1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * caam - Freescale FSL CAAM support for ahash functions of crypto API 4 * 5 * Copyright 2011 Freescale Semiconductor, Inc. 6 * Copyright 2018-2019 NXP 7 * 8 * Based on caamalg.c crypto API driver. 9 * 10 * relationship of digest job descriptor or first job descriptor after init to 11 * shared descriptors: 12 * 13 * --------------- --------------- 14 * | JobDesc #1 |-------------------->| ShareDesc | 15 * | *(packet 1) | | (hashKey) | 16 * --------------- | (operation) | 17 * --------------- 18 * 19 * relationship of subsequent job descriptors to shared descriptors: 20 * 21 * --------------- --------------- 22 * | JobDesc #2 |-------------------->| ShareDesc | 23 * | *(packet 2) | |------------->| (hashKey) | 24 * --------------- | |-------->| (operation) | 25 * . | | | (load ctx2) | 26 * . | | --------------- 27 * --------------- | | 28 * | JobDesc #3 |------| | 29 * | *(packet 3) | | 30 * --------------- | 31 * . | 32 * . | 33 * --------------- | 34 * | JobDesc #4 |------------ 35 * | *(packet 4) | 36 * --------------- 37 * 38 * The SharedDesc never changes for a connection unless rekeyed, but 39 * each packet will likely be in a different place. So all we need 40 * to know to process the packet is where the input is, where the 41 * output goes, and what context we want to process with. Context is 42 * in the SharedDesc, packet references in the JobDesc. 43 * 44 * So, a job desc looks like: 45 * 46 * --------------------- 47 * | Header | 48 * | ShareDesc Pointer | 49 * | SEQ_OUT_PTR | 50 * | (output buffer) | 51 * | (output length) | 52 * | SEQ_IN_PTR | 53 * | (input buffer) | 54 * | (input length) | 55 * --------------------- 56 */ 57 58 #include "compat.h" 59 60 #include "regs.h" 61 #include "intern.h" 62 #include "desc_constr.h" 63 #include "jr.h" 64 #include "error.h" 65 #include "sg_sw_sec4.h" 66 #include "key_gen.h" 67 #include "caamhash_desc.h" 68 #include <crypto/engine.h> 69 70 #define CAAM_CRA_PRIORITY 3000 71 72 /* max hash key is max split key size */ 73 #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) 74 75 #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE 76 #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE 77 78 #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \ 79 CAAM_MAX_HASH_KEY_SIZE) 80 #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ) 81 82 /* caam context sizes for hashes: running digest + 8 */ 83 #define HASH_MSG_LEN 8 84 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) 85 86 static struct list_head hash_list; 87 88 /* ahash per-session context */ 89 struct caam_hash_ctx { 90 struct crypto_engine_ctx enginectx; 91 u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 92 u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 93 u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 94 u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; 95 u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned; 96 dma_addr_t sh_desc_update_dma ____cacheline_aligned; 97 dma_addr_t sh_desc_update_first_dma; 98 dma_addr_t sh_desc_fin_dma; 99 dma_addr_t sh_desc_digest_dma; 100 enum dma_data_direction dir; 101 enum dma_data_direction key_dir; 102 struct device *jrdev; 103 int ctx_len; 104 struct alginfo adata; 105 }; 106 107 /* ahash state */ 108 struct caam_hash_state { 109 dma_addr_t buf_dma; 110 dma_addr_t ctx_dma; 111 int ctx_dma_len; 112 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; 113 int buflen; 114 int next_buflen; 115 u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; 116 int (*update)(struct ahash_request *req) ____cacheline_aligned; 117 int (*final)(struct ahash_request *req); 118 int (*finup)(struct ahash_request *req); 119 struct ahash_edesc *edesc; 120 void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err, 121 void *context); 122 }; 123 124 struct caam_export_state { 125 u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; 126 u8 caam_ctx[MAX_CTX_LEN]; 127 int buflen; 128 int (*update)(struct ahash_request *req); 129 int (*final)(struct ahash_request *req); 130 int (*finup)(struct ahash_request *req); 131 }; 132 133 static inline bool is_cmac_aes(u32 algtype) 134 { 135 return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) == 136 (OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC); 137 } 138 /* Common job descriptor seq in/out ptr routines */ 139 140 /* Map state->caam_ctx, and append seq_out_ptr command that points to it */ 141 static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev, 142 struct caam_hash_state *state, 143 int ctx_len) 144 { 145 state->ctx_dma_len = ctx_len; 146 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, 147 ctx_len, DMA_FROM_DEVICE); 148 if (dma_mapping_error(jrdev, state->ctx_dma)) { 149 dev_err(jrdev, "unable to map ctx\n"); 150 state->ctx_dma = 0; 151 return -ENOMEM; 152 } 153 154 append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0); 155 156 return 0; 157 } 158 159 /* Map current buffer in state (if length > 0) and put it in link table */ 160 static inline int buf_map_to_sec4_sg(struct device *jrdev, 161 struct sec4_sg_entry *sec4_sg, 162 struct caam_hash_state *state) 163 { 164 int buflen = state->buflen; 165 166 if (!buflen) 167 return 0; 168 169 state->buf_dma = dma_map_single(jrdev, state->buf, buflen, 170 DMA_TO_DEVICE); 171 if (dma_mapping_error(jrdev, state->buf_dma)) { 172 dev_err(jrdev, "unable to map buf\n"); 173 state->buf_dma = 0; 174 return -ENOMEM; 175 } 176 177 dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0); 178 179 return 0; 180 } 181 182 /* Map state->caam_ctx, and add it to link table */ 183 static inline int ctx_map_to_sec4_sg(struct device *jrdev, 184 struct caam_hash_state *state, int ctx_len, 185 struct sec4_sg_entry *sec4_sg, u32 flag) 186 { 187 state->ctx_dma_len = ctx_len; 188 state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag); 189 if (dma_mapping_error(jrdev, state->ctx_dma)) { 190 dev_err(jrdev, "unable to map ctx\n"); 191 state->ctx_dma = 0; 192 return -ENOMEM; 193 } 194 195 dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0); 196 197 return 0; 198 } 199 200 static int ahash_set_sh_desc(struct crypto_ahash *ahash) 201 { 202 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 203 int digestsize = crypto_ahash_digestsize(ahash); 204 struct device *jrdev = ctx->jrdev; 205 struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); 206 u32 *desc; 207 208 ctx->adata.key_virt = ctx->key; 209 210 /* ahash_update shared descriptor */ 211 desc = ctx->sh_desc_update; 212 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, 213 ctx->ctx_len, true, ctrlpriv->era); 214 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 215 desc_bytes(desc), ctx->dir); 216 217 print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ", 218 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 219 1); 220 221 /* ahash_update_first shared descriptor */ 222 desc = ctx->sh_desc_update_first; 223 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 224 ctx->ctx_len, false, ctrlpriv->era); 225 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 226 desc_bytes(desc), ctx->dir); 227 print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__) 228 ": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 229 desc_bytes(desc), 1); 230 231 /* ahash_final shared descriptor */ 232 desc = ctx->sh_desc_fin; 233 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, 234 ctx->ctx_len, true, ctrlpriv->era); 235 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 236 desc_bytes(desc), ctx->dir); 237 238 print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ", 239 DUMP_PREFIX_ADDRESS, 16, 4, desc, 240 desc_bytes(desc), 1); 241 242 /* ahash_digest shared descriptor */ 243 desc = ctx->sh_desc_digest; 244 cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, 245 ctx->ctx_len, false, ctrlpriv->era); 246 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 247 desc_bytes(desc), ctx->dir); 248 249 print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ", 250 DUMP_PREFIX_ADDRESS, 16, 4, desc, 251 desc_bytes(desc), 1); 252 253 return 0; 254 } 255 256 static int axcbc_set_sh_desc(struct crypto_ahash *ahash) 257 { 258 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 259 int digestsize = crypto_ahash_digestsize(ahash); 260 struct device *jrdev = ctx->jrdev; 261 u32 *desc; 262 263 /* shared descriptor for ahash_update */ 264 desc = ctx->sh_desc_update; 265 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 266 ctx->ctx_len, ctx->ctx_len); 267 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 268 desc_bytes(desc), ctx->dir); 269 print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ", 270 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 271 1); 272 273 /* shared descriptor for ahash_{final,finup} */ 274 desc = ctx->sh_desc_fin; 275 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 276 digestsize, ctx->ctx_len); 277 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 278 desc_bytes(desc), ctx->dir); 279 print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ", 280 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 281 1); 282 283 /* key is immediate data for INIT and INITFINAL states */ 284 ctx->adata.key_virt = ctx->key; 285 286 /* shared descriptor for first invocation of ahash_update */ 287 desc = ctx->sh_desc_update_first; 288 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 289 ctx->ctx_len); 290 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 291 desc_bytes(desc), ctx->dir); 292 print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__) 293 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 294 desc_bytes(desc), 1); 295 296 /* shared descriptor for ahash_digest */ 297 desc = ctx->sh_desc_digest; 298 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 299 digestsize, ctx->ctx_len); 300 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 301 desc_bytes(desc), ctx->dir); 302 print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ", 303 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 304 1); 305 return 0; 306 } 307 308 static int acmac_set_sh_desc(struct crypto_ahash *ahash) 309 { 310 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 311 int digestsize = crypto_ahash_digestsize(ahash); 312 struct device *jrdev = ctx->jrdev; 313 u32 *desc; 314 315 /* shared descriptor for ahash_update */ 316 desc = ctx->sh_desc_update; 317 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, 318 ctx->ctx_len, ctx->ctx_len); 319 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, 320 desc_bytes(desc), ctx->dir); 321 print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ", 322 DUMP_PREFIX_ADDRESS, 16, 4, desc, 323 desc_bytes(desc), 1); 324 325 /* shared descriptor for ahash_{final,finup} */ 326 desc = ctx->sh_desc_fin; 327 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, 328 digestsize, ctx->ctx_len); 329 dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, 330 desc_bytes(desc), ctx->dir); 331 print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ", 332 DUMP_PREFIX_ADDRESS, 16, 4, desc, 333 desc_bytes(desc), 1); 334 335 /* shared descriptor for first invocation of ahash_update */ 336 desc = ctx->sh_desc_update_first; 337 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, 338 ctx->ctx_len); 339 dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, 340 desc_bytes(desc), ctx->dir); 341 print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__) 342 " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, 343 desc_bytes(desc), 1); 344 345 /* shared descriptor for ahash_digest */ 346 desc = ctx->sh_desc_digest; 347 cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, 348 digestsize, ctx->ctx_len); 349 dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, 350 desc_bytes(desc), ctx->dir); 351 print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ", 352 DUMP_PREFIX_ADDRESS, 16, 4, desc, 353 desc_bytes(desc), 1); 354 355 return 0; 356 } 357 358 /* Digest hash size if it is too large */ 359 static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, 360 u32 digestsize) 361 { 362 struct device *jrdev = ctx->jrdev; 363 u32 *desc; 364 struct split_key_result result; 365 dma_addr_t key_dma; 366 int ret; 367 368 desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA); 369 if (!desc) { 370 dev_err(jrdev, "unable to allocate key input memory\n"); 371 return -ENOMEM; 372 } 373 374 init_job_desc(desc, 0); 375 376 key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL); 377 if (dma_mapping_error(jrdev, key_dma)) { 378 dev_err(jrdev, "unable to map key memory\n"); 379 kfree(desc); 380 return -ENOMEM; 381 } 382 383 /* Job descriptor to perform unkeyed hash on key_in */ 384 append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | 385 OP_ALG_AS_INITFINAL); 386 append_seq_in_ptr(desc, key_dma, *keylen, 0); 387 append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | 388 FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); 389 append_seq_out_ptr(desc, key_dma, digestsize, 0); 390 append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | 391 LDST_SRCDST_BYTE_CONTEXT); 392 393 print_hex_dump_debug("key_in@"__stringify(__LINE__)": ", 394 DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); 395 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 396 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 397 1); 398 399 result.err = 0; 400 init_completion(&result.completion); 401 402 ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); 403 if (ret == -EINPROGRESS) { 404 /* in progress */ 405 wait_for_completion(&result.completion); 406 ret = result.err; 407 408 print_hex_dump_debug("digested key@"__stringify(__LINE__)": ", 409 DUMP_PREFIX_ADDRESS, 16, 4, key, 410 digestsize, 1); 411 } 412 dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL); 413 414 *keylen = digestsize; 415 416 kfree(desc); 417 418 return ret; 419 } 420 421 static int ahash_setkey(struct crypto_ahash *ahash, 422 const u8 *key, unsigned int keylen) 423 { 424 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 425 struct device *jrdev = ctx->jrdev; 426 int blocksize = crypto_tfm_alg_blocksize(&ahash->base); 427 int digestsize = crypto_ahash_digestsize(ahash); 428 struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); 429 int ret; 430 u8 *hashed_key = NULL; 431 432 dev_dbg(jrdev, "keylen %d\n", keylen); 433 434 if (keylen > blocksize) { 435 hashed_key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA); 436 if (!hashed_key) 437 return -ENOMEM; 438 ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); 439 if (ret) 440 goto bad_free_key; 441 key = hashed_key; 442 } 443 444 /* 445 * If DKP is supported, use it in the shared descriptor to generate 446 * the split key. 447 */ 448 if (ctrlpriv->era >= 6) { 449 ctx->adata.key_inline = true; 450 ctx->adata.keylen = keylen; 451 ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & 452 OP_ALG_ALGSEL_MASK); 453 454 if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) 455 goto bad_free_key; 456 457 memcpy(ctx->key, key, keylen); 458 459 /* 460 * In case |user key| > |derived key|, using DKP<imm,imm> 461 * would result in invalid opcodes (last bytes of user key) in 462 * the resulting descriptor. Use DKP<ptr,imm> instead => both 463 * virtual and dma key addresses are needed. 