int src_nents, mapped_nents; 1085 struct ahash_edesc *edesc; 1086 int ret; 1087 1088 state->buf_dma = 0; 1089 1090 src_nents = sg_nents_for_len(req->src, req->nbytes); 1091 if (src_nents < 0) { 1092 dev_err(jrdev, "Invalid number of src SG.\n"); 1093 return src_nents; 1094 } 1095 1096 if (src_nents) { 1097 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1098 DMA_TO_DEVICE); 1099 if (!mapped_nents) { 1100 dev_err(jrdev, "unable to map source for DMA\n"); 1101 return -ENOMEM; 1102 } 1103 } else { 1104 mapped_nents = 0; 1105 } 1106 1107 /* allocate space for base edesc and hw desc commands, link tables */ 1108 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, 1109 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1110 if (!edesc) { 1111 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1112 return -ENOMEM; 1113 } 1114 1115 edesc->src_nents = src_nents; 1116 1117 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1118 req->nbytes); 1119 if (ret) { 1120 ahash_unmap(jrdev, edesc, req, digestsize); 1121 kfree(edesc); 1122 return ret; 1123 } 1124 1125 desc = edesc->hw_desc; 1126 1127 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1128 if (ret) { 1129 ahash_unmap(jrdev, edesc, req, digestsize); 1130 kfree(edesc); 1131 return -ENOMEM; 1132 } 1133 1134 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1135 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1136 1); 1137 1138 return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, 1139 DMA_FROM_DEVICE); 1140 } 1141 1142 /* submit ahash final if it the first job descriptor */ 1143 static int ahash_final_no_ctx(struct ahash_request *req) 1144 { 1145 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1146 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1147 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1148 struct device *jrdev = ctx->jrdev; 1149 u8 *buf = state->buf; 1150 int buflen = state->buflen; 1151 u32 *desc; 1152 int digestsize = crypto_ahash_digestsize(ahash); 1153 struct ahash_edesc *edesc; 1154 int ret; 1155 1156 /* allocate space for base edesc and hw desc commands, link tables */ 1157 edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest, 1158 ctx->sh_desc_digest_dma); 1159 if (!edesc) 1160 return -ENOMEM; 1161 1162 desc = edesc->hw_desc; 1163 1164 if (buflen) { 1165 state->buf_dma = dma_map_single(jrdev, buf, buflen, 1166 DMA_TO_DEVICE); 1167 if (dma_mapping_error(jrdev, state->buf_dma)) { 1168 dev_err(jrdev, "unable to map src\n"); 1169 goto unmap; 1170 } 1171 1172 append_seq_in_ptr(desc, state->buf_dma, buflen, 0); 1173 } 1174 1175 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1176 if (ret) 1177 goto unmap; 1178 1179 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1180 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1181 1); 1182 1183 return ahash_enqueue_req(jrdev, ahash_done, req, 1184 digestsize, DMA_FROM_DEVICE); 1185 unmap: 1186 ahash_unmap(jrdev, edesc, req, digestsize); 1187 kfree(edesc); 1188 return -ENOMEM; 1189 } 1190 1191 /* submit ahash update if it the first job descriptor after update */ 1192 static int ahash_update_no_ctx(struct ahash_request *req) 1193 { 1194 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1195 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1196 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1197 struct device *jrdev = ctx->jrdev; 1198 u8 *buf = state->buf; 1199 int *buflen = &state->buflen; 1200 int *next_buflen = &state->next_buflen; 1201 