xref: /openbmc/linux/drivers/crypto/caam/caamalg.c (revision 7490ca1e)
1 /*
2  * caam - Freescale FSL CAAM support for crypto API
3  *
4  * Copyright 2008-2011 Freescale Semiconductor, Inc.
5  *
6  * Based on talitos crypto API driver.
7  *
8  * relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
9  *
10  * ---------------                     ---------------
11  * | JobDesc #1  |-------------------->|  ShareDesc  |
12  * | *(packet 1) |                     |   (PDB)     |
13  * ---------------      |------------->|  (hashKey)  |
14  *       .              |              | (cipherKey) |
15  *       .              |    |-------->| (operation) |
16  * ---------------      |    |         ---------------
17  * | JobDesc #2  |------|    |
18  * | *(packet 2) |           |
19  * ---------------           |
20  *       .                   |
21  *       .                   |
22  * ---------------           |
23  * | JobDesc #3  |------------
24  * | *(packet 3) |
25  * ---------------
26  *
27  * The SharedDesc never changes for a connection unless rekeyed, but
28  * each packet will likely be in a different place. So all we need
29  * to know to process the packet is where the input is, where the
30  * output goes, and what context we want to process with. Context is
31  * in the SharedDesc, packet references in the JobDesc.
32  *
33  * So, a job desc looks like:
34  *
35  * ---------------------
36  * | Header            |
37  * | ShareDesc Pointer |
38  * | SEQ_OUT_PTR       |
39  * | (output buffer)   |
40  * | SEQ_IN_PTR        |
41  * | (input buffer)    |
42  * | LOAD (to DECO)    |
43  * ---------------------
44  */
45 
46 #include "compat.h"
47 
48 #include "regs.h"
49 #include "intern.h"
50 #include "desc_constr.h"
51 #include "jr.h"
52 #include "error.h"
53 
54 /*
55  * crypto alg
56  */
57 #define CAAM_CRA_PRIORITY		3000
58 /* max key is sum of AES_MAX_KEY_SIZE, max split key size */
59 #define CAAM_MAX_KEY_SIZE		(AES_MAX_KEY_SIZE + \
60 					 SHA512_DIGEST_SIZE * 2)
61 /* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
62 #define CAAM_MAX_IV_LENGTH		16
63 
64 /* length of descriptors text */
65 #define DESC_JOB_IO_LEN			(CAAM_CMD_SZ * 3 + CAAM_PTR_SZ * 3)
66 
67 #define DESC_AEAD_BASE			(4 * CAAM_CMD_SZ)
68 #define DESC_AEAD_ENC_LEN		(DESC_AEAD_BASE + 16 * CAAM_CMD_SZ)
69 #define DESC_AEAD_DEC_LEN		(DESC_AEAD_BASE + 21 * CAAM_CMD_SZ)
70 #define DESC_AEAD_GIVENC_LEN		(DESC_AEAD_ENC_LEN + 7 * CAAM_CMD_SZ)
71 
72 #define DESC_ABLKCIPHER_BASE		(3 * CAAM_CMD_SZ)
73 #define DESC_ABLKCIPHER_ENC_LEN		(DESC_ABLKCIPHER_BASE + \
74 					 20 * CAAM_CMD_SZ)
75 #define DESC_ABLKCIPHER_DEC_LEN		(DESC_ABLKCIPHER_BASE + \
76 					 15 * CAAM_CMD_SZ)
77 
78 #define DESC_MAX_USED_BYTES		(DESC_AEAD_GIVENC_LEN + \
79 					 CAAM_MAX_KEY_SIZE)
80 #define DESC_MAX_USED_LEN		(DESC_MAX_USED_BYTES / CAAM_CMD_SZ)
81 
82 #ifdef DEBUG
83 /* for print_hex_dumps with line references */
84 #define xstr(s) str(s)
85 #define str(s) #s
86 #define debug(format, arg...) printk(format, arg)
87 #else
88 #define debug(format, arg...)
89 #endif
90 
91 /* Set DK bit in class 1 operation if shared */
92 static inline void append_dec_op1(u32 *desc, u32 type)
93 {
94 	u32 *jump_cmd, *uncond_jump_cmd;
95 
96 	jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
97 	append_operation(desc, type | OP_ALG_AS_INITFINAL |
98 			 OP_ALG_DECRYPT);
99 	uncond_jump_cmd = append_jump(desc, JUMP_TEST_ALL);
100 	set_jump_tgt_here(desc, jump_cmd);
101 	append_operation(desc, type | OP_ALG_AS_INITFINAL |
102 			 OP_ALG_DECRYPT | OP_ALG_AAI_DK);
103 	set_jump_tgt_here(desc, uncond_jump_cmd);
104 }
105 
106 /*
107  * Wait for completion of class 1 key loading before allowing
108  * error propagation
109  */
110 static inline void append_dec_shr_done(u32 *desc)
111 {
112 	u32 *jump_cmd;
113 
114 	jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1 | JUMP_TEST_ALL);
115 	set_jump_tgt_here(desc, jump_cmd);
116 	append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
117 }
118 
119 /*
120  * For aead functions, read payload and write payload,
121  * both of which are specified in req->src and req->dst
122  */
123 static inline void aead_append_src_dst(u32 *desc, u32 msg_type)
124 {
125 	append_seq_fifo_load(desc, 0, FIFOLD_CLASS_BOTH |
126 			     KEY_VLF | msg_type | FIFOLD_TYPE_LASTBOTH);
127 	append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF);
128 }
129 
130 /*
131  * For aead encrypt and decrypt, read iv for both classes
132  */
133 static inline void aead_append_ld_iv(u32 *desc, int ivsize)
134 {
135 	append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
136 		   LDST_CLASS_1_CCB | ivsize);
137 	append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
138 }
139 
140 /*
141  * For ablkcipher encrypt and decrypt, read from req->src and
142  * write to req->dst
143  */
144 static inline void ablkcipher_append_src_dst(u32 *desc)
145 {
146 	append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
147 	append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ); \
148 	append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS1 | \
149 			     KEY_VLF | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST1); \
150 	append_seq_fifo_store(desc, 0, FIFOST_TYPE_MESSAGE_DATA | KEY_VLF); \
151 }
152 
153 /*
154  * If all data, including src (with assoc and iv) or dst (with iv only) are
155  * contiguous
156  */
157 #define GIV_SRC_CONTIG		1
158 #define GIV_DST_CONTIG		(1 << 1)
159 
160 /*
161  * per-session context
162  */
163 struct caam_ctx {
164 	struct device *jrdev;
165 	u32 sh_desc_enc[DESC_MAX_USED_LEN];
166 	u32 sh_desc_dec[DESC_MAX_USED_LEN];
167 	u32 sh_desc_givenc[DESC_MAX_USED_LEN];
168 	dma_addr_t sh_desc_enc_dma;
169 	dma_addr_t sh_desc_dec_dma;
170 	dma_addr_t sh_desc_givenc_dma;
171 	u32 class1_alg_type;
172 	u32 class2_alg_type;
173 	u32 alg_op;
174 	u8 key[CAAM_MAX_KEY_SIZE];
175 	dma_addr_t key_dma;
176 	unsigned int enckeylen;
177 	unsigned int split_key_len;
178 	unsigned int split_key_pad_len;
179 	unsigned int authsize;
180 };
181 
182 static void append_key_aead(u32 *desc, struct caam_ctx *ctx,
183 			    int keys_fit_inline)
184 {
185 	if (keys_fit_inline) {
186 		append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
187 				  ctx->split_key_len, CLASS_2 |
188 				  KEY_DEST_MDHA_SPLIT | KEY_ENC);
189 		append_key_as_imm(desc, (void *)ctx->key +
190 				  ctx->split_key_pad_len, ctx->enckeylen,
191 				  ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
192 	} else {
193 		append_key(desc, ctx->key_dma, ctx->split_key_len, CLASS_2 |
194 			   KEY_DEST_MDHA_SPLIT | KEY_ENC);
195 		append_key(desc, ctx->key_dma + ctx->split_key_pad_len,
196 			   ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
197 	}
198 }
199 
200 static void init_sh_desc_key_aead(u32 *desc, struct caam_ctx *ctx,
