1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright 2015-2016 Freescale Semiconductor Inc.
4  * Copyright 2017-2019 NXP
5  */
6 
7 #include "compat.h"
8 #include "regs.h"
9 #include "caamalg_qi2.h"
10 #include "dpseci_cmd.h"
11 #include "desc_constr.h"
12 #include "error.h"
13 #include "sg_sw_sec4.h"
14 #include "sg_sw_qm2.h"
15 #include "key_gen.h"
16 #include "caamalg_desc.h"
17 #include "caamhash_desc.h"
18 #include "dpseci-debugfs.h"
19 #include <linux/fsl/mc.h>
20 #include <soc/fsl/dpaa2-io.h>
21 #include <soc/fsl/dpaa2-fd.h>
22 
23 #define CAAM_CRA_PRIORITY	2000
24 
25 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
26 #define CAAM_MAX_KEY_SIZE	(AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE + \
27 				 SHA512_DIGEST_SIZE * 2)
28 
29 /*
30  * This is a a cache of buffers, from which the users of CAAM QI driver
31  * can allocate short buffers. It's speedier than doing kmalloc on the hotpath.
32  * NOTE: A more elegant solution would be to have some headroom in the frames
33  *       being processed. This can be added by the dpaa2-eth driver. This would
34  *       pose a problem for userspace application processing which cannot
35  *       know of this limitation. So for now, this will work.
36  * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
37  */
38 static struct kmem_cache *qi_cache;
39 
40 struct caam_alg_entry {
41 	struct device *dev;
42 	int class1_alg_type;
43 	int class2_alg_type;
44 	bool rfc3686;
45 	bool geniv;
46 	bool nodkp;
47 };
48 
49 struct caam_aead_alg {
50 	struct aead_alg aead;
51 	struct caam_alg_entry caam;
52 	bool registered;
53 };
54 
55 struct caam_skcipher_alg {
56 	struct skcipher_alg skcipher;
57 	struct caam_alg_entry caam;
58 	bool registered;
59 };
60 
61 /**
62  * caam_ctx - per-session context
63  * @flc: Flow Contexts array
64  * @key:  [authentication key], encryption key
65  * @flc_dma: I/O virtual addresses of the Flow Contexts
66  * @key_dma: I/O virtual address of the key
67  * @dir: DMA direction for mapping key and Flow Contexts
68  * @dev: dpseci device
69  * @adata: authentication algorithm details
70  * @cdata: encryption algorithm details
71  * @authsize: authentication tag (a.k.a. ICV / MAC) size
72  */
73 struct caam_ctx {
74 	struct caam_flc flc[NUM_OP];
75 	u8 key[CAAM_MAX_KEY_SIZE];
76 	dma_addr_t flc_dma[NUM_OP];
77 	dma_addr_t key_dma;
78 	enum dma_data_direction dir;
79 	struct device *dev;
80 	struct alginfo adata;
81 	struct alginfo cdata;
82 	unsigned int authsize;
83 };
84 
85 static void *dpaa2_caam_iova_to_virt(struct dpaa2_caam_priv *priv,
86 				     dma_addr_t iova_addr)
87 {
88 	phys_addr_t phys_addr;
89 
90 	phys_addr = priv->domain ? iommu_iova_to_phys(priv->domain, iova_addr) :
91 				   iova_addr;
92 
93 	return phys_to_virt(phys_addr);
94 }
95 
96 /*
97  * qi_cache_zalloc - Allocate buffers from CAAM-QI cache
98  *
99  * Allocate data on the hotpath. Instead of using kzalloc, one can use the
100  * services of the CAAM QI memory cache (backed by kmem_cache). The buffers
101  * will have a size of CAAM_QI_MEMCACHE_SIZE, which should be sufficient for
102  * hosting 16 SG entries.
103  *
104  * @flags - flags that would be used for the equivalent kmalloc(..) call
105  *
106  * Returns a pointer to a retrieved buffer on success or NULL on failure.
107  */
108 static inline void *qi_cache_zalloc(gfp_t flags)
109 {
110 	return kmem_cache_zalloc(qi_cache, flags);
111 }
112 
113 /*
114  * qi_cache_free - Frees buffers allocated from CAAM-QI cache
115  *
116  * @obj - buffer previously allocated by qi_cache_zalloc
117  *
118  * No checking is being done, the call is a passthrough call to
119  * kmem_cache_free(...)
120  */
121 static inline void qi_cache_free(void *obj)
122 {
123 	kmem_cache_free(qi_cache, obj);
124 }
125 
126 static struct caam_request *to_caam_req(struct crypto_async_request *areq)
127 {
128 	switch (crypto_tfm_alg_type(areq->tfm)) {
129 	case CRYPTO_ALG_TYPE_SKCIPHER:
130 		return skcipher_request_ctx(skcipher_request_cast(areq));
131 	case CRYPTO_ALG_TYPE_AEAD:
132 		return aead_request_ctx(container_of(areq, struct aead_request,
133 						     base));
134 	case CRYPTO_ALG_TYPE_AHASH:
135 		return ahash_request_ctx(ahash_request_cast(areq));
136 	default:
137 		return ERR_PTR(-EINVAL);
138 	}
139 }
140 
141 static void caam_unmap(struct device *dev, struct scatterlist *src,
142 		       struct scatterlist *dst, int src_nents,
143 		       int dst_nents, dma_addr_t iv_dma, int ivsize,
144 		       enum dma_data_direction iv_dir, dma_addr_t qm_sg_dma,
145 		       int qm_sg_bytes)
146 {
147 	if (dst != src) {
148 		if (src_nents)
149 			dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
150 		if (dst_nents)
151 			dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
152 	} else {
153 		dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
154 	}
155 
156 	if (iv_dma)
157 		dma_unmap_single(dev, iv_dma, ivsize, iv_dir);
158 
159 	if (qm_sg_bytes)
160 		dma_unmap_single(dev, qm_sg_dma, qm_sg_bytes, DMA_TO_DEVICE);
161 }
162 
163 static int aead_set_sh_desc(struct crypto_aead *aead)
164 {
165 	struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
166 						 typeof(*alg), aead);
167 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
168 	unsigned int ivsize = crypto_aead_ivsize(aead);
169 	struct device *dev = ctx->dev;
170 	struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
171 	struct caam_flc *flc;
172 	u32 *desc;
173 	u32 ctx1_iv_off = 0;
174 	u32 *nonce = NULL;
175 	unsigned int data_len[2];
176 	u32 inl_mask;
177 	const bool ctr_mode = ((ctx->cdata.algtype & OP_ALG_AAI_MASK) ==
178 			       OP_ALG_AAI_CTR_MOD128);
179 	const bool is_rfc3686 = alg->caam.rfc3686;
180 
181 	if (!ctx->cdata.keylen || !ctx->authsize)
182 		return 0;
183 
184 	/*
185 	 * AES-CTR needs to load IV in CONTEXT1 reg
186 	 * at an offset of 128bits (16bytes)
187 	 * CONTEXT1[255:128] = IV
188 	 */
189 	if (ctr_mode)
190 		ctx1_iv_off = 16;
191 
192 	/*
193 	 * RFC3686 specific:
194 	 *	CONTEXT1[255:128] = {NONCE, IV, COUNTER}
195 	 */
196 	if (is_rfc3686) {
197 		ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
198 		nonce = (u32 *)((void *)ctx->key + ctx->adata.keylen_pad +
199 				ctx->cdata.keylen - CTR_RFC3686_NONCE_SIZE);
200 	}
201 
202 	/*
203 	 * In case |user key| > |derived key|, using DKP<imm,imm> would result
204 	 * in invalid opcodes (last bytes of user key) in the resulting
205 	 * descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
206 	 * addresses are needed.
207 	 */
208 	ctx->adata.key_virt = ctx->key;
209 	ctx->adata.key_dma = ctx->key_dma;
210 
211 	ctx->cdata.key_virt = ctx->key + ctx->adata.keylen_pad;
212 	ctx->cdata.key_dma = ctx->key_dma + ctx->adata.keylen_pad;
213 
214 	data_len[0] = ctx->adata.keylen_pad;
215 	data_len[1] = ctx->cdata.keylen;
216 
217 	/* aead_encrypt shared descriptor */
218 	if (desc_inline_query((alg->caam.geniv ? DESC_QI_AEAD_GIVENC_LEN :
219 						 DESC_QI_AEAD_ENC_LEN) +
220 			      (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
221 			      DESC_JOB_IO_LEN, data_len, &inl_mask,
222 			      ARRAY_SIZE(data_len)) < 0)
223 		return -EINVAL;
224 
225 	ctx->adata.key_inline = !!(inl_mask & 1);
226 	ctx->cdata.key_inline = !!(inl_mask & 2);
227 
228 	flc = &ctx->flc[ENCRYPT];
229 	desc = flc->sh_desc;
230 
231 	if (alg->caam.geniv)
232 		cnstr_shdsc_aead_givencap(desc, &ctx->cdata, &ctx->adata,
233 					  ivsize, ctx->authsize, is_rfc3686,
234 					  nonce, ctx1_iv_off, true,
235 					  priv->sec_attr.era);
236 	else
237 		cnstr_shdsc_aead_encap(desc, &ctx->cdata, &ctx->adata,
238 				       ivsize, ctx->authsize, is_rfc3686, nonce,
239 				       ctx1_iv_off, true, priv->sec_attr.era);
240 
241 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
242 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
243 				   sizeof(flc->flc) + desc_bytes(desc),
244 				   ctx->dir);
245 
246 	/* aead_decrypt shared descriptor */
247 	if (desc_inline_query(DESC_QI_AEAD_DEC_LEN +
248 			      (is_rfc3686 ? DESC_AEAD_CTR_RFC3686_LEN : 0),
249 			      DESC_JOB_IO_LEN, data_len, &inl_mask,
250 			      ARRAY_SIZE(data_len)) < 0)
251 		return -EINVAL;
252 
253 	ctx->adata.key_inline = !!(inl_mask & 1);
254 	ctx->cdata.key_inline = !!(inl_mask & 2);
255 
256 	flc = &ctx->flc[DECRYPT];
257 	desc = flc->sh_desc;
258 	cnstr_shdsc_aead_decap(desc, &ctx->cdata, &ctx->adata,
259 			       ivsize, ctx->authsize, alg->caam.geniv,
260 			       is_rfc3686, nonce, ctx1_iv_off, true,
261 			       priv->sec_attr.era);
262 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
263 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
264 				   sizeof(flc->flc) + desc_bytes(desc),
265 				   ctx->dir);
266 
267 	return 0;
268 }
269 
270 static int aead_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
271 {
272 	struct caam_ctx *ctx = crypto_aead_ctx(authenc);
273 
274 	ctx->authsize = authsize;
275 	aead_set_sh_desc(authenc);
276 
277 	return 0;
278 }
279 
280 static int aead_setkey(struct crypto_aead *aead, const u8 *key,
281 		       unsigned int keylen)
282 {
283 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
284 	struct device *dev = ctx->dev;
285 	struct crypto_authenc_keys keys;
286 
287 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
288 		goto badkey;
289 
290 	dev_dbg(dev, "keylen %d enckeylen %d authkeylen %d\n",
291 		keys.authkeylen + keys.enckeylen, keys.enckeylen,
292 		keys.authkeylen);
293 	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
294 			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
295 
296 	ctx->adata.keylen = keys.authkeylen;
297 	ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
298 					      OP_ALG_ALGSEL_MASK);
299 
300 	if (ctx->adata.keylen_pad + keys.enckeylen > CAAM_MAX_KEY_SIZE)
301 		goto badkey;
302 
303 	memcpy(ctx->key, keys.authkey, keys.authkeylen);
304 	memcpy(ctx->key + ctx->adata.keylen_pad, keys.enckey, keys.enckeylen);
305 	dma_sync_single_for_device(dev, ctx->key_dma, ctx->adata.keylen_pad +
306 				   keys.enckeylen, ctx->dir);
307 	print_hex_dump_debug("ctx.key@" __stringify(__LINE__)": ",
308 			     DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
309 			     ctx->adata.keylen_pad + keys.enckeylen, 1);
310 
311 	ctx->cdata.keylen = keys.enckeylen;
312 
313 	memzero_explicit(&keys, sizeof(keys));
314 	return aead_set_sh_desc(aead);
315 badkey:
316 	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
317 	memzero_explicit(&keys, sizeof(keys));
318 	return -EINVAL;
319 }
320 
321 static int des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
322 			    unsigned int keylen)
323 {
324 	struct crypto_authenc_keys keys;
325 	int err;
326 
327 	err = crypto_authenc_extractkeys(&keys, key, keylen);
328 	if (unlikely(err))
329 		goto badkey;
330 
331 	err = -EINVAL;
332 	if (keys.enckeylen != DES3_EDE_KEY_SIZE)
333 		goto badkey;
334 
335 	err = crypto_des3_ede_verify_key(crypto_aead_tfm(aead), keys.enckey) ?:
336 	      aead_setkey(aead, key, keylen);
337 
338 out:
339 	memzero_explicit(&keys, sizeof(keys));
340 	return err;
341 
342 badkey:
343 	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
344 	goto out;
345 }
346 
347 static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
348 					   bool encrypt)
349 {
350 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
351 	struct caam_request *req_ctx = aead_request_ctx(req);
352 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
353 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
354 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
355 	struct caam_aead_alg *alg = container_of(crypto_aead_alg(aead),
356 						 typeof(*alg), aead);
357 	struct device *dev = ctx->dev;
358 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
359 		      GFP_KERNEL : GFP_ATOMIC;
360 	int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
361 	int src_len, dst_len = 0;
362 	struct aead_edesc *edesc;
363 	dma_addr_t qm_sg_dma, iv_dma = 0;
364 	int ivsize = 0;
365 	unsigned int authsize = ctx->authsize;
366 	int qm_sg_index = 0, qm_sg_nents = 0, qm_sg_bytes;
367 	int in_len, out_len;
368 	struct dpaa2_sg_entry *sg_table;
369 
370 	/* allocate space for base edesc, link tables and IV */
371 	edesc = qi_cache_zalloc(GFP_DMA | flags);
372 	if (unlikely(!edesc)) {
373 		dev_err(dev, "could not allocate extended descriptor\n");
374 		return ERR_PTR(-ENOMEM);
375 	}
376 
377 	if (unlikely(req->dst != req->src)) {
378 		src_len = req->assoclen + req->cryptlen;
379 		dst_len = src_len + (encrypt ? authsize : (-authsize));
380 
381 		src_nents = sg_nents_for_len(req->src, src_len);
382 		if (unlikely(src_nents < 0)) {
383 			dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
384 				src_len);
385 			qi_cache_free(edesc);
386 			return ERR_PTR(src_nents);
387 		}
388 
389 		dst_nents = sg_nents_for_len(req->dst, dst_len);
390 		if (unlikely(dst_nents < 0)) {
391 			dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
392 				dst_len);
393 			qi_cache_free(edesc);
394 			return ERR_PTR(dst_nents);
395 		}
396 
397 		if (src_nents) {
398 			mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
399 						      DMA_TO_DEVICE);
400 			if (unlikely(!mapped_src_nents)) {
401 				dev_err(dev, "unable to map source\n");
402 				qi_cache_free(edesc);
403 				return ERR_PTR(-ENOMEM);
404 			}
405 		} else {
406 			mapped_src_nents = 0;
407 		}
408 
409 		if (dst_nents) {
410 			mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
411 						      DMA_FROM_DEVICE);
412 			if (unlikely(!mapped_dst_nents)) {
413 				dev_err(dev, "unable to map destination\n");
414 				dma_unmap_sg(dev, req->src, src_nents,
415 					     DMA_TO_DEVICE);
416 				qi_cache_free(edesc);
417 				return ERR_PTR(-ENOMEM);
418 			}
419 		} else {
420 			mapped_dst_nents = 0;
421 		}
422 	} else {
423 		src_len = req->assoclen + req->cryptlen +
424 			  (encrypt ? authsize : 0);
425 
426 		src_nents = sg_nents_for_len(req->src, src_len);
427 		if (unlikely(src_nents < 0)) {
428 			dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
429 				src_len);
430 			qi_cache_free(edesc);
431 			return ERR_PTR(src_nents);
432 		}
433 
434 		mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
435 					      DMA_BIDIRECTIONAL);
436 		if (unlikely(!mapped_src_nents)) {
437 			dev_err(dev, "unable to map source\n");
438 			qi_cache_free(edesc);
439 			return ERR_PTR(-ENOMEM);
440 		}
441 	}
442 
443 	if ((alg->caam.rfc3686 && encrypt) || !alg->caam.geniv)
444 		ivsize = crypto_aead_ivsize(aead);
445 
446 	/*
447 	 * Create S/G table: req->assoclen, [IV,] req->src [, req->dst].
448 	 * Input is not contiguous.
449 	 * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
450 	 * the end of the table by allocating more S/G entries. Logic:
451 	 * if (src != dst && output S/G)
452 	 *      pad output S/G, if needed
453 	 * else if (src == dst && S/G)
454 	 *      overlapping S/Gs; pad one of them
455 	 * else if (input S/G) ...
456 	 *      pad input S/G, if needed
457 	 */
458 	qm_sg_nents = 1 + !!ivsize + mapped_src_nents;
459 	if (mapped_dst_nents > 1)
460 		qm_sg_nents += pad_sg_nents(mapped_dst_nents);
461 	else if ((req->src == req->dst) && (mapped_src_nents > 1))
462 		qm_sg_nents = max(pad_sg_nents(qm_sg_nents),
463 				  1 + !!ivsize +
464 				  pad_sg_nents(mapped_src_nents));
465 	else
466 		qm_sg_nents = pad_sg_nents(qm_sg_nents);
467 
468 	sg_table = &edesc->sgt[0];
469 	qm_sg_bytes = qm_sg_nents * sizeof(*sg_table);
470 	if (unlikely(offsetof(struct aead_edesc, sgt) + qm_sg_bytes + ivsize >
471 		     CAAM_QI_MEMCACHE_SIZE)) {
472 		dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
473 			qm_sg_nents, ivsize);
474 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
475 			   0, DMA_NONE, 0, 0);
476 		qi_cache_free(edesc);
477 		return ERR_PTR(-ENOMEM);
478 	}
479 
480 	if (ivsize) {
481 		u8 *iv = (u8 *)(sg_table + qm_sg_nents);
482 
483 		/* Make sure IV is located in a DMAable area */
484 		memcpy(iv, req->iv, ivsize);
485 
486 		iv_dma = dma_map_single(dev, iv, ivsize, DMA_TO_DEVICE);
487 		if (dma_mapping_error(dev, iv_dma)) {
488 			dev_err(dev, "unable to map IV\n");
489 			caam_unmap(dev, req->src, req->dst, src_nents,
490 				   dst_nents, 0, 0, DMA_NONE, 0, 0);
491 			qi_cache_free(edesc);
492 			return ERR_PTR(-ENOMEM);
493 		}
494 	}
495 
496 	edesc->src_nents = src_nents;
497 	edesc->dst_nents = dst_nents;
498 	edesc->iv_dma = iv_dma;
499 
500 	if ((alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK) ==
501 	    OP_ALG_ALGSEL_CHACHA20 && ivsize != CHACHAPOLY_IV_SIZE)
502 		/*
503 		 * The associated data comes already with the IV but we need
504 		 * to skip it when we authenticate or encrypt...
505 		 */
506 		edesc->assoclen = cpu_to_caam32(req->assoclen - ivsize);
507 	else
508 		edesc->assoclen = cpu_to_caam32(req->assoclen);
509 	edesc->assoclen_dma = dma_map_single(dev, &edesc->assoclen, 4,
510 					     DMA_TO_DEVICE);
511 	if (dma_mapping_error(dev, edesc->assoclen_dma)) {
512 		dev_err(dev, "unable to map assoclen\n");
513 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
514 			   iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
515 		qi_cache_free(edesc);
516 		return ERR_PTR(-ENOMEM);
517 	}
518 
519 	dma_to_qm_sg_one(sg_table, edesc->assoclen_dma, 4, 0);
520 	qm_sg_index++;
521 	if (ivsize) {
522 		dma_to_qm_sg_one(sg_table + qm_sg_index, iv_dma, ivsize, 0);
523 		qm_sg_index++;
524 	}
525 	sg_to_qm_sg_last(req->src, src_len, sg_table + qm_sg_index, 0);
526 	qm_sg_index += mapped_src_nents;
527 
528 	if (mapped_dst_nents > 1)
529 		sg_to_qm_sg_last(req->dst, dst_len, sg_table + qm_sg_index, 0);
530 
531 	qm_sg_dma = dma_map_single(dev, sg_table, qm_sg_bytes, DMA_TO_DEVICE);
532 	if (dma_mapping_error(dev, qm_sg_dma)) {
533 		dev_err(dev, "unable to map S/G table\n");
534 		dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
535 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
536 			   iv_dma, ivsize, DMA_TO_DEVICE, 0, 0);
537 		qi_cache_free(edesc);
538 		return ERR_PTR(-ENOMEM);
539 	}
540 
541 	edesc->qm_sg_dma = qm_sg_dma;
542 	edesc->qm_sg_bytes = qm_sg_bytes;
543 
544 	out_len = req->assoclen + req->cryptlen +
545 		  (encrypt ? ctx->authsize : (-ctx->authsize));
546 	in_len = 4 + ivsize + req->assoclen + req->cryptlen;
547 
548 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
549 	dpaa2_fl_set_final(in_fle, true);
550 	dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
551 	dpaa2_fl_set_addr(in_fle, qm_sg_dma);
552 	dpaa2_fl_set_len(in_fle, in_len);
553 
554 	if (req->dst == req->src) {
555 		if (mapped_src_nents == 1) {
556 			dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
557 			dpaa2_fl_set_addr(out_fle, sg_dma_address(req->src));
558 		} else {
559 			dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
560 			dpaa2_fl_set_addr(out_fle, qm_sg_dma +
561 					  (1 + !!ivsize) * sizeof(*sg_table));
562 		}
563 	} else if (!mapped_dst_nents) {
564 		/*
565 		 * crypto engine requires the output entry to be present when
566 		 * "frame list" FD is used.
567 		 * Since engine does not support FMT=2'b11 (unused entry type),
568 		 * leaving out_fle zeroized is the best option.