int blocksize = crypto_ahash_blocksize(ahash); 1202 int in_len = *buflen + req->nbytes, to_hash; 1203 int sec4_sg_bytes, src_nents, mapped_nents; 1204 struct ahash_edesc *edesc; 1205 u32 *desc; 1206 int ret = 0; 1207 1208 *next_buflen = in_len & (blocksize - 1); 1209 to_hash = in_len - *next_buflen; 1210 1211 /* 1212 * For XCBC and CMAC, if to_hash is multiple of block size, 1213 * keep last block in internal buffer 1214 */ 1215 if ((is_xcbc_aes(ctx->adata.algtype) || 1216 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1217 (*next_buflen == 0)) { 1218 *next_buflen = blocksize; 1219 to_hash -= blocksize; 1220 } 1221 1222 if (to_hash) { 1223 int pad_nents; 1224 int src_len = req->nbytes - *next_buflen; 1225 1226 src_nents = sg_nents_for_len(req->src, src_len); 1227 if (src_nents < 0) { 1228 dev_err(jrdev, "Invalid number of src SG.\n"); 1229 return src_nents; 1230 } 1231 1232 if (src_nents) { 1233 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1234 DMA_TO_DEVICE); 1235 if (!mapped_nents) { 1236 dev_err(jrdev, "unable to DMA map source\n"); 1237 return -ENOMEM; 1238 } 1239 } else { 1240 mapped_nents = 0; 1241 } 1242 1243 pad_nents = pad_sg_nents(1 + mapped_nents); 1244 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 1245 1246 /* 1247 * allocate space for base edesc and hw desc commands, 1248 * link tables 1249 */ 1250 edesc = ahash_edesc_alloc(req, pad_nents, 1251 ctx->sh_desc_update_first, 1252 ctx->sh_desc_update_first_dma); 1253 if (!edesc) { 1254 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1255 return -ENOMEM; 1256 } 1257 1258 edesc->src_nents = src_nents; 1259 edesc->sec4_sg_bytes = sec4_sg_bytes; 1260 1261 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1262 if (ret) 1263 goto unmap_ctx; 1264 1265 sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0); 1266 1267 desc = edesc->hw_desc; 1268 1269 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 1270 sec4_sg_bytes, 1271 DMA_TO_DEVICE); 1272 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 1273 dev_err(jrdev, "unable to map S/G table\n"); 1274 ret = -ENOMEM; 1275 goto unmap_ctx; 1276 } 1277 1278 append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF); 1279 1280 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1281 if (ret) 1282 goto unmap_ctx; 1283 1284 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1285 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1286 desc_bytes(desc), 1); 1287 1288 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1289 ctx->ctx_len, DMA_TO_DEVICE); 1290 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1291 return ret; 1292 state->update = ahash_update_ctx; 1293 state->finup = ahash_finup_ctx; 1294 state->final = ahash_final_ctx; 1295 } else if (*next_buflen) { 1296 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 1297 req->nbytes, 0); 1298 *buflen = *next_buflen; 1299 1300 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1301 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1302 *buflen, 1); 1303 } 1304 1305 return ret; 1306 unmap_ctx: 1307 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1308 kfree(edesc); 1309 return ret; 1310 } 1311 1312 /* submit ahash finup if it the first job descriptor after update */ 1313 static int ahash_finup_no_ctx(struct ahash_request *req) 1314 { 1315 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1316 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1317 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1318 struct device *jrdev = ctx->jrdev; 1319 int buflen = state->buflen; 1320 u32 *desc; 1321 int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents; 1322 int digestsize = crypto_ahash_digestsize(ahash); 1323 struct ahash_edesc *edesc; 1324 int ret; 1325 1326 src_nents = sg_nents_for_len(req->src, req->nbytes); 1327 if (src_nents < 0) { 1328 dev_err(jrdev, "Invalid number of src SG.