201 				  int keys_fit_inline)
202 {
203 	u32 *key_jump_cmd;
204 
205 	init_sh_desc(desc, HDR_SHARE_WAIT);
206 
207 	/* Skip if already shared */
208 	key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
209 				   JUMP_COND_SHRD);
210 
211 	append_key_aead(desc, ctx, keys_fit_inline);
212 
213 	set_jump_tgt_here(desc, key_jump_cmd);
214 
215 	/* Propagate errors from shared to job descriptor */
216 	append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
217 }
218 
219 static int aead_set_sh_desc(struct crypto_aead *aead)
220 {
221 	struct aead_tfm *tfm = &aead->base.crt_aead;
222 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
223 	struct device *jrdev = ctx->jrdev;
224 	bool keys_fit_inline = 0;
225 	u32 *key_jump_cmd, *jump_cmd;
226 	u32 geniv, moveiv;
227 	u32 *desc;
228 
229 	if (!ctx->enckeylen || !ctx->authsize)
230 		return 0;
231 
232 	/*
233 	 * Job Descriptor and Shared Descriptors
234 	 * must all fit into the 64-word Descriptor h/w Buffer
235 	 */
236 	if (DESC_AEAD_ENC_LEN + DESC_JOB_IO_LEN +
237 	    ctx->split_key_pad_len + ctx->enckeylen <=
238 	    CAAM_DESC_BYTES_MAX)
239 		keys_fit_inline = 1;
240 
241 	/* aead_encrypt shared descriptor */
242 	desc = ctx->sh_desc_enc;
243 
244 	init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
245 
246 	/* Class 2 operation */
247 	append_operation(desc, ctx->class2_alg_type |
248 			 OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
249 
250 	/* cryptlen = seqoutlen - authsize */
251 	append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
252 
253 	/* assoclen + cryptlen = seqinlen - ivsize */
254 	append_math_sub_imm_u32(desc, REG2, SEQINLEN, IMM, tfm->ivsize);
255 
256 	/* assoclen + cryptlen = (assoclen + cryptlen) - cryptlen */
257 	append_math_sub(desc, VARSEQINLEN, REG2, REG3, CAAM_CMD_SZ);
258 
259 	/* read assoc before reading payload */
260 	append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
261 			     KEY_VLF);
262 	aead_append_ld_iv(desc, tfm->ivsize);
263 
264 	/* Class 1 operation */
265 	append_operation(desc, ctx->class1_alg_type |
266 			 OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
267 
268 	/* Read and write cryptlen bytes */
269 	append_math_add(desc, VARSEQINLEN, ZERO, REG3, CAAM_CMD_SZ);
270 	append_math_add(desc, VARSEQOUTLEN, ZERO, REG3, CAAM_CMD_SZ);
271 	aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
272 
273 	/* Write ICV */
274 	append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
275 			 LDST_SRCDST_BYTE_CONTEXT);
276 
277 	ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
278 					      desc_bytes(desc),
279 					      DMA_TO_DEVICE);
280 	if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
281 		dev_err(jrdev, "unable to map shared descriptor\n");
282 		return -ENOMEM;
283 	}
284 #ifdef DEBUG
285 	print_hex_dump(KERN_ERR, "aead enc shdesc@"xstr(__LINE__)": ",
286 		       DUMP_PREFIX_ADDRESS, 16, 4, desc,
287 		       desc_bytes(desc), 1);
288 #endif
289 
290 	/*
291 	 * Job Descriptor and Shared Descriptors
292 	 * must all fit into the 64-word Descriptor h/w Buffer
293 	 */
294 	if (DESC_AEAD_DEC_LEN + DESC_JOB_IO_LEN +
295 	    ctx->split_key_pad_len + ctx->enckeylen <=
296 	    CAAM_DESC_BYTES_MAX)
297 		keys_fit_inline = 1;
298 
299 	desc = ctx->sh_desc_dec;
300 
301 	/* aead_decrypt shared descriptor */
302 	init_sh_desc(desc, HDR_SHARE_WAIT);
303 
304 	/* Skip if already shared */
305 	key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
306 				   JUMP_COND_SHRD);
307 
308 	append_key_aead(desc, ctx, keys_fit_inline);
309 
310 	/* Only propagate error immediately if shared */
311 	jump_cmd = append_jump(desc, JUMP_TEST_ALL);
312 	set_jump_tgt_here(desc, key_jump_cmd);
313 	append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
314 	set_jump_tgt_here(desc, jump_cmd);
315 
316 	/* Class 2 operation */
317 	append_operation(desc, ctx->class2_alg_type |
318 			 OP_ALG_AS_INITFINAL | OP_ALG_DECRYPT | OP_ALG_ICV_ON);
319 
320 	/* assoclen + cryptlen = seqinlen - ivsize */
321 	append_math_sub_imm_u32(desc, REG3, SEQINLEN, IMM,
322 				ctx->authsize + tfm->ivsize)
323 	/* assoclen = (assoclen + cryptlen) - cryptlen */
324 	append_math_sub(desc, REG2, SEQOUTLEN, REG0, CAAM_CMD_SZ);
325 	append_math_sub(desc, VARSEQINLEN, REG3, REG2, CAAM_CMD_SZ);
326 
327 	/* read assoc before reading payload */
328 	append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
329 			     KEY_VLF);
330 
331 	aead_append_ld_iv(desc, tfm->ivsize);
332 
333 	append_dec_op1(desc, ctx->class1_alg_type);
334 
335 	/* Read and write cryptlen bytes */
336 	append_math_add(desc, VARSEQINLEN, ZERO, REG2, CAAM_CMD_SZ);
337 	append_math_add(desc, VARSEQOUTLEN, ZERO, REG2, CAAM_CMD_SZ);
338 	aead_append_src_dst(desc, FIFOLD_TYPE_MSG);
339 
340 	/* Load ICV */
341 	append_seq_fifo_load(desc, ctx->authsize, FIFOLD_CLASS_CLASS2 |
342 			     FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
343 	append_dec_shr_done(desc);
344 
345 	ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
346 					      desc_bytes(desc),
347 					      DMA_TO_DEVICE);
348 	if (dma_mapping_error(jrdev, ctx->sh_desc_dec_dma)) {
349 		dev_err(jrdev, "unable to map shared descriptor\n");
350 		return -ENOMEM;
351 	}
352 #ifdef DEBUG
353 	print_hex_dump(KERN_ERR, "aead dec shdesc@"xstr(__LINE__)": ",
354 		       DUMP_PREFIX_ADDRESS, 16, 4, desc,
355 		       desc_bytes(desc), 1);
356 #endif
357 
358 	/*
359 	 * Job Descriptor and Shared Descriptors
360 	 * must all fit into the 64-word Descriptor h/w Buffer
361 	 */
362 	if (DESC_AEAD_GIVENC_LEN + DESC_JOB_IO_LEN +
363 	    ctx->split_key_pad_len + ctx->enckeylen <=
364 	    CAAM_DESC_BYTES_MAX)
365 		keys_fit_inline = 1;
366 
367 	/* aead_givencrypt shared descriptor */
368 	desc = ctx->sh_desc_givenc;
369 
370 	init_sh_desc_key_aead(desc, ctx, keys_fit_inline);
371 
372 	/* Generate IV */
373 	geniv = NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DEST_DECO |
374 		NFIFOENTRY_DTYPE_MSG | NFIFOENTRY_LC1 |
375 		NFIFOENTRY_PTYPE_RND | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
376 	append_load_imm_u32(desc, geniv, LDST_CLASS_IND_CCB |
377 			    LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
378 	append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
379 	append_move(desc, MOVE_SRC_INFIFO |
380 		    MOVE_DEST_CLASS1CTX | (tfm->ivsize << MOVE_LEN_SHIFT));
381 	append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
382 
383 	/* Copy IV to class 1 context */
384 	append_move(desc, MOVE_SRC_CLASS1CTX |
385 		    MOVE_DEST_OUTFIFO | (tfm->ivsize << MOVE_LEN_SHIFT));
386 
387 	/* Return to encryption */
388 	append_operation(desc, ctx->class2_alg_type |
389 			 OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
390 
391 	/* ivsize + cryptlen = seqoutlen - authsize */
392 	append_math_sub_imm_u32(desc, REG3, SEQOUTLEN, IMM, ctx->authsize);