464 */ 465 if (keylen > ctx->adata.keylen_pad) 466 dma_sync_single_for_device(ctx->jrdev, 467 ctx->adata.key_dma, 468 ctx->adata.keylen_pad, 469 DMA_TO_DEVICE); 470 } else { 471 ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, 472 keylen, CAAM_MAX_HASH_KEY_SIZE); 473 if (ret) 474 goto bad_free_key; 475 } 476 477 kfree(hashed_key); 478 return ahash_set_sh_desc(ahash); 479 bad_free_key: 480 kfree(hashed_key); 481 return -EINVAL; 482 } 483 484 static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key, 485 unsigned int keylen) 486 { 487 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 488 struct device *jrdev = ctx->jrdev; 489 490 if (keylen != AES_KEYSIZE_128) 491 return -EINVAL; 492 493 memcpy(ctx->key, key, keylen); 494 dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen, 495 DMA_TO_DEVICE); 496 ctx->adata.keylen = keylen; 497 498 print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ", 499 DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1); 500 501 return axcbc_set_sh_desc(ahash); 502 } 503 504 static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key, 505 unsigned int keylen) 506 { 507 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 508 int err; 509 510 err = aes_check_keylen(keylen); 511 if (err) 512 return err; 513 514 /* key is immediate data for all cmac shared descriptors */ 515 ctx->adata.key_virt = key; 516 ctx->adata.keylen = keylen; 517 518 print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ", 519 DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); 520 521 return acmac_set_sh_desc(ahash); 522 } 523 524 /* 525 * ahash_edesc - s/w-extended ahash descriptor 526 * @sec4_sg_dma: physical mapped address of h/w link table 527 * @src_nents: number of segments in input scatterlist 528 * @sec4_sg_bytes: length of dma mapped sec4_sg space 529 * @bklog: stored to determine if the request needs backlog 530 * @hw_desc: the h/w job descriptor followed by any referenced link tables 531 * @sec4_sg: h/w link table 532 */ 533 struct ahash_edesc { 534 dma_addr_t sec4_sg_dma; 535 int src_nents; 536 int sec4_sg_bytes; 537 bool bklog; 538 u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned; 539 struct sec4_sg_entry sec4_sg[]; 540 }; 541 542 static inline void ahash_unmap(struct device *dev, 543 struct ahash_edesc *edesc, 544 struct ahash_request *req, int dst_len) 545 { 546 struct caam_hash_state *state = ahash_request_ctx_dma(req); 547 548 if (edesc->src_nents) 549 dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); 550 551 if (edesc->sec4_sg_bytes) 552 dma_unmap_single(dev, edesc->sec4_sg_dma, 553 edesc->sec4_sg_bytes, DMA_TO_DEVICE); 554 555 if (state->buf_dma) { 556 dma_unmap_single(dev, state->buf_dma, state->buflen, 557 DMA_TO_DEVICE); 558 state->buf_dma = 0; 559 } 560 } 561 562 static inline void ahash_unmap_ctx(struct device *dev, 563 struct ahash_edesc *edesc, 564 struct ahash_request *req, int dst_len, u32 flag) 565 { 566 struct caam_hash_state *state = ahash_request_ctx_dma(req); 567 568 if (state->ctx_dma) { 569 dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); 570 state->ctx_dma = 0; 571 } 572 ahash_unmap(dev, edesc, req, dst_len); 573 } 574 575 static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err, 576 void *context, enum dma_data_direction dir) 577 { 578 struct ahash_request *req = context; 579 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 580 struct ahash_edesc *edesc; 581 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 582 int digestsize = crypto_ahash_digestsize(ahash); 583 struct caam_hash_state *state = ahash_request_ctx_dma(req); 584 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 585 int ecode = 0; 586 bool has_bklog; 587 588 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 589 590 edesc = state->edesc; 591 has_bklog = edesc->bklog; 592 593 if (err) 594 ecode = caam_jr_strstatus(jrdev, err); 595 596 ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir); 597 memcpy(req->result, state->caam_ctx, digestsize); 598 kfree(edesc); 599 600 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 601 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 602 ctx->ctx_len, 1); 603 604 /* 605 * If no backlog flag, the completion of the request is done 606 * by CAAM, not crypto engine. 607 */ 608 if (!has_bklog) 609 req->base.complete(&req->base, ecode); 610 else 611 crypto_finalize_hash_request(jrp->engine, req, ecode); 612 } 613 614 static void ahash_done(struct device *jrdev, u32 *desc, u32 err, 615 void *context) 616 { 617 ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE); 618 } 619 620 static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err, 621 void *context) 622 { 623 ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 624 } 625 626 static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err, 627 void *context, enum dma_data_direction dir) 628 { 629 struct ahash_request *req = context; 630 struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); 631 struct ahash_edesc *edesc; 632 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 633 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 634 struct caam_hash_state *state = ahash_request_ctx_dma(req); 635 int digestsize = crypto_ahash_digestsize(ahash); 636 int ecode = 0; 637 bool has_bklog; 638 639 dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); 640 641 edesc = state->edesc; 642 has_bklog = edesc->bklog; 643 if (err) 644 ecode = caam_jr_strstatus(jrdev, err); 645 646 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir); 647 kfree(edesc); 648 649 scatterwalk_map_and_copy(state->buf, req->src, 650 req->nbytes - state->next_buflen, 651 state->next_buflen, 0); 652 state->buflen = state->next_buflen; 653 654 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 655 DUMP_PREFIX_ADDRESS, 16, 4, state->buf, 656 state->buflen, 1); 657 658 print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", 659 DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, 660 ctx->ctx_len, 1); 661 if (req->result) 662 print_hex_dump_debug("result@"__stringify(__LINE__)": ", 663 DUMP_PREFIX_ADDRESS, 16, 4, req->result, 664 digestsize, 1); 665 666 /* 667 * If no backlog flag, the completion of the request is done 668 * by CAAM, not crypto engine. 669 */ 670 if (!has_bklog) 671 req->base.complete(&req->base, ecode); 672 else 673 crypto_finalize_hash_request(jrp->engine, req, ecode); 674 675 } 676 677 static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err, 678 void *context) 679 { 680 ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL); 681 } 682 683 static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err, 684 void *context) 685 { 686 ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE); 687 } 688 689 /* 690 * Allocate an enhanced descriptor, which contains the hardware descriptor 691 * and space for hardware scatter table containing sg_num entries. 