\n"); 1329 return src_nents; 1330 } 1331 1332 if (src_nents) { 1333 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1334 DMA_TO_DEVICE); 1335 if (!mapped_nents) { 1336 dev_err(jrdev, "unable to DMA map source\n"); 1337 return -ENOMEM; 1338 } 1339 } else { 1340 mapped_nents = 0; 1341 } 1342 1343 sec4_sg_src_index = 2; 1344 sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) * 1345 sizeof(struct sec4_sg_entry); 1346 1347 /* allocate space for base edesc and hw desc commands, link tables */ 1348 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1349 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1350 if (!edesc) { 1351 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1352 return -ENOMEM; 1353 } 1354 1355 desc = edesc->hw_desc; 1356 1357 edesc->src_nents = src_nents; 1358 edesc->sec4_sg_bytes = sec4_sg_bytes; 1359 1360 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1361 if (ret) 1362 goto unmap; 1363 1364 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen, 1365 req->nbytes); 1366 if (ret) { 1367 dev_err(jrdev, "unable to map S/G table\n"); 1368 goto unmap; 1369 } 1370 1371 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1372 if (ret) 1373 goto unmap; 1374 1375 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1376 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1377 1); 1378 1379 return ahash_enqueue_req(jrdev, ahash_done, req, 1380 digestsize, DMA_FROM_DEVICE); 1381 unmap: 1382 ahash_unmap(jrdev, edesc, req, digestsize); 1383 kfree(edesc); 1384 return -ENOMEM; 1385 1386 } 1387 1388 /* submit first update job descriptor after init */ 1389 static int ahash_update_first(struct ahash_request *req) 1390 { 1391 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1392 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1393 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1394 struct device *jrdev = ctx->jrdev; 1395 u8 *buf = state->buf; 1396 int *buflen = &state->buflen; 1397 int *next_buflen = &state->next_buflen; 1398 int to_hash; 1399 int blocksize = crypto_ahash_blocksize(ahash); 1400 u32 *desc; 1401 int src_nents, mapped_nents; 1402 struct ahash_edesc *edesc; 1403 int ret = 0; 1404 1405 *next_buflen = req->nbytes & (blocksize - 1); 1406 to_hash = req->nbytes - *next_buflen; 1407 1408 /* 1409 * For XCBC and CMAC, if to_hash is multiple of block size, 1410 * keep last block in internal buffer 1411 */ 1412 if ((is_xcbc_aes(ctx->adata.algtype) || 1413 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1414 (*next_buflen == 0)) { 1415 *next_buflen = blocksize; 1416 to_hash -= blocksize; 1417 } 1418 1419 if (to_hash) { 1420 src_nents = sg_nents_for_len(req->src, 1421 req->nbytes - *next_buflen); 1422 if (src_nents < 0) { 1423 dev_err(jrdev, "Invalid number of src SG.\n"); 1424 return src_nents; 1425 } 1426 1427 if (src_nents) { 1428 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1429 DMA_TO_DEVICE); 1430 if (!mapped_nents) { 1431 dev_err(jrdev, "unable to map source for DMA\n"); 1432 return -ENOMEM; 1433 } 1434 } else { 1435 mapped_nents = 0; 1436 } 1437 1438 /* 1439 * allocate space for base edesc and hw desc commands, 1440 * link tables 1441 */ 1442 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? 