393 
394 	/* assoclen = seqinlen - (ivsize + cryptlen) */
395 	append_math_sub(desc, VARSEQINLEN, SEQINLEN, REG3, CAAM_CMD_SZ);
396 
397 	/* read assoc before reading payload */
398 	append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG |
399 			     KEY_VLF);
400 
401 	/* Copy iv from class 1 ctx to class 2 fifo*/
402 	moveiv = NFIFOENTRY_STYPE_OFIFO | NFIFOENTRY_DEST_CLASS2 |
403 		 NFIFOENTRY_DTYPE_MSG | (tfm->ivsize << NFIFOENTRY_DLEN_SHIFT);
404 	append_load_imm_u32(desc, moveiv, LDST_CLASS_IND_CCB |
405 			    LDST_SRCDST_WORD_INFO_FIFO | LDST_IMM);
406 	append_load_imm_u32(desc, tfm->ivsize, LDST_CLASS_2_CCB |
407 			    LDST_SRCDST_WORD_DATASZ_REG | LDST_IMM);
408 
409 	/* Class 1 operation */
410 	append_operation(desc, ctx->class1_alg_type |
411 			 OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
412 
413 	/* Will write ivsize + cryptlen */
414 	append_math_add(desc, VARSEQOUTLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
415 
416 	/* Not need to reload iv */
417 	append_seq_fifo_load(desc, tfm->ivsize,
418 			     FIFOLD_CLASS_SKIP);
419 
420 	/* Will read cryptlen */
421 	append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
422 	aead_append_src_dst(desc, FIFOLD_TYPE_MSG1OUT2);
423 
424 	/* Write ICV */
425 	append_seq_store(desc, ctx->authsize, LDST_CLASS_2_CCB |
426 			 LDST_SRCDST_BYTE_CONTEXT);
427 
428 	ctx->sh_desc_givenc_dma = dma_map_single(jrdev, desc,
429 						 desc_bytes(desc),
430 						 DMA_TO_DEVICE);
431 	if (dma_mapping_error(jrdev, ctx->sh_desc_givenc_dma)) {
432 		dev_err(jrdev, "unable to map shared descriptor\n");
433 		return -ENOMEM;
434 	}
435 #ifdef DEBUG
436 	print_hex_dump(KERN_ERR, "aead givenc shdesc@"xstr(__LINE__)": ",
437 		       DUMP_PREFIX_ADDRESS, 16, 4, desc,
438 		       desc_bytes(desc), 1);
439 #endif
440 
441 	return 0;
442 }
443 
444 static int aead_setauthsize(struct crypto_aead *authenc,
445 				    unsigned int authsize)
446 {
447 	struct caam_ctx *ctx = crypto_aead_ctx(authenc);
448 
449 	ctx->authsize = authsize;
450 	aead_set_sh_desc(authenc);
451 
452 	return 0;
453 }
454 
455 struct split_key_result {
456 	struct completion completion;
457 	int err;
458 };
459 
460 static void split_key_done(struct device *dev, u32 *desc, u32 err,
461 			   void *context)
462 {
463 	struct split_key_result *res = context;
464 
465 #ifdef DEBUG
466 	dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
467 #endif
468 
469 	if (err) {
470 		char tmp[CAAM_ERROR_STR_MAX];
471 
472 		dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
473 	}
474 
475 	res->err = err;
476 
477 	complete(&res->completion);
478 }
479 
480 /*
481 get a split ipad/opad key
482 
483 Split key generation-----------------------------------------------
484 
485 [00] 0xb0810008    jobdesc: stidx=1 share=never len=8
486 [01] 0x04000014        key: class2->keyreg len=20
487 			@0xffe01000
488 [03] 0x84410014  operation: cls2-op sha1 hmac init dec
489 [04] 0x24940000     fifold: class2 msgdata-last2 len=0 imm
490 [05] 0xa4000001       jump: class2 local all ->1 [06]
491 [06] 0x64260028    fifostr: class2 mdsplit-jdk len=40
492 			@0xffe04000
493 */
494 static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
495 {
496 	struct device *jrdev = ctx->jrdev;
497 	u32 *desc;
498 	struct split_key_result result;
499 	dma_addr_t dma_addr_in, dma_addr_out;
500 	int ret = 0;
501 
502 	desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
503 
504 	init_job_desc(desc, 0);
505 
506 	dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
507 				     DMA_TO_DEVICE);
508 	if (dma_mapping_error(jrdev, dma_addr_in)) {
509 		dev_err(jrdev, "unable to map key input memory\n");
510 		kfree(desc);
511 		return -ENOMEM;
512 	}
513 	append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
514 		       KEY_DEST_CLASS_REG);
515 
516 	/* Sets MDHA up into an HMAC-INIT */
517 	append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
518 			     OP_ALG_AS_INIT);
519 
520 	/*
521 	 * do a FIFO_LOAD of zero, this will trigger the internal key expansion
522 	   into both pads inside MDHA
523 	 */
524 	append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
525 				FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
526 
527 	/*
528 	 * FIFO_STORE with the explicit split-key content store
529 	 * (0x26 output type)
530 	 */
531 	dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
532 				      DMA_FROM_DEVICE);
533 	if (dma_mapping_error(jrdev, dma_addr_out)) {
534 		dev_err(jrdev, "unable to map key output memory\n");
535 		kfree(desc);
536 		return -ENOMEM;
537 	}
538 	append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
539 			  LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
540 
541 #ifdef DEBUG
542 	print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
543 		       DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
544 	print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
545 		       DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
546 #endif
547 
548 	result.err = 0;
549 	init_completion(&result.completion);
550 
551 	ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
552 	if (!ret) {
553 		/* in progress */
554 		wait_for_completion_interruptible(&result.completion);
555 		ret = result.err;
556 #ifdef DEBUG
557 		print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
558 			       DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
559 			       ctx->split_key_pad_len, 1);
560 #endif
561 	}
562 
563 	dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
564 			 DMA_FROM_DEVICE);
565 	dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
566 
567 	kfree(desc);
568 
569 	return ret;
570 }
571 
572 static int aead_setkey(struct crypto_aead *aead,
573 			       const u8 *key, unsigned int keylen)
574 {
575 	/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
576 	static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
577 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
578 	struct device *jrdev = ctx->jrdev;
579 	struct rtattr *rta = (void *)key;
580 	struct crypto_authenc_key_param *param;
581 	unsigned int authkeylen;
582 	unsigned int enckeylen;
583 	int ret = 0;
584 
585 	param = RTA_DATA(rta);
586 	enckeylen = be32_to_cpu(param->enckeylen);
587 
588 	key += RTA_ALIGN(rta->rta_len);
589 	keylen -= RTA_ALIGN(rta->rta_len);
590 
591 	if (keylen < enckeylen)
592 		goto badkey;
593 
594 	authkeylen = keylen - enckeylen;
595 
596 	if (keylen > CAAM_MAX_KEY_SIZE)
597 		goto badkey;
598 
599 	/* Pick class 2 key length from algorithm submask */
600 	ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
601 				      OP_ALG_ALGSEL_SHIFT] * 2;
602 	ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
603 
604 #ifdef DEBUG
605 	printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