569 		 */
570 		goto skip_out_fle;
571 	} else if (mapped_dst_nents == 1) {
572 		dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
573 		dpaa2_fl_set_addr(out_fle, sg_dma_address(req->dst));
574 	} else {
575 		dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
576 		dpaa2_fl_set_addr(out_fle, qm_sg_dma + qm_sg_index *
577 				  sizeof(*sg_table));
578 	}
579 
580 	dpaa2_fl_set_len(out_fle, out_len);
581 
582 skip_out_fle:
583 	return edesc;
584 }
585 
586 static int chachapoly_set_sh_desc(struct crypto_aead *aead)
587 {
588 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
589 	unsigned int ivsize = crypto_aead_ivsize(aead);
590 	struct device *dev = ctx->dev;
591 	struct caam_flc *flc;
592 	u32 *desc;
593 
594 	if (!ctx->cdata.keylen || !ctx->authsize)
595 		return 0;
596 
597 	flc = &ctx->flc[ENCRYPT];
598 	desc = flc->sh_desc;
599 	cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
600 			       ctx->authsize, true, true);
601 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
602 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
603 				   sizeof(flc->flc) + desc_bytes(desc),
604 				   ctx->dir);
605 
606 	flc = &ctx->flc[DECRYPT];
607 	desc = flc->sh_desc;
608 	cnstr_shdsc_chachapoly(desc, &ctx->cdata, &ctx->adata, ivsize,
609 			       ctx->authsize, false, true);
610 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
611 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
612 				   sizeof(flc->flc) + desc_bytes(desc),
613 				   ctx->dir);
614 
615 	return 0;
616 }
617 
618 static int chachapoly_setauthsize(struct crypto_aead *aead,
619 				  unsigned int authsize)
620 {
621 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
622 
623 	if (authsize != POLY1305_DIGEST_SIZE)
624 		return -EINVAL;
625 
626 	ctx->authsize = authsize;
627 	return chachapoly_set_sh_desc(aead);
628 }
629 
630 static int chachapoly_setkey(struct crypto_aead *aead, const u8 *key,
631 			     unsigned int keylen)
632 {
633 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
634 	unsigned int ivsize = crypto_aead_ivsize(aead);
635 	unsigned int saltlen = CHACHAPOLY_IV_SIZE - ivsize;
636 
637 	if (keylen != CHACHA_KEY_SIZE + saltlen) {
638 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
639 		return -EINVAL;
640 	}
641 
642 	ctx->cdata.key_virt = key;
643 	ctx->cdata.keylen = keylen - saltlen;
644 
645 	return chachapoly_set_sh_desc(aead);
646 }
647 
648 static int gcm_set_sh_desc(struct crypto_aead *aead)
649 {
650 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
651 	struct device *dev = ctx->dev;
652 	unsigned int ivsize = crypto_aead_ivsize(aead);
653 	struct caam_flc *flc;
654 	u32 *desc;
655 	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
656 			ctx->cdata.keylen;
657 
658 	if (!ctx->cdata.keylen || !ctx->authsize)
659 		return 0;
660 
661 	/*
662 	 * AES GCM encrypt shared descriptor
663 	 * Job Descriptor and Shared Descriptor
664 	 * must fit into the 64-word Descriptor h/w Buffer
665 	 */
666 	if (rem_bytes >= DESC_QI_GCM_ENC_LEN) {
667 		ctx->cdata.key_inline = true;
668 		ctx->cdata.key_virt = ctx->key;
669 	} else {
670 		ctx->cdata.key_inline = false;
671 		ctx->cdata.key_dma = ctx->key_dma;
672 	}
673 
674 	flc = &ctx->flc[ENCRYPT];
675 	desc = flc->sh_desc;
676 	cnstr_shdsc_gcm_encap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
677 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
678 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
679 				   sizeof(flc->flc) + desc_bytes(desc),
680 				   ctx->dir);
681 
682 	/*
683 	 * Job Descriptor and Shared Descriptors
684 	 * must all fit into the 64-word Descriptor h/w Buffer
685 	 */
686 	if (rem_bytes >= DESC_QI_GCM_DEC_LEN) {
687 		ctx->cdata.key_inline = true;
688 		ctx->cdata.key_virt = ctx->key;
689 	} else {
690 		ctx->cdata.key_inline = false;
691 		ctx->cdata.key_dma = ctx->key_dma;
692 	}
693 
694 	flc = &ctx->flc[DECRYPT];
695 	desc = flc->sh_desc;
696 	cnstr_shdsc_gcm_decap(desc, &ctx->cdata, ivsize, ctx->authsize, true);
697 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
698 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
699 				   sizeof(flc->flc) + desc_bytes(desc),
700 				   ctx->dir);
701 
702 	return 0;
703 }
704 
705 static int gcm_setauthsize(struct crypto_aead *authenc, unsigned int authsize)
706 {
707 	struct caam_ctx *ctx = crypto_aead_ctx(authenc);
708 	int err;
709 
710 	err = crypto_gcm_check_authsize(authsize);
711 	if (err)
712 		return err;
713 
714 	ctx->authsize = authsize;
715 	gcm_set_sh_desc(authenc);
716 
717 	return 0;
718 }
719 
720 static int gcm_setkey(struct crypto_aead *aead,
721 		      const u8 *key, unsigned int keylen)
722 {
723 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
724 	struct device *dev = ctx->dev;
725 	int ret;
726 
727 	ret = aes_check_keylen(keylen);
728 	if (ret) {
729 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
730 		return ret;
731 	}
732 	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
733 			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
734 
735 	memcpy(ctx->key, key, keylen);
736 	dma_sync_single_for_device(dev, ctx->key_dma, keylen, ctx->dir);
737 	ctx->cdata.keylen = keylen;
738 
739 	return gcm_set_sh_desc(aead);
740 }
741 
742 static int rfc4106_set_sh_desc(struct crypto_aead *aead)
743 {
744 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
745 	struct device *dev = ctx->dev;
746 	unsigned int ivsize = crypto_aead_ivsize(aead);
747 	struct caam_flc *flc;
748 	u32 *desc;
749 	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
750 			ctx->cdata.keylen;
751 
752 	if (!ctx->cdata.keylen || !ctx->authsize)
753 		return 0;
754 
755 	ctx->cdata.key_virt = ctx->key;
756 
757 	/*
758 	 * RFC4106 encrypt shared descriptor
759 	 * Job Descriptor and Shared Descriptor
760 	 * must fit into the 64-word Descriptor h/w Buffer
761 	 */
762 	if (rem_bytes >= DESC_QI_RFC4106_ENC_LEN) {
763 		ctx->cdata.key_inline = true;
764 	} else {
765 		ctx->cdata.key_inline = false;
766 		ctx->cdata.key_dma = ctx->key_dma;
767 	}
768 
769 	flc = &ctx->flc[ENCRYPT];
770 	desc = flc->sh_desc;
771 	cnstr_shdsc_rfc4106_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
772 				  true);
773 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
774 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
775 				   sizeof(flc->flc) + desc_bytes(desc),
776 				   ctx->dir);
777 
778 	/*
779 	 * Job Descriptor and Shared Descriptors
780 	 * must all fit into the 64-word Descriptor h/w Buffer
781 	 */
782 	if (rem_bytes >= DESC_QI_RFC4106_DEC_LEN) {
783 		ctx->cdata.key_inline = true;
784 	} else {
785 		ctx->cdata.key_inline = false;
786 		ctx->cdata.key_dma = ctx->key_dma;
787 	}
788 
789 	flc = &ctx->flc[DECRYPT];
790 	desc = flc->sh_desc;
791 	cnstr_shdsc_rfc4106_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
792 				  true);
793 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
794 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
795 				   sizeof(flc->flc) + desc_bytes(desc),
796 				   ctx->dir);
797 
798 	return 0;
799 }
800 
801 static int rfc4106_setauthsize(struct crypto_aead *authenc,
802 			       unsigned int authsize)
803 {
804 	struct caam_ctx *ctx = crypto_aead_ctx(authenc);
805 	int err;
806 
807 	err = crypto_rfc4106_check_authsize(authsize);
808 	if (err)
809 		return err;
810 
811 	ctx->authsize = authsize;
812 	rfc4106_set_sh_desc(authenc);
813 
814 	return 0;
815 }
816 
817 static int rfc4106_setkey(struct crypto_aead *aead,
818 			  const u8 *key, unsigned int keylen)
819 {
820 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
821 	struct device *dev = ctx->dev;
822 	int ret;
823 
824 	ret = aes_check_keylen(keylen - 4);
825 	if (ret) {
826 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
827 		return ret;
828 	}
829 
830 	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
831 			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
832 
833 	memcpy(ctx->key, key, keylen);
834 	/*
835 	 * The last four bytes of the key material are used as the salt value
836 	 * in the nonce. Update the AES key length.
837 	 */
838 	ctx->cdata.keylen = keylen - 4;
839 	dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
840 				   ctx->dir);
841 
842 	return rfc4106_set_sh_desc(aead);
843 }
844 
845 static int rfc4543_set_sh_desc(struct crypto_aead *aead)
846 {
847 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
848 	struct device *dev = ctx->dev;
849 	unsigned int ivsize = crypto_aead_ivsize(aead);
850 	struct caam_flc *flc;
851 	u32 *desc;
852 	int rem_bytes = CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN -
853 			ctx->cdata.keylen;
854 
855 	if (!ctx->cdata.keylen || !ctx->authsize)
856 		return 0;
857 
858 	ctx->cdata.key_virt = ctx->key;
859 
860 	/*
861 	 * RFC4543 encrypt shared descriptor
862 	 * Job Descriptor and Shared Descriptor
863 	 * must fit into the 64-word Descriptor h/w Buffer
864 	 */
865 	if (rem_bytes >= DESC_QI_RFC4543_ENC_LEN) {
866 		ctx->cdata.key_inline = true;
867 	} else {
868 		ctx->cdata.key_inline = false;
869 		ctx->cdata.key_dma = ctx->key_dma;
870 	}
871 
872 	flc = &ctx->flc[ENCRYPT];
873 	desc = flc->sh_desc;
874 	cnstr_shdsc_rfc4543_encap(desc, &ctx->cdata, ivsize, ctx->authsize,
875 				  true);
876 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
877 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
878 				   sizeof(flc->flc) + desc_bytes(desc),
879 				   ctx->dir);
880 
881 	/*
882 	 * Job Descriptor and Shared Descriptors
883 	 * must all fit into the 64-word Descriptor h/w Buffer
884 	 */
885 	if (rem_bytes >= DESC_QI_RFC4543_DEC_LEN) {
886 		ctx->cdata.key_inline = true;
887 	} else {
888 		ctx->cdata.key_inline = false;
889 		ctx->cdata.key_dma = ctx->key_dma;
890 	}
891 
892 	flc = &ctx->flc[DECRYPT];
893 	desc = flc->sh_desc;
894 	cnstr_shdsc_rfc4543_decap(desc, &ctx->cdata, ivsize, ctx->authsize,
895 				  true);
896 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
897 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
898 				   sizeof(flc->flc) + desc_bytes(desc),
899 				   ctx->dir);
900 
901 	return 0;
902 }
903 
904 static int rfc4543_setauthsize(struct crypto_aead *authenc,
905 			       unsigned int authsize)
906 {
907 	struct caam_ctx *ctx = crypto_aead_ctx(authenc);
908 
909 	if (authsize != 16)
910 		return -EINVAL;
911 
912 	ctx->authsize = authsize;
913 	rfc4543_set_sh_desc(authenc);
914 
915 	return 0;
916 }
917 
918 static int rfc4543_setkey(struct crypto_aead *aead,
919 			  const u8 *key, unsigned int keylen)
920 {
921 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
922 	struct device *dev = ctx->dev;
923 	int ret;
924 
925 	ret = aes_check_keylen(keylen - 4);
926 	if (ret) {
927 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
928 		return ret;
929 	}
930 
931 	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
932 			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
933 
934 	memcpy(ctx->key, key, keylen);
935 	/*
936 	 * The last four bytes of the key material are used as the salt value
937 	 * in the nonce. Update the AES key length.
938 	 */
939 	ctx->cdata.keylen = keylen - 4;
940 	dma_sync_single_for_device(dev, ctx->key_dma, ctx->cdata.keylen,
941 				   ctx->dir);
942 
943 	return rfc4543_set_sh_desc(aead);
944 }
945 
946 static int skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
947 			   unsigned int keylen, const u32 ctx1_iv_off)
948 {
949 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
950 	struct caam_skcipher_alg *alg =
951 		container_of(crypto_skcipher_alg(skcipher),
952 			     struct caam_skcipher_alg, skcipher);
953 	struct device *dev = ctx->dev;
954 	struct caam_flc *flc;
955 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
956 	u32 *desc;
957 	const bool is_rfc3686 = alg->caam.rfc3686;
958 
959 	print_hex_dump_debug("key in @" __stringify(__LINE__)": ",
960 			     DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
961 
962 	ctx->cdata.keylen = keylen;
963 	ctx->cdata.key_virt = key;
964 	ctx->cdata.key_inline = true;
965 
966 	/* skcipher_encrypt shared descriptor */
967 	flc = &ctx->flc[ENCRYPT];
968 	desc = flc->sh_desc;
969 	cnstr_shdsc_skcipher_encap(desc, &ctx->cdata, ivsize, is_rfc3686,
970 				   ctx1_iv_off);
971 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
972 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
973 				   sizeof(flc->flc) + desc_bytes(desc),
974 				   ctx->dir);
975 
976 	/* skcipher_decrypt shared descriptor */
977 	flc = &ctx->flc[DECRYPT];
978 	desc = flc->sh_desc;
979 	cnstr_shdsc_skcipher_decap(desc, &ctx->cdata, ivsize, is_rfc3686,
980 				   ctx1_iv_off);
981 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
982 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
983 				   sizeof(flc->flc) + desc_bytes(desc),
984 				   ctx->dir);
985 
986 	return 0;
987 }
988 
989 static int aes_skcipher_setkey(struct crypto_skcipher *skcipher,
990 			       const u8 *key, unsigned int keylen)
991 {
992 	int err;
993 
994 	err = aes_check_keylen(keylen);
995 	if (err) {
996 		crypto_skcipher_set_flags(skcipher,
997 					  CRYPTO_TFM_RES_BAD_KEY_LEN);
998 		return err;
999 	}
1000 
1001 	return skcipher_setkey(skcipher, key, keylen, 0);
1002 }
1003 
1004 static int rfc3686_skcipher_setkey(struct crypto_skcipher *skcipher,
1005 				   const u8 *key, unsigned int keylen)
1006 {
1007 	u32 ctx1_iv_off;
1008 	int err;
1009 
1010 	/*
1011 	 * RFC3686 specific:
1012 	 *	| CONTEXT1[255:128] = {NONCE, IV, COUNTER}
1013 	 *	| *key = {KEY, NONCE}
1014 	 */
1015 	ctx1_iv_off = 16 + CTR_RFC3686_NONCE_SIZE;
1016 	keylen -= CTR_RFC3686_NONCE_SIZE;
1017 
1018 	err = aes_check_keylen(keylen);
1019 	if (err) {
1020 		crypto_skcipher_set_flags(skcipher,
1021 					  CRYPTO_TFM_RES_BAD_KEY_LEN);
1022 		return err;
1023 	}
1024 
1025 	return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
1026 }
1027 
1028 static int ctr_skcipher_setkey(struct crypto_skcipher *skcipher,
1029 			       const u8 *key, unsigned int keylen)
1030 {
1031 	u32 ctx1_iv_off;
1032 	int err;
1033 
1034 	/*
1035 	 * AES-CTR needs to load IV in CONTEXT1 reg
1036 	 * at an offset of 128bits (16bytes)
1037 	 * CONTEXT1[255:128] = IV
1038 	 */
1039 	ctx1_iv_off = 16;
1040 
1041 	err = aes_check_keylen(keylen);
1042 	if (err) {
1043 		crypto_skcipher_set_flags(skcipher,
1044 					  CRYPTO_TFM_RES_BAD_KEY_LEN);
1045 		return err;
1046 	}
1047 
1048 	return skcipher_setkey(skcipher, key, keylen, ctx1_iv_off);
1049 }
1050 
1051 static int chacha20_skcipher_setkey(struct crypto_skcipher *skcipher,
1052 				    const u8 *key, unsigned int keylen)
1053 {
1054 	if (keylen != CHACHA_KEY_SIZE) {
1055 		crypto_skcipher_set_flags(skcipher,
1056 					  CRYPTO_TFM_RES_BAD_KEY_LEN);
1057 		return -EINVAL;
1058 	}
1059 
1060 	return skcipher_setkey(skcipher, key, keylen, 0);
1061 }
1062 
1063 static int des_skcipher_setkey(struct crypto_skcipher *skcipher,
1064 			       const u8 *key, unsigned int keylen)
1065 {
1066 	return verify_skcipher_des_key(skcipher, key) ?:
1067 	       skcipher_setkey(skcipher, key, keylen, 0);
1068 }
1069 
1070 static int des3_skcipher_setkey(struct crypto_skcipher *skcipher,
1071 			        const u8 *key, unsigned int keylen)
1072 {
1073 	return verify_skcipher_des3_key(skcipher, key) ?:
1074 	       skcipher_setkey(skcipher, key, keylen, 0);
1075 }
1076 
1077 static int xts_skcipher_setkey(struct crypto_skcipher *skcipher, const u8 *key,
1078 			       unsigned int keylen)
1079 {
1080 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1081 	struct device *dev = ctx->dev;
1082 	struct caam_flc *flc;
1083 	u32 *desc;
1084 
1085 	if (keylen != 2 * AES_MIN_KEY_SIZE  && keylen != 2 * AES_MAX_KEY_SIZE) {
1086 		dev_err(dev, "key size mismatch\n");
1087 		crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1088 		return -EINVAL;
1089 	}
1090 
1091 	ctx->cdata.keylen = keylen;
1092 	ctx->cdata.key_virt = key;
1093 	ctx->cdata.key_inline = true;
1094 
1095 	/* xts_skcipher_encrypt shared descriptor */
1096 	flc = &ctx->flc[ENCRYPT];
1097 	desc = flc->sh_desc;
1098 	cnstr_shdsc_xts_skcipher_encap(desc, &ctx->cdata);
1099 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
1100 	dma_sync_single_for_device(dev, ctx->flc_dma[ENCRYPT],
1101 				   sizeof(flc->flc) + desc_bytes(desc),
1102 				   ctx->dir);
1103 
1104 	/* xts_skcipher_decrypt shared descriptor */
1105 	flc = &ctx->flc[DECRYPT];
1106 	desc = flc->sh_desc;
1107 	cnstr_shdsc_xts_skcipher_decap(desc, &ctx->cdata);
1108 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
1109 	dma_sync_single_for_device(dev, ctx->flc_dma[DECRYPT],
1110 				   sizeof(flc->flc) + desc_bytes(desc),
1111 				   ctx->dir);
1112 
1113 	return 0;
1114 }
1115 
1116 static struct skcipher_edesc *skcipher_edesc_alloc(struct skcipher_request *req)
1117 {
1118 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1119 	struct caam_request *req_ctx = skcipher_request_ctx(req);
1120 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
1121 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
1122 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1123 	struct device *dev = ctx->dev;
1124 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
1125 		       GFP_KERNEL : GFP_ATOMIC;
1126 	int src_nents, mapped_src_nents, dst_nents = 0, mapped_dst_nents = 0;
1127 	struct skcipher_edesc *edesc;
1128 	dma_addr_t iv_dma;
1129 	u8 *iv;
1130 	int ivsize = crypto_skcipher_ivsize(skcipher);
1131 	int dst_sg_idx, qm_sg_ents, qm_sg_bytes;
1132 	struct dpaa2_sg_entry *sg_table;
1133 
1134 	src_nents = sg_nents_for_len(req->src, req->cryptlen);
1135 	if (unlikely(src_nents < 0)) {
1136 		dev_err(dev, "Insufficient bytes (%d) in src S/G\n",
1137 			req->cryptlen);
1138 		return ERR_PTR(src_nents);
1139 	}
1140 
1141 	if (unlikely(req->dst != req->src)) {
1142 		dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
1143 		if (unlikely(dst_nents < 0)) {
1144 			dev_err(dev, "Insufficient bytes (%d) in dst S/G\n",
1145 				req->cryptlen);
1146 			return ERR_PTR(dst_nents);
1147 		}
1148 
1149 		mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
1150 					      DMA_TO_DEVICE);
1151 		if (unlikely(!mapped_src_nents)) {
1152 			dev_err(dev, "unable to map source\n");
1153 			return ERR_PTR(-ENOMEM);
1154 		}
1155 
1156 		mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
1157 					      DMA_FROM_DEVICE);
1158 		if (unlikely(!mapped_dst_nents)) {
1159 			dev_err(dev, "unable to map destination\n");
1160 			dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
1161 			return ERR_PTR(-ENOMEM);
1162 		}
1163 	} else {
1164 		mapped_src_nents = dma_map_sg(dev, req->src, src_nents,
1165 					      DMA_BIDIRECTIONAL);
1166 		if (unlikely(!mapped_src_nents)) {
1167 			dev_err(dev, "unable to map source\n");
1168 			return ERR_PTR(-ENOMEM);
1169 		}
1170 	}
1171 
1172 	qm_sg_ents = 1 + mapped_src_nents;
1173 	dst_sg_idx = qm_sg_ents;
1174 
1175 	/*
1176 	 * Input, output HW S/G tables: [IV, src][dst, IV]
1177 	 * IV entries point to the same buffer
1178 	 * If src == dst, S/G entries are reused (S/G tables overlap)
1179 	 *
1180 	 * HW reads 4 S/G entries at a time; make sure the reads don't go beyond
1181 	 * the end of the table by allocating more S/G entries.
1182 	 */
1183 	if (req->src != req->dst)
1184 		qm_sg_ents += pad_sg_nents(mapped_dst_nents + 1);
1185 	else
1186 		qm_sg_ents = 1 + pad_sg_nents(qm_sg_ents);
1187 
1188 	qm_sg_bytes = qm_sg_ents * sizeof(struct dpaa2_sg_entry);
1189 	if (unlikely(offsetof(struct skcipher_edesc, sgt) + qm_sg_bytes +
1190 		     ivsize > CAAM_QI_MEMCACHE_SIZE)) {
1191 		dev_err(dev, "No space for %d S/G entries and/or %dB IV\n",
1192 			qm_sg_ents, ivsize);
1193 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
1194 			   0, DMA_NONE, 0, 0);
1195 		return ERR_PTR(-ENOMEM);
1196 	}
1197 
1198 	/* allocate space for base edesc, link tables and IV */
1199 	edesc = qi_cache_zalloc(GFP_DMA | flags);
1200 	if (unlikely(!edesc)) {
1201 		dev_err(dev, "could not allocate extended descriptor\n");
1202 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
1203 			   0, DMA_NONE, 0, 0);
1204 		return ERR_PTR(-ENOMEM);
1205 	}
1206 
1207 	/* Make sure IV is located in a DMAable area */
1208 	sg_table = &edesc->sgt[0];
1209 	iv = (u8 *)(sg_table + qm_sg_ents);
1210 	memcpy(iv, req->iv, ivsize);
1211 
1212 	iv_dma = dma_map_single(dev, iv, ivsize, DMA_BIDIRECTIONAL);
1213 	if (dma_mapping_error(dev, iv_dma)) {
1214 		dev_err(dev, "unable to map IV\n");
1215 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents, 0,
1216 			   0, DMA_NONE, 0, 0);
1217 		qi_cache_free(edesc);
1218 		return ERR_PTR(-ENOMEM);
1219 	}
1220 
1221 	edesc->src_nents = src_nents;
1222 	edesc->dst_nents = dst_nents;
1223 	edesc->iv_dma = iv_dma;
1224 	edesc->qm_sg_bytes = qm_sg_bytes;
1225 
1226 	dma_to_qm_sg_one(sg_table, iv_dma, ivsize, 0);
1227 	sg_to_qm_sg(req->src, req->cryptlen, sg_table + 1, 0);
1228 
1229 	if (req->src != req->dst)
1230 		sg_to_qm_sg(req->dst, req->cryptlen, sg_table + dst_sg_idx, 0);
1231 
1232 	dma_to_qm_sg_one(sg_table + dst_sg_idx + mapped_dst_nents, iv_dma,
1233 			 ivsize, 0);
1234 
1235 	edesc->qm_sg_dma = dma_map_single(dev, sg_table, edesc->qm_sg_bytes,
1236 					  DMA_TO_DEVICE);
1237 	if (dma_mapping_error(dev, edesc->qm_sg_dma)) {
1238 		dev_err(dev, "unable to map S/G table\n");
1239 		caam_unmap(dev, req->src, req->dst, src_nents, dst_nents,
1240 			   iv_dma, ivsize, DMA_BIDIRECTIONAL, 0, 0);
1241 		qi_cache_free(edesc);
1242 		return ERR_PTR(-ENOMEM);
1243 	}
1244 
1245 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
1246 	dpaa2_fl_set_final(in_fle, true);
1247 	dpaa2_fl_set_len(in_fle, req->cryptlen + ivsize);
1248 	dpaa2_fl_set_len(out_fle, req->cryptlen + ivsize);
1249 
1250 	dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
1251 	dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
1252 
1253 	dpaa2_fl_set_format(out_fle, dpaa2_fl_sg);
1254 
1255 	if (req->src == req->dst)
1256 		dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma +
1257 				  sizeof(*sg_table));
1258 	else
1259 		dpaa2_fl_set_addr(out_fle, edesc->qm_sg_dma + dst_sg_idx *
1260 				  sizeof(*sg_table));
1261 
1262 	return edesc;
1263 }
1264 
1265 static void aead_unmap(struct device *dev, struct aead_edesc *edesc,
1266 		       struct aead_request *req)
1267 {
1268 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1269 	int ivsize = crypto_aead_ivsize(aead);
1270 
1271 	caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
1272 		   edesc->iv_dma, ivsize, DMA_TO_DEVICE, edesc->qm_sg_dma,
1273 		   edesc->qm_sg_bytes);
1274 	dma_unmap_single(dev, edesc->assoclen_dma, 4, DMA_TO_DEVICE);
1275 }
1276 
1277 static void skcipher_unmap(struct device *dev, struct skcipher_edesc *edesc,
1278 			   struct skcipher_request *req)
1279 {
1280 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1281 	int ivsize = crypto_skcipher_ivsize(skcipher);
1282 
1283 	caam_unmap(dev, req->src, req->dst, edesc->src_nents, edesc->dst_nents,
1284 		   edesc->iv_dma, ivsize, DMA_BIDIRECTIONAL, edesc->qm_sg_dma,
1285 		   edesc->qm_sg_bytes);
1286 }
1287 
1288 static void aead_encrypt_done(void *cbk_ctx, u32 status)
1289 {
1290 	struct crypto_async_request *areq = cbk_ctx;
1291 	struct aead_request *req = container_of(areq, struct aead_request,
1292 						base);
1293 	struct caam_request *req_ctx = to_caam_req(areq);
1294 	struct aead_edesc *edesc = req_ctx->edesc;
1295 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1296 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1297 	int ecode = 0;
1298 
1299 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
1300 
1301 	if (unlikely(status))
1302 		ecode = caam_qi2_strstatus(ctx->dev, status);
1303 
1304 	aead_unmap(ctx->dev, edesc, req);
1305 	qi_cache_free(edesc);
1306 	aead_request_complete(req, ecode);
1307 }
1308 
1309 static void aead_decrypt_done(void *cbk_ctx, u32 status)
1310 {
1311 	struct crypto_async_request *areq = cbk_ctx;
1312 	struct aead_request *req = container_of(areq, struct aead_request,
1313 						base);
1314 	struct caam_request *req_ctx = to_caam_req(areq);
1315 	struct aead_edesc *edesc = req_ctx->edesc;
1316 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1317 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1318 	int ecode = 0;
1319 
1320 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
1321 
1322 	if (unlikely(status))
1323 		ecode = caam_qi2_strstatus(ctx->dev, status);
1324 
1325 	aead_unmap(ctx->dev, edesc, req);
1326 	qi_cache_free(edesc);
1327 	aead_request_complete(req, ecode);
1328 }
1329 
1330 static int aead_encrypt(struct aead_request *req)
1331 {
1332 	struct aead_edesc *edesc;
1333 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1334 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1335 	struct caam_request *caam_req = aead_request_ctx(req);
1336 	int ret;
1337 
1338 	/* allocate extended descriptor */
1339 	edesc = aead_edesc_alloc(req, true);
1340 	if (IS_ERR(edesc))
1341 		return PTR_ERR(edesc);
1342 
1343 	caam_req->flc = &ctx->flc[ENCRYPT];
1344 	caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
1345 	caam_req->cbk = aead_encrypt_done;
1346 	caam_req->ctx = &req->base;
1347 	caam_req->edesc = edesc;
1348 	ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
1349 	if (ret != -EINPROGRESS &&
1350 	    !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1351 		aead_unmap(ctx->dev, edesc, req);
1352 		qi_cache_free(edesc);
1353 	}
1354 
1355 	return ret;
1356 }
1357 
1358 static int aead_decrypt(struct aead_request *req)
1359 {
1360 	struct aead_edesc *edesc;
1361 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1362 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1363 	struct caam_request *caam_req = aead_request_ctx(req);
1364 	int ret;
1365 
1366 	/* allocate extended descriptor */
1367 	edesc = aead_edesc_alloc(req, false);
1368 	if (IS_ERR(edesc))
1369 		return PTR_ERR(edesc);
1370 
1371 	caam_req->flc = &ctx->flc[DECRYPT];
1372 	caam_req->flc_dma = ctx->flc_dma[DECRYPT];
1373 	caam_req->cbk = aead_decrypt_done;
1374 	caam_req->ctx = &req->base;
1375 	caam_req->edesc = edesc;
1376 	ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
1377 	if (ret != -EINPROGRESS &&
1378 	    !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1379 		aead_unmap(ctx->dev, edesc, req);
1380 		qi_cache_free(edesc);
1381 	}
1382 
1383 	return ret;
1384 }
1385 
1386 static int ipsec_gcm_encrypt(struct aead_request *req)
1387 {
1388 	return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_encrypt(req);
1389 }
1390 
1391 static int ipsec_gcm_decrypt(struct aead_request *req)
1392 {
1393 	return crypto_ipsec_check_assoclen(req->assoclen) ? : aead_decrypt(req);
1394 }
1395 
1396 static void skcipher_encrypt_done(void *cbk_ctx, u32 status)
1397 {
1398 	struct crypto_async_request *areq = cbk_ctx;
1399 	struct skcipher_request *req = skcipher_request_cast(areq);
1400 	struct caam_request *req_ctx = to_caam_req(areq);
1401 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1402 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1403 	struct skcipher_edesc *edesc = req_ctx->edesc;
1404 	int ecode = 0;
1405 	int ivsize = crypto_skcipher_ivsize(skcipher);
1406 
1407 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
1408 
1409 	if (unlikely(status))
1410 		ecode = caam_qi2_strstatus(ctx->dev, status);
1411 
1412 	print_hex_dump_debug("dstiv  @" __stringify(__LINE__)": ",
1413 			     DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
1414 			     edesc->src_nents > 1 ? 100 : ivsize, 1);
1415 	caam_dump_sg("dst    @" __stringify(__LINE__)": ",
1416 		     DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
1417 		     edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
1418 
1419 	skcipher_unmap(ctx->dev, edesc, req);
1420 
1421 	/*
1422 	 * The crypto API expects us to set the IV (req->iv) to the last
1423 	 * ciphertext block (CBC mode) or last counter (CTR mode).