1443 mapped_nents : 0, 1444 ctx->sh_desc_update_first, 1445 ctx->sh_desc_update_first_dma); 1446 if (!edesc) { 1447 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1448 return -ENOMEM; 1449 } 1450 1451 edesc->src_nents = src_nents; 1452 1453 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1454 to_hash); 1455 if (ret) 1456 goto unmap_ctx; 1457 1458 desc = edesc->hw_desc; 1459 1460 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1461 if (ret) 1462 goto unmap_ctx; 1463 1464 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1465 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1466 desc_bytes(desc), 1); 1467 1468 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1469 ctx->ctx_len, DMA_TO_DEVICE); 1470 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1471 return ret; 1472 state->update = ahash_update_ctx; 1473 state->finup = ahash_finup_ctx; 1474 state->final = ahash_final_ctx; 1475 } else if (*next_buflen) { 1476 state->update = ahash_update_no_ctx; 1477 state->finup = ahash_finup_no_ctx; 1478 state->final = ahash_final_no_ctx; 1479 scatterwalk_map_and_copy(buf, req->src, 0, 1480 req->nbytes, 0); 1481 *buflen = *next_buflen; 1482 1483 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1484 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1485 *buflen, 1); 1486 } 1487 1488 return ret; 1489 unmap_ctx: 1490 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1491 kfree(edesc); 1492 return ret; 1493 } 1494 1495 static int ahash_finup_first(struct ahash_request *req) 1496 { 1497 return ahash_digest(req); 1498 } 1499 1500 static int ahash_init(struct ahash_request *req) 1501 { 1502 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1503 1504 state->update = ahash_update_first; 1505 state->finup = ahash_finup_first; 1506 state->final = ahash_final_no_ctx; 1507 1508 state->ctx_dma = 0; 1509 state->ctx_dma_len = 0; 1510 state->buf_dma = 0; 1511 state->buflen = 0; 1512 state->next_buflen = 0; 1513 1514 return 0; 1515 } 1516 1517 static int ahash_update(struct ahash_request *req) 1518 { 1519 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1520 1521 return state->update(req); 1522 } 1523 1524 static int ahash_finup(struct ahash_request *req) 1525 { 1526 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1527 1528 return state->finup(req); 1529 } 1530 1531 static int ahash_final(struct ahash_request *req) 1532 { 1533 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1534 1535 return state->final(req); 1536 } 1537 1538 static int ahash_export(struct ahash_request *req, void *out) 1539 { 1540 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1541 struct caam_export_state *export = out; 1542 u8 *buf = state->buf; 1543 int len = state->buflen; 1544 1545 memcpy(export->buf, buf, len); 1546 memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); 1547 export->buflen = len; 1548 export->update = state->update; 1549 export->final = state->final; 1550 export->finup = state->finup; 1551 1552 return 0; 1553 } 1554 1555 static int ahash_import(struct ahash_request *req, const void *in) 1556 { 1557 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1558 const struct caam_export_state *export = in; 1559 1560 memset(state, 0, sizeof(*state)); 1561 memcpy(state->buf, export->buf, export->buflen); 1562 memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); 1563 