606 	       keylen, enckeylen, authkeylen);
607 	printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
608 	       ctx->split_key_len, ctx->split_key_pad_len);
609 	print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
610 		       DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
611 #endif
612 
613 	ret = gen_split_key(ctx, key, authkeylen);
614 	if (ret) {
615 		goto badkey;
616 	}
617 
618 	/* postpend encryption key to auth split key */
619 	memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
620 
621 	ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
622 				       enckeylen, DMA_TO_DEVICE);
623 	if (dma_mapping_error(jrdev, ctx->key_dma)) {
624 		dev_err(jrdev, "unable to map key i/o memory\n");
625 		return -ENOMEM;
626 	}
627 #ifdef DEBUG
628 	print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
629 		       DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
630 		       ctx->split_key_pad_len + enckeylen, 1);
631 #endif
632 
633 	ctx->enckeylen = enckeylen;
634 
635 	ret = aead_set_sh_desc(aead);
636 	if (ret) {
637 		dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len +
638 				 enckeylen, DMA_TO_DEVICE);
639 	}
640 
641 	return ret;
642 badkey:
643 	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
644 	return -EINVAL;
645 }
646 
647 static int ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
648 			     const u8 *key, unsigned int keylen)
649 {
650 	struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
651 	struct ablkcipher_tfm *tfm = &ablkcipher->base.crt_ablkcipher;
652 	struct device *jrdev = ctx->jrdev;
653 	int ret = 0;
654 	u32 *key_jump_cmd, *jump_cmd;
655 	u32 *desc;
656 
657 #ifdef DEBUG
658 	print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
659 		       DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
660 #endif
661 
662 	memcpy(ctx->key, key, keylen);
663 	ctx->key_dma = dma_map_single(jrdev, ctx->key, keylen,
664 				      DMA_TO_DEVICE);
665 	if (dma_mapping_error(jrdev, ctx->key_dma)) {
666 		dev_err(jrdev, "unable to map key i/o memory\n");
667 		return -ENOMEM;
668 	}
669 	ctx->enckeylen = keylen;
670 
671 	/* ablkcipher_encrypt shared descriptor */
672 	desc = ctx->sh_desc_enc;
673 	init_sh_desc(desc, HDR_SHARE_WAIT);
674 	/* Skip if already shared */
675 	key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
676 				   JUMP_COND_SHRD);
677 
678 	/* Load class1 key only */
679 	append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
680 			  ctx->enckeylen, CLASS_1 |
681 			  KEY_DEST_CLASS_REG);
682 
683 	set_jump_tgt_here(desc, key_jump_cmd);
684 
685 	/* Propagate errors from shared to job descriptor */
686 	append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
687 
688 	/* Load iv */
689 	append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
690 		   LDST_CLASS_1_CCB | tfm->ivsize);
691 
692 	/* Load operation */
693 	append_operation(desc, ctx->class1_alg_type |
694 			 OP_ALG_AS_INITFINAL | OP_ALG_ENCRYPT);
695 
696 	/* Perform operation */
697 	ablkcipher_append_src_dst(desc);
698 
699 	ctx->sh_desc_enc_dma = dma_map_single(jrdev, desc,
700 					      desc_bytes(desc),
701 					      DMA_TO_DEVICE);
702 	if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
703 		dev_err(jrdev, "unable to map shared descriptor\n");
704 		return -ENOMEM;
705 	}
706 #ifdef DEBUG
707 	print_hex_dump(KERN_ERR, "ablkcipher enc shdesc@"xstr(__LINE__)": ",
708 		       DUMP_PREFIX_ADDRESS, 16, 4, desc,
709 		       desc_bytes(desc), 1);
710 #endif
711 	/* ablkcipher_decrypt shared descriptor */
712 	desc = ctx->sh_desc_dec;
713 
714 	init_sh_desc(desc, HDR_SHARE_WAIT);
715 	/* Skip if already shared */
716 	key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
717 				   JUMP_COND_SHRD);
718 
719 	/* Load class1 key only */
720 	append_key_as_imm(desc, (void *)ctx->key, ctx->enckeylen,
721 			  ctx->enckeylen, CLASS_1 |
722 			  KEY_DEST_CLASS_REG);
723 
724 	/* For aead, only propagate error immediately if shared */
725 	jump_cmd = append_jump(desc, JUMP_TEST_ALL);
726 	set_jump_tgt_here(desc, key_jump_cmd);
727 	append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
728 	set_jump_tgt_here(desc, jump_cmd);
729 
730 	/* load IV */
731 	append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
732 		   LDST_CLASS_1_CCB | tfm->ivsize);
733 
734 	/* Choose operation */
735 	append_dec_op1(desc, ctx->class1_alg_type);
736 
737 	/* Perform operation */
738 	ablkcipher_append_src_dst(desc);
739 
740 	/* Wait for key to load before allowing propagating error */
741 	append_dec_shr_done(desc);
742 
743 	ctx->sh_desc_dec_dma = dma_map_single(jrdev, desc,
744 					      desc_bytes(desc),
745 					      DMA_TO_DEVICE);
746 	if (dma_mapping_error(jrdev, ctx->sh_desc_enc_dma)) {
747 		dev_err(jrdev, "unable to map shared descriptor\n");
748 		return -ENOMEM;
749 	}
750 
751 #ifdef DEBUG
752 	print_hex_dump(KERN_ERR, "ablkcipher dec shdesc@"xstr(__LINE__)": ",
753 		       DUMP_PREFIX_ADDRESS, 16, 4, desc,
754 		       desc_bytes(desc), 1);
755 #endif
756 
757 	return ret;
758 }
759 
760 struct link_tbl_entry {
761 	u64 ptr;
762 	u32 len;
763 	u8 reserved;
764 	u8 buf_pool_id;
765 	u16 offset;
766 };
767 
768 /*
769  * aead_edesc - s/w-extended aead descriptor
770  * @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
771  * @src_nents: number of segments in input scatterlist
772  * @dst_nents: number of segments in output scatterlist
773  * @iv_dma: dma address of iv for checking continuity and link table
774  * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
775  * @link_tbl_bytes: length of dma mapped link_tbl space
776  * @link_tbl_dma: bus physical mapped address of h/w link table
777  * @hw_desc: the h/w job descriptor followed by any referenced link tables
778  */
779 struct aead_edesc {
780 	int assoc_nents;
781 	int src_nents;
782 	int dst_nents;
783 	dma_addr_t iv_dma;
784 	int link_tbl_bytes;
785 	dma_addr_t link_tbl_dma;
786 	struct link_tbl_entry *link_tbl;
787 	u32 hw_desc[0];
788 };
789 
790 /*
791  * ablkcipher_edesc - s/w-extended ablkcipher descriptor
792  * @src_nents: number of segments in input scatterlist
793  * @dst_nents: number of segments in output scatterlist
794  * @iv_dma: dma address of iv for checking continuity and link table
795  * @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
796  * @link_tbl_bytes: length of dma mapped link_tbl space
797  * @link_tbl_dma: bus physical mapped address of h/w link table
798  * @hw_desc: the h/w job descriptor followed by any referenced link tables
799  */
800 struct ablkcipher_edesc {
801 	int src_nents;
802 	int dst_nents;
803 	dma_addr_t iv_dma;
804 	int link_tbl_bytes;
805 	dma_addr_t link_tbl_dma;
806 	struct link_tbl_entry *link_tbl;
807 	u32 hw_desc[0];
808 };
809 
810 static void caam_unmap(struct device *dev, struct scatterlist *src,