692 */ 693 static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req, 694 int sg_num, u32 *sh_desc, 695 dma_addr_t sh_desc_dma) 696 { 697 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 698 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 699 struct caam_hash_state *state = ahash_request_ctx_dma(req); 700 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 701 GFP_KERNEL : GFP_ATOMIC; 702 struct ahash_edesc *edesc; 703 unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry); 704 705 edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags); 706 if (!edesc) { 707 dev_err(ctx->jrdev, "could not allocate extended descriptor\n"); 708 return NULL; 709 } 710 711 state->edesc = edesc; 712 713 init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc), 714 HDR_SHARE_DEFER | HDR_REVERSE); 715 716 return edesc; 717 } 718 719 static int ahash_edesc_add_src(struct caam_hash_ctx *ctx, 720 struct ahash_edesc *edesc, 721 struct ahash_request *req, int nents, 722 unsigned int first_sg, 723 unsigned int first_bytes, size_t to_hash) 724 { 725 dma_addr_t src_dma; 726 u32 options; 727 728 if (nents > 1 || first_sg) { 729 struct sec4_sg_entry *sg = edesc->sec4_sg; 730 unsigned int sgsize = sizeof(*sg) * 731 pad_sg_nents(first_sg + nents); 732 733 sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0); 734 735 src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE); 736 if (dma_mapping_error(ctx->jrdev, src_dma)) { 737 dev_err(ctx->jrdev, "unable to map S/G table\n"); 738 return -ENOMEM; 739 } 740 741 edesc->sec4_sg_bytes = sgsize; 742 edesc->sec4_sg_dma = src_dma; 743 options = LDST_SGF; 744 } else { 745 src_dma = sg_dma_address(req->src); 746 options = 0; 747 } 748 749 append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash, 750 options); 751 752 return 0; 753 } 754 755 static int ahash_do_one_req(struct crypto_engine *engine, void *areq) 756 { 757 struct ahash_request *req = ahash_request_cast(areq); 758 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req)); 759 struct caam_hash_state *state = ahash_request_ctx_dma(req); 760 struct device *jrdev = ctx->jrdev; 761 u32 *desc = state->edesc->hw_desc; 762 int ret; 763 764 state->edesc->bklog = true; 765 766 ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req); 767 768 if (ret == -ENOSPC && engine->retry_support) 769 return ret; 770 771 if (ret != -EINPROGRESS) { 772 ahash_unmap(jrdev, state->edesc, req, 0); 773 kfree(state->edesc); 774 } else { 775 ret = 0; 776 } 777 778 return ret; 779 } 780 781 static int ahash_enqueue_req(struct device *jrdev, 782 void (*cbk)(struct device *jrdev, u32 *desc, 783 u32 err, void *context), 784 struct ahash_request *req, 785 int dst_len, enum dma_data_direction dir) 786 { 787 struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); 788 struct caam_hash_state *state = ahash_request_ctx_dma(req); 789 struct ahash_edesc *edesc = state->edesc; 790 u32 *desc = edesc->hw_desc; 791 int ret; 792 793 state->ahash_op_done = cbk; 794 795 /* 796 * Only the backlog request are sent to crypto-engine since the others 797 * can be handled by CAAM, if free, especially since JR has up to 1024 798 * entries (more than the 10 entries from crypto-engine). 799 */ 800 if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) 801 ret = crypto_transfer_hash_request_to_engine(jrpriv->engine, 802 req); 803 else 804 ret = caam_jr_enqueue(jrdev, desc, cbk, req); 805 806 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { 807 ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir); 808 kfree(edesc); 809 } 810 811 return ret; 812 } 813 814 /* submit update job descriptor */ 815 static int ahash_update_ctx(struct ahash_request *req) 816 { 817 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 818 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 819 struct caam_hash_state *state = ahash_request_ctx_dma(req); 820 struct device *jrdev = ctx->jrdev; 821 u8 *buf = state->buf; 822 int *buflen = &state->buflen; 823 int *next_buflen = &state->next_buflen; 824 int blocksize = crypto_ahash_blocksize(ahash); 825 int in_len = *buflen + req->nbytes, to_hash; 826 u32 *desc; 827 int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index; 828 struct ahash_edesc *edesc; 829 int ret = 0; 830 831 *next_buflen = in_len & (blocksize - 1); 832 to_hash = in_len - *next_buflen; 833 834 /* 835 * For XCBC and CMAC, if to_hash is multiple of block size, 836 * keep last block in internal buffer 837 */ 838 if ((is_xcbc_aes(ctx->adata.algtype) || 839 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 840 (*next_buflen == 0)) { 841 *next_buflen = blocksize; 842 to_hash -= blocksize; 843 } 844 845 if (to_hash) { 846 int pad_nents; 847 int src_len = req->nbytes - *next_buflen; 848 849 src_nents = sg_nents_for_len(req->src, src_len); 850 if (src_nents < 0) { 851 dev_err(jrdev, "Invalid number of src SG.\n"); 852 return src_nents; 853 } 854 855 if (src_nents) { 856 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 857 DMA_TO_DEVICE); 858 if (!mapped_nents) { 859 dev_err(jrdev, "unable to DMA map source\n"); 860 return -ENOMEM; 861 } 862 } else { 863 mapped_nents = 0; 864 } 865 866 sec4_sg_src_index = 1 + (*buflen ? 1 : 0); 867 pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents); 868 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 869 870 /* 871 * allocate space for base edesc and hw desc commands, 872 * link tables 873 */ 874 edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update, 875 ctx->sh_desc_update_dma); 876 if (!edesc) { 877 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 878 return -ENOMEM; 879 } 880 881 edesc->src_nents = src_nents; 882 edesc->sec4_sg_bytes = sec4_sg_bytes; 883 884 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 885 edesc->sec4_sg, DMA_BIDIRECTIONAL); 886 if (ret) 887 goto unmap_ctx; 888 889 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 890 if (ret) 891 goto unmap_ctx; 892 893 if (mapped_nents) 894 sg_to_sec4_sg_last(req->src, src_len, 895 edesc->sec4_sg + sec4_sg_src_index, 896 0); 897 else 898 sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 899 1); 900 901 desc = edesc->hw_desc; 902 903 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 904 sec4_sg_bytes, 905 DMA_TO_DEVICE); 906 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 907 dev_err(jrdev, "unable to map S/G table\n"); 908 ret = -ENOMEM; 909 goto unmap_ctx; 910 } 911 912 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + 913 to_hash, LDST_SGF); 914 915 append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0); 916 917 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 918 DUMP_PREFIX_ADDRESS, 16, 4, desc, 919 desc_bytes(desc), 1); 920 921 ret = ahash_enqueue_req(jrdev, ahash_done_bi, req, 922 ctx->ctx_len, DMA_BIDIRECTIONAL); 923 } else if (*next_buflen) { 924 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 925 req->nbytes, 0); 926 *buflen = *next_buflen; 927 928 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 929 DUMP_PREFIX_ADDRESS, 16, 4, buf, 930 *buflen, 1); 931 } 932 933 return ret; 934 unmap_ctx: 935 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL); 936 kfree(edesc); 937 return ret; 938 } 939 940 static int ahash_final_ctx(struct ahash_request *req) 941 { 942 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 943 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 944 struct caam_hash_state *state = ahash_request_ctx_dma(req); 945 struct device *jrdev = ctx->jrdev; 946 int buflen = state->buflen; 947 u32 *desc; 948 int sec4_sg_bytes; 949 int digestsize = crypto_ahash_digestsize(ahash); 950 struct ahash_edesc *edesc; 951 int ret; 952 953 sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * 954 sizeof(struct sec4_sg_entry); 955 956 /* allocate space for base edesc and hw desc commands, link tables */ 957 edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin, 958 ctx->sh_desc_fin_dma); 959 if (!edesc) 960 return -ENOMEM; 961 962 desc = edesc->hw_desc; 963 964 edesc->sec4_sg_bytes = sec4_sg_bytes; 965 966 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 967 edesc->sec4_sg, DMA_BIDIRECTIONAL); 968 if (ret) 969 goto unmap_ctx; 970 971 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 972 if (ret) 973 goto unmap_ctx; 974 975 sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0)); 976 977 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 978 sec4_sg_bytes, DMA_TO_DEVICE); 979 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 980 dev_err(jrdev, "unable to map S/G table\n"); 981 ret = -ENOMEM; 982 goto unmap_ctx; 983 } 984 985 append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen, 986 LDST_SGF); 987 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 988 989 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 990 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 991 1); 992 993 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 994 digestsize, DMA_BIDIRECTIONAL); 995 unmap_ctx: 996 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 997 kfree(edesc); 998 return ret; 999 } 1000 1001 static int ahash_finup_ctx(struct ahash_request *req) 1002 { 1003 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1004 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1005 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1006 struct device *jrdev = ctx->jrdev; 1007 int buflen = state->buflen; 1008 u32 *desc; 1009 int sec4_sg_src_index; 1010 int src_nents, mapped_nents; 1011 int digestsize = crypto_ahash_digestsize(ahash); 1012 struct ahash_edesc *edesc; 1013 int ret; 1014 1015 src_nents = sg_nents_for_len(req->src, req->nbytes); 1016 if (src_nents < 0) { 1017 dev_err(jrdev, "Invalid number of src SG.