state->buflen = export->buflen; 1564 state->update = export->update; 1565 state->final = export->final; 1566 state->finup = export->finup; 1567 1568 return 0; 1569 } 1570 1571 struct caam_hash_template { 1572 char name[CRYPTO_MAX_ALG_NAME]; 1573 char driver_name[CRYPTO_MAX_ALG_NAME]; 1574 char hmac_name[CRYPTO_MAX_ALG_NAME]; 1575 char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; 1576 unsigned int blocksize; 1577 struct ahash_alg template_ahash; 1578 u32 alg_type; 1579 }; 1580 1581 /* ahash descriptors */ 1582 static struct caam_hash_template driver_hash[] = { 1583 { 1584 .name = "sha1", 1585 .driver_name = "sha1-caam", 1586 .hmac_name = "hmac(sha1)", 1587 .hmac_driver_name = "hmac-sha1-caam", 1588 .blocksize = SHA1_BLOCK_SIZE, 1589 .template_ahash = { 1590 .init = ahash_init, 1591 .update = ahash_update, 1592 .final = ahash_final, 1593 .finup = ahash_finup, 1594 .digest = ahash_digest, 1595 .export = ahash_export, 1596 .import = ahash_import, 1597 .setkey = ahash_setkey, 1598 .halg = { 1599 .digestsize = SHA1_DIGEST_SIZE, 1600 .statesize = sizeof(struct caam_export_state), 1601 }, 1602 }, 1603 .alg_type = OP_ALG_ALGSEL_SHA1, 1604 }, { 1605 .name = "sha224", 1606 .driver_name = "sha224-caam", 1607 .hmac_name = "hmac(sha224)", 1608 .hmac_driver_name = "hmac-sha224-caam", 1609 .blocksize = SHA224_BLOCK_SIZE, 1610 .template_ahash = { 1611 .init = ahash_init, 1612 .update = ahash_update, 1613 .final = ahash_final, 1614 .finup = ahash_finup, 1615 .digest = ahash_digest, 1616 .export = ahash_export, 1617 .import = ahash_import, 1618 .setkey = ahash_setkey, 1619 .halg = { 1620 .digestsize = SHA224_DIGEST_SIZE, 1621 .statesize = sizeof(struct caam_export_state), 1622 }, 1623 }, 1624 .alg_type = OP_ALG_ALGSEL_SHA224, 1625 }, { 1626 .name = "sha256", 1627 .driver_name = "sha256-caam", 1628 .hmac_name = "hmac(sha256)", 1629 .hmac_driver_name = "hmac-sha256-caam", 1630 .blocksize = SHA256_BLOCK_SIZE, 1631 .template_ahash = { 1632 .init = ahash_init, 1633 .update = ahash_update, 1634 .final = ahash_final, 1635 .finup = ahash_finup, 1636 .digest = ahash_digest, 1637 .export = ahash_export, 1638 .import = ahash_import, 1639 .setkey = ahash_setkey, 1640 .halg = { 1641 .digestsize = SHA256_DIGEST_SIZE, 1642 .statesize = sizeof(struct caam_export_state), 1643 }, 1644 }, 1645 .alg_type = OP_ALG_ALGSEL_SHA256, 1646 }, { 1647 .name = "sha384", 1648 .driver_name = "sha384-caam", 1649 .hmac_name = "hmac(sha384)", 1650 .hmac_driver_name = "hmac-sha384-caam", 1651 .blocksize = SHA384_BLOCK_SIZE, 1652 .template_ahash = { 1653 .init = ahash_init, 1654 .update = ahash_update, 1655 .final = ahash_final, 1656 .finup = ahash_finup, 1657 .digest = ahash_digest, 1658 .export = ahash_export, 1659 .import = ahash_import, 1660 .setkey = ahash_setkey, 1661 .halg = { 1662 .digestsize = SHA384_DIGEST_SIZE, 1663 .statesize = sizeof(struct caam_export_state), 1664 }, 1665 }, 1666 .alg_type = OP_ALG_ALGSEL_SHA384, 1667 }, { 1668 .name = "sha512", 1669 .driver_name = "sha512-caam", 1670 .hmac_name = "hmac(sha512)", 1671 .hmac_driver_name = "hmac-sha512-caam", 1672 .blocksize = SHA512_BLOCK_SIZE, 1673 .template_ahash = { 1674 .init = ahash_init, 1675 .update = ahash_update, 1676 .final = ahash_final, 1677 .finup = ahash_finup, 1678 .digest = ahash_digest, 1679 .export = ahash_export, 1680 .import = ahash_import, 1681 .setkey = ahash_setkey, 1682 .halg = { 1683 .digestsize = SHA512_DIGEST_SIZE, 1684 .statesize = sizeof(struct caam_export_state), 