811 		       struct scatterlist *dst, int src_nents, int dst_nents,
812 		       dma_addr_t iv_dma, int ivsize, dma_addr_t link_tbl_dma,
813 		       int link_tbl_bytes)
814 {
815 	if (unlikely(dst != src)) {
816 		dma_unmap_sg(dev, src, src_nents, DMA_TO_DEVICE);
817 		dma_unmap_sg(dev, dst, dst_nents, DMA_FROM_DEVICE);
818 	} else {
819 		dma_unmap_sg(dev, src, src_nents, DMA_BIDIRECTIONAL);
820 	}
821 
822 	if (iv_dma)
823 		dma_unmap_single(dev, iv_dma, ivsize, DMA_TO_DEVICE);
824 	if (link_tbl_bytes)
825 		dma_unmap_single(dev, link_tbl_dma, link_tbl_bytes,
826 				 DMA_TO_DEVICE);
827 }
828 
829 static void aead_unmap(struct device *dev,
830 		       struct aead_edesc *edesc,
831 		       struct aead_request *req)
832 {
833 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
834 	int ivsize = crypto_aead_ivsize(aead);
835 
836 	dma_unmap_sg(dev, req->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
837 
838 	caam_unmap(dev, req->src, req->dst,
839 		   edesc->src_nents, edesc->dst_nents,
840 		   edesc->iv_dma, ivsize, edesc->link_tbl_dma,
841 		   edesc->link_tbl_bytes);
842 }
843 
844 static void ablkcipher_unmap(struct device *dev,
845 			     struct ablkcipher_edesc *edesc,
846 			     struct ablkcipher_request *req)
847 {
848 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
849 	int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
850 
851 	caam_unmap(dev, req->src, req->dst,
852 		   edesc->src_nents, edesc->dst_nents,
853 		   edesc->iv_dma, ivsize, edesc->link_tbl_dma,
854 		   edesc->link_tbl_bytes);
855 }
856 
857 static void aead_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
858 				   void *context)
859 {
860 	struct aead_request *req = context;
861 	struct aead_edesc *edesc;
862 #ifdef DEBUG
863 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
864 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
865 	int ivsize = crypto_aead_ivsize(aead);
866 
867 	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
868 #endif
869 
870 	edesc = (struct aead_edesc *)((char *)desc -
871 		 offsetof(struct aead_edesc, hw_desc));
872 
873 	if (err) {
874 		char tmp[CAAM_ERROR_STR_MAX];
875 
876 		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
877 	}
878 
879 	aead_unmap(jrdev, edesc, req);
880 
881 #ifdef DEBUG
882 	print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
883 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
884 		       req->assoclen , 1);
885 	print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
886 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src) - ivsize,
887 		       edesc->src_nents ? 100 : ivsize, 1);
888 	print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
889 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
890 		       edesc->src_nents ? 100 : req->cryptlen +
891 		       ctx->authsize + 4, 1);
892 #endif
893 
894 	kfree(edesc);
895 
896 	aead_request_complete(req, err);
897 }
898 
899 static void aead_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
900 				   void *context)
901 {
902 	struct aead_request *req = context;
903 	struct aead_edesc *edesc;
904 #ifdef DEBUG
905 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
906 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
907 	int ivsize = crypto_aead_ivsize(aead);
908 
909 	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
910 #endif
911 
912 	edesc = (struct aead_edesc *)((char *)desc -
913 		 offsetof(struct aead_edesc, hw_desc));
914 
915 #ifdef DEBUG
916 	print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
917 		       DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
918 		       ivsize, 1);
919 	print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
920 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->dst),
921 		       req->cryptlen, 1);
922 #endif
923 
924 	if (err) {
925 		char tmp[CAAM_ERROR_STR_MAX];
926 
927 		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
928 	}
929 
930 	aead_unmap(jrdev, edesc, req);
931 
932 	/*
933 	 * verify hw auth check passed else return -EBADMSG
934 	 */
935 	if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
936 		err = -EBADMSG;
937 
938 #ifdef DEBUG
939 	print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
940 		       DUMP_PREFIX_ADDRESS, 16, 4,
941 		       ((char *)sg_virt(req->assoc) - sizeof(struct iphdr)),
942 		       sizeof(struct iphdr) + req->assoclen +
943 		       ((req->cryptlen > 1500) ? 1500 : req->cryptlen) +
944 		       ctx->authsize + 36, 1);
945 	if (!err && edesc->link_tbl_bytes) {
946 		struct scatterlist *sg = sg_last(req->src, edesc->src_nents);
947 		print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
948 			       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
949 			sg->length + ctx->authsize + 16, 1);
950 	}
951 #endif
952 
953 	kfree(edesc);
954 
955 	aead_request_complete(req, err);
956 }
957 
958 static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
959 				   void *context)
960 {
961 	struct ablkcipher_request *req = context;
962 	struct ablkcipher_edesc *edesc;
963 #ifdef DEBUG
964 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
965 	int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
966 
967 	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
968 #endif
969 
970 	edesc = (struct ablkcipher_edesc *)((char *)desc -
971 		 offsetof(struct ablkcipher_edesc, hw_desc));
972 
973 	if (err) {
974 		char tmp[CAAM_ERROR_STR_MAX];
975 
976 		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
977 	}
978 
979 #ifdef DEBUG
980 	print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
981 		       DUMP_PREFIX_ADDRESS, 16, 4, req->info,
982 		       edesc->src_nents > 1 ? 100 : ivsize, 1);
983 	print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
984 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
985 		       edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
986 #endif
987 
988 	ablkcipher_unmap(jrdev, edesc, req);
989 	kfree(edesc);
990 
991 	ablkcipher_request_complete(req, err);
992 }
993 
994 static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
995 				    void *context)
996 {
997 	struct ablkcipher_request *req = context;
998 	struct ablkcipher_edesc *edesc;
999 #ifdef DEBUG
1000 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1001 	int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1002 
1003 	dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
1004 #endif
1005 
1006 	edesc = (struct ablkcipher_edesc *)((char *)desc -
1007 		 offsetof(struct ablkcipher_edesc, hw_desc));
1008 	if (err) {
1009 		char tmp[CAAM_ERROR_STR_MAX];
1010 
1011 		dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
1012 	}
1013 
1014 #ifdef DEBUG
1015 	print_hex_dump(KERN_ERR, "dstiv  @"xstr(__LINE__)": ",
1016 		       DUMP_PREFIX_ADDRESS, 16, 4, req->info,
1017 		       ivsize, 1);