1424 	 * This is used e.g. by the CTS mode.
1425 	 */
1426 	if (!ecode)
1427 		memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
1428 		       ivsize);
1429 
1430 	qi_cache_free(edesc);
1431 	skcipher_request_complete(req, ecode);
1432 }
1433 
1434 static void skcipher_decrypt_done(void *cbk_ctx, u32 status)
1435 {
1436 	struct crypto_async_request *areq = cbk_ctx;
1437 	struct skcipher_request *req = skcipher_request_cast(areq);
1438 	struct caam_request *req_ctx = to_caam_req(areq);
1439 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1440 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1441 	struct skcipher_edesc *edesc = req_ctx->edesc;
1442 	int ecode = 0;
1443 	int ivsize = crypto_skcipher_ivsize(skcipher);
1444 
1445 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
1446 
1447 	if (unlikely(status))
1448 		ecode = caam_qi2_strstatus(ctx->dev, status);
1449 
1450 	print_hex_dump_debug("dstiv  @" __stringify(__LINE__)": ",
1451 			     DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
1452 			     edesc->src_nents > 1 ? 100 : ivsize, 1);
1453 	caam_dump_sg("dst    @" __stringify(__LINE__)": ",
1454 		     DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
1455 		     edesc->dst_nents > 1 ? 100 : req->cryptlen, 1);
1456 
1457 	skcipher_unmap(ctx->dev, edesc, req);
1458 
1459 	/*
1460 	 * The crypto API expects us to set the IV (req->iv) to the last
1461 	 * ciphertext block (CBC mode) or last counter (CTR mode).
1462 	 * This is used e.g. by the CTS mode.
1463 	 */
1464 	if (!ecode)
1465 		memcpy(req->iv, (u8 *)&edesc->sgt[0] + edesc->qm_sg_bytes,
1466 		       ivsize);
1467 
1468 	qi_cache_free(edesc);
1469 	skcipher_request_complete(req, ecode);
1470 }
1471 
1472 static int skcipher_encrypt(struct skcipher_request *req)
1473 {
1474 	struct skcipher_edesc *edesc;
1475 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1476 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1477 	struct caam_request *caam_req = skcipher_request_ctx(req);
1478 	int ret;
1479 
1480 	if (!req->cryptlen)
1481 		return 0;
1482 
1483 	/* allocate extended descriptor */
1484 	edesc = skcipher_edesc_alloc(req);
1485 	if (IS_ERR(edesc))
1486 		return PTR_ERR(edesc);
1487 
1488 	caam_req->flc = &ctx->flc[ENCRYPT];
1489 	caam_req->flc_dma = ctx->flc_dma[ENCRYPT];
1490 	caam_req->cbk = skcipher_encrypt_done;
1491 	caam_req->ctx = &req->base;
1492 	caam_req->edesc = edesc;
1493 	ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
1494 	if (ret != -EINPROGRESS &&
1495 	    !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1496 		skcipher_unmap(ctx->dev, edesc, req);
1497 		qi_cache_free(edesc);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static int skcipher_decrypt(struct skcipher_request *req)
1504 {
1505 	struct skcipher_edesc *edesc;
1506 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1507 	struct caam_ctx *ctx = crypto_skcipher_ctx(skcipher);
1508 	struct caam_request *caam_req = skcipher_request_ctx(req);
1509 	int ret;
1510 
1511 	if (!req->cryptlen)
1512 		return 0;
1513 	/* allocate extended descriptor */
1514 	edesc = skcipher_edesc_alloc(req);
1515 	if (IS_ERR(edesc))
1516 		return PTR_ERR(edesc);
1517 
1518 	caam_req->flc = &ctx->flc[DECRYPT];
1519 	caam_req->flc_dma = ctx->flc_dma[DECRYPT];
1520 	caam_req->cbk = skcipher_decrypt_done;
1521 	caam_req->ctx = &req->base;
1522 	caam_req->edesc = edesc;
1523 	ret = dpaa2_caam_enqueue(ctx->dev, caam_req);
1524 	if (ret != -EINPROGRESS &&
1525 	    !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
1526 		skcipher_unmap(ctx->dev, edesc, req);
1527 		qi_cache_free(edesc);
1528 	}
1529 
1530 	return ret;
1531 }
1532 
1533 static int caam_cra_init(struct caam_ctx *ctx, struct caam_alg_entry *caam,
1534 			 bool uses_dkp)
1535 {
1536 	dma_addr_t dma_addr;
1537 	int i;
1538 
1539 	/* copy descriptor header template value */
1540 	ctx->cdata.algtype = OP_TYPE_CLASS1_ALG | caam->class1_alg_type;
1541 	ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam->class2_alg_type;
1542 
1543 	ctx->dev = caam->dev;
1544 	ctx->dir = uses_dkp ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1545 
1546 	dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc,
1547 					offsetof(struct caam_ctx, flc_dma),
1548 					ctx->dir, DMA_ATTR_SKIP_CPU_SYNC);
1549 	if (dma_mapping_error(ctx->dev, dma_addr)) {
1550 		dev_err(ctx->dev, "unable to map key, shared descriptors\n");
1551 		return -ENOMEM;
1552 	}
1553 
1554 	for (i = 0; i < NUM_OP; i++)
1555 		ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
1556 	ctx->key_dma = dma_addr + NUM_OP * sizeof(ctx->flc[0]);
1557 
1558 	return 0;
1559 }
1560 
1561 static int caam_cra_init_skcipher(struct crypto_skcipher *tfm)
1562 {
1563 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
1564 	struct caam_skcipher_alg *caam_alg =
1565 		container_of(alg, typeof(*caam_alg), skcipher);
1566 
1567 	crypto_skcipher_set_reqsize(tfm, sizeof(struct caam_request));
1568 	return caam_cra_init(crypto_skcipher_ctx(tfm), &caam_alg->caam, false);
1569 }
1570 
1571 static int caam_cra_init_aead(struct crypto_aead *tfm)
1572 {
1573 	struct aead_alg *alg = crypto_aead_alg(tfm);
1574 	struct caam_aead_alg *caam_alg = container_of(alg, typeof(*caam_alg),
1575 						      aead);
1576 
1577 	crypto_aead_set_reqsize(tfm, sizeof(struct caam_request));
1578 	return caam_cra_init(crypto_aead_ctx(tfm), &caam_alg->caam,
1579 			     !caam_alg->caam.nodkp);
1580 }
1581 
1582 static void caam_exit_common(struct caam_ctx *ctx)
1583 {
1584 	dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0],
1585 			       offsetof(struct caam_ctx, flc_dma), ctx->dir,
1586 			       DMA_ATTR_SKIP_CPU_SYNC);
1587 }
1588 
1589 static void caam_cra_exit(struct crypto_skcipher *tfm)
1590 {
1591 	caam_exit_common(crypto_skcipher_ctx(tfm));
1592 }
1593 
1594 static void caam_cra_exit_aead(struct crypto_aead *tfm)
1595 {
1596 	caam_exit_common(crypto_aead_ctx(tfm));
1597 }
1598 
1599 static struct caam_skcipher_alg driver_algs[] = {
1600 	{
1601 		.skcipher = {
1602 			.base = {
1603 				.cra_name = "cbc(aes)",
1604 				.cra_driver_name = "cbc-aes-caam-qi2",
1605 				.cra_blocksize = AES_BLOCK_SIZE,
1606 			},
1607 			.setkey = aes_skcipher_setkey,
1608 			.encrypt = skcipher_encrypt,
1609 			.decrypt = skcipher_decrypt,
1610 			.min_keysize = AES_MIN_KEY_SIZE,
1611 			.max_keysize = AES_MAX_KEY_SIZE,
1612 			.ivsize = AES_BLOCK_SIZE,
1613 		},
1614 		.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1615 	},
1616 	{
1617 		.skcipher = {
1618 			.base = {
1619 				.cra_name = "cbc(des3_ede)",
1620 				.cra_driver_name = "cbc-3des-caam-qi2",
1621 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1622 			},
1623 			.setkey = des3_skcipher_setkey,
1624 			.encrypt = skcipher_encrypt,
1625 			.decrypt = skcipher_decrypt,
1626 			.min_keysize = DES3_EDE_KEY_SIZE,
1627 			.max_keysize = DES3_EDE_KEY_SIZE,
1628 			.ivsize = DES3_EDE_BLOCK_SIZE,
1629 		},
1630 		.caam.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1631 	},
1632 	{
1633 		.skcipher = {
1634 			.base = {
1635 				.cra_name = "cbc(des)",
1636 				.cra_driver_name = "cbc-des-caam-qi2",
1637 				.cra_blocksize = DES_BLOCK_SIZE,
1638 			},
1639 			.setkey = des_skcipher_setkey,
1640 			.encrypt = skcipher_encrypt,
1641 			.decrypt = skcipher_decrypt,
1642 			.min_keysize = DES_KEY_SIZE,
1643 			.max_keysize = DES_KEY_SIZE,
1644 			.ivsize = DES_BLOCK_SIZE,
1645 		},
1646 		.caam.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1647 	},
1648 	{
1649 		.skcipher = {
1650 			.base = {
1651 				.cra_name = "ctr(aes)",
1652 				.cra_driver_name = "ctr-aes-caam-qi2",
1653 				.cra_blocksize = 1,
1654 			},
1655 			.setkey = ctr_skcipher_setkey,
1656 			.encrypt = skcipher_encrypt,
1657 			.decrypt = skcipher_decrypt,
1658 			.min_keysize = AES_MIN_KEY_SIZE,
1659 			.max_keysize = AES_MAX_KEY_SIZE,
1660 			.ivsize = AES_BLOCK_SIZE,
1661 			.chunksize = AES_BLOCK_SIZE,
1662 		},
1663 		.caam.class1_alg_type = OP_ALG_ALGSEL_AES |
1664 					OP_ALG_AAI_CTR_MOD128,
1665 	},
1666 	{
1667 		.skcipher = {
1668 			.base = {
1669 				.cra_name = "rfc3686(ctr(aes))",
1670 				.cra_driver_name = "rfc3686-ctr-aes-caam-qi2",
1671 				.cra_blocksize = 1,
1672 			},
1673 			.setkey = rfc3686_skcipher_setkey,
1674 			.encrypt = skcipher_encrypt,
1675 			.decrypt = skcipher_decrypt,
1676 			.min_keysize = AES_MIN_KEY_SIZE +
1677 				       CTR_RFC3686_NONCE_SIZE,
1678 			.max_keysize = AES_MAX_KEY_SIZE +
1679 				       CTR_RFC3686_NONCE_SIZE,
1680 			.ivsize = CTR_RFC3686_IV_SIZE,
1681 			.chunksize = AES_BLOCK_SIZE,
1682 		},
1683 		.caam = {
1684 			.class1_alg_type = OP_ALG_ALGSEL_AES |
1685 					   OP_ALG_AAI_CTR_MOD128,
1686 			.rfc3686 = true,
1687 		},
1688 	},
1689 	{
1690 		.skcipher = {
1691 			.base = {
1692 				.cra_name = "xts(aes)",
1693 				.cra_driver_name = "xts-aes-caam-qi2",
1694 				.cra_blocksize = AES_BLOCK_SIZE,
1695 			},
1696 			.setkey = xts_skcipher_setkey,
1697 			.encrypt = skcipher_encrypt,
1698 			.decrypt = skcipher_decrypt,
1699 			.min_keysize = 2 * AES_MIN_KEY_SIZE,
1700 			.max_keysize = 2 * AES_MAX_KEY_SIZE,
1701 			.ivsize = AES_BLOCK_SIZE,
1702 		},
1703 		.caam.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XTS,
1704 	},
1705 	{
1706 		.skcipher = {
1707 			.base = {
1708 				.cra_name = "chacha20",
1709 				.cra_driver_name = "chacha20-caam-qi2",
1710 				.cra_blocksize = 1,
1711 			},
1712 			.setkey = chacha20_skcipher_setkey,
1713 			.encrypt = skcipher_encrypt,
1714 			.decrypt = skcipher_decrypt,
1715 			.min_keysize = CHACHA_KEY_SIZE,
1716 			.max_keysize = CHACHA_KEY_SIZE,
1717 			.ivsize = CHACHA_IV_SIZE,
1718 		},
1719 		.caam.class1_alg_type = OP_ALG_ALGSEL_CHACHA20,
1720 	},
1721 };
1722 
1723 static struct caam_aead_alg driver_aeads[] = {
1724 	{
1725 		.aead = {
1726 			.base = {
1727 				.cra_name = "rfc4106(gcm(aes))",
1728 				.cra_driver_name = "rfc4106-gcm-aes-caam-qi2",
1729 				.cra_blocksize = 1,
1730 			},
1731 			.setkey = rfc4106_setkey,
1732 			.setauthsize = rfc4106_setauthsize,
1733 			.encrypt = ipsec_gcm_encrypt,
1734 			.decrypt = ipsec_gcm_decrypt,
1735 			.ivsize = 8,
1736 			.maxauthsize = AES_BLOCK_SIZE,
1737 		},
1738 		.caam = {
1739 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1740 			.nodkp = true,
1741 		},
1742 	},
1743 	{
1744 		.aead = {
1745 			.base = {
1746 				.cra_name = "rfc4543(gcm(aes))",
1747 				.cra_driver_name = "rfc4543-gcm-aes-caam-qi2",
1748 				.cra_blocksize = 1,
1749 			},
1750 			.setkey = rfc4543_setkey,
1751 			.setauthsize = rfc4543_setauthsize,
1752 			.encrypt = ipsec_gcm_encrypt,
1753 			.decrypt = ipsec_gcm_decrypt,
1754 			.ivsize = 8,
1755 			.maxauthsize = AES_BLOCK_SIZE,
1756 		},
1757 		.caam = {
1758 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1759 			.nodkp = true,
1760 		},
1761 	},
1762 	/* Galois Counter Mode */
1763 	{
1764 		.aead = {
1765 			.base = {
1766 				.cra_name = "gcm(aes)",
1767 				.cra_driver_name = "gcm-aes-caam-qi2",
1768 				.cra_blocksize = 1,
1769 			},
1770 			.setkey = gcm_setkey,
1771 			.setauthsize = gcm_setauthsize,
1772 			.encrypt = aead_encrypt,
1773 			.decrypt = aead_decrypt,
1774 			.ivsize = 12,
1775 			.maxauthsize = AES_BLOCK_SIZE,
1776 		},
1777 		.caam = {
1778 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_GCM,
1779 			.nodkp = true,
1780 		}
1781 	},
1782 	/* single-pass ipsec_esp descriptor */
1783 	{
1784 		.aead = {
1785 			.base = {
1786 				.cra_name = "authenc(hmac(md5),cbc(aes))",
1787 				.cra_driver_name = "authenc-hmac-md5-"
1788 						   "cbc-aes-caam-qi2",
1789 				.cra_blocksize = AES_BLOCK_SIZE,
1790 			},
1791 			.setkey = aead_setkey,
1792 			.setauthsize = aead_setauthsize,
1793 			.encrypt = aead_encrypt,
1794 			.decrypt = aead_decrypt,
1795 			.ivsize = AES_BLOCK_SIZE,
1796 			.maxauthsize = MD5_DIGEST_SIZE,
1797 		},
1798 		.caam = {
1799 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1800 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
1801 					   OP_ALG_AAI_HMAC_PRECOMP,
1802 		}
1803 	},
1804 	{
1805 		.aead = {
1806 			.base = {
1807 				.cra_name = "echainiv(authenc(hmac(md5),"
1808 					    "cbc(aes)))",
1809 				.cra_driver_name = "echainiv-authenc-hmac-md5-"
1810 						   "cbc-aes-caam-qi2",
1811 				.cra_blocksize = AES_BLOCK_SIZE,
1812 			},
1813 			.setkey = aead_setkey,
1814 			.setauthsize = aead_setauthsize,
1815 			.encrypt = aead_encrypt,
1816 			.decrypt = aead_decrypt,
1817 			.ivsize = AES_BLOCK_SIZE,
1818 			.maxauthsize = MD5_DIGEST_SIZE,
1819 		},
1820 		.caam = {
1821 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1822 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
1823 					   OP_ALG_AAI_HMAC_PRECOMP,
1824 			.geniv = true,
1825 		}
1826 	},
1827 	{
1828 		.aead = {
1829 			.base = {
1830 				.cra_name = "authenc(hmac(sha1),cbc(aes))",
1831 				.cra_driver_name = "authenc-hmac-sha1-"
1832 						   "cbc-aes-caam-qi2",
1833 				.cra_blocksize = AES_BLOCK_SIZE,
1834 			},
1835 			.setkey = aead_setkey,
1836 			.setauthsize = aead_setauthsize,
1837 			.encrypt = aead_encrypt,
1838 			.decrypt = aead_decrypt,
1839 			.ivsize = AES_BLOCK_SIZE,
1840 			.maxauthsize = SHA1_DIGEST_SIZE,
1841 		},
1842 		.caam = {
1843 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1844 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
1845 					   OP_ALG_AAI_HMAC_PRECOMP,
1846 		}
1847 	},
1848 	{
1849 		.aead = {
1850 			.base = {
1851 				.cra_name = "echainiv(authenc(hmac(sha1),"
1852 					    "cbc(aes)))",
1853 				.cra_driver_name = "echainiv-authenc-"
1854 						   "hmac-sha1-cbc-aes-caam-qi2",
1855 				.cra_blocksize = AES_BLOCK_SIZE,
1856 			},
1857 			.setkey = aead_setkey,
1858 			.setauthsize = aead_setauthsize,
1859 			.encrypt = aead_encrypt,
1860 			.decrypt = aead_decrypt,
1861 			.ivsize = AES_BLOCK_SIZE,
1862 			.maxauthsize = SHA1_DIGEST_SIZE,
1863 		},
1864 		.caam = {
1865 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1866 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
1867 					   OP_ALG_AAI_HMAC_PRECOMP,
1868 			.geniv = true,
1869 		},
1870 	},
1871 	{
1872 		.aead = {
1873 			.base = {
1874 				.cra_name = "authenc(hmac(sha224),cbc(aes))",
1875 				.cra_driver_name = "authenc-hmac-sha224-"
1876 						   "cbc-aes-caam-qi2",
1877 				.cra_blocksize = AES_BLOCK_SIZE,
1878 			},
1879 			.setkey = aead_setkey,
1880 			.setauthsize = aead_setauthsize,
1881 			.encrypt = aead_encrypt,
1882 			.decrypt = aead_decrypt,
1883 			.ivsize = AES_BLOCK_SIZE,
1884 			.maxauthsize = SHA224_DIGEST_SIZE,
1885 		},
1886 		.caam = {
1887 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1888 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
1889 					   OP_ALG_AAI_HMAC_PRECOMP,
1890 		}
1891 	},
1892 	{
1893 		.aead = {
1894 			.base = {
1895 				.cra_name = "echainiv(authenc(hmac(sha224),"
1896 					    "cbc(aes)))",
1897 				.cra_driver_name = "echainiv-authenc-"
1898 						   "hmac-sha224-cbc-aes-caam-qi2",
1899 				.cra_blocksize = AES_BLOCK_SIZE,
1900 			},
1901 			.setkey = aead_setkey,
1902 			.setauthsize = aead_setauthsize,
1903 			.encrypt = aead_encrypt,
1904 			.decrypt = aead_decrypt,
1905 			.ivsize = AES_BLOCK_SIZE,
1906 			.maxauthsize = SHA224_DIGEST_SIZE,
1907 		},
1908 		.caam = {
1909 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1910 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
1911 					   OP_ALG_AAI_HMAC_PRECOMP,
1912 			.geniv = true,
1913 		}
1914 	},
1915 	{
1916 		.aead = {
1917 			.base = {
1918 				.cra_name = "authenc(hmac(sha256),cbc(aes))",
1919 				.cra_driver_name = "authenc-hmac-sha256-"
1920 						   "cbc-aes-caam-qi2",
1921 				.cra_blocksize = AES_BLOCK_SIZE,
1922 			},
1923 			.setkey = aead_setkey,
1924 			.setauthsize = aead_setauthsize,
1925 			.encrypt = aead_encrypt,
1926 			.decrypt = aead_decrypt,
1927 			.ivsize = AES_BLOCK_SIZE,
1928 			.maxauthsize = SHA256_DIGEST_SIZE,
1929 		},
1930 		.caam = {
1931 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1932 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
1933 					   OP_ALG_AAI_HMAC_PRECOMP,
1934 		}
1935 	},
1936 	{
1937 		.aead = {
1938 			.base = {
1939 				.cra_name = "echainiv(authenc(hmac(sha256),"
1940 					    "cbc(aes)))",
1941 				.cra_driver_name = "echainiv-authenc-"
1942 						   "hmac-sha256-cbc-aes-"
1943 						   "caam-qi2",
1944 				.cra_blocksize = AES_BLOCK_SIZE,
1945 			},
1946 			.setkey = aead_setkey,
1947 			.setauthsize = aead_setauthsize,
1948 			.encrypt = aead_encrypt,
1949 			.decrypt = aead_decrypt,
1950 			.ivsize = AES_BLOCK_SIZE,
1951 			.maxauthsize = SHA256_DIGEST_SIZE,
1952 		},
1953 		.caam = {
1954 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1955 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
1956 					   OP_ALG_AAI_HMAC_PRECOMP,
1957 			.geniv = true,
1958 		}
1959 	},
1960 	{
1961 		.aead = {
1962 			.base = {
1963 				.cra_name = "authenc(hmac(sha384),cbc(aes))",
1964 				.cra_driver_name = "authenc-hmac-sha384-"
1965 						   "cbc-aes-caam-qi2",
1966 				.cra_blocksize = AES_BLOCK_SIZE,
1967 			},
1968 			.setkey = aead_setkey,
1969 			.setauthsize = aead_setauthsize,
1970 			.encrypt = aead_encrypt,
1971 			.decrypt = aead_decrypt,
1972 			.ivsize = AES_BLOCK_SIZE,
1973 			.maxauthsize = SHA384_DIGEST_SIZE,
1974 		},
1975 		.caam = {
1976 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1977 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
1978 					   OP_ALG_AAI_HMAC_PRECOMP,
1979 		}
1980 	},
1981 	{
1982 		.aead = {
1983 			.base = {
1984 				.cra_name = "echainiv(authenc(hmac(sha384),"
1985 					    "cbc(aes)))",
1986 				.cra_driver_name = "echainiv-authenc-"
1987 						   "hmac-sha384-cbc-aes-"
1988 						   "caam-qi2",
1989 				.cra_blocksize = AES_BLOCK_SIZE,
1990 			},
1991 			.setkey = aead_setkey,
1992 			.setauthsize = aead_setauthsize,
1993 			.encrypt = aead_encrypt,
1994 			.decrypt = aead_decrypt,
1995 			.ivsize = AES_BLOCK_SIZE,
1996 			.maxauthsize = SHA384_DIGEST_SIZE,
1997 		},
1998 		.caam = {
1999 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
2000 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2001 					   OP_ALG_AAI_HMAC_PRECOMP,
2002 			.geniv = true,
2003 		}
2004 	},
2005 	{
2006 		.aead = {
2007 			.base = {
2008 				.cra_name = "authenc(hmac(sha512),cbc(aes))",
2009 				.cra_driver_name = "authenc-hmac-sha512-"
2010 						   "cbc-aes-caam-qi2",
2011 				.cra_blocksize = AES_BLOCK_SIZE,
2012 			},
2013 			.setkey = aead_setkey,
2014 			.setauthsize = aead_setauthsize,
2015 			.encrypt = aead_encrypt,
2016 			.decrypt = aead_decrypt,
2017 			.ivsize = AES_BLOCK_SIZE,
2018 			.maxauthsize = SHA512_DIGEST_SIZE,
2019 		},
2020 		.caam = {
2021 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
2022 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2023 					   OP_ALG_AAI_HMAC_PRECOMP,
2024 		}
2025 	},
2026 	{
2027 		.aead = {
2028 			.base = {
2029 				.cra_name = "echainiv(authenc(hmac(sha512),"
2030 					    "cbc(aes)))",
2031 				.cra_driver_name = "echainiv-authenc-"
2032 						   "hmac-sha512-cbc-aes-"
2033 						   "caam-qi2",
2034 				.cra_blocksize = AES_BLOCK_SIZE,
2035 			},
2036 			.setkey = aead_setkey,
2037 			.setauthsize = aead_setauthsize,
2038 			.encrypt = aead_encrypt,
2039 			.decrypt = aead_decrypt,
2040 			.ivsize = AES_BLOCK_SIZE,
2041 			.maxauthsize = SHA512_DIGEST_SIZE,
2042 		},
2043 		.caam = {
2044 			.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
2045 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2046 					   OP_ALG_AAI_HMAC_PRECOMP,
2047 			.geniv = true,
2048 		}
2049 	},
2050 	{
2051 		.aead = {
2052 			.base = {
2053 				.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
2054 				.cra_driver_name = "authenc-hmac-md5-"