1685 }, 1686 }, 1687 .alg_type = OP_ALG_ALGSEL_SHA512, 1688 }, { 1689 .name = "md5", 1690 .driver_name = "md5-caam", 1691 .hmac_name = "hmac(md5)", 1692 .hmac_driver_name = "hmac-md5-caam", 1693 .blocksize = MD5_BLOCK_WORDS * 4, 1694 .template_ahash = { 1695 .init = ahash_init, 1696 .update = ahash_update, 1697 .final = ahash_final, 1698 .finup = ahash_finup, 1699 .digest = ahash_digest, 1700 .export = ahash_export, 1701 .import = ahash_import, 1702 .setkey = ahash_setkey, 1703 .halg = { 1704 .digestsize = MD5_DIGEST_SIZE, 1705 .statesize = sizeof(struct caam_export_state), 1706 }, 1707 }, 1708 .alg_type = OP_ALG_ALGSEL_MD5, 1709 }, { 1710 .hmac_name = "xcbc(aes)", 1711 .hmac_driver_name = "xcbc-aes-caam", 1712 .blocksize = AES_BLOCK_SIZE, 1713 .template_ahash = { 1714 .init = ahash_init, 1715 .update = ahash_update, 1716 .final = ahash_final, 1717 .finup = ahash_finup, 1718 .digest = ahash_digest, 1719 .export = ahash_export, 1720 .import = ahash_import, 1721 .setkey = axcbc_setkey, 1722 .halg = { 1723 .digestsize = AES_BLOCK_SIZE, 1724 .statesize = sizeof(struct caam_export_state), 1725 }, 1726 }, 1727 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC, 1728 }, { 1729 .hmac_name = "cmac(aes)", 1730 .hmac_driver_name = "cmac-aes-caam", 1731 .blocksize = AES_BLOCK_SIZE, 1732 .template_ahash = { 1733 .init = ahash_init, 1734 .update = ahash_update, 1735 .final = ahash_final, 1736 .finup = ahash_finup, 1737 .digest = ahash_digest, 1738 .export = ahash_export, 1739 .import = ahash_import, 1740 .setkey = acmac_setkey, 1741 .halg = { 1742 .digestsize = AES_BLOCK_SIZE, 1743 .statesize = sizeof(struct caam_export_state), 1744 }, 1745 }, 1746 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC, 1747 }, 1748 }; 1749 1750 struct caam_hash_alg { 1751 struct list_head entry; 1752 int alg_type; 1753 struct ahash_alg ahash_alg; 1754 }; 1755 1756 static int caam_hash_cra_init(struct crypto_tfm *tfm) 1757 { 1758 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 1759 struct crypto_alg *base = tfm->__crt_alg; 1760 struct hash_alg_common *halg = 1761 container_of(base, struct hash_alg_common, base); 1762 struct ahash_alg *alg = 1763 container_of(halg, struct ahash_alg, halg); 1764 struct caam_hash_alg *caam_hash = 1765 container_of(alg, struct caam_hash_alg, ahash_alg); 1766 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1767 /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ 1768 static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, 1769 HASH_MSG_LEN + SHA1_DIGEST_SIZE, 1770 HASH_MSG_LEN + 32, 1771 HASH_MSG_LEN + SHA256_DIGEST_SIZE, 1772 HASH_MSG_LEN + 64, 1773 HASH_MSG_LEN + SHA512_DIGEST_SIZE }; 1774 const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx, 1775 sh_desc_update); 1776 dma_addr_t dma_addr; 1777 struct caam_drv_private *priv; 1778 1779 /* 1780 * Get a Job ring from Job Ring driver to ensure in-order 1781 * crypto request processing per tfm 1782 */ 1783 ctx->jrdev = caam_jr_alloc(); 1784 if (IS_ERR(ctx->jrdev)) { 1785 pr_err("Job Ring Device allocation for transform failed\n"); 1786 return PTR_ERR(ctx->jrdev); 1787 } 1788 1789 priv = dev_get_drvdata(ctx->jrdev->parent); 1790 1791 if (is_xcbc_aes(caam_hash->alg_type)) { 1792 ctx->dir = DMA_TO_DEVICE; 1793 ctx->key_dir = DMA_BIDIRECTIONAL; 1794 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1795 ctx->ctx_len = 48; 1796 } else if (is_cmac_aes(caam_hash->alg_type)) { 1797 ctx->dir = DMA_TO_DEVICE; 1798 ctx->key_dir = DMA_NONE; 