1018 	print_hex_dump(KERN_ERR, "dst    @"xstr(__LINE__)": ",
1019 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1020 		       edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
1021 #endif
1022 
1023 	ablkcipher_unmap(jrdev, edesc, req);
1024 	kfree(edesc);
1025 
1026 	ablkcipher_request_complete(req, err);
1027 }
1028 
1029 static void sg_to_link_tbl_one(struct link_tbl_entry *link_tbl_ptr,
1030 			       dma_addr_t dma, u32 len, u32 offset)
1031 {
1032 	link_tbl_ptr->ptr = dma;
1033 	link_tbl_ptr->len = len;
1034 	link_tbl_ptr->reserved = 0;
1035 	link_tbl_ptr->buf_pool_id = 0;
1036 	link_tbl_ptr->offset = offset;
1037 #ifdef DEBUG
1038 	print_hex_dump(KERN_ERR, "link_tbl_ptr@"xstr(__LINE__)": ",
1039 		       DUMP_PREFIX_ADDRESS, 16, 4, link_tbl_ptr,
1040 		       sizeof(struct link_tbl_entry), 1);
1041 #endif
1042 }
1043 
1044 /*
1045  * convert scatterlist to h/w link table format
1046  * but does not have final bit; instead, returns last entry
1047  */
1048 static struct link_tbl_entry *sg_to_link_tbl(struct scatterlist *sg,
1049 					     int sg_count, struct link_tbl_entry
1050 					     *link_tbl_ptr, u32 offset)
1051 {
1052 	while (sg_count) {
1053 		sg_to_link_tbl_one(link_tbl_ptr, sg_dma_address(sg),
1054 				   sg_dma_len(sg), offset);
1055 		link_tbl_ptr++;
1056 		sg = sg_next(sg);
1057 		sg_count--;
1058 	}
1059 	return link_tbl_ptr - 1;
1060 }
1061 
1062 /*
1063  * convert scatterlist to h/w link table format
1064  * scatterlist must have been previously dma mapped
1065  */
1066 static void sg_to_link_tbl_last(struct scatterlist *sg, int sg_count,
1067 				struct link_tbl_entry *link_tbl_ptr, u32 offset)
1068 {
1069 	link_tbl_ptr = sg_to_link_tbl(sg, sg_count, link_tbl_ptr, offset);
1070 	link_tbl_ptr->len |= 0x40000000;
1071 }
1072 
1073 /*
1074  * Fill in aead job descriptor
1075  */
1076 static void init_aead_job(u32 *sh_desc, dma_addr_t ptr,
1077 			  struct aead_edesc *edesc,
1078 			  struct aead_request *req,
1079 			  bool all_contig, bool encrypt)
1080 {
1081 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1082 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1083 	int ivsize = crypto_aead_ivsize(aead);
1084 	int authsize = ctx->authsize;
1085 	u32 *desc = edesc->hw_desc;
1086 	u32 out_options = 0, in_options;
1087 	dma_addr_t dst_dma, src_dma;
1088 	int len, link_tbl_index = 0;
1089 
1090 #ifdef DEBUG
1091 	debug("assoclen %d cryptlen %d authsize %d\n",
1092 	      req->assoclen, req->cryptlen, authsize);
1093 	print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
1094 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
1095 		       req->assoclen , 1);
1096 	print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
1097 		       DUMP_PREFIX_ADDRESS, 16, 4, req->iv,
1098 		       edesc->src_nents ? 100 : ivsize, 1);
1099 	print_hex_dump(KERN_ERR, "src    @"xstr(__LINE__)": ",
1100 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1101 			edesc->src_nents ? 100 : req->cryptlen, 1);
1102 	print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
1103 		       DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
1104 		       desc_bytes(sh_desc), 1);
1105 #endif
1106 
1107 	len = desc_len(sh_desc);
1108 	init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
1109 
1110 	if (all_contig) {
1111 		src_dma = sg_dma_address(req->assoc);
1112 		in_options = 0;
1113 	} else {
1114 		src_dma = edesc->link_tbl_dma;
1115 		link_tbl_index += (edesc->assoc_nents ? : 1) + 1 +
1116 				  (edesc->src_nents ? : 1);
1117 		in_options = LDST_SGF;
1118 	}
1119 	if (encrypt)
1120 		append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
1121 				  req->cryptlen - authsize, in_options);
1122 	else
1123 		append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
1124 				  req->cryptlen, in_options);
1125 
1126 	if (likely(req->src == req->dst)) {
1127 		if (all_contig) {
1128 			dst_dma = sg_dma_address(req->src);
1129 		} else {
1130 			dst_dma = src_dma + sizeof(struct link_tbl_entry) *
1131 				  ((edesc->assoc_nents ? : 1) + 1);
1132 			out_options = LDST_SGF;
1133 		}
1134 	} else {
1135 		if (!edesc->dst_nents) {
1136 			dst_dma = sg_dma_address(req->dst);
1137 		} else {
1138 			dst_dma = edesc->link_tbl_dma +
1139 				  link_tbl_index *
1140 				  sizeof(struct link_tbl_entry);
1141 			out_options = LDST_SGF;
1142 		}
1143 	}
1144 	if (encrypt)
1145 		append_seq_out_ptr(desc, dst_dma, req->cryptlen, out_options);
1146 	else
1147 		append_seq_out_ptr(desc, dst_dma, req->cryptlen - authsize,
1148 				   out_options);
1149 }
1150 
1151 /*
1152  * Fill in aead givencrypt job descriptor
1153  */
1154 static void init_aead_giv_job(u32 *sh_desc, dma_addr_t ptr,
1155 			      struct aead_edesc *edesc,
1156 			      struct aead_request *req,
1157 			      int contig)
1158 {
1159 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1160 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1161 	int ivsize = crypto_aead_ivsize(aead);
1162 	int authsize = ctx->authsize;
1163 	u32 *desc = edesc->hw_desc;
1164 	u32 out_options = 0, in_options;
1165 	dma_addr_t dst_dma, src_dma;
1166 	int len, link_tbl_index = 0;
1167 
1168 #ifdef DEBUG
1169 	debug("assoclen %d cryptlen %d authsize %d\n",
1170 	      req->assoclen, req->cryptlen, authsize);
1171 	print_hex_dump(KERN_ERR, "assoc  @"xstr(__LINE__)": ",
1172 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->assoc),
1173 		       req->assoclen , 1);
1174 	print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
1175 		       DUMP_PREFIX_ADDRESS, 16, 4, req->iv, ivsize, 1);
1176 	print_hex_dump(KERN_ERR, "src    @"xstr(__LINE__)": ",
1177 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1178 			edesc->src_nents > 1 ? 100 : req->cryptlen, 1);
1179 	print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
1180 		       DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
1181 		       desc_bytes(sh_desc), 1);
1182 #endif
1183 
1184 	len = desc_len(sh_desc);
1185 	init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
1186 
1187 	if (contig & GIV_SRC_CONTIG) {
1188 		src_dma = sg_dma_address(req->assoc);
1189 		in_options = 0;
1190 	} else {
1191 		src_dma = edesc->link_tbl_dma;
1192 		link_tbl_index += edesc->assoc_nents + 1 + edesc->src_nents;
1193 		in_options = LDST_SGF;
1194 	}
1195 	append_seq_in_ptr(desc, src_dma, req->assoclen + ivsize +
1196 			  req->cryptlen - authsize, in_options);
1197 
1198 	if (contig & GIV_DST_CONTIG) {
1199 		dst_dma = edesc->iv_dma;
1200 	} else {
1201 		if (likely(req->src == req->dst)) {
1202 			dst_dma = src_dma + sizeof(struct link_tbl_entry) *
1203 				  edesc->assoc_nents;
1204 			out_options = LDST_SGF;
1205 		} else {
1206 			dst_dma = edesc->link_tbl_dma +
1207 				  link_tbl_index *
1208 				  sizeof(struct link_tbl_entry);
1209 			out_options = LDST_SGF;