2055 						   "cbc-des3_ede-caam-qi2",
2056 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2057 			},
2058 			.setkey = des3_aead_setkey,
2059 			.setauthsize = aead_setauthsize,
2060 			.encrypt = aead_encrypt,
2061 			.decrypt = aead_decrypt,
2062 			.ivsize = DES3_EDE_BLOCK_SIZE,
2063 			.maxauthsize = MD5_DIGEST_SIZE,
2064 		},
2065 		.caam = {
2066 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2067 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2068 					   OP_ALG_AAI_HMAC_PRECOMP,
2069 		}
2070 	},
2071 	{
2072 		.aead = {
2073 			.base = {
2074 				.cra_name = "echainiv(authenc(hmac(md5),"
2075 					    "cbc(des3_ede)))",
2076 				.cra_driver_name = "echainiv-authenc-hmac-md5-"
2077 						   "cbc-des3_ede-caam-qi2",
2078 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2079 			},
2080 			.setkey = des3_aead_setkey,
2081 			.setauthsize = aead_setauthsize,
2082 			.encrypt = aead_encrypt,
2083 			.decrypt = aead_decrypt,
2084 			.ivsize = DES3_EDE_BLOCK_SIZE,
2085 			.maxauthsize = MD5_DIGEST_SIZE,
2086 		},
2087 		.caam = {
2088 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2089 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2090 					   OP_ALG_AAI_HMAC_PRECOMP,
2091 			.geniv = true,
2092 		}
2093 	},
2094 	{
2095 		.aead = {
2096 			.base = {
2097 				.cra_name = "authenc(hmac(sha1),"
2098 					    "cbc(des3_ede))",
2099 				.cra_driver_name = "authenc-hmac-sha1-"
2100 						   "cbc-des3_ede-caam-qi2",
2101 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2102 			},
2103 			.setkey = des3_aead_setkey,
2104 			.setauthsize = aead_setauthsize,
2105 			.encrypt = aead_encrypt,
2106 			.decrypt = aead_decrypt,
2107 			.ivsize = DES3_EDE_BLOCK_SIZE,
2108 			.maxauthsize = SHA1_DIGEST_SIZE,
2109 		},
2110 		.caam = {
2111 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2112 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2113 					   OP_ALG_AAI_HMAC_PRECOMP,
2114 		},
2115 	},
2116 	{
2117 		.aead = {
2118 			.base = {
2119 				.cra_name = "echainiv(authenc(hmac(sha1),"
2120 					    "cbc(des3_ede)))",
2121 				.cra_driver_name = "echainiv-authenc-"
2122 						   "hmac-sha1-"
2123 						   "cbc-des3_ede-caam-qi2",
2124 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2125 			},
2126 			.setkey = des3_aead_setkey,
2127 			.setauthsize = aead_setauthsize,
2128 			.encrypt = aead_encrypt,
2129 			.decrypt = aead_decrypt,
2130 			.ivsize = DES3_EDE_BLOCK_SIZE,
2131 			.maxauthsize = SHA1_DIGEST_SIZE,
2132 		},
2133 		.caam = {
2134 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2135 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2136 					   OP_ALG_AAI_HMAC_PRECOMP,
2137 			.geniv = true,
2138 		}
2139 	},
2140 	{
2141 		.aead = {
2142 			.base = {
2143 				.cra_name = "authenc(hmac(sha224),"
2144 					    "cbc(des3_ede))",
2145 				.cra_driver_name = "authenc-hmac-sha224-"
2146 						   "cbc-des3_ede-caam-qi2",
2147 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2148 			},
2149 			.setkey = des3_aead_setkey,
2150 			.setauthsize = aead_setauthsize,
2151 			.encrypt = aead_encrypt,
2152 			.decrypt = aead_decrypt,
2153 			.ivsize = DES3_EDE_BLOCK_SIZE,
2154 			.maxauthsize = SHA224_DIGEST_SIZE,
2155 		},
2156 		.caam = {
2157 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2158 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2159 					   OP_ALG_AAI_HMAC_PRECOMP,
2160 		},
2161 	},
2162 	{
2163 		.aead = {
2164 			.base = {
2165 				.cra_name = "echainiv(authenc(hmac(sha224),"
2166 					    "cbc(des3_ede)))",
2167 				.cra_driver_name = "echainiv-authenc-"
2168 						   "hmac-sha224-"
2169 						   "cbc-des3_ede-caam-qi2",
2170 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2171 			},
2172 			.setkey = des3_aead_setkey,
2173 			.setauthsize = aead_setauthsize,
2174 			.encrypt = aead_encrypt,
2175 			.decrypt = aead_decrypt,
2176 			.ivsize = DES3_EDE_BLOCK_SIZE,
2177 			.maxauthsize = SHA224_DIGEST_SIZE,
2178 		},
2179 		.caam = {
2180 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2181 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2182 					   OP_ALG_AAI_HMAC_PRECOMP,
2183 			.geniv = true,
2184 		}
2185 	},
2186 	{
2187 		.aead = {
2188 			.base = {
2189 				.cra_name = "authenc(hmac(sha256),"
2190 					    "cbc(des3_ede))",
2191 				.cra_driver_name = "authenc-hmac-sha256-"
2192 						   "cbc-des3_ede-caam-qi2",
2193 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2194 			},
2195 			.setkey = des3_aead_setkey,
2196 			.setauthsize = aead_setauthsize,
2197 			.encrypt = aead_encrypt,
2198 			.decrypt = aead_decrypt,
2199 			.ivsize = DES3_EDE_BLOCK_SIZE,
2200 			.maxauthsize = SHA256_DIGEST_SIZE,
2201 		},
2202 		.caam = {
2203 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2204 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2205 					   OP_ALG_AAI_HMAC_PRECOMP,
2206 		},
2207 	},
2208 	{
2209 		.aead = {
2210 			.base = {
2211 				.cra_name = "echainiv(authenc(hmac(sha256),"
2212 					    "cbc(des3_ede)))",
2213 				.cra_driver_name = "echainiv-authenc-"
2214 						   "hmac-sha256-"
2215 						   "cbc-des3_ede-caam-qi2",
2216 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2217 			},
2218 			.setkey = des3_aead_setkey,
2219 			.setauthsize = aead_setauthsize,
2220 			.encrypt = aead_encrypt,
2221 			.decrypt = aead_decrypt,
2222 			.ivsize = DES3_EDE_BLOCK_SIZE,
2223 			.maxauthsize = SHA256_DIGEST_SIZE,
2224 		},
2225 		.caam = {
2226 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2227 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2228 					   OP_ALG_AAI_HMAC_PRECOMP,
2229 			.geniv = true,
2230 		}
2231 	},
2232 	{
2233 		.aead = {
2234 			.base = {
2235 				.cra_name = "authenc(hmac(sha384),"
2236 					    "cbc(des3_ede))",
2237 				.cra_driver_name = "authenc-hmac-sha384-"
2238 						   "cbc-des3_ede-caam-qi2",
2239 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2240 			},
2241 			.setkey = des3_aead_setkey,
2242 			.setauthsize = aead_setauthsize,
2243 			.encrypt = aead_encrypt,
2244 			.decrypt = aead_decrypt,
2245 			.ivsize = DES3_EDE_BLOCK_SIZE,
2246 			.maxauthsize = SHA384_DIGEST_SIZE,
2247 		},
2248 		.caam = {
2249 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2250 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2251 					   OP_ALG_AAI_HMAC_PRECOMP,
2252 		},
2253 	},
2254 	{
2255 		.aead = {
2256 			.base = {
2257 				.cra_name = "echainiv(authenc(hmac(sha384),"
2258 					    "cbc(des3_ede)))",
2259 				.cra_driver_name = "echainiv-authenc-"
2260 						   "hmac-sha384-"
2261 						   "cbc-des3_ede-caam-qi2",
2262 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2263 			},
2264 			.setkey = des3_aead_setkey,
2265 			.setauthsize = aead_setauthsize,
2266 			.encrypt = aead_encrypt,
2267 			.decrypt = aead_decrypt,
2268 			.ivsize = DES3_EDE_BLOCK_SIZE,
2269 			.maxauthsize = SHA384_DIGEST_SIZE,
2270 		},
2271 		.caam = {
2272 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2273 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2274 					   OP_ALG_AAI_HMAC_PRECOMP,
2275 			.geniv = true,
2276 		}
2277 	},
2278 	{
2279 		.aead = {
2280 			.base = {
2281 				.cra_name = "authenc(hmac(sha512),"
2282 					    "cbc(des3_ede))",
2283 				.cra_driver_name = "authenc-hmac-sha512-"
2284 						   "cbc-des3_ede-caam-qi2",
2285 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2286 			},
2287 			.setkey = des3_aead_setkey,
2288 			.setauthsize = aead_setauthsize,
2289 			.encrypt = aead_encrypt,
2290 			.decrypt = aead_decrypt,
2291 			.ivsize = DES3_EDE_BLOCK_SIZE,
2292 			.maxauthsize = SHA512_DIGEST_SIZE,
2293 		},
2294 		.caam = {
2295 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2296 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2297 					   OP_ALG_AAI_HMAC_PRECOMP,
2298 		},
2299 	},
2300 	{
2301 		.aead = {
2302 			.base = {
2303 				.cra_name = "echainiv(authenc(hmac(sha512),"
2304 					    "cbc(des3_ede)))",
2305 				.cra_driver_name = "echainiv-authenc-"
2306 						   "hmac-sha512-"
2307 						   "cbc-des3_ede-caam-qi2",
2308 				.cra_blocksize = DES3_EDE_BLOCK_SIZE,
2309 			},
2310 			.setkey = des3_aead_setkey,
2311 			.setauthsize = aead_setauthsize,
2312 			.encrypt = aead_encrypt,
2313 			.decrypt = aead_decrypt,
2314 			.ivsize = DES3_EDE_BLOCK_SIZE,
2315 			.maxauthsize = SHA512_DIGEST_SIZE,
2316 		},
2317 		.caam = {
2318 			.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2319 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2320 					   OP_ALG_AAI_HMAC_PRECOMP,
2321 			.geniv = true,
2322 		}
2323 	},
2324 	{
2325 		.aead = {
2326 			.base = {
2327 				.cra_name = "authenc(hmac(md5),cbc(des))",
2328 				.cra_driver_name = "authenc-hmac-md5-"
2329 						   "cbc-des-caam-qi2",
2330 				.cra_blocksize = DES_BLOCK_SIZE,
2331 			},
2332 			.setkey = aead_setkey,
2333 			.setauthsize = aead_setauthsize,
2334 			.encrypt = aead_encrypt,
2335 			.decrypt = aead_decrypt,
2336 			.ivsize = DES_BLOCK_SIZE,
2337 			.maxauthsize = MD5_DIGEST_SIZE,
2338 		},
2339 		.caam = {
2340 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2341 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2342 					   OP_ALG_AAI_HMAC_PRECOMP,
2343 		},
2344 	},
2345 	{
2346 		.aead = {
2347 			.base = {
2348 				.cra_name = "echainiv(authenc(hmac(md5),"
2349 					    "cbc(des)))",
2350 				.cra_driver_name = "echainiv-authenc-hmac-md5-"
2351 						   "cbc-des-caam-qi2",
2352 				.cra_blocksize = DES_BLOCK_SIZE,
2353 			},
2354 			.setkey = aead_setkey,
2355 			.setauthsize = aead_setauthsize,
2356 			.encrypt = aead_encrypt,
2357 			.decrypt = aead_decrypt,
2358 			.ivsize = DES_BLOCK_SIZE,
2359 			.maxauthsize = MD5_DIGEST_SIZE,
2360 		},
2361 		.caam = {
2362 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2363 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2364 					   OP_ALG_AAI_HMAC_PRECOMP,
2365 			.geniv = true,
2366 		}
2367 	},
2368 	{
2369 		.aead = {
2370 			.base = {
2371 				.cra_name = "authenc(hmac(sha1),cbc(des))",
2372 				.cra_driver_name = "authenc-hmac-sha1-"
2373 						   "cbc-des-caam-qi2",
2374 				.cra_blocksize = DES_BLOCK_SIZE,
2375 			},
2376 			.setkey = aead_setkey,
2377 			.setauthsize = aead_setauthsize,
2378 			.encrypt = aead_encrypt,
2379 			.decrypt = aead_decrypt,
2380 			.ivsize = DES_BLOCK_SIZE,
2381 			.maxauthsize = SHA1_DIGEST_SIZE,
2382 		},
2383 		.caam = {
2384 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2385 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2386 					   OP_ALG_AAI_HMAC_PRECOMP,
2387 		},
2388 	},
2389 	{
2390 		.aead = {
2391 			.base = {
2392 				.cra_name = "echainiv(authenc(hmac(sha1),"
2393 					    "cbc(des)))",
2394 				.cra_driver_name = "echainiv-authenc-"
2395 						   "hmac-sha1-cbc-des-caam-qi2",
2396 				.cra_blocksize = DES_BLOCK_SIZE,
2397 			},
2398 			.setkey = aead_setkey,
2399 			.setauthsize = aead_setauthsize,
2400 			.encrypt = aead_encrypt,
2401 			.decrypt = aead_decrypt,
2402 			.ivsize = DES_BLOCK_SIZE,
2403 			.maxauthsize = SHA1_DIGEST_SIZE,
2404 		},
2405 		.caam = {
2406 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2407 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2408 					   OP_ALG_AAI_HMAC_PRECOMP,
2409 			.geniv = true,
2410 		}
2411 	},
2412 	{
2413 		.aead = {
2414 			.base = {
2415 				.cra_name = "authenc(hmac(sha224),cbc(des))",
2416 				.cra_driver_name = "authenc-hmac-sha224-"
2417 						   "cbc-des-caam-qi2",
2418 				.cra_blocksize = DES_BLOCK_SIZE,
2419 			},
2420 			.setkey = aead_setkey,
2421 			.setauthsize = aead_setauthsize,
2422 			.encrypt = aead_encrypt,
2423 			.decrypt = aead_decrypt,
2424 			.ivsize = DES_BLOCK_SIZE,
2425 			.maxauthsize = SHA224_DIGEST_SIZE,
2426 		},
2427 		.caam = {
2428 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2429 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2430 					   OP_ALG_AAI_HMAC_PRECOMP,
2431 		},
2432 	},
2433 	{
2434 		.aead = {
2435 			.base = {
2436 				.cra_name = "echainiv(authenc(hmac(sha224),"
2437 					    "cbc(des)))",
2438 				.cra_driver_name = "echainiv-authenc-"
2439 						   "hmac-sha224-cbc-des-"
2440 						   "caam-qi2",
2441 				.cra_blocksize = DES_BLOCK_SIZE,
2442 			},
2443 			.setkey = aead_setkey,
2444 			.setauthsize = aead_setauthsize,
2445 			.encrypt = aead_encrypt,
2446 			.decrypt = aead_decrypt,
2447 			.ivsize = DES_BLOCK_SIZE,
2448 			.maxauthsize = SHA224_DIGEST_SIZE,
2449 		},
2450 		.caam = {
2451 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2452 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2453 					   OP_ALG_AAI_HMAC_PRECOMP,
2454 			.geniv = true,
2455 		}
2456 	},
2457 	{
2458 		.aead = {
2459 			.base = {
2460 				.cra_name = "authenc(hmac(sha256),cbc(des))",
2461 				.cra_driver_name = "authenc-hmac-sha256-"
2462 						   "cbc-des-caam-qi2",
2463 				.cra_blocksize = DES_BLOCK_SIZE,
2464 			},
2465 			.setkey = aead_setkey,
2466 			.setauthsize = aead_setauthsize,
2467 			.encrypt = aead_encrypt,
2468 			.decrypt = aead_decrypt,
2469 			.ivsize = DES_BLOCK_SIZE,
2470 			.maxauthsize = SHA256_DIGEST_SIZE,
2471 		},
2472 		.caam = {
2473 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2474 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2475 					   OP_ALG_AAI_HMAC_PRECOMP,
2476 		},
2477 	},
2478 	{
2479 		.aead = {
2480 			.base = {
2481 				.cra_name = "echainiv(authenc(hmac(sha256),"
2482 					    "cbc(des)))",
2483 				.cra_driver_name = "echainiv-authenc-"
2484 						   "hmac-sha256-cbc-desi-"
2485 						   "caam-qi2",
2486 				.cra_blocksize = DES_BLOCK_SIZE,
2487 			},
2488 			.setkey = aead_setkey,
2489 			.setauthsize = aead_setauthsize,
2490 			.encrypt = aead_encrypt,
2491 			.decrypt = aead_decrypt,
2492 			.ivsize = DES_BLOCK_SIZE,
2493 			.maxauthsize = SHA256_DIGEST_SIZE,
2494 		},
2495 		.caam = {
2496 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2497 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2498 					   OP_ALG_AAI_HMAC_PRECOMP,
2499 			.geniv = true,
2500 		},
2501 	},
2502 	{
2503 		.aead = {
2504 			.base = {
2505 				.cra_name = "authenc(hmac(sha384),cbc(des))",
2506 				.cra_driver_name = "authenc-hmac-sha384-"
2507 						   "cbc-des-caam-qi2",
2508 				.cra_blocksize = DES_BLOCK_SIZE,
2509 			},
2510 			.setkey = aead_setkey,
2511 			.setauthsize = aead_setauthsize,
2512 			.encrypt = aead_encrypt,
2513 			.decrypt = aead_decrypt,
2514 			.ivsize = DES_BLOCK_SIZE,
2515 			.maxauthsize = SHA384_DIGEST_SIZE,
2516 		},
2517 		.caam = {
2518 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2519 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2520 					   OP_ALG_AAI_HMAC_PRECOMP,
2521 		},
2522 	},
2523 	{
2524 		.aead = {
2525 			.base = {
2526 				.cra_name = "echainiv(authenc(hmac(sha384),"
2527 					    "cbc(des)))",
2528 				.cra_driver_name = "echainiv-authenc-"
2529 						   "hmac-sha384-cbc-des-"
2530 						   "caam-qi2",
2531 				.cra_blocksize = DES_BLOCK_SIZE,
2532 			},
2533 			.setkey = aead_setkey,
2534 			.setauthsize = aead_setauthsize,
2535 			.encrypt = aead_encrypt,
2536 			.decrypt = aead_decrypt,
2537 			.ivsize = DES_BLOCK_SIZE,
2538 			.maxauthsize = SHA384_DIGEST_SIZE,
2539 		},
2540 		.caam = {
2541 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2542 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2543 					   OP_ALG_AAI_HMAC_PRECOMP,
2544 			.geniv = true,
2545 		}
2546 	},
2547 	{
2548 		.aead = {
2549 			.base = {
2550 				.cra_name = "authenc(hmac(sha512),cbc(des))",
2551 				.cra_driver_name = "authenc-hmac-sha512-"
2552 						   "cbc-des-caam-qi2",
2553 				.cra_blocksize = DES_BLOCK_SIZE,
2554 			},
2555 			.setkey = aead_setkey,
2556 			.setauthsize = aead_setauthsize,
2557 			.encrypt = aead_encrypt,
2558 			.decrypt = aead_decrypt,
2559 			.ivsize = DES_BLOCK_SIZE,
2560 			.maxauthsize = SHA512_DIGEST_SIZE,
2561 		},
2562 		.caam = {
2563 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2564 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2565 					   OP_ALG_AAI_HMAC_PRECOMP,
2566 		}
2567 	},
2568 	{
2569 		.aead = {
2570 			.base = {
2571 				.cra_name = "echainiv(authenc(hmac(sha512),"
2572 					    "cbc(des)))",
2573 				.cra_driver_name = "echainiv-authenc-"
2574 						   "hmac-sha512-cbc-des-"
2575 						   "caam-qi2",
2576 				.cra_blocksize = DES_BLOCK_SIZE,
2577 			},
2578 			.setkey = aead_setkey,
2579 			.setauthsize = aead_setauthsize,
2580 			.encrypt = aead_encrypt,
2581 			.decrypt = aead_decrypt,
2582 			.ivsize = DES_BLOCK_SIZE,
2583 			.maxauthsize = SHA512_DIGEST_SIZE,
2584 		},
2585 		.caam = {
2586 			.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2587 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2588 					   OP_ALG_AAI_HMAC_PRECOMP,
2589 			.geniv = true,
2590 		}
2591 	},
2592 	{
2593 		.aead = {
2594 			.base = {
2595 				.cra_name = "authenc(hmac(md5),"
2596 					    "rfc3686(ctr(aes)))",
2597 				.cra_driver_name = "authenc-hmac-md5-"
2598 						   "rfc3686-ctr-aes-caam-qi2",
2599 				.cra_blocksize = 1,
2600 			},
2601 			.setkey = aead_setkey,
2602 			.setauthsize = aead_setauthsize,
2603 			.encrypt = aead_encrypt,
2604 			.decrypt = aead_decrypt,
2605 			.ivsize = CTR_RFC3686_IV_SIZE,
2606 			.maxauthsize = MD5_DIGEST_SIZE,
2607 		},
2608 		.caam = {
2609 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2610 					   OP_ALG_AAI_CTR_MOD128,
2611 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2612 					   OP_ALG_AAI_HMAC_PRECOMP,
2613 			.rfc3686 = true,
2614 		},
2615 	},
2616 	{
2617 		.aead = {
2618 			.base = {
2619 				.cra_name = "seqiv(authenc("
2620 					    "hmac(md5),rfc3686(ctr(aes))))",
2621 				.cra_driver_name = "seqiv-authenc-hmac-md5-"
2622 						   "rfc3686-ctr-aes-caam-qi2",
2623 				.cra_blocksize = 1,
2624 			},
2625 			.setkey = aead_setkey,
2626 			.setauthsize = aead_setauthsize,
2627 			.encrypt = aead_encrypt,
2628 			.decrypt = aead_decrypt,
2629 			.ivsize = CTR_RFC3686_IV_SIZE,
2630 			.maxauthsize = MD5_DIGEST_SIZE,
2631 		},
2632 		.caam = {
2633 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2634 					   OP_ALG_AAI_CTR_MOD128,
2635 			.class2_alg_type = OP_ALG_ALGSEL_MD5 |
2636 					   OP_ALG_AAI_HMAC_PRECOMP,
2637 			.rfc3686 = true,
2638 			.geniv = true,
2639 		},
2640 	},
2641 	{
2642 		.aead = {
2643 			.base = {
2644 				.cra_name = "authenc(hmac(sha1),"
2645 					    "rfc3686(ctr(aes)))",
2646 				.cra_driver_name = "authenc-hmac-sha1-"
2647 						   "rfc3686-ctr-aes-caam-qi2",
2648 				.cra_blocksize = 1,
2649 			},
2650 			.setkey = aead_setkey,
2651 			.setauthsize = aead_setauthsize,
2652 			.encrypt = aead_encrypt,
2653 			.decrypt = aead_decrypt,
2654 			.ivsize = CTR_RFC3686_IV_SIZE,
2655 			.maxauthsize = SHA1_DIGEST_SIZE,
2656 		},
2657 		.caam = {
2658 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2659 					   OP_ALG_AAI_CTR_MOD128,
2660 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2661 					   OP_ALG_AAI_HMAC_PRECOMP,
2662 			.rfc3686 = true,
2663 		},
2664 	},
2665 	{
2666 		.aead = {
2667 			.base = {
2668 				.cra_name = "seqiv(authenc("
2669 					    "hmac(sha1),rfc3686(ctr(aes))))",
2670 				.cra_driver_name = "seqiv-authenc-hmac-sha1-"
2671 						   "rfc3686-ctr-aes-caam-qi2",
2672 				.cra_blocksize = 1,
2673 			},
2674 			.setkey = aead_setkey,
2675 			.setauthsize = aead_setauthsize,
2676 			.encrypt = aead_encrypt,
2677 			.decrypt = aead_decrypt,
2678 			.ivsize = CTR_RFC3686_IV_SIZE,
2679 			.maxauthsize = SHA1_DIGEST_SIZE,
2680 		},
2681 		.caam = {
2682 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2683 					   OP_ALG_AAI_CTR_MOD128,
2684 			.class2_alg_type = OP_ALG_ALGSEL_SHA1 |
2685 					   OP_ALG_AAI_HMAC_PRECOMP,
2686 			.rfc3686 = true,
2687 			.geniv = true,
2688 		},