\n"); 1018 return src_nents; 1019 } 1020 1021 if (src_nents) { 1022 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1023 DMA_TO_DEVICE); 1024 if (!mapped_nents) { 1025 dev_err(jrdev, "unable to DMA map source\n"); 1026 return -ENOMEM; 1027 } 1028 } else { 1029 mapped_nents = 0; 1030 } 1031 1032 sec4_sg_src_index = 1 + (buflen ? 1 : 0); 1033 1034 /* allocate space for base edesc and hw desc commands, link tables */ 1035 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1036 ctx->sh_desc_fin, ctx->sh_desc_fin_dma); 1037 if (!edesc) { 1038 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1039 return -ENOMEM; 1040 } 1041 1042 desc = edesc->hw_desc; 1043 1044 edesc->src_nents = src_nents; 1045 1046 ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, 1047 edesc->sec4_sg, DMA_BIDIRECTIONAL); 1048 if (ret) 1049 goto unmap_ctx; 1050 1051 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); 1052 if (ret) 1053 goto unmap_ctx; 1054 1055 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1056 sec4_sg_src_index, ctx->ctx_len + buflen, 1057 req->nbytes); 1058 if (ret) 1059 goto unmap_ctx; 1060 1061 append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); 1062 1063 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1064 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1065 1); 1066 1067 return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, 1068 digestsize, DMA_BIDIRECTIONAL); 1069 unmap_ctx: 1070 ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); 1071 kfree(edesc); 1072 return ret; 1073 } 1074 1075 static int ahash_digest(struct ahash_request *req) 1076 { 1077 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1078 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1079 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1080 struct device *jrdev = ctx->jrdev; 1081 u32 *desc; 1082 int digestsize = crypto_ahash_digestsize(ahash); 1083 int src_nents, mapped_nents; 1084 struct ahash_edesc *edesc; 1085 int ret; 1086 1087 state->buf_dma = 0; 1088 1089 src_nents = sg_nents_for_len(req->src, req->nbytes); 1090 if (src_nents < 0) { 1091 dev_err(jrdev, "Invalid number of src SG.\n"); 1092 return src_nents; 1093 } 1094 1095 if (src_nents) { 1096 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1097 DMA_TO_DEVICE); 1098 if (!mapped_nents) { 1099 dev_err(jrdev, "unable to map source for DMA\n"); 1100 return -ENOMEM; 1101 } 1102 } else { 1103 mapped_nents = 0; 1104 } 1105 1106 /* allocate space for base edesc and hw desc commands, link tables */ 1107 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, 1108 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1109 if (!edesc) { 1110 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1111 return -ENOMEM; 1112 } 1113 1114 edesc->src_nents = src_nents; 1115 1116 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1117 req->nbytes); 1118 if (ret) { 1119 ahash_unmap(jrdev, edesc, req, digestsize); 1120 kfree(edesc); 1121 return ret; 1122 } 1123 1124 desc = edesc->hw_desc; 1125 1126 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1127 if (ret) { 1128 ahash_unmap(jrdev, edesc, req, digestsize); 1129 kfree(edesc); 1130 return -ENOMEM; 1131 } 1132 1133 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1134 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1135 1); 1136 1137 return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, 1138 DMA_FROM_DEVICE); 1139 } 1140 1141 /* submit ahash final if it the first job descriptor */ 1142 static int ahash_final_no_ctx(struct ahash_request *req) 1143 { 1144 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1145 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1146 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1147 struct device *jrdev = ctx->jrdev; 1148 u8 *buf = state->buf; 1149 int buflen = state->buflen; 1150 u32 *desc; 1151 int digestsize = crypto_ahash_digestsize(ahash); 1152 struct ahash_edesc *edesc; 1153 int ret; 1154 1155 /* allocate space for base edesc and hw desc commands, link tables */ 1156 edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest, 1157 ctx->sh_desc_digest_dma); 1158 if (!edesc) 1159 return -ENOMEM; 1160 1161 desc = edesc->hw_desc; 1162 1163 if (buflen) { 1164 state->buf_dma = dma_map_single(jrdev, buf, buflen, 1165 DMA_TO_DEVICE); 1166 if (dma_mapping_error(jrdev, state->buf_dma)) { 1167 dev_err(jrdev, "unable to map src\n"); 1168 goto unmap; 1169 } 1170 1171 append_seq_in_ptr(desc, state->buf_dma, buflen, 0); 1172 } 1173 1174 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1175 if (ret) 1176 goto unmap; 1177 1178 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1179 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1180 1); 1181 1182 return ahash_enqueue_req(jrdev, ahash_done, req, 1183 digestsize, DMA_FROM_DEVICE); 1184 unmap: 1185 ahash_unmap(jrdev, edesc, req, digestsize); 1186 kfree(edesc); 1187 return -ENOMEM; 1188 } 1189 1190 /* submit ahash update if it the first job descriptor after update */ 1191 static int ahash_update_no_ctx(struct ahash_request *req) 1192 { 1193 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1194 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1195 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1196 struct device *jrdev = ctx->jrdev; 1197 u8 *buf = state->buf; 1198 int *buflen = &state->buflen; 1199 int *next_buflen = &state->next_buflen; 1200 int blocksize = crypto_ahash_blocksize(ahash); 1201 int in_len = *buflen + req->nbytes, to_hash; 1202 int sec4_sg_bytes, src_nents, mapped_nents; 1203 struct ahash_edesc *edesc; 1204 u32 *desc; 1205 int ret = 0; 1206 1207 *next_buflen = in_len & (blocksize - 1); 1208 to_hash = in_len - *next_buflen; 1209 1210 /* 1211 * For XCBC and CMAC, if to_hash is multiple of block size, 1212 * keep last block in internal buffer 1213 */ 1214 if ((is_xcbc_aes(ctx->adata.algtype) || 1215 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1216 (*next_buflen == 0)) { 1217 *next_buflen = blocksize; 1218 to_hash -= blocksize; 1219 } 1220 1221 if (to_hash) { 1222 int pad_nents; 1223 int src_len = req->nbytes - *next_buflen; 1224 1225 src_nents = sg_nents_for_len(req->src, src_len); 1226 if (src_nents < 0) { 1227 dev_err(jrdev, "Invalid number of src SG.