1210 		}
1211 	}
1212 
1213 	append_seq_out_ptr(desc, dst_dma, ivsize + req->cryptlen, out_options);
1214 }
1215 
1216 /*
1217  * Fill in ablkcipher job descriptor
1218  */
1219 static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
1220 				struct ablkcipher_edesc *edesc,
1221 				struct ablkcipher_request *req,
1222 				bool iv_contig)
1223 {
1224 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1225 	int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1226 	u32 *desc = edesc->hw_desc;
1227 	u32 out_options = 0, in_options;
1228 	dma_addr_t dst_dma, src_dma;
1229 	int len, link_tbl_index = 0;
1230 
1231 #ifdef DEBUG
1232 	print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
1233 		       DUMP_PREFIX_ADDRESS, 16, 4, req->info,
1234 		       ivsize, 1);
1235 	print_hex_dump(KERN_ERR, "src    @"xstr(__LINE__)": ",
1236 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1237 		       edesc->src_nents ? 100 : req->nbytes, 1);
1238 #endif
1239 
1240 	len = desc_len(sh_desc);
1241 	init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
1242 
1243 	if (iv_contig) {
1244 		src_dma = edesc->iv_dma;
1245 		in_options = 0;
1246 	} else {
1247 		src_dma = edesc->link_tbl_dma;
1248 		link_tbl_index += (iv_contig ? 0 : 1) + edesc->src_nents;
1249 		in_options = LDST_SGF;
1250 	}
1251 	append_seq_in_ptr(desc, src_dma, req->nbytes + ivsize, in_options);
1252 
1253 	if (likely(req->src == req->dst)) {
1254 		if (!edesc->src_nents && iv_contig) {
1255 			dst_dma = sg_dma_address(req->src);
1256 		} else {
1257 			dst_dma = edesc->link_tbl_dma +
1258 				sizeof(struct link_tbl_entry);
1259 			out_options = LDST_SGF;
1260 		}
1261 	} else {
1262 		if (!edesc->dst_nents) {
1263 			dst_dma = sg_dma_address(req->dst);
1264 		} else {
1265 			dst_dma = edesc->link_tbl_dma +
1266 				link_tbl_index * sizeof(struct link_tbl_entry);
1267 			out_options = LDST_SGF;
1268 		}
1269 	}
1270 	append_seq_out_ptr(desc, dst_dma, req->nbytes, out_options);
1271 }
1272 
1273 /*
1274  * derive number of elements in scatterlist
1275  */
1276 static int sg_count(struct scatterlist *sg_list, int nbytes)
1277 {
1278 	struct scatterlist *sg = sg_list;
1279 	int sg_nents = 0;
1280 
1281 	while (nbytes > 0) {
1282 		sg_nents++;
1283 		nbytes -= sg->length;
1284 		if (!sg_is_last(sg) && (sg + 1)->length == 0)
1285 			BUG(); /* Not support chaining */
1286 		sg = scatterwalk_sg_next(sg);
1287 	}
1288 
1289 	if (likely(sg_nents == 1))
1290 		return 0;
1291 
1292 	return sg_nents;
1293 }
1294 
1295 /*
1296  * allocate and map the aead extended descriptor
1297  */
1298 static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
1299 					   int desc_bytes, bool *all_contig_ptr)
1300 {
1301 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1302 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1303 	struct device *jrdev = ctx->jrdev;
1304 	gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1305 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1306 	int assoc_nents, src_nents, dst_nents = 0;
1307 	struct aead_edesc *edesc;
1308 	dma_addr_t iv_dma = 0;
1309 	int sgc;
1310 	bool all_contig = true;
1311 	int ivsize = crypto_aead_ivsize(aead);
1312 	int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
1313 
1314 	assoc_nents = sg_count(req->assoc, req->assoclen);
1315 	src_nents = sg_count(req->src, req->cryptlen);
1316 
1317 	if (unlikely(req->dst != req->src))
1318 		dst_nents = sg_count(req->dst, req->cryptlen);
1319 
1320 	sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
1321 			 DMA_BIDIRECTIONAL);
1322 	if (likely(req->src == req->dst)) {
1323 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1324 				 DMA_BIDIRECTIONAL);
1325 	} else {
1326 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1327 				 DMA_TO_DEVICE);
1328 		sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
1329 				 DMA_FROM_DEVICE);
1330 	}
1331 
1332 	/* Check if data are contiguous */
1333 	iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
1334 	if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
1335 	    iv_dma || src_nents || iv_dma + ivsize !=
1336 	    sg_dma_address(req->src)) {
1337 		all_contig = false;
1338 		assoc_nents = assoc_nents ? : 1;
1339 		src_nents = src_nents ? : 1;
1340 		link_tbl_len = assoc_nents + 1 + src_nents;
1341 	}
1342 	link_tbl_len += dst_nents;
1343 
1344 	link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
1345 
1346 	/* allocate space for base edesc and hw desc commands, link tables */
1347 	edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
1348 			link_tbl_bytes, GFP_DMA | flags);
1349 	if (!edesc) {
1350 		dev_err(jrdev, "could not allocate extended descriptor\n");
1351 		return ERR_PTR(-ENOMEM);
1352 	}
1353 
1354 	edesc->assoc_nents = assoc_nents;
1355 	edesc->src_nents = src_nents;
1356 	edesc->dst_nents = dst_nents;
1357 	edesc->iv_dma = iv_dma;
1358 	edesc->link_tbl_bytes = link_tbl_bytes;
1359 	edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
1360 			  desc_bytes;
1361 	edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
1362 					     link_tbl_bytes, DMA_TO_DEVICE);
1363 	*all_contig_ptr = all_contig;
1364 
1365 	link_tbl_index = 0;
1366 	if (!all_contig) {
1367 		sg_to_link_tbl(req->assoc,
1368 			       (assoc_nents ? : 1),
1369 			       edesc->link_tbl +
1370 			       link_tbl_index, 0);
1371 		link_tbl_index += assoc_nents ? : 1;
1372 		sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
1373 				   iv_dma, ivsize, 0);
1374 		link_tbl_index += 1;
1375 		sg_to_link_tbl_last(req->src,
1376 				    (src_nents ? : 1),
1377 				    edesc->link_tbl +
1378 				    link_tbl_index, 0);
1379 		link_tbl_index += src_nents ? : 1;
1380 	}
1381 	if (dst_nents) {
1382 		sg_to_link_tbl_last(req->dst, dst_nents,
1383 				    edesc->link_tbl + link_tbl_index, 0);
1384 	}
1385 
1386 	return edesc;
1387 }
1388 
1389 static int aead_encrypt(struct aead_request *req)
1390 {
1391 	struct aead_edesc *edesc;
1392 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1393 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1394 	struct device *jrdev = ctx->jrdev;
1395 	bool all_contig;
1396 	u32 *desc;
1397 	int ret = 0;
1398 
1399 	req->cryptlen += ctx->authsize;
1400 
1401 	/* allocate extended descriptor */
1402 	edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
1403 				 CAAM_CMD_SZ, &all_contig);
1404 	if (IS_ERR(edesc))
1405 		return PTR_ERR(edesc);
1406 
1407 	/* Create and submit job descriptor */
1408 	init_aead_job(ctx->sh_desc_enc, ctx->sh_desc_enc_dma, edesc, req,
1409 		      all_contig, true);
1410 #ifdef DEBUG
1411 	print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
1412 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
1413 		       desc_bytes(edesc->hw_desc), 1);
1414 #endif
1415 
1416 	desc = edesc->hw_desc;