2689 	},
2690 	{
2691 		.aead = {
2692 			.base = {
2693 				.cra_name = "authenc(hmac(sha224),"
2694 					    "rfc3686(ctr(aes)))",
2695 				.cra_driver_name = "authenc-hmac-sha224-"
2696 						   "rfc3686-ctr-aes-caam-qi2",
2697 				.cra_blocksize = 1,
2698 			},
2699 			.setkey = aead_setkey,
2700 			.setauthsize = aead_setauthsize,
2701 			.encrypt = aead_encrypt,
2702 			.decrypt = aead_decrypt,
2703 			.ivsize = CTR_RFC3686_IV_SIZE,
2704 			.maxauthsize = SHA224_DIGEST_SIZE,
2705 		},
2706 		.caam = {
2707 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2708 					   OP_ALG_AAI_CTR_MOD128,
2709 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2710 					   OP_ALG_AAI_HMAC_PRECOMP,
2711 			.rfc3686 = true,
2712 		},
2713 	},
2714 	{
2715 		.aead = {
2716 			.base = {
2717 				.cra_name = "seqiv(authenc("
2718 					    "hmac(sha224),rfc3686(ctr(aes))))",
2719 				.cra_driver_name = "seqiv-authenc-hmac-sha224-"
2720 						   "rfc3686-ctr-aes-caam-qi2",
2721 				.cra_blocksize = 1,
2722 			},
2723 			.setkey = aead_setkey,
2724 			.setauthsize = aead_setauthsize,
2725 			.encrypt = aead_encrypt,
2726 			.decrypt = aead_decrypt,
2727 			.ivsize = CTR_RFC3686_IV_SIZE,
2728 			.maxauthsize = SHA224_DIGEST_SIZE,
2729 		},
2730 		.caam = {
2731 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2732 					   OP_ALG_AAI_CTR_MOD128,
2733 			.class2_alg_type = OP_ALG_ALGSEL_SHA224 |
2734 					   OP_ALG_AAI_HMAC_PRECOMP,
2735 			.rfc3686 = true,
2736 			.geniv = true,
2737 		},
2738 	},
2739 	{
2740 		.aead = {
2741 			.base = {
2742 				.cra_name = "authenc(hmac(sha256),"
2743 					    "rfc3686(ctr(aes)))",
2744 				.cra_driver_name = "authenc-hmac-sha256-"
2745 						   "rfc3686-ctr-aes-caam-qi2",
2746 				.cra_blocksize = 1,
2747 			},
2748 			.setkey = aead_setkey,
2749 			.setauthsize = aead_setauthsize,
2750 			.encrypt = aead_encrypt,
2751 			.decrypt = aead_decrypt,
2752 			.ivsize = CTR_RFC3686_IV_SIZE,
2753 			.maxauthsize = SHA256_DIGEST_SIZE,
2754 		},
2755 		.caam = {
2756 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2757 					   OP_ALG_AAI_CTR_MOD128,
2758 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2759 					   OP_ALG_AAI_HMAC_PRECOMP,
2760 			.rfc3686 = true,
2761 		},
2762 	},
2763 	{
2764 		.aead = {
2765 			.base = {
2766 				.cra_name = "seqiv(authenc(hmac(sha256),"
2767 					    "rfc3686(ctr(aes))))",
2768 				.cra_driver_name = "seqiv-authenc-hmac-sha256-"
2769 						   "rfc3686-ctr-aes-caam-qi2",
2770 				.cra_blocksize = 1,
2771 			},
2772 			.setkey = aead_setkey,
2773 			.setauthsize = aead_setauthsize,
2774 			.encrypt = aead_encrypt,
2775 			.decrypt = aead_decrypt,
2776 			.ivsize = CTR_RFC3686_IV_SIZE,
2777 			.maxauthsize = SHA256_DIGEST_SIZE,
2778 		},
2779 		.caam = {
2780 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2781 					   OP_ALG_AAI_CTR_MOD128,
2782 			.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2783 					   OP_ALG_AAI_HMAC_PRECOMP,
2784 			.rfc3686 = true,
2785 			.geniv = true,
2786 		},
2787 	},
2788 	{
2789 		.aead = {
2790 			.base = {
2791 				.cra_name = "authenc(hmac(sha384),"
2792 					    "rfc3686(ctr(aes)))",
2793 				.cra_driver_name = "authenc-hmac-sha384-"
2794 						   "rfc3686-ctr-aes-caam-qi2",
2795 				.cra_blocksize = 1,
2796 			},
2797 			.setkey = aead_setkey,
2798 			.setauthsize = aead_setauthsize,
2799 			.encrypt = aead_encrypt,
2800 			.decrypt = aead_decrypt,
2801 			.ivsize = CTR_RFC3686_IV_SIZE,
2802 			.maxauthsize = SHA384_DIGEST_SIZE,
2803 		},
2804 		.caam = {
2805 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2806 					   OP_ALG_AAI_CTR_MOD128,
2807 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2808 					   OP_ALG_AAI_HMAC_PRECOMP,
2809 			.rfc3686 = true,
2810 		},
2811 	},
2812 	{
2813 		.aead = {
2814 			.base = {
2815 				.cra_name = "seqiv(authenc(hmac(sha384),"
2816 					    "rfc3686(ctr(aes))))",
2817 				.cra_driver_name = "seqiv-authenc-hmac-sha384-"
2818 						   "rfc3686-ctr-aes-caam-qi2",
2819 				.cra_blocksize = 1,
2820 			},
2821 			.setkey = aead_setkey,
2822 			.setauthsize = aead_setauthsize,
2823 			.encrypt = aead_encrypt,
2824 			.decrypt = aead_decrypt,
2825 			.ivsize = CTR_RFC3686_IV_SIZE,
2826 			.maxauthsize = SHA384_DIGEST_SIZE,
2827 		},
2828 		.caam = {
2829 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2830 					   OP_ALG_AAI_CTR_MOD128,
2831 			.class2_alg_type = OP_ALG_ALGSEL_SHA384 |
2832 					   OP_ALG_AAI_HMAC_PRECOMP,
2833 			.rfc3686 = true,
2834 			.geniv = true,
2835 		},
2836 	},
2837 	{
2838 		.aead = {
2839 			.base = {
2840 				.cra_name = "rfc7539(chacha20,poly1305)",
2841 				.cra_driver_name = "rfc7539-chacha20-poly1305-"
2842 						   "caam-qi2",
2843 				.cra_blocksize = 1,
2844 			},
2845 			.setkey = chachapoly_setkey,
2846 			.setauthsize = chachapoly_setauthsize,
2847 			.encrypt = aead_encrypt,
2848 			.decrypt = aead_decrypt,
2849 			.ivsize = CHACHAPOLY_IV_SIZE,
2850 			.maxauthsize = POLY1305_DIGEST_SIZE,
2851 		},
2852 		.caam = {
2853 			.class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
2854 					   OP_ALG_AAI_AEAD,
2855 			.class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
2856 					   OP_ALG_AAI_AEAD,
2857 			.nodkp = true,
2858 		},
2859 	},
2860 	{
2861 		.aead = {
2862 			.base = {
2863 				.cra_name = "rfc7539esp(chacha20,poly1305)",
2864 				.cra_driver_name = "rfc7539esp-chacha20-"
2865 						   "poly1305-caam-qi2",
2866 				.cra_blocksize = 1,
2867 			},
2868 			.setkey = chachapoly_setkey,
2869 			.setauthsize = chachapoly_setauthsize,
2870 			.encrypt = aead_encrypt,
2871 			.decrypt = aead_decrypt,
2872 			.ivsize = 8,
2873 			.maxauthsize = POLY1305_DIGEST_SIZE,
2874 		},
2875 		.caam = {
2876 			.class1_alg_type = OP_ALG_ALGSEL_CHACHA20 |
2877 					   OP_ALG_AAI_AEAD,
2878 			.class2_alg_type = OP_ALG_ALGSEL_POLY1305 |
2879 					   OP_ALG_AAI_AEAD,
2880 			.nodkp = true,
2881 		},
2882 	},
2883 	{
2884 		.aead = {
2885 			.base = {
2886 				.cra_name = "authenc(hmac(sha512),"
2887 					    "rfc3686(ctr(aes)))",
2888 				.cra_driver_name = "authenc-hmac-sha512-"
2889 						   "rfc3686-ctr-aes-caam-qi2",
2890 				.cra_blocksize = 1,
2891 			},
2892 			.setkey = aead_setkey,
2893 			.setauthsize = aead_setauthsize,
2894 			.encrypt = aead_encrypt,
2895 			.decrypt = aead_decrypt,
2896 			.ivsize = CTR_RFC3686_IV_SIZE,
2897 			.maxauthsize = SHA512_DIGEST_SIZE,
2898 		},
2899 		.caam = {
2900 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2901 					   OP_ALG_AAI_CTR_MOD128,
2902 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2903 					   OP_ALG_AAI_HMAC_PRECOMP,
2904 			.rfc3686 = true,
2905 		},
2906 	},
2907 	{
2908 		.aead = {
2909 			.base = {
2910 				.cra_name = "seqiv(authenc(hmac(sha512),"
2911 					    "rfc3686(ctr(aes))))",
2912 				.cra_driver_name = "seqiv-authenc-hmac-sha512-"
2913 						   "rfc3686-ctr-aes-caam-qi2",
2914 				.cra_blocksize = 1,
2915 			},
2916 			.setkey = aead_setkey,
2917 			.setauthsize = aead_setauthsize,
2918 			.encrypt = aead_encrypt,
2919 			.decrypt = aead_decrypt,
2920 			.ivsize = CTR_RFC3686_IV_SIZE,
2921 			.maxauthsize = SHA512_DIGEST_SIZE,
2922 		},
2923 		.caam = {
2924 			.class1_alg_type = OP_ALG_ALGSEL_AES |
2925 					   OP_ALG_AAI_CTR_MOD128,
2926 			.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2927 					   OP_ALG_AAI_HMAC_PRECOMP,
2928 			.rfc3686 = true,
2929 			.geniv = true,
2930 		},
2931 	},
2932 };
2933 
2934 static void caam_skcipher_alg_init(struct caam_skcipher_alg *t_alg)
2935 {
2936 	struct skcipher_alg *alg = &t_alg->skcipher;
2937 
2938 	alg->base.cra_module = THIS_MODULE;
2939 	alg->base.cra_priority = CAAM_CRA_PRIORITY;
2940 	alg->base.cra_ctxsize = sizeof(struct caam_ctx);
2941 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2942 
2943 	alg->init = caam_cra_init_skcipher;
2944 	alg->exit = caam_cra_exit;
2945 }
2946 
2947 static void caam_aead_alg_init(struct caam_aead_alg *t_alg)
2948 {
2949 	struct aead_alg *alg = &t_alg->aead;
2950 
2951 	alg->base.cra_module = THIS_MODULE;
2952 	alg->base.cra_priority = CAAM_CRA_PRIORITY;
2953 	alg->base.cra_ctxsize = sizeof(struct caam_ctx);
2954 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2955 
2956 	alg->init = caam_cra_init_aead;
2957 	alg->exit = caam_cra_exit_aead;
2958 }
2959 
2960 /* max hash key is max split key size */
2961 #define CAAM_MAX_HASH_KEY_SIZE		(SHA512_DIGEST_SIZE * 2)
2962 
2963 #define CAAM_MAX_HASH_BLOCK_SIZE	SHA512_BLOCK_SIZE
2964 
2965 /* caam context sizes for hashes: running digest + 8 */
2966 #define HASH_MSG_LEN			8
2967 #define MAX_CTX_LEN			(HASH_MSG_LEN + SHA512_DIGEST_SIZE)
2968 
2969 enum hash_optype {
2970 	UPDATE = 0,
2971 	UPDATE_FIRST,
2972 	FINALIZE,
2973 	DIGEST,
2974 	HASH_NUM_OP
2975 };
2976 
2977 /**
2978  * caam_hash_ctx - ahash per-session context
2979  * @flc: Flow Contexts array
2980  * @key: authentication key
2981  * @flc_dma: I/O virtual addresses of the Flow Contexts
2982  * @dev: dpseci device
2983  * @ctx_len: size of Context Register
2984  * @adata: hashing algorithm details
2985  */
2986 struct caam_hash_ctx {
2987 	struct caam_flc flc[HASH_NUM_OP];
2988 	u8 key[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
2989 	dma_addr_t flc_dma[HASH_NUM_OP];
2990 	struct device *dev;
2991 	int ctx_len;
2992 	struct alginfo adata;
2993 };
2994 
2995 /* ahash state */
2996 struct caam_hash_state {
2997 	struct caam_request caam_req;
2998 	dma_addr_t buf_dma;
2999 	dma_addr_t ctx_dma;
3000 	int ctx_dma_len;
3001 	u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
3002 	int buflen_0;
3003 	u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
3004 	int buflen_1;
3005 	u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
3006 	int (*update)(struct ahash_request *req);
3007 	int (*final)(struct ahash_request *req);
3008 	int (*finup)(struct ahash_request *req);
3009 	int current_buf;
3010 };
3011 
3012 struct caam_export_state {
3013 	u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
3014 	u8 caam_ctx[MAX_CTX_LEN];
3015 	int buflen;
3016 	int (*update)(struct ahash_request *req);
3017 	int (*final)(struct ahash_request *req);
3018 	int (*finup)(struct ahash_request *req);
3019 };
3020 
3021 static inline void switch_buf(struct caam_hash_state *state)
3022 {
3023 	state->current_buf ^= 1;
3024 }
3025 
3026 static inline u8 *current_buf(struct caam_hash_state *state)
3027 {
3028 	return state->current_buf ? state->buf_1 : state->buf_0;
3029 }
3030 
3031 static inline u8 *alt_buf(struct caam_hash_state *state)
3032 {
3033 	return state->current_buf ? state->buf_0 : state->buf_1;
3034 }
3035 
3036 static inline int *current_buflen(struct caam_hash_state *state)
3037 {
3038 	return state->current_buf ? &state->buflen_1 : &state->buflen_0;
3039 }
3040 
3041 static inline int *alt_buflen(struct caam_hash_state *state)
3042 {
3043 	return state->current_buf ? &state->buflen_0 : &state->buflen_1;
3044 }
3045 
3046 /* Map current buffer in state (if length > 0) and put it in link table */
3047 static inline int buf_map_to_qm_sg(struct device *dev,
3048 				   struct dpaa2_sg_entry *qm_sg,
3049 				   struct caam_hash_state *state)
3050 {
3051 	int buflen = *current_buflen(state);
3052 
3053 	if (!buflen)
3054 		return 0;
3055 
3056 	state->buf_dma = dma_map_single(dev, current_buf(state), buflen,
3057 					DMA_TO_DEVICE);
3058 	if (dma_mapping_error(dev, state->buf_dma)) {
3059 		dev_err(dev, "unable to map buf\n");
3060 		state->buf_dma = 0;
3061 		return -ENOMEM;
3062 	}
3063 
3064 	dma_to_qm_sg_one(qm_sg, state->buf_dma, buflen, 0);
3065 
3066 	return 0;
3067 }
3068 
3069 /* Map state->caam_ctx, and add it to link table */
3070 static inline int ctx_map_to_qm_sg(struct device *dev,
3071 				   struct caam_hash_state *state, int ctx_len,
3072 				   struct dpaa2_sg_entry *qm_sg, u32 flag)
3073 {
3074 	state->ctx_dma_len = ctx_len;
3075 	state->ctx_dma = dma_map_single(dev, state->caam_ctx, ctx_len, flag);
3076 	if (dma_mapping_error(dev, state->ctx_dma)) {
3077 		dev_err(dev, "unable to map ctx\n");
3078 		state->ctx_dma = 0;
3079 		return -ENOMEM;
3080 	}
3081 
3082 	dma_to_qm_sg_one(qm_sg, state->ctx_dma, ctx_len, 0);
3083 
3084 	return 0;
3085 }
3086 
3087 static int ahash_set_sh_desc(struct crypto_ahash *ahash)
3088 {
3089 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3090 	int digestsize = crypto_ahash_digestsize(ahash);
3091 	struct dpaa2_caam_priv *priv = dev_get_drvdata(ctx->dev);
3092 	struct caam_flc *flc;
3093 	u32 *desc;
3094 
3095 	/* ahash_update shared descriptor */
3096 	flc = &ctx->flc[UPDATE];
3097 	desc = flc->sh_desc;
3098 	cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len,
3099 			  ctx->ctx_len, true, priv->sec_attr.era);
3100 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
3101 	dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE],
3102 				   desc_bytes(desc), DMA_BIDIRECTIONAL);
3103 	print_hex_dump_debug("ahash update shdesc@" __stringify(__LINE__)": ",
3104 			     DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
3105 			     1);
3106 
3107 	/* ahash_update_first shared descriptor */
3108 	flc = &ctx->flc[UPDATE_FIRST];
3109 	desc = flc->sh_desc;
3110 	cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len,
3111 			  ctx->ctx_len, false, priv->sec_attr.era);
3112 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
3113 	dma_sync_single_for_device(ctx->dev, ctx->flc_dma[UPDATE_FIRST],
3114 				   desc_bytes(desc), DMA_BIDIRECTIONAL);
3115 	print_hex_dump_debug("ahash update first shdesc@" __stringify(__LINE__)": ",
3116 			     DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
3117 			     1);
3118 
3119 	/* ahash_final shared descriptor */
3120 	flc = &ctx->flc[FINALIZE];
3121 	desc = flc->sh_desc;
3122 	cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize,
3123 			  ctx->ctx_len, true, priv->sec_attr.era);
3124 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
3125 	dma_sync_single_for_device(ctx->dev, ctx->flc_dma[FINALIZE],
3126 				   desc_bytes(desc), DMA_BIDIRECTIONAL);
3127 	print_hex_dump_debug("ahash final shdesc@" __stringify(__LINE__)": ",
3128 			     DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
3129 			     1);
3130 
3131 	/* ahash_digest shared descriptor */
3132 	flc = &ctx->flc[DIGEST];
3133 	desc = flc->sh_desc;
3134 	cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize,
3135 			  ctx->ctx_len, false, priv->sec_attr.era);
3136 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
3137 	dma_sync_single_for_device(ctx->dev, ctx->flc_dma[DIGEST],
3138 				   desc_bytes(desc), DMA_BIDIRECTIONAL);
3139 	print_hex_dump_debug("ahash digest shdesc@" __stringify(__LINE__)": ",
3140 			     DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
3141 			     1);
3142 
3143 	return 0;
3144 }
3145 
3146 struct split_key_sh_result {
3147 	struct completion completion;
3148 	int err;
3149 	struct device *dev;
3150 };
3151 
3152 static void split_key_sh_done(void *cbk_ctx, u32 err)
3153 {
3154 	struct split_key_sh_result *res = cbk_ctx;
3155 
3156 	dev_dbg(res->dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
3157 
3158 	res->err = err ? caam_qi2_strstatus(res->dev, err) : 0;
3159 	complete(&res->completion);
3160 }
3161 
3162 /* Digest hash size if it is too large */
3163 static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key,
3164 			   u32 digestsize)
3165 {
3166 	struct caam_request *req_ctx;
3167 	u32 *desc;
3168 	struct split_key_sh_result result;
3169 	dma_addr_t key_dma;
3170 	struct caam_flc *flc;
3171 	dma_addr_t flc_dma;
3172 	int ret = -ENOMEM;
3173 	struct dpaa2_fl_entry *in_fle, *out_fle;
3174 
3175 	req_ctx = kzalloc(sizeof(*req_ctx), GFP_KERNEL | GFP_DMA);
3176 	if (!req_ctx)
3177 		return -ENOMEM;
3178 
3179 	in_fle = &req_ctx->fd_flt[1];
3180 	out_fle = &req_ctx->fd_flt[0];
3181 
3182 	flc = kzalloc(sizeof(*flc), GFP_KERNEL | GFP_DMA);
3183 	if (!flc)
3184 		goto err_flc;
3185 
3186 	key_dma = dma_map_single(ctx->dev, key, *keylen, DMA_BIDIRECTIONAL);
3187 	if (dma_mapping_error(ctx->dev, key_dma)) {
3188 		dev_err(ctx->dev, "unable to map key memory\n");
3189 		goto err_key_dma;
3190 	}
3191 
3192 	desc = flc->sh_desc;
3193 
3194 	init_sh_desc(desc, 0);
3195 
3196 	/* descriptor to perform unkeyed hash on key_in */
3197 	append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
3198 			 OP_ALG_AS_INITFINAL);
3199 	append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
3200 			     FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
3201 	append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
3202 			 LDST_SRCDST_BYTE_CONTEXT);
3203 
3204 	flc->flc[1] = cpu_to_caam32(desc_len(desc)); /* SDL */
3205 	flc_dma = dma_map_single(ctx->dev, flc, sizeof(flc->flc) +
3206 				 desc_bytes(desc), DMA_TO_DEVICE);
3207 	if (dma_mapping_error(ctx->dev, flc_dma)) {
3208 		dev_err(ctx->dev, "unable to map shared descriptor\n");
3209 		goto err_flc_dma;
3210 	}
3211 
3212 	dpaa2_fl_set_final(in_fle, true);
3213 	dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
3214 	dpaa2_fl_set_addr(in_fle, key_dma);
3215 	dpaa2_fl_set_len(in_fle, *keylen);
3216 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3217 	dpaa2_fl_set_addr(out_fle, key_dma);
3218 	dpaa2_fl_set_len(out_fle, digestsize);
3219 
3220 	print_hex_dump_debug("key_in@" __stringify(__LINE__)": ",
3221 			     DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1);
3222 	print_hex_dump_debug("shdesc@" __stringify(__LINE__)": ",
3223 			     DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc),
3224 			     1);
3225 
3226 	result.err = 0;
3227 	init_completion(&result.completion);
3228 	result.dev = ctx->dev;
3229 
3230 	req_ctx->flc = flc;
3231 	req_ctx->flc_dma = flc_dma;
3232 	req_ctx->cbk = split_key_sh_done;
3233 	req_ctx->ctx = &result;
3234 
3235 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3236 	if (ret == -EINPROGRESS) {
3237 		/* in progress */
3238 		wait_for_completion(&result.completion);
3239 		ret = result.err;
3240 		print_hex_dump_debug("digested key@" __stringify(__LINE__)": ",
3241 				     DUMP_PREFIX_ADDRESS, 16, 4, key,
3242 				     digestsize, 1);
3243 	}
3244 
3245 	dma_unmap_single(ctx->dev, flc_dma, sizeof(flc->flc) + desc_bytes(desc),
3246 			 DMA_TO_DEVICE);
3247 err_flc_dma:
3248 	dma_unmap_single(ctx->dev, key_dma, *keylen, DMA_BIDIRECTIONAL);
3249 err_key_dma:
3250 	kfree(flc);
3251 err_flc:
3252 	kfree(req_ctx);
3253 
3254 	*keylen = digestsize;
3255 
3256 	return ret;
3257 }
3258 
3259 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
3260 			unsigned int keylen)
3261 {
3262 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3263 	unsigned int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
3264 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
3265 	int ret;
3266 	u8 *hashed_key = NULL;
3267 
3268 	dev_dbg(ctx->dev, "keylen %d blocksize %d\n", keylen, blocksize);
3269 
3270 	if (keylen > blocksize) {
3271 		hashed_key = kmemdup(key, keylen, GFP_KERNEL | GFP_DMA);
3272 		if (!hashed_key)
3273 			return -ENOMEM;
3274 		ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize);
3275 		if (ret)
3276 			goto bad_free_key;
3277 		key = hashed_key;
3278 	}
3279 
3280 	ctx->adata.keylen = keylen;
3281 	ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype &
3282 					      OP_ALG_ALGSEL_MASK);
3283 	if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE)
3284 		goto bad_free_key;
3285 
3286 	ctx->adata.key_virt = key;
3287 	ctx->adata.key_inline = true;
3288 
3289 	/*
3290 	 * In case |user key| > |derived key|, using DKP<imm,imm> would result
3291 	 * in invalid opcodes (last bytes of user key) in the resulting
3292 	 * descriptor. Use DKP<ptr,imm> instead => both virtual and dma key
3293 	 * addresses are needed.