\n"); 1228 return src_nents; 1229 } 1230 1231 if (src_nents) { 1232 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1233 DMA_TO_DEVICE); 1234 if (!mapped_nents) { 1235 dev_err(jrdev, "unable to DMA map source\n"); 1236 return -ENOMEM; 1237 } 1238 } else { 1239 mapped_nents = 0; 1240 } 1241 1242 pad_nents = pad_sg_nents(1 + mapped_nents); 1243 sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); 1244 1245 /* 1246 * allocate space for base edesc and hw desc commands, 1247 * link tables 1248 */ 1249 edesc = ahash_edesc_alloc(req, pad_nents, 1250 ctx->sh_desc_update_first, 1251 ctx->sh_desc_update_first_dma); 1252 if (!edesc) { 1253 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1254 return -ENOMEM; 1255 } 1256 1257 edesc->src_nents = src_nents; 1258 edesc->sec4_sg_bytes = sec4_sg_bytes; 1259 1260 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1261 if (ret) 1262 goto unmap_ctx; 1263 1264 sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0); 1265 1266 desc = edesc->hw_desc; 1267 1268 edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, 1269 sec4_sg_bytes, 1270 DMA_TO_DEVICE); 1271 if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { 1272 dev_err(jrdev, "unable to map S/G table\n"); 1273 ret = -ENOMEM; 1274 goto unmap_ctx; 1275 } 1276 1277 append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF); 1278 1279 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1280 if (ret) 1281 goto unmap_ctx; 1282 1283 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1284 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1285 desc_bytes(desc), 1); 1286 1287 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1288 ctx->ctx_len, DMA_TO_DEVICE); 1289 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1290 return ret; 1291 state->update = ahash_update_ctx; 1292 state->finup = ahash_finup_ctx; 1293 state->final = ahash_final_ctx; 1294 } else if (*next_buflen) { 1295 scatterwalk_map_and_copy(buf + *buflen, req->src, 0, 1296 req->nbytes, 0); 1297 *buflen = *next_buflen; 1298 1299 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1300 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1301 *buflen, 1); 1302 } 1303 1304 return ret; 1305 unmap_ctx: 1306 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1307 kfree(edesc); 1308 return ret; 1309 } 1310 1311 /* submit ahash finup if it the first job descriptor after update */ 1312 static int ahash_finup_no_ctx(struct ahash_request *req) 1313 { 1314 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1315 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1316 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1317 struct device *jrdev = ctx->jrdev; 1318 int buflen = state->buflen; 1319 u32 *desc; 1320 int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents; 1321 int digestsize = crypto_ahash_digestsize(ahash); 1322 struct ahash_edesc *edesc; 1323 int ret; 1324 1325 src_nents = sg_nents_for_len(req->src, req->nbytes); 1326 if (src_nents < 0) { 1327 dev_err(jrdev, "Invalid number of src SG.\n"); 1328 return src_nents; 1329 } 1330 1331 if (src_nents) { 1332 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1333 DMA_TO_DEVICE); 1334 if (!mapped_nents) { 1335 dev_err(jrdev, "unable to DMA map source\n"); 1336 return -ENOMEM; 1337 } 1338 } else { 1339 mapped_nents = 0; 1340 } 1341 1342 sec4_sg_src_index = 2; 1343 sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) * 1344 sizeof(struct sec4_sg_entry); 1345 1346 /* allocate space for base edesc and hw desc commands, link tables */ 1347 edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, 1348 ctx->sh_desc_digest, ctx->sh_desc_digest_dma); 1349 if (!edesc) { 1350 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1351 return -ENOMEM; 1352 } 1353 1354 desc = edesc->hw_desc; 1355 1356 edesc->src_nents = src_nents; 1357 edesc->sec4_sg_bytes = sec4_sg_bytes; 1358 1359 ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); 1360 if (ret) 1361 goto unmap; 1362 1363 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen, 1364 req->nbytes); 1365 if (ret) { 1366 dev_err(jrdev, "unable to map S/G table\n"); 1367 goto unmap; 1368 } 1369 1370 ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); 1371 if (ret) 1372 goto unmap; 1373 1374 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1375 DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1376 1); 1377 1378 return ahash_enqueue_req(jrdev, ahash_done, req, 1379 digestsize, DMA_FROM_DEVICE); 1380 unmap: 1381 ahash_unmap(jrdev, edesc, req, digestsize); 1382 kfree(edesc); 1383 return -ENOMEM; 1384 1385 } 1386 1387 /* submit first update job descriptor after init */ 1388 static int ahash_update_first(struct ahash_request *req) 1389 { 1390 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1391 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1392 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1393 struct device *jrdev = ctx->jrdev; 1394 u8 *buf = state->buf; 1395 int *buflen = &state->buflen; 1396 int *next_buflen = &state->next_buflen; 1397 int to_hash; 1398 int blocksize = crypto_ahash_blocksize(ahash); 1399 u32 *desc; 1400 int src_nents, mapped_nents; 1401 struct ahash_edesc *edesc; 1402 int ret = 0; 1403 1404 *next_buflen = req->nbytes & (blocksize - 1); 1405 to_hash = req->nbytes - *next_buflen; 1406 1407 /* 1408 * For XCBC and CMAC, if to_hash is multiple of block size, 1409 * keep last block in internal buffer 1410 */ 1411 if ((is_xcbc_aes(ctx->adata.algtype) || 1412 is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && 1413 (*next_buflen == 0)) { 1414 *next_buflen = blocksize; 1415 to_hash -= blocksize; 1416 } 1417 1418 if (to_hash) { 1419 src_nents = sg_nents_for_len(req->src, 1420 req->nbytes - *next_buflen); 1421 if (src_nents < 0) { 1422 dev_err(jrdev, "Invalid number of src SG.\n"); 1423 return src_nents; 1424 } 1425 1426 if (src_nents) { 1427 mapped_nents = dma_map_sg(jrdev, req->src, src_nents, 1428 DMA_TO_DEVICE); 1429 if (!mapped_nents) { 1430 dev_err(jrdev, "unable to map source for DMA\n"); 1431 return -ENOMEM; 1432 } 1433 } else { 1434 mapped_nents = 0; 1435 } 1436 1437 /* 1438 * allocate space for base edesc and hw desc commands, 1439 * link tables 1440 */ 1441 edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? 1442 mapped_nents : 0, 1443 ctx->sh_desc_update_first, 1444 ctx->sh_desc_update_first_dma); 1445 if (!edesc) { 1446 dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); 1447 return -ENOMEM; 1448 } 1449 1450 edesc->src_nents = src_nents; 1451 1452 ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, 1453 to_hash); 1454 if (ret) 1455 goto unmap_ctx; 1456 1457 desc = edesc->hw_desc; 1458 1459 ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); 1460 if (ret) 1461 goto unmap_ctx; 1462 1463 print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", 1464 DUMP_PREFIX_ADDRESS, 16, 4, desc, 1465 desc_bytes(desc), 1); 1466 1467 ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, 1468 ctx->ctx_len, DMA_TO_DEVICE); 1469 if ((ret != -EINPROGRESS) && (ret != -EBUSY)) 1470 return ret; 1471 state->update = ahash_update_ctx; 1472 state->finup = ahash_finup_ctx; 1473 state->final = ahash_final_ctx; 1474 } else if (*next_buflen) { 1475 state->update = ahash_update_no_ctx; 1476 state->finup = ahash_finup_no_ctx; 1477 state->final = ahash_final_no_ctx; 1478 scatterwalk_map_and_copy(buf, req->src, 0, 1479 req->nbytes, 0); 1480 *buflen = *next_buflen; 1481 1482 print_hex_dump_debug("buf@" __stringify(__LINE__)": ", 1483 DUMP_PREFIX_ADDRESS, 16, 4, buf, 1484 *buflen, 1); 1485 } 1486 1487 return ret; 1488 unmap_ctx: 1489 ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); 1490 kfree(edesc); 1491 return ret; 1492 } 1493 1494 static int ahash_finup_first(struct ahash_request *req) 1495 { 1496 return ahash_digest(req); 1497 } 1498 1499 static int ahash_init(struct ahash_request *req) 1500 { 1501 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1502 1503 state->update = ahash_update_first; 1504 state->finup = ahash_finup_first; 1505 state->final = ahash_final_no_ctx; 1506 1507 state->ctx_dma = 0; 1508 state->ctx_dma_len = 0; 1509 state->buf_dma = 