1799 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1800 ctx->ctx_len = 32; 1801 } else { 1802 if (priv->era >= 6) { 1803 ctx->dir = DMA_BIDIRECTIONAL; 1804 ctx->key_dir = alg->setkey ? DMA_TO_DEVICE : DMA_NONE; 1805 } else { 1806 ctx->dir = DMA_TO_DEVICE; 1807 ctx->key_dir = DMA_NONE; 1808 } 1809 ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; 1810 ctx->ctx_len = runninglen[(ctx->adata.algtype & 1811 OP_ALG_ALGSEL_SUBMASK) >> 1812 OP_ALG_ALGSEL_SHIFT]; 1813 } 1814 1815 if (ctx->key_dir != DMA_NONE) { 1816 ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key, 1817 ARRAY_SIZE(ctx->key), 1818 ctx->key_dir, 1819 DMA_ATTR_SKIP_CPU_SYNC); 1820 if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) { 1821 dev_err(ctx->jrdev, "unable to map key\n"); 1822 caam_jr_free(ctx->jrdev); 1823 return -ENOMEM; 1824 } 1825 } 1826 1827 dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update, 1828 offsetof(struct caam_hash_ctx, key) - 1829 sh_desc_update_offset, 1830 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1831 if (dma_mapping_error(ctx->jrdev, dma_addr)) { 1832 dev_err(ctx->jrdev, "unable to map shared descriptors\n"); 1833 1834 if (ctx->key_dir != DMA_NONE) 1835 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1836 ARRAY_SIZE(ctx->key), 1837 ctx->key_dir, 1838 DMA_ATTR_SKIP_CPU_SYNC); 1839 1840 caam_jr_free(ctx->jrdev); 1841 return -ENOMEM; 1842 } 1843 1844 ctx->sh_desc_update_dma = dma_addr; 1845 ctx->sh_desc_update_first_dma = dma_addr + 1846 offsetof(struct caam_hash_ctx, 1847 sh_desc_update_first) - 1848 sh_desc_update_offset; 1849 ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx, 1850 sh_desc_fin) - 1851 sh_desc_update_offset; 1852 ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx, 1853 sh_desc_digest) - 1854 sh_desc_update_offset; 1855 1856 ctx->enginectx.op.do_one_request = ahash_do_one_req; 1857 1858 crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state)); 1859 1860 /* 1861 * For keyed hash algorithms shared descriptors 1862 * will be created later in setkey() callback 1863 */ 1864 return alg->setkey ? 0 : ahash_set_sh_desc(ahash); 1865 } 1866 1867 static void caam_hash_cra_exit(struct crypto_tfm *tfm) 1868 { 1869 struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm); 1870 1871 dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma, 1872 offsetof(struct caam_hash_ctx, key) - 1873 offsetof(struct caam_hash_ctx, sh_desc_update), 1874 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1875 if (ctx->key_dir != DMA_NONE) 1876 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1877 ARRAY_SIZE(ctx->key), ctx->key_dir, 1878 DMA_ATTR_SKIP_CPU_SYNC); 1879 caam_jr_free(ctx->jrdev); 1880 } 1881 1882 void caam_algapi_hash_exit(void) 1883 { 1884 struct caam_hash_alg *t_alg, *n; 1885 1886 if (!hash_list.next) 1887 return; 1888 1889 list_for_each_entry_safe(t_alg, n, &hash_list, entry) { 1890 crypto_unregister_ahash(&t_alg->ahash_alg); 1891 list_del(&t_alg->entry); 1892 kfree(t_alg); 1893 } 1894 } 1895 1896 static struct caam_hash_alg * 1897 caam_hash_alloc(struct caam_hash_template *template, 1898 bool keyed) 1899 { 1900 struct caam_hash_alg *t_alg; 1901 struct ahash_alg *halg; 1902 struct crypto_alg *alg; 1903 1904 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); 1905 if (!t_alg) 1906 return ERR_PTR(-ENOMEM); 1907 1908 t_alg->ahash_alg = template->template_ahash; 1909 halg = &t_alg->ahash_alg; 1910 alg = &halg->halg.base; 1911 1912 if (keyed) { 1913 