3294 	 */
3295 	if (keylen > ctx->adata.keylen_pad) {
3296 		memcpy(ctx->key, key, keylen);
3297 		dma_sync_single_for_device(ctx->dev, ctx->adata.key_dma,
3298 					   ctx->adata.keylen_pad,
3299 					   DMA_TO_DEVICE);
3300 	}
3301 
3302 	ret = ahash_set_sh_desc(ahash);
3303 	kfree(hashed_key);
3304 	return ret;
3305 bad_free_key:
3306 	kfree(hashed_key);
3307 	crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
3308 	return -EINVAL;
3309 }
3310 
3311 static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc,
3312 			       struct ahash_request *req)
3313 {
3314 	struct caam_hash_state *state = ahash_request_ctx(req);
3315 
3316 	if (edesc->src_nents)
3317 		dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
3318 
3319 	if (edesc->qm_sg_bytes)
3320 		dma_unmap_single(dev, edesc->qm_sg_dma, edesc->qm_sg_bytes,
3321 				 DMA_TO_DEVICE);
3322 
3323 	if (state->buf_dma) {
3324 		dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
3325 				 DMA_TO_DEVICE);
3326 		state->buf_dma = 0;
3327 	}
3328 }
3329 
3330 static inline void ahash_unmap_ctx(struct device *dev,
3331 				   struct ahash_edesc *edesc,
3332 				   struct ahash_request *req, u32 flag)
3333 {
3334 	struct caam_hash_state *state = ahash_request_ctx(req);
3335 
3336 	if (state->ctx_dma) {
3337 		dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag);
3338 		state->ctx_dma = 0;
3339 	}
3340 	ahash_unmap(dev, edesc, req);
3341 }
3342 
3343 static void ahash_done(void *cbk_ctx, u32 status)
3344 {
3345 	struct crypto_async_request *areq = cbk_ctx;
3346 	struct ahash_request *req = ahash_request_cast(areq);
3347 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3348 	struct caam_hash_state *state = ahash_request_ctx(req);
3349 	struct ahash_edesc *edesc = state->caam_req.edesc;
3350 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3351 	int digestsize = crypto_ahash_digestsize(ahash);
3352 	int ecode = 0;
3353 
3354 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
3355 
3356 	if (unlikely(status))
3357 		ecode = caam_qi2_strstatus(ctx->dev, status);
3358 
3359 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
3360 	memcpy(req->result, state->caam_ctx, digestsize);
3361 	qi_cache_free(edesc);
3362 
3363 	print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
3364 			     DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
3365 			     ctx->ctx_len, 1);
3366 
3367 	req->base.complete(&req->base, ecode);
3368 }
3369 
3370 static void ahash_done_bi(void *cbk_ctx, u32 status)
3371 {
3372 	struct crypto_async_request *areq = cbk_ctx;
3373 	struct ahash_request *req = ahash_request_cast(areq);
3374 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3375 	struct caam_hash_state *state = ahash_request_ctx(req);
3376 	struct ahash_edesc *edesc = state->caam_req.edesc;
3377 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3378 	int ecode = 0;
3379 
3380 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
3381 
3382 	if (unlikely(status))
3383 		ecode = caam_qi2_strstatus(ctx->dev, status);
3384 
3385 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
3386 	switch_buf(state);
3387 	qi_cache_free(edesc);
3388 
3389 	print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
3390 			     DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
3391 			     ctx->ctx_len, 1);
3392 	if (req->result)
3393 		print_hex_dump_debug("result@" __stringify(__LINE__)": ",
3394 				     DUMP_PREFIX_ADDRESS, 16, 4, req->result,
3395 				     crypto_ahash_digestsize(ahash), 1);
3396 
3397 	req->base.complete(&req->base, ecode);
3398 }
3399 
3400 static void ahash_done_ctx_src(void *cbk_ctx, u32 status)
3401 {
3402 	struct crypto_async_request *areq = cbk_ctx;
3403 	struct ahash_request *req = ahash_request_cast(areq);
3404 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3405 	struct caam_hash_state *state = ahash_request_ctx(req);
3406 	struct ahash_edesc *edesc = state->caam_req.edesc;
3407 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3408 	int digestsize = crypto_ahash_digestsize(ahash);
3409 	int ecode = 0;
3410 
3411 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
3412 
3413 	if (unlikely(status))
3414 		ecode = caam_qi2_strstatus(ctx->dev, status);
3415 
3416 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
3417 	memcpy(req->result, state->caam_ctx, digestsize);
3418 	qi_cache_free(edesc);
3419 
3420 	print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
3421 			     DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
3422 			     ctx->ctx_len, 1);
3423 
3424 	req->base.complete(&req->base, ecode);
3425 }
3426 
3427 static void ahash_done_ctx_dst(void *cbk_ctx, u32 status)
3428 {
3429 	struct crypto_async_request *areq = cbk_ctx;
3430 	struct ahash_request *req = ahash_request_cast(areq);
3431 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3432 	struct caam_hash_state *state = ahash_request_ctx(req);
3433 	struct ahash_edesc *edesc = state->caam_req.edesc;
3434 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3435 	int ecode = 0;
3436 
3437 	dev_dbg(ctx->dev, "%s %d: err 0x%x\n", __func__, __LINE__, status);
3438 
3439 	if (unlikely(status))
3440 		ecode = caam_qi2_strstatus(ctx->dev, status);
3441 
3442 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
3443 	switch_buf(state);
3444 	qi_cache_free(edesc);
3445 
3446 	print_hex_dump_debug("ctx@" __stringify(__LINE__)": ",
3447 			     DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
3448 			     ctx->ctx_len, 1);
3449 	if (req->result)
3450 		print_hex_dump_debug("result@" __stringify(__LINE__)": ",
3451 				     DUMP_PREFIX_ADDRESS, 16, 4, req->result,
3452 				     crypto_ahash_digestsize(ahash), 1);
3453 
3454 	req->base.complete(&req->base, ecode);
3455 }
3456 
3457 static int ahash_update_ctx(struct ahash_request *req)
3458 {
3459 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3460 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3461 	struct caam_hash_state *state = ahash_request_ctx(req);
3462 	struct caam_request *req_ctx = &state->caam_req;
3463 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3464 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3465 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3466 		      GFP_KERNEL : GFP_ATOMIC;
3467 	u8 *buf = current_buf(state);
3468 	int *buflen = current_buflen(state);
3469 	u8 *next_buf = alt_buf(state);
3470 	int *next_buflen = alt_buflen(state), last_buflen;
3471 	int in_len = *buflen + req->nbytes, to_hash;
3472 	int src_nents, mapped_nents, qm_sg_bytes, qm_sg_src_index;
3473 	struct ahash_edesc *edesc;
3474 	int ret = 0;
3475 
3476 	last_buflen = *next_buflen;
3477 	*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
3478 	to_hash = in_len - *next_buflen;
3479 
3480 	if (to_hash) {
3481 		struct dpaa2_sg_entry *sg_table;
3482 		int src_len = req->nbytes - *next_buflen;
3483 
3484 		src_nents = sg_nents_for_len(req->src, src_len);
3485 		if (src_nents < 0) {
3486 			dev_err(ctx->dev, "Invalid number of src SG.\n");
3487 			return src_nents;
3488 		}
3489 
3490 		if (src_nents) {
3491 			mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
3492 						  DMA_TO_DEVICE);
3493 			if (!mapped_nents) {
3494 				dev_err(ctx->dev, "unable to DMA map source\n");
3495 				return -ENOMEM;
3496 			}
3497 		} else {
3498 			mapped_nents = 0;
3499 		}
3500 
3501 		/* allocate space for base edesc and link tables */
3502 		edesc = qi_cache_zalloc(GFP_DMA | flags);
3503 		if (!edesc) {
3504 			dma_unmap_sg(ctx->dev, req->src, src_nents,
3505 				     DMA_TO_DEVICE);
3506 			return -ENOMEM;
3507 		}
3508 
3509 		edesc->src_nents = src_nents;
3510 		qm_sg_src_index = 1 + (*buflen ? 1 : 0);
3511 		qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
3512 			      sizeof(*sg_table);
3513 		sg_table = &edesc->sgt[0];
3514 
3515 		ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
3516 				       DMA_BIDIRECTIONAL);
3517 		if (ret)
3518 			goto unmap_ctx;
3519 
3520 		ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
3521 		if (ret)
3522 			goto unmap_ctx;
3523 
3524 		if (mapped_nents) {
3525 			sg_to_qm_sg_last(req->src, src_len,
3526 					 sg_table + qm_sg_src_index, 0);
3527 			if (*next_buflen)
3528 				scatterwalk_map_and_copy(next_buf, req->src,
3529 							 to_hash - *buflen,
3530 							 *next_buflen, 0);
3531 		} else {
3532 			dpaa2_sg_set_final(sg_table + qm_sg_src_index - 1,
3533 					   true);
3534 		}
3535 
3536 		edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
3537 						  qm_sg_bytes, DMA_TO_DEVICE);
3538 		if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
3539 			dev_err(ctx->dev, "unable to map S/G table\n");
3540 			ret = -ENOMEM;
3541 			goto unmap_ctx;
3542 		}
3543 		edesc->qm_sg_bytes = qm_sg_bytes;
3544 
3545 		memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
3546 		dpaa2_fl_set_final(in_fle, true);
3547 		dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
3548 		dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
3549 		dpaa2_fl_set_len(in_fle, ctx->ctx_len + to_hash);
3550 		dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3551 		dpaa2_fl_set_addr(out_fle, state->ctx_dma);
3552 		dpaa2_fl_set_len(out_fle, ctx->ctx_len);
3553 
3554 		req_ctx->flc = &ctx->flc[UPDATE];
3555 		req_ctx->flc_dma = ctx->flc_dma[UPDATE];
3556 		req_ctx->cbk = ahash_done_bi;
3557 		req_ctx->ctx = &req->base;
3558 		req_ctx->edesc = edesc;
3559 
3560 		ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3561 		if (ret != -EINPROGRESS &&
3562 		    !(ret == -EBUSY &&
3563 		      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
3564 			goto unmap_ctx;
3565 	} else if (*next_buflen) {
3566 		scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
3567 					 req->nbytes, 0);
3568 		*buflen = *next_buflen;
3569 		*next_buflen = last_buflen;
3570 	}
3571 
3572 	print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
3573 			     DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
3574 	print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
3575 			     DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
3576 			     1);
3577 
3578 	return ret;
3579 unmap_ctx:
3580 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
3581 	qi_cache_free(edesc);
3582 	return ret;
3583 }
3584 
3585 static int ahash_final_ctx(struct ahash_request *req)
3586 {
3587 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3588 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3589 	struct caam_hash_state *state = ahash_request_ctx(req);
3590 	struct caam_request *req_ctx = &state->caam_req;
3591 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3592 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3593 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3594 		      GFP_KERNEL : GFP_ATOMIC;
3595 	int buflen = *current_buflen(state);
3596 	int qm_sg_bytes;
3597 	int digestsize = crypto_ahash_digestsize(ahash);
3598 	struct ahash_edesc *edesc;
3599 	struct dpaa2_sg_entry *sg_table;
3600 	int ret;
3601 
3602 	/* allocate space for base edesc and link tables */
3603 	edesc = qi_cache_zalloc(GFP_DMA | flags);
3604 	if (!edesc)
3605 		return -ENOMEM;
3606 
3607 	qm_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * sizeof(*sg_table);
3608 	sg_table = &edesc->sgt[0];
3609 
3610 	ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
3611 			       DMA_BIDIRECTIONAL);
3612 	if (ret)
3613 		goto unmap_ctx;
3614 
3615 	ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
3616 	if (ret)
3617 		goto unmap_ctx;
3618 
3619 	dpaa2_sg_set_final(sg_table + (buflen ? 1 : 0), true);
3620 
3621 	edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
3622 					  DMA_TO_DEVICE);
3623 	if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
3624 		dev_err(ctx->dev, "unable to map S/G table\n");
3625 		ret = -ENOMEM;
3626 		goto unmap_ctx;
3627 	}
3628 	edesc->qm_sg_bytes = qm_sg_bytes;
3629 
3630 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
3631 	dpaa2_fl_set_final(in_fle, true);
3632 	dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
3633 	dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
3634 	dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen);
3635 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3636 	dpaa2_fl_set_addr(out_fle, state->ctx_dma);
3637 	dpaa2_fl_set_len(out_fle, digestsize);
3638 
3639 	req_ctx->flc = &ctx->flc[FINALIZE];
3640 	req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
3641 	req_ctx->cbk = ahash_done_ctx_src;
3642 	req_ctx->ctx = &req->base;
3643 	req_ctx->edesc = edesc;
3644 
3645 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3646 	if (ret == -EINPROGRESS ||
3647 	    (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
3648 		return ret;
3649 
3650 unmap_ctx:
3651 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
3652 	qi_cache_free(edesc);
3653 	return ret;
3654 }
3655 
3656 static int ahash_finup_ctx(struct ahash_request *req)
3657 {
3658 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3659 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3660 	struct caam_hash_state *state = ahash_request_ctx(req);
3661 	struct caam_request *req_ctx = &state->caam_req;
3662 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3663 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3664 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3665 		      GFP_KERNEL : GFP_ATOMIC;
3666 	int buflen = *current_buflen(state);
3667 	int qm_sg_bytes, qm_sg_src_index;
3668 	int src_nents, mapped_nents;
3669 	int digestsize = crypto_ahash_digestsize(ahash);
3670 	struct ahash_edesc *edesc;
3671 	struct dpaa2_sg_entry *sg_table;
3672 	int ret;
3673 
3674 	src_nents = sg_nents_for_len(req->src, req->nbytes);
3675 	if (src_nents < 0) {
3676 		dev_err(ctx->dev, "Invalid number of src SG.\n");
3677 		return src_nents;
3678 	}
3679 
3680 	if (src_nents) {
3681 		mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
3682 					  DMA_TO_DEVICE);
3683 		if (!mapped_nents) {
3684 			dev_err(ctx->dev, "unable to DMA map source\n");
3685 			return -ENOMEM;
3686 		}
3687 	} else {
3688 		mapped_nents = 0;
3689 	}
3690 
3691 	/* allocate space for base edesc and link tables */
3692 	edesc = qi_cache_zalloc(GFP_DMA | flags);
3693 	if (!edesc) {
3694 		dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
3695 		return -ENOMEM;
3696 	}
3697 
3698 	edesc->src_nents = src_nents;
3699 	qm_sg_src_index = 1 + (buflen ? 1 : 0);
3700 	qm_sg_bytes = pad_sg_nents(qm_sg_src_index + mapped_nents) *
3701 		      sizeof(*sg_table);
3702 	sg_table = &edesc->sgt[0];
3703 
3704 	ret = ctx_map_to_qm_sg(ctx->dev, state, ctx->ctx_len, sg_table,
3705 			       DMA_BIDIRECTIONAL);
3706 	if (ret)
3707 		goto unmap_ctx;
3708 
3709 	ret = buf_map_to_qm_sg(ctx->dev, sg_table + 1, state);
3710 	if (ret)
3711 		goto unmap_ctx;
3712 
3713 	sg_to_qm_sg_last(req->src, req->nbytes, sg_table + qm_sg_src_index, 0);
3714 
3715 	edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
3716 					  DMA_TO_DEVICE);
3717 	if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
3718 		dev_err(ctx->dev, "unable to map S/G table\n");
3719 		ret = -ENOMEM;
3720 		goto unmap_ctx;
3721 	}
3722 	edesc->qm_sg_bytes = qm_sg_bytes;
3723 
3724 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
3725 	dpaa2_fl_set_final(in_fle, true);
3726 	dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
3727 	dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
3728 	dpaa2_fl_set_len(in_fle, ctx->ctx_len + buflen + req->nbytes);
3729 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3730 	dpaa2_fl_set_addr(out_fle, state->ctx_dma);
3731 	dpaa2_fl_set_len(out_fle, digestsize);
3732 
3733 	req_ctx->flc = &ctx->flc[FINALIZE];
3734 	req_ctx->flc_dma = ctx->flc_dma[FINALIZE];
3735 	req_ctx->cbk = ahash_done_ctx_src;
3736 	req_ctx->ctx = &req->base;
3737 	req_ctx->edesc = edesc;
3738 
3739 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3740 	if (ret == -EINPROGRESS ||
3741 	    (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
3742 		return ret;
3743 
3744 unmap_ctx:
3745 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_BIDIRECTIONAL);
3746 	qi_cache_free(edesc);
3747 	return ret;
3748 }
3749 
3750 static int ahash_digest(struct ahash_request *req)
3751 {
3752 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3753 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3754 	struct caam_hash_state *state = ahash_request_ctx(req);
3755 	struct caam_request *req_ctx = &state->caam_req;
3756 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3757 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3758 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3759 		      GFP_KERNEL : GFP_ATOMIC;
3760 	int digestsize = crypto_ahash_digestsize(ahash);
3761 	int src_nents, mapped_nents;
3762 	struct ahash_edesc *edesc;
3763 	int ret = -ENOMEM;
3764 
3765 	state->buf_dma = 0;
3766 
3767 	src_nents = sg_nents_for_len(req->src, req->nbytes);
3768 	if (src_nents < 0) {
3769 		dev_err(ctx->dev, "Invalid number of src SG.\n");
3770 		return src_nents;
3771 	}
3772 
3773 	if (src_nents) {
3774 		mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
3775 					  DMA_TO_DEVICE);
3776 		if (!mapped_nents) {
3777 			dev_err(ctx->dev, "unable to map source for DMA\n");
3778 			return ret;
3779 		}
3780 	} else {
3781 		mapped_nents = 0;
3782 	}
3783 
3784 	/* allocate space for base edesc and link tables */
3785 	edesc = qi_cache_zalloc(GFP_DMA | flags);
3786 	if (!edesc) {
3787 		dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
3788 		return ret;
3789 	}
3790 
3791 	edesc->src_nents = src_nents;
3792 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
3793 
3794 	if (mapped_nents > 1) {
3795 		int qm_sg_bytes;
3796 		struct dpaa2_sg_entry *sg_table = &edesc->sgt[0];
3797 
3798 		qm_sg_bytes = pad_sg_nents(mapped_nents) * sizeof(*sg_table);
3799 		sg_to_qm_sg_last(req->src, req->nbytes, sg_table, 0);
3800 		edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
3801 						  qm_sg_bytes, DMA_TO_DEVICE);
3802 		if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
3803 			dev_err(ctx->dev, "unable to map S/G table\n");
3804 			goto unmap;
3805 		}
3806 		edesc->qm_sg_bytes = qm_sg_bytes;
3807 		dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
3808 		dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
3809 	} else {
3810 		dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
3811 		dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
3812 	}
3813 
3814 	state->ctx_dma_len = digestsize;
3815 	state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
3816 					DMA_FROM_DEVICE);
3817 	if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
3818 		dev_err(ctx->dev, "unable to map ctx\n");
3819 		state->ctx_dma = 0;
3820 		goto unmap;
3821 	}
3822 
3823 	dpaa2_fl_set_final(in_fle, true);
3824 	dpaa2_fl_set_len(in_fle, req->nbytes);
3825 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3826 	dpaa2_fl_set_addr(out_fle, state->ctx_dma);
3827 	dpaa2_fl_set_len(out_fle, digestsize);
3828 
3829 	req_ctx->flc = &ctx->flc[DIGEST];
3830 	req_ctx->flc_dma = ctx->flc_dma[DIGEST];
3831 	req_ctx->cbk = ahash_done;
3832 	req_ctx->ctx = &req->base;
3833 	req_ctx->edesc = edesc;
3834 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3835 	if (ret == -EINPROGRESS ||
3836 	    (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
3837 		return ret;
3838 
3839 unmap:
3840 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
3841 	qi_cache_free(edesc);
3842 	return ret;
3843 }
3844 
3845 static int ahash_final_no_ctx(struct ahash_request *req)
3846 {
3847 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3848 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3849 	struct caam_hash_state *state = ahash_request_ctx(req);
3850 	struct caam_request *req_ctx = &state->caam_req;
3851 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3852 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3853 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3854 		      GFP_KERNEL : GFP_ATOMIC;
3855 	u8 *buf = current_buf(state);
3856 	int buflen = *current_buflen(state);
3857 	int digestsize = crypto_ahash_digestsize(ahash);
3858 	struct ahash_edesc *edesc;
3859 	int ret = -ENOMEM;
3860 
3861 	/* allocate space for base edesc and link tables */
3862 	edesc = qi_cache_zalloc(GFP_DMA | flags);
3863 	if (!edesc)
3864 		return ret;
3865 
3866 	if (buflen) {
3867 		state->buf_dma = dma_map_single(ctx->dev, buf, buflen,
3868 						DMA_TO_DEVICE);
3869 		if (dma_mapping_error(ctx->dev, state->buf_dma)) {
3870 			dev_err(ctx->dev, "unable to map src\n");
3871 			goto unmap;
3872 		}
3873 	}
3874 
3875 	state->ctx_dma_len = digestsize;
3876 	state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
3877 					DMA_FROM_DEVICE);
3878 	if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
3879 		dev_err(ctx->dev, "unable to map ctx\n");
3880 		state->ctx_dma = 0;
3881 		goto unmap;
3882 	}
3883 
3884 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
3885 	dpaa2_fl_set_final(in_fle, true);
3886 	/*
3887 	 * crypto engine requires the input entry to be present when
3888 	 * "frame list" FD is used.
3889 	 * Since engine does not support FMT=2'b11 (unused entry type), leaving
3890 	 * in_fle zeroized (except for "Final" flag) is the best option.
3891 	 */
3892 	if (buflen) {
3893 		dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
3894 		dpaa2_fl_set_addr(in_fle, state->buf_dma);
3895 		dpaa2_fl_set_len(in_fle, buflen);
3896 	}
3897 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
3898 	dpaa2_fl_set_addr(out_fle, state->ctx_dma);
3899 	dpaa2_fl_set_len(out_fle, digestsize);
3900 
3901 	req_ctx->flc = &ctx->flc[DIGEST];
3902 	req_ctx->flc_dma = ctx->flc_dma[DIGEST];
3903 	req_ctx->cbk = ahash_done;
3904 	req_ctx->ctx = &req->base;
3905 	req_ctx->edesc = edesc;
3906 
3907 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
3908 	if (ret == -EINPROGRESS ||
3909 	    (ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
3910 		return ret;
3911 
3912 unmap:
3913 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
3914 	qi_cache_free(edesc);
3915 	return ret;
3916 }
3917 
3918 static int ahash_update_no_ctx(struct ahash_request *req)
3919 {
3920 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
3921 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
3922 	struct caam_hash_state *state = ahash_request_ctx(req);
3923 	struct caam_request *req_ctx = &state->caam_req;
3924 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
3925 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
3926 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
3927 		      GFP_KERNEL : GFP_ATOMIC;
3928 	u8 *buf = current_buf(state);
3929 	int *buflen = current_buflen(state);
3930 	u8 *next_buf = alt_buf(state);
3931 	int *next_buflen = alt_buflen(state);
3932 	int in_len = *buflen + req->nbytes, to_hash;
3933 	int qm_sg_bytes, src_nents, mapped_nents;
3934 	struct ahash_edesc *edesc;
3935 	int ret = 0;
3936 
3937 	*next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
3938 	to_hash = in_len - *next_buflen;
3939 
3940 	if (to_hash) {
3941 		struct dpaa2_sg_entry *sg_table;
3942 		int src_len = req->nbytes - *next_buflen;
3943 
3944 		src_nents = sg_nents_for_len(req->src, src_len);
3945 		if (src_nents < 0) {
3946 			dev_err(ctx->dev, "Invalid number of src SG.\n");
3947 			return src_nents;
3948 		}
3949 
3950 		if (src_nents) {
3951 			mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
3952 						  DMA_TO_DEVICE);
3953 			if (!mapped_nents) {
3954 				dev_err(ctx->dev, "unable to DMA map source\n");
3955 				return -ENOMEM;
3956 			}
3957 		} else {
3958 			mapped_nents = 0;
3959 		}
3960 
3961 		/* allocate space for base edesc and link tables */
3962 		edesc = qi_cache_zalloc(GFP_DMA | flags);
3963 		if (!edesc) {
3964 			dma_unmap_sg(ctx->dev, req->src, src_nents,
3965 				     DMA_TO_DEVICE);
3966 			return -ENOMEM;
3967 		}
3968 
3969 		edesc->src_nents = src_nents;
3970 		qm_sg_bytes = pad_sg_nents(1 + mapped_nents) *
3971 			      sizeof(*sg_table);
3972 		sg_table = &edesc->sgt[0];
3973 
3974 		ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
3975 		if (ret)
3976 			goto unmap_ctx;
3977 
3978 		sg_to_qm_sg_last(req->src, src_len, sg_table + 1, 0);
3979 
3980 		if (*next_buflen)
3981 			scatterwalk_map_and_copy(next_buf, req->src,
3982 						 to_hash - *buflen,
3983 						 *next_buflen, 0);
3984 
3985 		edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
3986 						  qm_sg_bytes, DMA_TO_DEVICE);
3987 		if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
3988 			dev_err(ctx->dev, "unable to map S/G table\n");
3989 			ret = -ENOMEM;
3990 			goto unmap_ctx;
3991 		}
3992 		edesc->qm_sg_bytes = qm_sg_bytes;
3993 
3994 		state->ctx_dma_len = ctx->ctx_len;
3995 		state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
3996 						ctx->ctx_len, DMA_FROM_DEVICE);
3997 		if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
3998 			dev_err(ctx->dev, "unable to map ctx\n");
3999 			state->ctx_dma = 0;
4000 			ret = -ENOMEM;
4001 			goto unmap_ctx;
4002 		}
4003 
4004 		memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
4005 		dpaa2_fl_set_final(in_fle, true);
4006 		dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
4007 		dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
4008 		dpaa2_fl_set_len(in_fle, to_hash);
4009 		dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
4010 		dpaa2_fl_set_addr(out_fle, state->ctx_dma);
4011 		dpaa2_fl_set_len(out_fle, ctx->ctx_len);
4012 
4013 		req_ctx->flc = &ctx->flc[UPDATE_FIRST];
4014 		req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
4015 		req_ctx->cbk = ahash_done_ctx_dst;
4016 		req_ctx->ctx = &req->base;
4017 		req_ctx->edesc = edesc;
4018 
4019 		ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
4020 		if (ret != -EINPROGRESS &&
4021 		    !(ret == -EBUSY &&
4022 		      req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