0; 1510 state->buflen = 0; 1511 state->next_buflen = 0; 1512 1513 return 0; 1514 } 1515 1516 static int ahash_update(struct ahash_request *req) 1517 { 1518 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1519 1520 return state->update(req); 1521 } 1522 1523 static int ahash_finup(struct ahash_request *req) 1524 { 1525 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1526 1527 return state->finup(req); 1528 } 1529 1530 static int ahash_final(struct ahash_request *req) 1531 { 1532 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1533 1534 return state->final(req); 1535 } 1536 1537 static int ahash_export(struct ahash_request *req, void *out) 1538 { 1539 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1540 struct caam_export_state *export = out; 1541 u8 *buf = state->buf; 1542 int len = state->buflen; 1543 1544 memcpy(export->buf, buf, len); 1545 memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); 1546 export->buflen = len; 1547 export->update = state->update; 1548 export->final = state->final; 1549 export->finup = state->finup; 1550 1551 return 0; 1552 } 1553 1554 static int ahash_import(struct ahash_request *req, const void *in) 1555 { 1556 struct caam_hash_state *state = ahash_request_ctx_dma(req); 1557 const struct caam_export_state *export = in; 1558 1559 memset(state, 0, sizeof(*state)); 1560 memcpy(state->buf, export->buf, export->buflen); 1561 memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); 1562 state->buflen = export->buflen; 1563 state->update = export->update; 1564 state->final = export->final; 1565 state->finup = export->finup; 1566 1567 return 0; 1568 } 1569 1570 struct caam_hash_template { 1571 char name[CRYPTO_MAX_ALG_NAME]; 1572 char driver_name[CRYPTO_MAX_ALG_NAME]; 1573 char hmac_name[CRYPTO_MAX_ALG_NAME]; 1574 char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; 1575 unsigned int blocksize; 1576 struct ahash_alg template_ahash; 1577 u32 alg_type; 1578 }; 1579 1580 /* ahash descriptors */ 1581 static struct caam_hash_template driver_hash[] = { 1582 { 1583 .name = "sha1", 1584 .driver_name = "sha1-caam", 1585 .hmac_name = "hmac(sha1)", 1586 .hmac_driver_name = "hmac-sha1-caam", 1587 .blocksize = SHA1_BLOCK_SIZE, 1588 .template_ahash = { 1589 .init = ahash_init, 1590 .update = ahash_update, 1591 .final = ahash_final, 1592 .finup = ahash_finup, 1593 .digest = ahash_digest, 1594 .export = ahash_export, 1595 .import = ahash_import, 1596 .setkey = ahash_setkey, 1597 .halg = { 1598 .digestsize = SHA1_DIGEST_SIZE, 1599 .statesize = sizeof(struct caam_export_state), 1600 }, 1601 }, 1602 .alg_type = OP_ALG_ALGSEL_SHA1, 1603 }, { 1604 .name = "sha224", 1605 .driver_name = "sha224-caam", 1606 .hmac_name = "hmac(sha224)", 1607 .hmac_driver_name = "hmac-sha224-caam", 1608 .blocksize = SHA224_BLOCK_SIZE, 1609 .template_ahash = { 1610 .init = ahash_init, 1611 .update = ahash_update, 1612 .final = ahash_final, 1613 .finup = ahash_finup, 1614 .digest = ahash_digest, 1615 .export = ahash_export, 1616 .import = ahash_import, 1617 .setkey = ahash_setkey, 1618 .halg = { 1619 .digestsize = SHA224_DIGEST_SIZE, 1620 .statesize = sizeof(struct caam_export_state), 1621 }, 1622 }, 1623 .alg_type = OP_ALG_ALGSEL_SHA224, 1624 }, { 1625 .name = "sha256", 1626 .driver_name = "sha256-caam", 1627 .hmac_name = "hmac(sha256)", 1628 .hmac_driver_name = "hmac-sha256-caam", 1629 .blocksize = SHA256_BLOCK_SIZE, 1630 .template_ahash = { 1631 .init = ahash_init, 1632 .update = ahash_update, 1633 .final = ahash_final, 1634 .finup = ahash_finup, 1635 .digest = ahash_digest, 1636 .export = ahash_export, 1637 .import = ahash_import, 1638 .setkey = ahash_setkey, 1639 .halg = { 1640 .digestsize = SHA256_DIGEST_SIZE, 1641 .statesize = sizeof(struct caam_export_state), 1642 }, 1643 }, 1644 .alg_type = OP_ALG_ALGSEL_SHA256, 1645 }, { 1646 .name = "sha384", 1647 .driver_name = "sha384-caam", 1648 .hmac_name = "hmac(sha384)", 1649 .hmac_driver_name = "hmac-sha384-caam", 1650 .blocksize = SHA384_BLOCK_SIZE, 1651 .template_ahash = { 1652 .init = ahash_init, 1653 .update = ahash_update, 1654 .final = ahash_final, 1655 .finup = ahash_finup, 1656 .digest = ahash_digest, 1657 .export = ahash_export, 1658 .import = ahash_import, 1659 .setkey = ahash_setkey, 1660 .halg = { 1661 .digestsize = SHA384_DIGEST_SIZE, 1662 .statesize = sizeof(struct caam_export_state), 1663 }, 1664 }, 1665 .alg_type = OP_ALG_ALGSEL_SHA384, 1666 }, { 1667 .name = "sha512", 1668 .driver_name = "sha512-caam", 1669 .hmac_name = "hmac(sha512)", 1670 .hmac_driver_name = "hmac-sha512-caam", 1671 .blocksize = SHA512_BLOCK_SIZE, 1672 .template_ahash = { 1673 .init = ahash_init, 1674 .update = ahash_update, 1675 .final = ahash_final, 1676 .finup = ahash_finup, 1677 .digest = ahash_digest, 1678 .export = ahash_export, 1679 .import = ahash_import, 1680 .setkey = ahash_setkey, 1681 .halg = { 1682 .digestsize = SHA512_DIGEST_SIZE, 1683 .statesize = sizeof(struct caam_export_state), 1684 }, 1685 }, 1686 .alg_type = OP_ALG_ALGSEL_SHA512, 1687 }, { 1688 .name = "md5", 1689 .driver_name = "md5-caam", 1690 .hmac_name = "hmac(md5)", 1691 .hmac_driver_name = "hmac-md5-caam", 1692 .blocksize = MD5_BLOCK_WORDS * 4, 1693 .template_ahash = { 1694 .init = ahash_init, 1695 .update = ahash_update, 1696 .final = ahash_final, 1697 .finup = ahash_finup, 1698 .digest = ahash_digest, 1699 .export = ahash_export, 1700 .import = ahash_import, 1701 .setkey = ahash_setkey, 1702 .halg = { 1703 .digestsize = MD5_DIGEST_SIZE, 1704 .statesize = sizeof(struct caam_export_state), 1705 }, 1706 }, 1707 .alg_type = OP_ALG_ALGSEL_MD5, 1708 }, { 1709 .hmac_name = "xcbc(aes)", 1710 .hmac_driver_name = "xcbc-aes-caam", 1711 .blocksize = AES_BLOCK_SIZE, 1712 .template_ahash = { 1713 .init = ahash_init, 1714 .update = ahash_update, 1715 .final = ahash_final, 1716 .finup = ahash_finup, 1717 .digest = ahash_digest, 1718 .export = ahash_export, 1719 .import = ahash_import, 1720 .setkey = axcbc_setkey, 1721 .halg = { 1722 .digestsize = AES_BLOCK_SIZE, 1723 .statesize = sizeof(struct caam_export_state), 1724 }, 1725 }, 1726 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC, 1727 }, { 1728 .hmac_name = "cmac(aes)", 1729 .hmac_driver_name = "cmac-aes-caam", 1730 .blocksize = AES_BLOCK_SIZE, 1731 .template_ahash = { 1732 .init = ahash_init, 1733 .update = ahash_update, 1734 .final = ahash_final, 1735 .finup = ahash_finup, 1736 .digest = ahash_digest, 1737 .export = ahash_export, 1738 .import = ahash_import, 1739 .setkey = acmac_setkey, 1740 .halg = { 1741 .digestsize = AES_BLOCK_SIZE, 1742 .statesize = sizeof(struct caam_export_state), 1743 }, 1744 }, 1745 .