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1914 template->hmac_name); 1915 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1916 template->hmac_driver_name); 1917 } else { 1918 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1919 template->name); 1920 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1921 template->driver_name); 1922 t_alg->ahash_alg.setkey = NULL; 1923 } 1924 alg->cra_module = THIS_MODULE; 1925 alg->cra_init = caam_hash_cra_init; 1926 alg->cra_exit = caam_hash_cra_exit; 1927 alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding(); 1928 alg->cra_priority = CAAM_CRA_PRIORITY; 1929 alg->cra_blocksize = template->blocksize; 1930 alg->cra_alignmask = 0; 1931 alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 1932 1933 t_alg->alg_type = template->alg_type; 1934 1935 return t_alg; 1936 } 1937 1938 int caam_algapi_hash_init(struct device *ctrldev) 1939 { 1940 int i = 0, err = 0; 1941 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1942 unsigned int md_limit = SHA512_DIGEST_SIZE; 1943 u32 md_inst, md_vid; 1944 1945 /* 1946 * Register crypto algorithms the device supports. First, identify 1947 * presence and attributes of MD block. 1948 */ 1949 if (priv->era < 10) { 1950 struct caam_perfmon __iomem *perfmon = &priv->jr[0]->perfmon; 1951 1952 md_vid = (rd_reg32(&perfmon->cha_id_ls) & 1953 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1954 md_inst = (rd_reg32(&perfmon->cha_num_ls) & 1955 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1956 } else { 1957 u32 mdha = rd_reg32(&priv->jr[0]->vreg.mdha); 1958 1959 md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; 1960 md_inst = mdha & CHA_VER_NUM_MASK; 1961 } 1962 1963 /* 1964 * Skip registration of any hashing algorithms if MD block 1965 * is not present. 1966 */ 1967 if (!md_inst) 1968 return 0; 1969 1970 /* Limit digest size based on LP256 */ 1971 if (md_vid == CHA_VER_VID_MD_LP256) 1972 md_limit = SHA256_DIGEST_SIZE; 1973 1974 INIT_LIST_HEAD(&hash_list); 1975 1976 /* register crypto algorithms the device supports */ 1977 for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { 1978 struct caam_hash_alg *t_alg; 1979 struct caam_hash_template *alg = driver_hash + i; 1980 1981 /* If MD size is not supported by device, skip registration */ 1982 if (is_mdha(alg->alg_type) && 1983 alg->template_ahash.halg.digestsize > md_limit) 1984 continue; 1985 1986 /* register hmac version */ 1987 t_alg = caam_hash_alloc(alg, true); 1988 if (IS_ERR(t_alg)) { 1989 err = PTR_ERR(t_alg); 1990 pr_warn("%s alg allocation failed\n", 1991 alg->hmac_driver_name); 1992 continue; 1993 } 1994 1995 err = crypto_register_ahash(&t_alg->ahash_alg); 1996 if (err) { 1997 pr_warn("%s alg registration failed: %d\n", 1998 t_alg->ahash_alg.halg.base.cra_driver_name, 1999 err); 2000 kfree(t_alg); 2001 } else 2002 list_add_tail(&t_alg->entry, &hash_list); 2003 2004 if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES) 2005 continue; 2006 2007 /* register unkeyed version */ 2008 t_alg = caam_hash_alloc(alg, false); 2009 if (IS_ERR(t_alg)) { 2010 err = PTR_ERR(t_alg); 2011 pr_warn("%s alg allocation failed\n", alg->driver_name); 2012 continue; 2013 } 2014 2015 err = crypto_register_ahash(&t_alg->ahash_alg); 2016 if (err) { 2017 pr_warn("%s alg registration failed: %d\n", 2018 t_alg->ahash_alg.halg.base.cra_driver_name, 2019 err); 2020 kfree(t_alg); 2021 } else 2022 list_add_tail(&t_alg->entry, &hash_list); 2023 } 2024 2025 return err; 2026 } 2027