4023 			goto unmap_ctx;
4024 
4025 		state->update = ahash_update_ctx;
4026 		state->finup = ahash_finup_ctx;
4027 		state->final = ahash_final_ctx;
4028 	} else if (*next_buflen) {
4029 		scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
4030 					 req->nbytes, 0);
4031 		*buflen = *next_buflen;
4032 		*next_buflen = 0;
4033 	}
4034 
4035 	print_hex_dump_debug("buf@" __stringify(__LINE__)": ",
4036 			     DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
4037 	print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
4038 			     DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
4039 			     1);
4040 
4041 	return ret;
4042 unmap_ctx:
4043 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
4044 	qi_cache_free(edesc);
4045 	return ret;
4046 }
4047 
4048 static int ahash_finup_no_ctx(struct ahash_request *req)
4049 {
4050 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
4051 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
4052 	struct caam_hash_state *state = ahash_request_ctx(req);
4053 	struct caam_request *req_ctx = &state->caam_req;
4054 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
4055 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
4056 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
4057 		      GFP_KERNEL : GFP_ATOMIC;
4058 	int buflen = *current_buflen(state);
4059 	int qm_sg_bytes, src_nents, mapped_nents;
4060 	int digestsize = crypto_ahash_digestsize(ahash);
4061 	struct ahash_edesc *edesc;
4062 	struct dpaa2_sg_entry *sg_table;
4063 	int ret;
4064 
4065 	src_nents = sg_nents_for_len(req->src, req->nbytes);
4066 	if (src_nents < 0) {
4067 		dev_err(ctx->dev, "Invalid number of src SG.\n");
4068 		return src_nents;
4069 	}
4070 
4071 	if (src_nents) {
4072 		mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
4073 					  DMA_TO_DEVICE);
4074 		if (!mapped_nents) {
4075 			dev_err(ctx->dev, "unable to DMA map source\n");
4076 			return -ENOMEM;
4077 		}
4078 	} else {
4079 		mapped_nents = 0;
4080 	}
4081 
4082 	/* allocate space for base edesc and link tables */
4083 	edesc = qi_cache_zalloc(GFP_DMA | flags);
4084 	if (!edesc) {
4085 		dma_unmap_sg(ctx->dev, req->src, src_nents, DMA_TO_DEVICE);
4086 		return -ENOMEM;
4087 	}
4088 
4089 	edesc->src_nents = src_nents;
4090 	qm_sg_bytes = pad_sg_nents(2 + mapped_nents) * sizeof(*sg_table);
4091 	sg_table = &edesc->sgt[0];
4092 
4093 	ret = buf_map_to_qm_sg(ctx->dev, sg_table, state);
4094 	if (ret)
4095 		goto unmap;
4096 
4097 	sg_to_qm_sg_last(req->src, req->nbytes, sg_table + 1, 0);
4098 
4099 	edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table, qm_sg_bytes,
4100 					  DMA_TO_DEVICE);
4101 	if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
4102 		dev_err(ctx->dev, "unable to map S/G table\n");
4103 		ret = -ENOMEM;
4104 		goto unmap;
4105 	}
4106 	edesc->qm_sg_bytes = qm_sg_bytes;
4107 
4108 	state->ctx_dma_len = digestsize;
4109 	state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx, digestsize,
4110 					DMA_FROM_DEVICE);
4111 	if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
4112 		dev_err(ctx->dev, "unable to map ctx\n");
4113 		state->ctx_dma = 0;
4114 		ret = -ENOMEM;
4115 		goto unmap;
4116 	}
4117 
4118 	memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
4119 	dpaa2_fl_set_final(in_fle, true);
4120 	dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
4121 	dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
4122 	dpaa2_fl_set_len(in_fle, buflen + req->nbytes);
4123 	dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
4124 	dpaa2_fl_set_addr(out_fle, state->ctx_dma);
4125 	dpaa2_fl_set_len(out_fle, digestsize);
4126 
4127 	req_ctx->flc = &ctx->flc[DIGEST];
4128 	req_ctx->flc_dma = ctx->flc_dma[DIGEST];
4129 	req_ctx->cbk = ahash_done;
4130 	req_ctx->ctx = &req->base;
4131 	req_ctx->edesc = edesc;
4132 	ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
4133 	if (ret != -EINPROGRESS &&
4134 	    !(ret == -EBUSY && req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
4135 		goto unmap;
4136 
4137 	return ret;
4138 unmap:
4139 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_FROM_DEVICE);
4140 	qi_cache_free(edesc);
4141 	return -ENOMEM;
4142 }
4143 
4144 static int ahash_update_first(struct ahash_request *req)
4145 {
4146 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
4147 	struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
4148 	struct caam_hash_state *state = ahash_request_ctx(req);
4149 	struct caam_request *req_ctx = &state->caam_req;
4150 	struct dpaa2_fl_entry *in_fle = &req_ctx->fd_flt[1];
4151 	struct dpaa2_fl_entry *out_fle = &req_ctx->fd_flt[0];
4152 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
4153 		      GFP_KERNEL : GFP_ATOMIC;
4154 	u8 *next_buf = alt_buf(state);
4155 	int *next_buflen = alt_buflen(state);
4156 	int to_hash;
4157 	int src_nents, mapped_nents;
4158 	struct ahash_edesc *edesc;
4159 	int ret = 0;
4160 
4161 	*next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
4162 				      1);
4163 	to_hash = req->nbytes - *next_buflen;
4164 
4165 	if (to_hash) {
4166 		struct dpaa2_sg_entry *sg_table;
4167 		int src_len = req->nbytes - *next_buflen;
4168 
4169 		src_nents = sg_nents_for_len(req->src, src_len);
4170 		if (src_nents < 0) {
4171 			dev_err(ctx->dev, "Invalid number of src SG.\n");
4172 			return src_nents;
4173 		}
4174 
4175 		if (src_nents) {
4176 			mapped_nents = dma_map_sg(ctx->dev, req->src, src_nents,
4177 						  DMA_TO_DEVICE);
4178 			if (!mapped_nents) {
4179 				dev_err(ctx->dev, "unable to map source for DMA\n");
4180 				return -ENOMEM;
4181 			}
4182 		} else {
4183 			mapped_nents = 0;
4184 		}
4185 
4186 		/* allocate space for base edesc and link tables */
4187 		edesc = qi_cache_zalloc(GFP_DMA | flags);
4188 		if (!edesc) {
4189 			dma_unmap_sg(ctx->dev, req->src, src_nents,
4190 				     DMA_TO_DEVICE);
4191 			return -ENOMEM;
4192 		}
4193 
4194 		edesc->src_nents = src_nents;
4195 		sg_table = &edesc->sgt[0];
4196 
4197 		memset(&req_ctx->fd_flt, 0, sizeof(req_ctx->fd_flt));
4198 		dpaa2_fl_set_final(in_fle, true);
4199 		dpaa2_fl_set_len(in_fle, to_hash);
4200 
4201 		if (mapped_nents > 1) {
4202 			int qm_sg_bytes;
4203 
4204 			sg_to_qm_sg_last(req->src, src_len, sg_table, 0);
4205 			qm_sg_bytes = pad_sg_nents(mapped_nents) *
4206 				      sizeof(*sg_table);
4207 			edesc->qm_sg_dma = dma_map_single(ctx->dev, sg_table,
4208 							  qm_sg_bytes,
4209 							  DMA_TO_DEVICE);
4210 			if (dma_mapping_error(ctx->dev, edesc->qm_sg_dma)) {
4211 				dev_err(ctx->dev, "unable to map S/G table\n");
4212 				ret = -ENOMEM;
4213 				goto unmap_ctx;
4214 			}
4215 			edesc->qm_sg_bytes = qm_sg_bytes;
4216 			dpaa2_fl_set_format(in_fle, dpaa2_fl_sg);
4217 			dpaa2_fl_set_addr(in_fle, edesc->qm_sg_dma);
4218 		} else {
4219 			dpaa2_fl_set_format(in_fle, dpaa2_fl_single);
4220 			dpaa2_fl_set_addr(in_fle, sg_dma_address(req->src));
4221 		}
4222 
4223 		if (*next_buflen)
4224 			scatterwalk_map_and_copy(next_buf, req->src, to_hash,
4225 						 *next_buflen, 0);
4226 
4227 		state->ctx_dma_len = ctx->ctx_len;
4228 		state->ctx_dma = dma_map_single(ctx->dev, state->caam_ctx,
4229 						ctx->ctx_len, DMA_FROM_DEVICE);
4230 		if (dma_mapping_error(ctx->dev, state->ctx_dma)) {
4231 			dev_err(ctx->dev, "unable to map ctx\n");
4232 			state->ctx_dma = 0;
4233 			ret = -ENOMEM;
4234 			goto unmap_ctx;
4235 		}
4236 
4237 		dpaa2_fl_set_format(out_fle, dpaa2_fl_single);
4238 		dpaa2_fl_set_addr(out_fle, state->ctx_dma);
4239 		dpaa2_fl_set_len(out_fle, ctx->ctx_len);
4240 
4241 		req_ctx->flc = &ctx->flc[UPDATE_FIRST];
4242 		req_ctx->flc_dma = ctx->flc_dma[UPDATE_FIRST];
4243 		req_ctx->cbk = ahash_done_ctx_dst;
4244 		req_ctx->ctx = &req->base;
4245 		req_ctx->edesc = edesc;
4246 
4247 		ret = dpaa2_caam_enqueue(ctx->dev, req_ctx);
4248 		if (ret != -EINPROGRESS &&
4249 		    !(ret == -EBUSY && req->base.flags &
4250 		      CRYPTO_TFM_REQ_MAY_BACKLOG))
4251 			goto unmap_ctx;
4252 
4253 		state->update = ahash_update_ctx;
4254 		state->finup = ahash_finup_ctx;
4255 		state->final = ahash_final_ctx;
4256 	} else if (*next_buflen) {
4257 		state->update = ahash_update_no_ctx;
4258 		state->finup = ahash_finup_no_ctx;
4259 		state->final = ahash_final_no_ctx;
4260 		scatterwalk_map_and_copy(next_buf, req->src, 0,
4261 					 req->nbytes, 0);
4262 		switch_buf(state);
4263 	}
4264 
4265 	print_hex_dump_debug("next buf@" __stringify(__LINE__)": ",
4266 			     DUMP_PREFIX_ADDRESS, 16, 4, next_buf, *next_buflen,
4267 			     1);
4268 
4269 	return ret;
4270 unmap_ctx:
4271 	ahash_unmap_ctx(ctx->dev, edesc, req, DMA_TO_DEVICE);
4272 	qi_cache_free(edesc);
4273 	return ret;
4274 }
4275 
4276 static int ahash_finup_first(struct ahash_request *req)
4277 {
4278 	return ahash_digest(req);
4279 }
4280 
4281 static int ahash_init(struct ahash_request *req)
4282 {
4283 	struct caam_hash_state *state = ahash_request_ctx(req);
4284 
4285 	state->update = ahash_update_first;
4286 	state->finup = ahash_finup_first;
4287 	state->final = ahash_final_no_ctx;
4288 
4289 	state->ctx_dma = 0;
4290 	state->ctx_dma_len = 0;
4291 	state->current_buf = 0;
4292 	state->buf_dma = 0;
4293 	state->buflen_0 = 0;
4294 	state->buflen_1 = 0;
4295 
4296 	return 0;
4297 }
4298 
4299 static int ahash_update(struct ahash_request *req)
4300 {
4301 	struct caam_hash_state *state = ahash_request_ctx(req);
4302 
4303 	return state->update(req);
4304 }
4305 
4306 static int ahash_finup(struct ahash_request *req)
4307 {
4308 	struct caam_hash_state *state = ahash_request_ctx(req);
4309 
4310 	return state->finup(req);
4311 }
4312 
4313 static int ahash_final(struct ahash_request *req)
4314 {
4315 	struct caam_hash_state *state = ahash_request_ctx(req);
4316 
4317 	return state->final(req);
4318 }
4319 
4320 static int ahash_export(struct ahash_request *req, void *out)
4321 {
4322 	struct caam_hash_state *state = ahash_request_ctx(req);
4323 	struct caam_export_state *export = out;
4324 	int len;
4325 	u8 *buf;
4326 
4327 	if (state->current_buf) {
4328 		buf = state->buf_1;
4329 		len = state->buflen_1;
4330 	} else {
4331 		buf = state->buf_0;
4332 		len = state->buflen_0;
4333 	}
4334 
4335 	memcpy(export->buf, buf, len);
4336 	memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
4337 	export->buflen = len;
4338 	export->update = state->update;
4339 	export->final = state->final;
4340 	export->finup = state->finup;
4341 
4342 	return 0;
4343 }
4344 
4345 static int ahash_import(struct ahash_request *req, const void *in)
4346 {
4347 	struct caam_hash_state *state = ahash_request_ctx(req);
4348 	const struct caam_export_state *export = in;
4349 
4350 	memset(state, 0, sizeof(*state));
4351 	memcpy(state->buf_0, export->buf, export->buflen);
4352 	memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
4353 	state->buflen_0 = export->buflen;
4354 	state->update = export->update;
4355 	state->final = export->final;
4356 	state->finup = export->finup;
4357 
4358 	return 0;
4359 }
4360 
4361 struct caam_hash_template {
4362 	char name[CRYPTO_MAX_ALG_NAME];
4363 	char driver_name[CRYPTO_MAX_ALG_NAME];
4364 	char hmac_name[CRYPTO_MAX_ALG_NAME];
4365 	char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
4366 	unsigned int blocksize;
4367 	struct ahash_alg template_ahash;
4368 	u32 alg_type;
4369 };
4370 
4371 /* ahash descriptors */
4372 static struct caam_hash_template driver_hash[] = {
4373 	{
4374 		.name = "sha1",
4375 		.driver_name = "sha1-caam-qi2",
4376 		.hmac_name = "hmac(sha1)",
4377 		.hmac_driver_name = "hmac-sha1-caam-qi2",
4378 		.blocksize = SHA1_BLOCK_SIZE,
4379 		.template_ahash = {
4380 			.init = ahash_init,
4381 			.update = ahash_update,
4382 			.final = ahash_final,
4383 			.finup = ahash_finup,
4384 			.digest = ahash_digest,
4385 			.export = ahash_export,
4386 			.import = ahash_import,
4387 			.setkey = ahash_setkey,
4388 			.halg = {
4389 				.digestsize = SHA1_DIGEST_SIZE,
4390 				.statesize = sizeof(struct caam_export_state),
4391 			},
4392 		},
4393 		.alg_type = OP_ALG_ALGSEL_SHA1,
4394 	}, {
4395 		.name = "sha224",
4396 		.driver_name = "sha224-caam-qi2",
4397 		.hmac_name = "hmac(sha224)",
4398 		.hmac_driver_name = "hmac-sha224-caam-qi2",
4399 		.blocksize = SHA224_BLOCK_SIZE,
4400 		.template_ahash = {
4401 			.init = ahash_init,
4402 			.update = ahash_update,
4403 			.final = ahash_final,
4404 			.finup = ahash_finup,
4405 			.digest = ahash_digest,
4406 			.export = ahash_export,
4407 			.import = ahash_import,
4408 			.setkey = ahash_setkey,
4409 			.halg = {
4410 				.digestsize = SHA224_DIGEST_SIZE,
4411 				.statesize = sizeof(struct caam_export_state),
4412 			},
4413 		},
4414 		.alg_type = OP_ALG_ALGSEL_SHA224,
4415 	}, {
4416 		.name = "sha256",
4417 		.driver_name = "sha256-caam-qi2",
4418 		.hmac_name = "hmac(sha256)",
4419 		.hmac_driver_name = "hmac-sha256-caam-qi2",
4420 		.blocksize = SHA256_BLOCK_SIZE,
4421 		.template_ahash = {
4422 			.init = ahash_init,
4423 			.update = ahash_update,
4424 			.final = ahash_final,
4425 			.finup = ahash_finup,
4426 			.digest = ahash_digest,
4427 			.export = ahash_export,
4428 			.import = ahash_import,
4429 			.setkey = ahash_setkey,
4430 			.halg = {
4431 				.digestsize = SHA256_DIGEST_SIZE,
4432 				.statesize = sizeof(struct caam_export_state),
4433 			},
4434 		},
4435 		.alg_type = OP_ALG_ALGSEL_SHA256,
4436 	}, {
4437 		.name = "sha384",
4438 		.driver_name = "sha384-caam-qi2",
4439 		.hmac_name = "hmac(sha384)",
4440 		.hmac_driver_name = "hmac-sha384-caam-qi2",
4441 		.blocksize = SHA384_BLOCK_SIZE,
4442 		.template_ahash = {
4443 			.init = ahash_init,
4444 			.update = ahash_update,
4445 			.final = ahash_final,
4446 			.finup = ahash_finup,
4447 			.digest = ahash_digest,
4448 			.export = ahash_export,
4449 			.import = ahash_import,
4450 			.setkey = ahash_setkey,
4451 			.halg = {
4452 				.digestsize = SHA384_DIGEST_SIZE,
4453 				.statesize = sizeof(struct caam_export_state),
4454 			},
4455 		},
4456 		.alg_type = OP_ALG_ALGSEL_SHA384,
4457 	}, {
4458 		.name = "sha512",
4459 		.driver_name = "sha512-caam-qi2",
4460 		.hmac_name = "hmac(sha512)",
4461 		.hmac_driver_name = "hmac-sha512-caam-qi2",
4462 		.blocksize = SHA512_BLOCK_SIZE,
4463 		.template_ahash = {
4464 			.init = ahash_init,
4465 			.update = ahash_update,
4466 			.final = ahash_final,
4467 			.finup = ahash_finup,
4468 			.digest = ahash_digest,
4469 			.export = ahash_export,
4470 			.import = ahash_import,
4471 			.setkey = ahash_setkey,
4472 			.halg = {
4473 				.digestsize = SHA512_DIGEST_SIZE,
4474 				.statesize = sizeof(struct caam_export_state),
4475 			},
4476 		},
4477 		.alg_type = OP_ALG_ALGSEL_SHA512,
4478 	}, {
4479 		.name = "md5",
4480 		.driver_name = "md5-caam-qi2",
4481 		.hmac_name = "hmac(md5)",
4482 		.hmac_driver_name = "hmac-md5-caam-qi2",
4483 		.blocksize = MD5_BLOCK_WORDS * 4,
4484 		.template_ahash = {
4485 			.init = ahash_init,
4486 			.update = ahash_update,
4487 			.final = ahash_final,
4488 			.finup = ahash_finup,
4489 			.digest = ahash_digest,
4490 			.export = ahash_export,
4491 			.import = ahash_import,
4492 			.setkey = ahash_setkey,
4493 			.halg = {
4494 				.digestsize = MD5_DIGEST_SIZE,
4495 				.statesize = sizeof(struct caam_export_state),
4496 			},
4497 		},
4498 		.alg_type = OP_ALG_ALGSEL_MD5,
4499 	}
4500 };
4501 
4502 struct caam_hash_alg {
4503 	struct list_head entry;
4504 	struct device *dev;
4505 	int alg_type;
4506 	struct ahash_alg ahash_alg;
4507 };
4508 
4509 static int caam_hash_cra_init(struct crypto_tfm *tfm)
4510 {
4511 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
4512 	struct crypto_alg *base = tfm->__crt_alg;
4513 	struct hash_alg_common *halg =
4514 		 container_of(base, struct hash_alg_common, base);
4515 	struct ahash_alg *alg =
4516 		 container_of(halg, struct ahash_alg, halg);
4517 	struct caam_hash_alg *caam_hash =
4518 		 container_of(alg, struct caam_hash_alg, ahash_alg);
4519 	struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
4520 	/* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
4521 	static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
4522 					 HASH_MSG_LEN + SHA1_DIGEST_SIZE,
4523 					 HASH_MSG_LEN + 32,
4524 					 HASH_MSG_LEN + SHA256_DIGEST_SIZE,
4525 					 HASH_MSG_LEN + 64,
4526 					 HASH_MSG_LEN + SHA512_DIGEST_SIZE };
4527 	dma_addr_t dma_addr;
4528 	int i;
4529 
4530 	ctx->dev = caam_hash->dev;
4531 
4532 	if (alg->setkey) {
4533 		ctx->adata.key_dma = dma_map_single_attrs(ctx->dev, ctx->key,
4534 							  ARRAY_SIZE(ctx->key),
4535 							  DMA_TO_DEVICE,
4536 							  DMA_ATTR_SKIP_CPU_SYNC);
4537 		if (dma_mapping_error(ctx->dev, ctx->adata.key_dma)) {
4538 			dev_err(ctx->dev, "unable to map key\n");
4539 			return -ENOMEM;
4540 		}
4541 	}
4542 
4543 	dma_addr = dma_map_single_attrs(ctx->dev, ctx->flc, sizeof(ctx->flc),
4544 					DMA_BIDIRECTIONAL,
4545 					DMA_ATTR_SKIP_CPU_SYNC);
4546 	if (dma_mapping_error(ctx->dev, dma_addr)) {
4547 		dev_err(ctx->dev, "unable to map shared descriptors\n");
4548 		if (ctx->adata.key_dma)
4549 			dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
4550 					       ARRAY_SIZE(ctx->key),
4551 					       DMA_TO_DEVICE,
4552 					       DMA_ATTR_SKIP_CPU_SYNC);
4553 		return -ENOMEM;
4554 	}
4555 
4556 	for (i = 0; i < HASH_NUM_OP; i++)
4557 		ctx->flc_dma[i] = dma_addr + i * sizeof(ctx->flc[i]);
4558 
4559 	/* copy descriptor header template value */
4560 	ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
4561 
4562 	ctx->ctx_len = runninglen[(ctx->adata.algtype &
4563 				   OP_ALG_ALGSEL_SUBMASK) >>
4564 				  OP_ALG_ALGSEL_SHIFT];
4565 
4566 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4567 				 sizeof(struct caam_hash_state));
4568 
4569 	return ahash_set_sh_desc(ahash);
4570 }
4571 
4572 static void caam_hash_cra_exit(struct crypto_tfm *tfm)
4573 {
4574 	struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
4575 
4576 	dma_unmap_single_attrs(ctx->dev, ctx->flc_dma[0], sizeof(ctx->flc),
4577 			       DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
4578 	if (ctx->adata.key_dma)
4579 		dma_unmap_single_attrs(ctx->dev, ctx->adata.key_dma,
4580 				       ARRAY_SIZE(ctx->key), DMA_TO_DEVICE,
4581 				       DMA_ATTR_SKIP_CPU_SYNC);
4582 }
4583 
4584 static struct caam_hash_alg *caam_hash_alloc(struct device *dev,
4585 	struct caam_hash_template *template, bool keyed)
4586 {
4587 	struct caam_hash_alg *t_alg;
4588 	struct ahash_alg *halg;
4589 	struct crypto_alg *alg;
4590 
4591 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
4592 	if (!t_alg)
4593 		return ERR_PTR(-ENOMEM);
4594 
4595 	t_alg->ahash_alg = template->template_ahash;
4596 	halg = &t_alg->ahash_alg;
4597 	alg = &halg->halg.base;
4598 
4599 	if (keyed) {
4600 		snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
4601 			 template->hmac_name);
4602 		snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
4603 			 template->hmac_driver_name);
4604 	} else {
4605 		snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
4606 			 template->name);
4607 		snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
4608 			 template->driver_name);
4609 		t_alg->ahash_alg.setkey = NULL;
4610 	}
4611 	alg->cra_module = THIS_MODULE;
4612 	alg->cra_init = caam_hash_cra_init;
4613 	alg->cra_exit = caam_hash_cra_exit;
4614 	alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
4615 	alg->cra_priority = CAAM_CRA_PRIORITY;
4616 	alg->cra_blocksize = template->blocksize;
4617 	alg->cra_alignmask = 0;
4618 	alg->cra_flags = CRYPTO_ALG_ASYNC;
4619 
4620 	t_alg->alg_type = template->alg_type;
4621 	t_alg->dev = dev;
4622 
4623 	return t_alg;
4624 }
4625 
4626 static void dpaa2_caam_fqdan_cb(struct dpaa2_io_notification_ctx *nctx)
4627 {
4628 	struct dpaa2_caam_priv_per_cpu *ppriv;
4629 
4630 	ppriv = container_of(nctx, struct dpaa2_caam_priv_per_cpu, nctx);
4631 	napi_schedule_irqoff(&ppriv->napi);
4632 }
4633 
4634 static int __cold dpaa2_dpseci_dpio_setup(struct dpaa2_caam_priv *priv)
4635 {
4636 	struct device *dev = priv->dev;
4637 	struct dpaa2_io_notification_ctx *nctx;
4638 	struct dpaa2_caam_priv_per_cpu *ppriv;
4639 	int err, i = 0, cpu;
4640 
4641 	for_each_online_cpu(cpu) {
4642 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
4643 		ppriv->priv = priv;
4644 		nctx = &ppriv->nctx;
4645 		nctx->is_cdan = 0;
4646 		nctx->id = ppriv->rsp_fqid;
4647 		nctx->desired_cpu = cpu;
4648 		nctx->cb = dpaa2_caam_fqdan_cb;
4649 
4650 		/* Register notification callbacks */
4651 		ppriv->dpio = dpaa2_io_service_select(cpu);
4652 		err = dpaa2_io_service_register(ppriv->dpio, nctx, dev);
4653 		if (unlikely(err)) {
4654 			dev_dbg(dev, "No affine DPIO for cpu %d\n", cpu);
4655 			nctx->cb = NULL;
4656 			/*
4657 			 * If no affine DPIO for this core, there's probably
4658 			 * none available for next cores either. Signal we want
4659 			 * to retry later, in case the DPIO devices weren't
4660 			 * probed yet.
4661 			 */
4662 			err = -EPROBE_DEFER;
4663 			goto err;
4664 		}
4665 
4666 		ppriv->store = dpaa2_io_store_create(DPAA2_CAAM_STORE_SIZE,
4667 						     dev);
4668 		if (unlikely(!ppriv->store)) {
4669 			dev_err(dev, "dpaa2_io_store_create() failed\n");
4670 			err = -ENOMEM;
4671 			goto err;
4672 		}
4673 
4674 		if (++i == priv->num_pairs)
4675 			break;
4676 	}
4677 
4678 	return 0;
4679 
4680 err:
4681 	for_each_online_cpu(cpu) {
4682 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
4683 		if (!ppriv->nctx.cb)
4684 			break;
4685 		dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx, dev);
4686 	}
4687 
4688 	for_each_online_cpu(cpu) {
4689 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
4690 		if (!ppriv->store)
4691 			break;
4692 		dpaa2_io_store_destroy(ppriv->store);
4693 	}
4694 
4695 	return err;
4696 }
4697 
4698 static void __cold dpaa2_dpseci_dpio_free(struct dpaa2_caam_priv *priv)
4699 {
4700 	struct dpaa2_caam_priv_per_cpu *ppriv;
4701 	int i = 0, cpu;
4702 
4703 	for_each_online_cpu(cpu) {
4704 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
4705 		dpaa2_io_service_deregister(ppriv->dpio, &ppriv->nctx,
4706 					    priv->dev);
4707 		dpaa2_io_store_destroy(ppriv->store);
4708 
4709 		if (++i == priv->num_pairs)
4710 			return;
4711 	}
4712 }
4713 
4714 static int dpaa2_dpseci_bind(struct dpaa2_caam_priv *priv)
4715 {
4716 	struct dpseci_rx_queue_cfg rx_queue_cfg;
4717 	struct device *dev = priv->dev;
4718 	struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
4719 	struct dpaa2_caam_priv_per_cpu *ppriv;
4720 	int err = 0, i = 0, cpu;
4721 
4722 	/* Configure Rx queues */
4723 	for_each_online_cpu(cpu) {
4724 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
4725 
4726 		rx_queue_cfg.options = DPSECI_QUEUE_OPT_DEST |
4727 				       DPSECI_QUEUE_OPT_USER_CTX;
4728 		rx_queue_cfg.order_preservation_en = 0;
4729 		rx_queue_cfg.dest_cfg.dest_type = DPSECI_DEST_DPIO;
4730 		rx_queue_cfg.dest_cfg.dest_id = ppriv->nctx.dpio_id;
4731 		/*
4732 		 * Rx priority (WQ) doesn't really matter, since we use
4733 		 * pull mode, i.e. volatile dequeues from specific FQs
4734 		 */
4735 		rx_queue_cfg.dest_cfg.priority = 0;
4736 		rx_queue_cfg.user_ctx = ppriv->nctx.qman64;
4737 
4738 		err = dpseci_set_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
4739 					  &rx_queue_cfg);
4740 		if (err) {
4741 			dev_err(dev, "dpseci_set_rx_queue() failed with err %d\n",
4742 				err);
4743 			return err;
4744 		}
4745 
4746 		if (++i == priv->num_pairs)
4747 			break;
4748 	}
4749 
4750 	return err;
4751 }
4752 
4753 static void dpaa2_dpseci_congestion_free(struct dpaa2_caam_priv *priv)
4754 {
4755 	struct device *dev = priv->dev;
4756 
4757 	if (!priv->cscn_mem)
4758 		return;
4759 
4760 	dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
4761 	kfree(priv->cscn_mem);
4762 }
4763 
4764 static void dpaa2_dpseci_free(struct dpaa2_caam_priv *priv)
4765 {
4766 	struct device *dev = priv->dev;
4767 	struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
4768 
4769 	dpaa2_dpseci_congestion_free(priv);
4770 	dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
4771 }
4772 
4773 static void dpaa2_caam_process_fd(struct dpaa2_caam_priv *priv,
4774 				  const struct dpaa2_fd *fd)
4775 {
4776 	struct caam_request *req;
4777 	u32 fd_err;
4778 
4779 	if (dpaa2_fd_get_format(fd) != dpaa2_fd_list) {
4780 		dev_err(priv->dev, "Only Frame List FD format is supported!\n");
4781 		return;
4782 	}
4783 
4784 	fd_err = dpaa2_fd_get_ctrl(fd) & FD_CTRL_ERR_MASK;
4785 	if (unlikely(fd_err))
4786 		dev_err_ratelimited(priv->dev, "FD error: %08x\n", fd_err);
4787 
4788 	/*
4789 	 * FD[ADDR] is guaranteed to be valid, irrespective of errors reported
4790 	 * in FD[ERR] or FD[FRC].
4791 	 */
4792 	req = dpaa2_caam_iova_to_virt(priv, dpaa2_fd_get_addr(fd));
4793 	dma_unmap_single(priv->dev, req->fd_flt_dma, sizeof(req->fd_flt),
4794 			 DMA_BIDIRECTIONAL);
4795 	req->cbk(req->ctx, dpaa2_fd_get_frc(fd));
4796 }
4797 
4798 static int dpaa2_caam_pull_fq(struct dpaa2_caam_priv_per_cpu *ppriv)
4799 {
4800 	int err;
4801 
4802 	/* Retry while portal is busy */
4803 	do {
4804 		err = dpaa2_io_service_pull_fq(ppriv->dpio, ppriv->rsp_fqid,
4805 					       ppriv->store);
4806 	} while (err == -EBUSY);
4807 
4808 	if (unlikely(err))
4809 		dev_err(ppriv->priv->dev, "dpaa2_io_service_pull err %d", err);
4810 
4811 	return err;
4812 }
4813 
4814 static int dpaa2_caam_store_consume(struct dpaa2_caam_priv_per_cpu *ppriv)
4815 {
4816 	struct dpaa2_dq *dq;
4817 	int cleaned = 0, is_last;
4818 
4819 	do {
4820 		dq = dpaa2_io_store_next(ppriv->store, &is_last);
4821 		if (unlikely(!dq)) {
4822 			if (unlikely(!is_last)) {
4823 				dev_dbg(ppriv->priv->dev,
4824 					"FQ %d returned no valid frames\n",
4825 					ppriv->rsp_fqid);
4826 				/*
4827 				 * MUST retry until we get some sort of
4828 				 * valid response token (be it "empty dequeue"
4829 				 * or a valid frame).