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC, 1746 }, 1747 }; 1748 1749 struct caam_hash_alg { 1750 struct list_head entry; 1751 int alg_type; 1752 struct ahash_alg ahash_alg; 1753 }; 1754 1755 static int caam_hash_cra_init(struct crypto_tfm *tfm) 1756 { 1757 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 1758 struct crypto_alg *base = tfm->__crt_alg; 1759 struct hash_alg_common *halg = 1760 container_of(base, struct hash_alg_common, base); 1761 struct ahash_alg *alg = 1762 container_of(halg, struct ahash_alg, halg); 1763 struct caam_hash_alg *caam_hash = 1764 container_of(alg, struct caam_hash_alg, ahash_alg); 1765 struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); 1766 /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ 1767 static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, 1768 HASH_MSG_LEN + SHA1_DIGEST_SIZE, 1769 HASH_MSG_LEN + 32, 1770 HASH_MSG_LEN + SHA256_DIGEST_SIZE, 1771 HASH_MSG_LEN + 64, 1772 HASH_MSG_LEN + SHA512_DIGEST_SIZE }; 1773 const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx, 1774 sh_desc_update); 1775 dma_addr_t dma_addr; 1776 struct caam_drv_private *priv; 1777 1778 /* 1779 * Get a Job ring from Job Ring driver to ensure in-order 1780 * crypto request processing per tfm 1781 */ 1782 ctx->jrdev = caam_jr_alloc(); 1783 if (IS_ERR(ctx->jrdev)) { 1784 pr_err("Job Ring Device allocation for transform failed\n"); 1785 return PTR_ERR(ctx->jrdev); 1786 } 1787 1788 priv = dev_get_drvdata(ctx->jrdev->parent); 1789 1790 if (is_xcbc_aes(caam_hash->alg_type)) { 1791 ctx->dir = DMA_TO_DEVICE; 1792 ctx->key_dir = DMA_BIDIRECTIONAL; 1793 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1794 ctx->ctx_len = 48; 1795 } else if (is_cmac_aes(caam_hash->alg_type)) { 1796 ctx->dir = DMA_TO_DEVICE; 1797 ctx->key_dir = DMA_NONE; 1798 ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; 1799 ctx->ctx_len = 32; 1800 } else { 1801 if (priv->era >= 6) { 1802 ctx->dir = DMA_BIDIRECTIONAL; 1803 ctx->key_dir = alg->setkey ? DMA_TO_DEVICE : DMA_NONE; 1804 } else { 1805 ctx->dir = DMA_TO_DEVICE; 1806 ctx->key_dir = DMA_NONE; 1807 } 1808 ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; 1809 ctx->ctx_len = runninglen[(ctx->adata.algtype & 1810 OP_ALG_ALGSEL_SUBMASK) >> 1811 OP_ALG_ALGSEL_SHIFT]; 1812 } 1813 1814 if (ctx->key_dir != DMA_NONE) { 1815 ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key, 1816 ARRAY_SIZE(ctx->key), 1817 ctx->key_dir, 1818 DMA_ATTR_SKIP_CPU_SYNC); 1819 if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) { 1820 dev_err(ctx->jrdev, "unable to map key\n"); 1821 caam_jr_free(ctx->jrdev); 1822 return -ENOMEM; 1823 } 1824 } 1825 1826 dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update, 1827 offsetof(struct caam_hash_ctx, key) - 1828 sh_desc_update_offset, 1829 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1830 if (dma_mapping_error(ctx->jrdev, dma_addr)) { 1831 dev_err(ctx->jrdev, "unable to map shared descriptors\n"); 1832 1833 if (ctx->key_dir != DMA_NONE) 1834 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1835 ARRAY_SIZE(ctx->key), 1836 ctx->key_dir, 1837 DMA_ATTR_SKIP_CPU_SYNC); 1838 1839 caam_jr_free(ctx->jrdev); 1840 return -ENOMEM; 1841 } 1842 1843 ctx->sh_desc_update_dma = dma_addr; 1844 ctx->sh_desc_update_first_dma = dma_addr + 1845 offsetof(struct caam_hash_ctx, 1846 sh_desc_update_first) - 1847 sh_desc_update_offset; 1848 ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx, 1849 sh_desc_fin) - 1850 sh_desc_update_offset; 1851 ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx, 1852 sh_desc_digest) - 1853 sh_desc_update_offset; 1854 1855 ctx->enginectx.op.do_one_request = ahash_do_one_req; 1856 1857 crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state)); 1858 1859 /* 1860 * For keyed hash algorithms shared descriptors 1861 * will be created later in setkey() callback 1862 */ 1863 return alg->setkey ? 0 : ahash_set_sh_desc(ahash); 1864 } 1865 1866 static void caam_hash_cra_exit(struct crypto_tfm *tfm) 1867 { 1868 struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm); 1869 1870 dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma, 1871 offsetof(struct caam_hash_ctx, key) - 1872 offsetof(struct caam_hash_ctx, sh_desc_update), 1873 ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); 1874 if (ctx->key_dir != DMA_NONE) 1875 dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, 1876 ARRAY_SIZE(ctx->key), ctx->key_dir, 1877 DMA_ATTR_SKIP_CPU_SYNC); 1878 caam_jr_free(ctx->jrdev); 1879 } 1880 1881 void caam_algapi_hash_exit(void) 1882 { 1883 struct caam_hash_alg *t_alg, *n; 1884 1885 if (!hash_list.next) 1886 return; 1887 1888 list_for_each_entry_safe(t_alg, n, &hash_list, entry) { 1889 crypto_unregister_ahash(&t_alg->ahash_alg); 1890 list_del(&t_alg->entry); 1891 kfree(t_alg); 1892 } 1893 } 1894 1895 static struct caam_hash_alg * 1896 caam_hash_alloc(struct caam_hash_template *template, 1897 bool keyed) 1898 { 1899 struct caam_hash_alg *t_alg; 1900 struct ahash_alg *halg; 1901 struct crypto_alg *alg; 1902 1903 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); 1904 if (!t_alg) { 1905 pr_err("failed to allocate t_alg\n"); 1906 return ERR_PTR(-ENOMEM); 1907 } 1908 1909 t_alg->ahash_alg = template->template_ahash; 1910 halg = &t_alg->ahash_alg; 1911 alg = &halg->halg.base; 1912 1913 if (keyed) { 1914 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1915 template->hmac_name); 1916 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1917 template->hmac_driver_name); 1918 } else { 1919 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1920 template->name); 1921 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1922 template->driver_name); 1923 t_alg->ahash_alg.setkey = NULL; 1924 } 1925 alg->cra_module = THIS_MODULE; 1926 alg->cra_init = caam_hash_cra_init; 1927 alg->cra_exit = caam_hash_cra_exit; 1928 alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding(); 1929 alg->cra_priority = CAAM_CRA_PRIORITY; 1930 alg->cra_blocksize = template->blocksize; 1931 alg->cra_alignmask = 0; 1932 alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 1933 1934 t_alg->alg_type = template->alg_type; 1935 1936 return t_alg; 1937 } 1938 1939 int caam_algapi_hash_init(struct device *ctrldev) 1940 { 1941 int i = 0, err = 0; 1942 struct caam_drv_private *priv = dev_get_drvdata(ctrldev); 1943 unsigned int md_limit = SHA512_DIGEST_SIZE; 1944 u32 md_inst, md_vid; 1945 1946 /* 1947 * Register crypto algorithms the device supports. First, identify 1948 * presence and attributes of MD block. 1949 */ 1950 if (priv->era < 10) { 1951 md_vid = (rd_reg32(&priv->ctrl->perfmon.cha_id_ls) & 1952 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1953 md_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) & 1954 CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; 1955 } else { 1956 u32 mdha = rd_reg32(&priv->ctrl->vreg.mdha); 1957 1958 md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; 1959 md_inst = mdha & CHA_VER_NUM_MASK; 1960 } 1961 1962 /* 1963 * Skip registration of any hashing algorithms if MD block 1964 * is not present. 1965 */ 1966 if (!md_inst) 1967 return 0; 1968 1969 /* Limit digest size based on LP256 */ 1970 if (md_vid == CHA_VER_VID_MD_LP256) 1971 md_limit = SHA256_DIGEST_SIZE; 1972 1973 INIT_LIST_HEAD(&hash_list); 1974 1975 /* register crypto algorithms the device supports */ 1976 for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { 1977 struct caam_hash_alg *t_alg; 1978 struct caam_hash_template *alg = driver_hash + i; 1979 1980 /* If MD size is not supported by device, skip registration */ 1981 if (is_mdha(alg->alg_type) && 1982 alg->template_ahash.halg.digestsize > md_limit) 1983 continue; 1984 1985 /* register hmac version */ 1986 t_alg = caam_hash_alloc(alg, true); 1987 if (IS_ERR(t_alg)) { 1988 err = PTR_ERR(t_alg); 1989 pr_warn("%s alg allocation failed\n", 1990 alg->hmac_driver_name); 1991 continue; 1992 } 1993 1994 err = crypto_register_ahash(&t_alg->ahash_alg); 1995 if (err) { 1996 pr_warn("%s alg registration failed: %d\n", 1997 t_alg->ahash_alg.halg.base.cra_driver_name, 1998 err); 1999 kfree(t_alg); 2000 } else 2001 list_add_tail(&t_alg->entry, &hash_list); 2002 2003 if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES) 2004 continue; 2005 2006 /* register unkeyed version */ 2007 t_alg = caam_hash_alloc(alg, false); 2008 if (IS_ERR(t_alg)) { 2009 err = PTR_ERR(t_alg); 2010 pr_warn("%s alg allocation failed\n", alg->driver_name); 2011 continue; 2012 } 2013 2014 err = crypto_register_ahash(&t_alg->ahash_alg); 2015 if (err) { 2016 pr_warn("%s alg registration failed: %d\n", 2017 t_alg->ahash_alg.halg.base.cra_driver_name, 2018 err); 2019 kfree(t_alg); 2020 } else 2021 list_add_tail(&t_alg->entry, &hash_list); 2022 } 2023 2024 return err; 2025 } 2026