4830 				 */
4831 				continue;
4832 			}
4833 			break;
4834 		}
4835 
4836 		/* Process FD */
4837 		dpaa2_caam_process_fd(ppriv->priv, dpaa2_dq_fd(dq));
4838 		cleaned++;
4839 	} while (!is_last);
4840 
4841 	return cleaned;
4842 }
4843 
4844 static int dpaa2_dpseci_poll(struct napi_struct *napi, int budget)
4845 {
4846 	struct dpaa2_caam_priv_per_cpu *ppriv;
4847 	struct dpaa2_caam_priv *priv;
4848 	int err, cleaned = 0, store_cleaned;
4849 
4850 	ppriv = container_of(napi, struct dpaa2_caam_priv_per_cpu, napi);
4851 	priv = ppriv->priv;
4852 
4853 	if (unlikely(dpaa2_caam_pull_fq(ppriv)))
4854 		return 0;
4855 
4856 	do {
4857 		store_cleaned = dpaa2_caam_store_consume(ppriv);
4858 		cleaned += store_cleaned;
4859 
4860 		if (store_cleaned == 0 ||
4861 		    cleaned > budget - DPAA2_CAAM_STORE_SIZE)
4862 			break;
4863 
4864 		/* Try to dequeue some more */
4865 		err = dpaa2_caam_pull_fq(ppriv);
4866 		if (unlikely(err))
4867 			break;
4868 	} while (1);
4869 
4870 	if (cleaned < budget) {
4871 		napi_complete_done(napi, cleaned);
4872 		err = dpaa2_io_service_rearm(ppriv->dpio, &ppriv->nctx);
4873 		if (unlikely(err))
4874 			dev_err(priv->dev, "Notification rearm failed: %d\n",
4875 				err);
4876 	}
4877 
4878 	return cleaned;
4879 }
4880 
4881 static int dpaa2_dpseci_congestion_setup(struct dpaa2_caam_priv *priv,
4882 					 u16 token)
4883 {
4884 	struct dpseci_congestion_notification_cfg cong_notif_cfg = { 0 };
4885 	struct device *dev = priv->dev;
4886 	int err;
4887 
4888 	/*
4889 	 * Congestion group feature supported starting with DPSECI API v5.1
4890 	 * and only when object has been created with this capability.
4891 	 */
4892 	if ((DPSECI_VER(priv->major_ver, priv->minor_ver) < DPSECI_VER(5, 1)) ||
4893 	    !(priv->dpseci_attr.options & DPSECI_OPT_HAS_CG))
4894 		return 0;
4895 
4896 	priv->cscn_mem = kzalloc(DPAA2_CSCN_SIZE + DPAA2_CSCN_ALIGN,
4897 				 GFP_KERNEL | GFP_DMA);
4898 	if (!priv->cscn_mem)
4899 		return -ENOMEM;
4900 
4901 	priv->cscn_mem_aligned = PTR_ALIGN(priv->cscn_mem, DPAA2_CSCN_ALIGN);
4902 	priv->cscn_dma = dma_map_single(dev, priv->cscn_mem_aligned,
4903 					DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
4904 	if (dma_mapping_error(dev, priv->cscn_dma)) {
4905 		dev_err(dev, "Error mapping CSCN memory area\n");
4906 		err = -ENOMEM;
4907 		goto err_dma_map;
4908 	}
4909 
4910 	cong_notif_cfg.units = DPSECI_CONGESTION_UNIT_BYTES;
4911 	cong_notif_cfg.threshold_entry = DPAA2_SEC_CONG_ENTRY_THRESH;
4912 	cong_notif_cfg.threshold_exit = DPAA2_SEC_CONG_EXIT_THRESH;
4913 	cong_notif_cfg.message_ctx = (uintptr_t)priv;
4914 	cong_notif_cfg.message_iova = priv->cscn_dma;
4915 	cong_notif_cfg.notification_mode = DPSECI_CGN_MODE_WRITE_MEM_ON_ENTER |
4916 					DPSECI_CGN_MODE_WRITE_MEM_ON_EXIT |
4917 					DPSECI_CGN_MODE_COHERENT_WRITE;
4918 
4919 	err = dpseci_set_congestion_notification(priv->mc_io, 0, token,
4920 						 &cong_notif_cfg);
4921 	if (err) {
4922 		dev_err(dev, "dpseci_set_congestion_notification failed\n");
4923 		goto err_set_cong;
4924 	}
4925 
4926 	return 0;
4927 
4928 err_set_cong:
4929 	dma_unmap_single(dev, priv->cscn_dma, DPAA2_CSCN_SIZE, DMA_FROM_DEVICE);
4930 err_dma_map:
4931 	kfree(priv->cscn_mem);
4932 
4933 	return err;
4934 }
4935 
4936 static int __cold dpaa2_dpseci_setup(struct fsl_mc_device *ls_dev)
4937 {
4938 	struct device *dev = &ls_dev->dev;
4939 	struct dpaa2_caam_priv *priv;
4940 	struct dpaa2_caam_priv_per_cpu *ppriv;
4941 	int err, cpu;
4942 	u8 i;
4943 
4944 	priv = dev_get_drvdata(dev);
4945 
4946 	priv->dev = dev;
4947 	priv->dpsec_id = ls_dev->obj_desc.id;
4948 
4949 	/* Get a handle for the DPSECI this interface is associate with */
4950 	err = dpseci_open(priv->mc_io, 0, priv->dpsec_id, &ls_dev->mc_handle);
4951 	if (err) {
4952 		dev_err(dev, "dpseci_open() failed: %d\n", err);
4953 		goto err_open;
4954 	}
4955 
4956 	err = dpseci_get_api_version(priv->mc_io, 0, &priv->major_ver,
4957 				     &priv->minor_ver);
4958 	if (err) {
4959 		dev_err(dev, "dpseci_get_api_version() failed\n");
4960 		goto err_get_vers;
4961 	}
4962 
4963 	dev_info(dev, "dpseci v%d.%d\n", priv->major_ver, priv->minor_ver);
4964 
4965 	err = dpseci_get_attributes(priv->mc_io, 0, ls_dev->mc_handle,
4966 				    &priv->dpseci_attr);
4967 	if (err) {
4968 		dev_err(dev, "dpseci_get_attributes() failed\n");
4969 		goto err_get_vers;
4970 	}
4971 
4972 	err = dpseci_get_sec_attr(priv->mc_io, 0, ls_dev->mc_handle,
4973 				  &priv->sec_attr);
4974 	if (err) {
4975 		dev_err(dev, "dpseci_get_sec_attr() failed\n");
4976 		goto err_get_vers;
4977 	}
4978 
4979 	err = dpaa2_dpseci_congestion_setup(priv, ls_dev->mc_handle);
4980 	if (err) {
4981 		dev_err(dev, "setup_congestion() failed\n");
4982 		goto err_get_vers;
4983 	}
4984 
4985 	priv->num_pairs = min(priv->dpseci_attr.num_rx_queues,
4986 			      priv->dpseci_attr.num_tx_queues);
4987 	if (priv->num_pairs > num_online_cpus()) {
4988 		dev_warn(dev, "%d queues won't be used\n",
4989 			 priv->num_pairs - num_online_cpus());
4990 		priv->num_pairs = num_online_cpus();
4991 	}
4992 
4993 	for (i = 0; i < priv->dpseci_attr.num_rx_queues; i++) {
4994 		err = dpseci_get_rx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
4995 					  &priv->rx_queue_attr[i]);
4996 		if (err) {
4997 			dev_err(dev, "dpseci_get_rx_queue() failed\n");
4998 			goto err_get_rx_queue;
4999 		}
5000 	}
5001 
5002 	for (i = 0; i < priv->dpseci_attr.num_tx_queues; i++) {
5003 		err = dpseci_get_tx_queue(priv->mc_io, 0, ls_dev->mc_handle, i,
5004 					  &priv->tx_queue_attr[i]);
5005 		if (err) {
5006 			dev_err(dev, "dpseci_get_tx_queue() failed\n");
5007 			goto err_get_rx_queue;
5008 		}
5009 	}
5010 
5011 	i = 0;
5012 	for_each_online_cpu(cpu) {
5013 		u8 j;
5014 
5015 		j = i % priv->num_pairs;
5016 
5017 		ppriv = per_cpu_ptr(priv->ppriv, cpu);
5018 		ppriv->req_fqid = priv->tx_queue_attr[j].fqid;
5019 
5020 		/*
5021 		 * Allow all cores to enqueue, while only some of them
5022 		 * will take part in dequeuing.
5023 		 */
5024 		if (++i > priv->num_pairs)
5025 			continue;
5026 
5027 		ppriv->rsp_fqid = priv->rx_queue_attr[j].fqid;
5028 		ppriv->prio = j;
5029 
5030 		dev_dbg(dev, "pair %d: rx queue %d, tx queue %d\n", j,
5031 			priv->rx_queue_attr[j].fqid,
5032 			priv->tx_queue_attr[j].fqid);
5033 
5034 		ppriv->net_dev.dev = *dev;
5035 		INIT_LIST_HEAD(&ppriv->net_dev.napi_list);
5036 		netif_napi_add(&ppriv->net_dev, &ppriv->napi, dpaa2_dpseci_poll,
5037 			       DPAA2_CAAM_NAPI_WEIGHT);
5038 	}
5039 
5040 	return 0;
5041 
5042 err_get_rx_queue:
5043 	dpaa2_dpseci_congestion_free(priv);
5044 err_get_vers:
5045 	dpseci_close(priv->mc_io, 0, ls_dev->mc_handle);
5046 err_open:
5047 	return err;
5048 }
5049 
5050 static int dpaa2_dpseci_enable(struct dpaa2_caam_priv *priv)
5051 {
5052 	struct device *dev = priv->dev;
5053 	struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
5054 	struct dpaa2_caam_priv_per_cpu *ppriv;
5055 	int i;
5056 
5057 	for (i = 0; i < priv->num_pairs; i++) {
5058 		ppriv = per_cpu_ptr(priv->ppriv, i);
5059 		napi_enable(&ppriv->napi);
5060 	}
5061 
5062 	return dpseci_enable(priv->mc_io, 0, ls_dev->mc_handle);
5063 }
5064 
5065 static int __cold dpaa2_dpseci_disable(struct dpaa2_caam_priv *priv)
5066 {
5067 	struct device *dev = priv->dev;
5068 	struct dpaa2_caam_priv_per_cpu *ppriv;
5069 	struct fsl_mc_device *ls_dev = to_fsl_mc_device(dev);
5070 	int i, err = 0, enabled;
5071 
5072 	err = dpseci_disable(priv->mc_io, 0, ls_dev->mc_handle);
5073 	if (err) {
5074 		dev_err(dev, "dpseci_disable() failed\n");
5075 		return err;
5076 	}
5077 
5078 	err = dpseci_is_enabled(priv->mc_io, 0, ls_dev->mc_handle, &enabled);
5079 	if (err) {
5080 		dev_err(dev, "dpseci_is_enabled() failed\n");
5081 		return err;
5082 	}
5083 
5084 	dev_dbg(dev, "disable: %s\n", enabled ? "false" : "true");
5085 
5086 	for (i = 0; i < priv->num_pairs; i++) {
5087 		ppriv = per_cpu_ptr(priv->ppriv, i);
5088 		napi_disable(&ppriv->napi);
5089 		netif_napi_del(&ppriv->napi);
5090 	}
5091 
5092 	return 0;
5093 }
5094 
5095 static struct list_head hash_list;
5096 
5097 static int dpaa2_caam_probe(struct fsl_mc_device *dpseci_dev)
5098 {
5099 	struct device *dev;
5100 	struct dpaa2_caam_priv *priv;
5101 	int i, err = 0;
5102 	bool registered = false;
5103 
5104 	/*
5105 	 * There is no way to get CAAM endianness - there is no direct register
5106 	 * space access and MC f/w does not provide this attribute.
5107 	 * All DPAA2-based SoCs have little endian CAAM, thus hard-code this
5108 	 * property.
5109 	 */
5110 	caam_little_end = true;
5111 
5112 	caam_imx = false;
5113 
5114 	dev = &dpseci_dev->dev;
5115 
5116 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
5117 	if (!priv)
5118 		return -ENOMEM;
5119 
5120 	dev_set_drvdata(dev, priv);
5121 
5122 	priv->domain = iommu_get_domain_for_dev(dev);
5123 
5124 	qi_cache = kmem_cache_create("dpaa2_caamqicache", CAAM_QI_MEMCACHE_SIZE,
5125 				     0, SLAB_CACHE_DMA, NULL);
5126 	if (!qi_cache) {
5127 		dev_err(dev, "Can't allocate SEC cache\n");
5128 		return -ENOMEM;
5129 	}
5130 
5131 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49));
5132 	if (err) {
5133 		dev_err(dev, "dma_set_mask_and_coherent() failed\n");
5134 		goto err_dma_mask;
5135 	}
5136 
5137 	/* Obtain a MC portal */
5138 	err = fsl_mc_portal_allocate(dpseci_dev, 0, &priv->mc_io);
5139 	if (err) {
5140 		if (err == -ENXIO)
5141 			err = -EPROBE_DEFER;
5142 		else
5143 			dev_err(dev, "MC portal allocation failed\n");
5144 
5145 		goto err_dma_mask;
5146 	}
5147 
5148 	priv->ppriv = alloc_percpu(*priv->ppriv);
5149 	if (!priv->ppriv) {
5150 		dev_err(dev, "alloc_percpu() failed\n");
5151 		err = -ENOMEM;
5152 		goto err_alloc_ppriv;
5153 	}
5154 
5155 	/* DPSECI initialization */
5156 	err = dpaa2_dpseci_setup(dpseci_dev);
5157 	if (err) {
5158 		dev_err(dev, "dpaa2_dpseci_setup() failed\n");
5159 		goto err_dpseci_setup;
5160 	}
5161 
5162 	/* DPIO */
5163 	err = dpaa2_dpseci_dpio_setup(priv);
5164 	if (err) {
5165 		if (err != -EPROBE_DEFER)
5166 			dev_err(dev, "dpaa2_dpseci_dpio_setup() failed\n");
5167 		goto err_dpio_setup;
5168 	}
5169 
5170 	/* DPSECI binding to DPIO */
5171 	err = dpaa2_dpseci_bind(priv);
5172 	if (err) {
5173 		dev_err(dev, "dpaa2_dpseci_bind() failed\n");
5174 		goto err_bind;
5175 	}
5176 
5177 	/* DPSECI enable */
5178 	err = dpaa2_dpseci_enable(priv);
5179 	if (err) {
5180 		dev_err(dev, "dpaa2_dpseci_enable() failed\n");
5181 		goto err_bind;
5182 	}
5183 
5184 	dpaa2_dpseci_debugfs_init(priv);
5185 
5186 	/* register crypto algorithms the device supports */
5187 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
5188 		struct caam_skcipher_alg *t_alg = driver_algs + i;
5189 		u32 alg_sel = t_alg->caam.class1_alg_type & OP_ALG_ALGSEL_MASK;
5190 
5191 		/* Skip DES algorithms if not supported by device */
5192 		if (!priv->sec_attr.des_acc_num &&
5193 		    (alg_sel == OP_ALG_ALGSEL_3DES ||
5194 		     alg_sel == OP_ALG_ALGSEL_DES))
5195 			continue;
5196 
5197 		/* Skip AES algorithms if not supported by device */
5198 		if (!priv->sec_attr.aes_acc_num &&
5199 		    alg_sel == OP_ALG_ALGSEL_AES)
5200 			continue;
5201 
5202 		/* Skip CHACHA20 algorithms if not supported by device */
5203 		if (alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
5204 		    !priv->sec_attr.ccha_acc_num)
5205 			continue;
5206 
5207 		t_alg->caam.dev = dev;
5208 		caam_skcipher_alg_init(t_alg);
5209 
5210 		err = crypto_register_skcipher(&t_alg->skcipher);
5211 		if (err) {
5212 			dev_warn(dev, "%s alg registration failed: %d\n",
5213 				 t_alg->skcipher.base.cra_driver_name, err);
5214 			continue;
5215 		}
5216 
5217 		t_alg->registered = true;
5218 		registered = true;
5219 	}
5220 
5221 	for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
5222 		struct caam_aead_alg *t_alg = driver_aeads + i;
5223 		u32 c1_alg_sel = t_alg->caam.class1_alg_type &
5224 				 OP_ALG_ALGSEL_MASK;
5225 		u32 c2_alg_sel = t_alg->caam.class2_alg_type &
5226 				 OP_ALG_ALGSEL_MASK;
5227 
5228 		/* Skip DES algorithms if not supported by device */
5229 		if (!priv->sec_attr.des_acc_num &&
5230 		    (c1_alg_sel == OP_ALG_ALGSEL_3DES ||
5231 		     c1_alg_sel == OP_ALG_ALGSEL_DES))
5232 			continue;
5233 
5234 		/* Skip AES algorithms if not supported by device */
5235 		if (!priv->sec_attr.aes_acc_num &&
5236 		    c1_alg_sel == OP_ALG_ALGSEL_AES)
5237 			continue;
5238 
5239 		/* Skip CHACHA20 algorithms if not supported by device */
5240 		if (c1_alg_sel == OP_ALG_ALGSEL_CHACHA20 &&
5241 		    !priv->sec_attr.ccha_acc_num)
5242 			continue;
5243 
5244 		/* Skip POLY1305 algorithms if not supported by device */
5245 		if (c2_alg_sel == OP_ALG_ALGSEL_POLY1305 &&
5246 		    !priv->sec_attr.ptha_acc_num)
5247 			continue;
5248 
5249 		/*
5250 		 * Skip algorithms requiring message digests
5251 		 * if MD not supported by device.
5252 		 */
5253 		if ((c2_alg_sel & ~OP_ALG_ALGSEL_SUBMASK) == 0x40 &&
5254 		    !priv->sec_attr.md_acc_num)
5255 			continue;
5256 
5257 		t_alg->caam.dev = dev;
5258 		caam_aead_alg_init(t_alg);
5259 
5260 		err = crypto_register_aead(&t_alg->aead);
5261 		if (err) {
5262 			dev_warn(dev, "%s alg registration failed: %d\n",
5263 				 t_alg->aead.base.cra_driver_name, err);
5264 			continue;
5265 		}
5266 
5267 		t_alg->registered = true;
5268 		registered = true;
5269 	}
5270 	if (registered)
5271 		dev_info(dev, "algorithms registered in /proc/crypto\n");
5272 
5273 	/* register hash algorithms the device supports */
5274 	INIT_LIST_HEAD(&hash_list);
5275 
5276 	/*
5277 	 * Skip registration of any hashing algorithms if MD block
5278 	 * is not present.
5279 	 */
5280 	if (!priv->sec_attr.md_acc_num)
5281 		return 0;
5282 
5283 	for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
5284 		struct caam_hash_alg *t_alg;
5285 		struct caam_hash_template *alg = driver_hash + i;
5286 
5287 		/* register hmac version */
5288 		t_alg = caam_hash_alloc(dev, alg, true);
5289 		if (IS_ERR(t_alg)) {
5290 			err = PTR_ERR(t_alg);
5291 			dev_warn(dev, "%s hash alg allocation failed: %d\n",
5292 				 alg->driver_name, err);
5293 			continue;
5294 		}
5295 
5296 		err = crypto_register_ahash(&t_alg->ahash_alg);
5297 		if (err) {
5298 			dev_warn(dev, "%s alg registration failed: %d\n",
5299 				 t_alg->ahash_alg.halg.base.cra_driver_name,
5300 				 err);
5301 			kfree(t_alg);
5302 		} else {
5303 			list_add_tail(&t_alg->entry, &hash_list);
5304 		}
5305 
5306 		/* register unkeyed version */
5307 		t_alg = caam_hash_alloc(dev, alg, false);
5308 		if (IS_ERR(t_alg)) {
5309 			err = PTR_ERR(t_alg);
5310 			dev_warn(dev, "%s alg allocation failed: %d\n",
5311 				 alg->driver_name, err);
5312 			continue;
5313 		}
5314 
5315 		err = crypto_register_ahash(&t_alg->ahash_alg);
5316 		if (err) {
5317 			dev_warn(dev, "%s alg registration failed: %d\n",
5318 				 t_alg->ahash_alg.halg.base.cra_driver_name,
5319 				 err);
5320 			kfree(t_alg);
5321 		} else {
5322 			list_add_tail(&t_alg->entry, &hash_list);
5323 		}
5324 	}
5325 	if (!list_empty(&hash_list))
5326 		dev_info(dev, "hash algorithms registered in /proc/crypto\n");
5327 
5328 	return err;
5329 
5330 err_bind:
5331 	dpaa2_dpseci_dpio_free(priv);
5332 err_dpio_setup:
5333 	dpaa2_dpseci_free(priv);
5334 err_dpseci_setup:
5335 	free_percpu(priv->ppriv);
5336 err_alloc_ppriv:
5337 	fsl_mc_portal_free(priv->mc_io);
5338 err_dma_mask:
5339 	kmem_cache_destroy(qi_cache);
5340 
5341 	return err;
5342 }
5343 
5344 static int __cold dpaa2_caam_remove(struct fsl_mc_device *ls_dev)
5345 {
5346 	struct device *dev;
5347 	struct dpaa2_caam_priv *priv;
5348 	int i;
5349 
5350 	dev = &ls_dev->dev;
5351 	priv = dev_get_drvdata(dev);
5352 
5353 	dpaa2_dpseci_debugfs_exit(priv);
5354 
5355 	for (i = 0; i < ARRAY_SIZE(driver_aeads); i++) {
5356 		struct caam_aead_alg *t_alg = driver_aeads + i;
5357 
5358 		if (t_alg->registered)
5359 			crypto_unregister_aead(&t_alg->aead);
5360 	}
5361 
5362 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
5363 		struct caam_skcipher_alg *t_alg = driver_algs + i;
5364 
5365 		if (t_alg->registered)
5366 			crypto_unregister_skcipher(&t_alg->skcipher);
5367 	}
5368 
5369 	if (hash_list.next) {
5370 		struct caam_hash_alg *t_hash_alg, *p;
5371 
5372 		list_for_each_entry_safe(t_hash_alg, p, &hash_list, entry) {
5373 			crypto_unregister_ahash(&t_hash_alg->ahash_alg);
5374 			list_del(&t_hash_alg->entry);
5375 			kfree(t_hash_alg);
5376 		}
5377 	}
5378 
5379 	dpaa2_dpseci_disable(priv);
5380 	dpaa2_dpseci_dpio_free(priv);
5381 	dpaa2_dpseci_free(priv);
5382 	free_percpu(priv->ppriv);
5383 	fsl_mc_portal_free(priv->mc_io);
5384 	kmem_cache_destroy(qi_cache);
5385 
5386 	return 0;
5387 }
5388 
5389 int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req)
5390 {
5391 	struct dpaa2_fd fd;
5392 	struct dpaa2_caam_priv *priv = dev_get_drvdata(dev);
5393 	struct dpaa2_caam_priv_per_cpu *ppriv;
5394 	int err = 0, i;
5395 
5396 	if (IS_ERR(req))
5397 		return PTR_ERR(req);
5398 
5399 	if (priv->cscn_mem) {
5400 		dma_sync_single_for_cpu(priv->dev, priv->cscn_dma,
5401 					DPAA2_CSCN_SIZE,
5402 					DMA_FROM_DEVICE);
5403 		if (unlikely(dpaa2_cscn_state_congested(priv->cscn_mem_aligned))) {
5404 			dev_dbg_ratelimited(dev, "Dropping request\n");
5405 			return -EBUSY;
5406 		}
5407 	}
5408 
5409 	dpaa2_fl_set_flc(&req->fd_flt[1], req->flc_dma);
5410 
5411 	req->fd_flt_dma = dma_map_single(dev, req->fd_flt, sizeof(req->fd_flt),
5412 					 DMA_BIDIRECTIONAL);
5413 	if (dma_mapping_error(dev, req->fd_flt_dma)) {
5414 		dev_err(dev, "DMA mapping error for QI enqueue request\n");
5415 		goto err_out;
5416 	}
5417 
5418 	memset(&fd, 0, sizeof(fd));
5419 	dpaa2_fd_set_format(&fd, dpaa2_fd_list);
5420 	dpaa2_fd_set_addr(&fd, req->fd_flt_dma);
5421 	dpaa2_fd_set_len(&fd, dpaa2_fl_get_len(&req->fd_flt[1]));
5422 	dpaa2_fd_set_flc(&fd, req->flc_dma);
5423 
5424 	ppriv = this_cpu_ptr(priv->ppriv);
5425 	for (i = 0; i < (priv->dpseci_attr.num_tx_queues << 1); i++) {
5426 		err = dpaa2_io_service_enqueue_fq(ppriv->dpio, ppriv->req_fqid,
5427 						  &fd);
5428 		if (err != -EBUSY)
5429 			break;
5430 
5431 		cpu_relax();
5432 	}
5433 
5434 	if (unlikely(err)) {
5435 		dev_err_ratelimited(dev, "Error enqueuing frame: %d\n", err);
5436 		goto err_out;
5437 	}
5438 
5439 	return -EINPROGRESS;
5440 
5441 err_out:
5442 	dma_unmap_single(dev, req->fd_flt_dma, sizeof(req->fd_flt),
5443 			 DMA_BIDIRECTIONAL);
5444 	return -EIO;
5445 }
5446 EXPORT_SYMBOL(dpaa2_caam_enqueue);
5447 
5448 static const struct fsl_mc_device_id dpaa2_caam_match_id_table[] = {
5449 	{
5450 		.vendor = FSL_MC_VENDOR_FREESCALE,
5451 		.obj_type = "dpseci",
5452 	},
5453 	{ .vendor = 0x0 }
5454 };
5455 
5456 static struct fsl_mc_driver dpaa2_caam_driver = {
5457 	.driver = {
5458 		.name		= KBUILD_MODNAME,
5459 		.owner		= THIS_MODULE,
5460 	},
5461 	.probe		= dpaa2_caam_probe,
5462 	.remove		= dpaa2_caam_remove,
5463 	.match_id_table = dpaa2_caam_match_id_table
5464 };
5465 
5466 MODULE_LICENSE("Dual BSD/GPL");
5467 MODULE_AUTHOR("Freescale Semiconductor, Inc");
5468 MODULE_DESCRIPTION("Freescale DPAA2 CAAM Driver");
5469 
5470 module_fsl_mc_driver(dpaa2_caam_driver);
5471