1417 	ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
1418 	if (!ret) {
1419 		ret = -EINPROGRESS;
1420 	} else {
1421 		aead_unmap(jrdev, edesc, req);
1422 		kfree(edesc);
1423 	}
1424 
1425 	return ret;
1426 }
1427 
1428 static int aead_decrypt(struct aead_request *req)
1429 {
1430 	struct aead_edesc *edesc;
1431 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1432 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1433 	struct device *jrdev = ctx->jrdev;
1434 	bool all_contig;
1435 	u32 *desc;
1436 	int ret = 0;
1437 
1438 	/* allocate extended descriptor */
1439 	edesc = aead_edesc_alloc(req, DESC_JOB_IO_LEN *
1440 				 CAAM_CMD_SZ, &all_contig);
1441 	if (IS_ERR(edesc))
1442 		return PTR_ERR(edesc);
1443 
1444 #ifdef DEBUG
1445 	print_hex_dump(KERN_ERR, "dec src@"xstr(__LINE__)": ",
1446 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1447 		       req->cryptlen, 1);
1448 #endif
1449 
1450 	/* Create and submit job descriptor*/
1451 	init_aead_job(ctx->sh_desc_dec,
1452 		      ctx->sh_desc_dec_dma, edesc, req, all_contig, false);
1453 #ifdef DEBUG
1454 	print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
1455 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
1456 		       desc_bytes(edesc->hw_desc), 1);
1457 #endif
1458 
1459 	desc = edesc->hw_desc;
1460 	ret = caam_jr_enqueue(jrdev, desc, aead_decrypt_done, req);
1461 	if (!ret) {
1462 		ret = -EINPROGRESS;
1463 	} else {
1464 		aead_unmap(jrdev, edesc, req);
1465 		kfree(edesc);
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 /*
1472  * allocate and map the aead extended descriptor for aead givencrypt
1473  */
1474 static struct aead_edesc *aead_giv_edesc_alloc(struct aead_givcrypt_request
1475 					       *greq, int desc_bytes,
1476 					       u32 *contig_ptr)
1477 {
1478 	struct aead_request *req = &greq->areq;
1479 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1480 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1481 	struct device *jrdev = ctx->jrdev;
1482 	gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1483 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1484 	int assoc_nents, src_nents, dst_nents = 0;
1485 	struct aead_edesc *edesc;
1486 	dma_addr_t iv_dma = 0;
1487 	int sgc;
1488 	u32 contig = GIV_SRC_CONTIG | GIV_DST_CONTIG;
1489 	int ivsize = crypto_aead_ivsize(aead);
1490 	int link_tbl_index, link_tbl_len = 0, link_tbl_bytes;
1491 
1492 	assoc_nents = sg_count(req->assoc, req->assoclen);
1493 	src_nents = sg_count(req->src, req->cryptlen);
1494 
1495 	if (unlikely(req->dst != req->src))
1496 		dst_nents = sg_count(req->dst, req->cryptlen);
1497 
1498 	sgc = dma_map_sg(jrdev, req->assoc, assoc_nents ? : 1,
1499 			 DMA_BIDIRECTIONAL);
1500 	if (likely(req->src == req->dst)) {
1501 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1502 				 DMA_BIDIRECTIONAL);
1503 	} else {
1504 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1505 				 DMA_TO_DEVICE);
1506 		sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
1507 				 DMA_FROM_DEVICE);
1508 	}
1509 
1510 	/* Check if data are contiguous */
1511 	iv_dma = dma_map_single(jrdev, greq->giv, ivsize, DMA_TO_DEVICE);
1512 	if (assoc_nents || sg_dma_address(req->assoc) + req->assoclen !=
1513 	    iv_dma || src_nents || iv_dma + ivsize != sg_dma_address(req->src))
1514 		contig &= ~GIV_SRC_CONTIG;
1515 	if (dst_nents || iv_dma + ivsize != sg_dma_address(req->dst))
1516 		contig &= ~GIV_DST_CONTIG;
1517 		if (unlikely(req->src != req->dst)) {
1518 			dst_nents = dst_nents ? : 1;
1519 			link_tbl_len += 1;
1520 		}
1521 	if (!(contig & GIV_SRC_CONTIG)) {
1522 		assoc_nents = assoc_nents ? : 1;
1523 		src_nents = src_nents ? : 1;
1524 		link_tbl_len += assoc_nents + 1 + src_nents;
1525 		if (likely(req->src == req->dst))
1526 			contig &= ~GIV_DST_CONTIG;
1527 	}
1528 	link_tbl_len += dst_nents;
1529 
1530 	link_tbl_bytes = link_tbl_len * sizeof(struct link_tbl_entry);
1531 
1532 	/* allocate space for base edesc and hw desc commands, link tables */
1533 	edesc = kmalloc(sizeof(struct aead_edesc) + desc_bytes +
1534 			link_tbl_bytes, GFP_DMA | flags);
1535 	if (!edesc) {
1536 		dev_err(jrdev, "could not allocate extended descriptor\n");
1537 		return ERR_PTR(-ENOMEM);
1538 	}
1539 
1540 	edesc->assoc_nents = assoc_nents;
1541 	edesc->src_nents = src_nents;
1542 	edesc->dst_nents = dst_nents;
1543 	edesc->iv_dma = iv_dma;
1544 	edesc->link_tbl_bytes = link_tbl_bytes;
1545 	edesc->link_tbl = (void *)edesc + sizeof(struct aead_edesc) +
1546 			  desc_bytes;
1547 	edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
1548 					     link_tbl_bytes, DMA_TO_DEVICE);
1549 	*contig_ptr = contig;
1550 
1551 	link_tbl_index = 0;
1552 	if (!(contig & GIV_SRC_CONTIG)) {
1553 		sg_to_link_tbl(req->assoc, assoc_nents,
1554 			       edesc->link_tbl +
1555 			       link_tbl_index, 0);
1556 		link_tbl_index += assoc_nents;
1557 		sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
1558 				   iv_dma, ivsize, 0);
1559 		link_tbl_index += 1;
1560 		sg_to_link_tbl_last(req->src, src_nents,
1561 				    edesc->link_tbl +
1562 				    link_tbl_index, 0);
1563 		link_tbl_index += src_nents;
1564 	}
1565 	if (unlikely(req->src != req->dst && !(contig & GIV_DST_CONTIG))) {
1566 		sg_to_link_tbl_one(edesc->link_tbl + link_tbl_index,
1567 				   iv_dma, ivsize, 0);
1568 		link_tbl_index += 1;
1569 		sg_to_link_tbl_last(req->dst, dst_nents,
1570 				    edesc->link_tbl + link_tbl_index, 0);
1571 	}
1572 
1573 	return edesc;
1574 }
1575 
1576 static int aead_givencrypt(struct aead_givcrypt_request *areq)
1577 {
1578 	struct aead_request *req = &areq->areq;
1579 	struct aead_edesc *edesc;
1580 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1581 	struct caam_ctx *ctx = crypto_aead_ctx(aead);
1582 	struct device *jrdev = ctx->jrdev;
1583 	u32 contig;
1584 	u32 *desc;
1585 	int ret = 0;
1586 
1587 	req->cryptlen += ctx->authsize;
1588 
1589 	/* allocate extended descriptor */
1590 	edesc = aead_giv_edesc_alloc(areq, DESC_JOB_IO_LEN *
1591 				     CAAM_CMD_SZ, &contig);
1592 
1593 	if (IS_ERR(edesc))
1594 		return PTR_ERR(edesc);
1595 
1596 #ifdef DEBUG
1597 	print_hex_dump(KERN_ERR, "giv src@"xstr(__LINE__)": ",
1598 		       DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(req->src),
1599 		       req->cryptlen, 1);
1600 #endif
1601 
1602 	/* Create and submit job descriptor*/
1603 	init_aead_giv_job(ctx->sh_desc_givenc,
1604 			  ctx->sh_desc_givenc_dma, edesc, req, contig);
1605 #ifdef DEBUG
1606 	print_hex_dump(KERN_ERR, "aead jobdesc@"xstr(__LINE__)": ",
1607 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
1608 		       desc_bytes(edesc->hw_desc), 1);
1609 #endif
1610 
1611 	desc = edesc->hw_desc;
1612 	ret = caam_jr_enqueue(jrdev, desc, aead_encrypt_done, req);
1613 	if (!ret) {
1614 		ret = -EINPROGRESS;
1615 	} else {
1616 		aead_unmap(jrdev, edesc, req);
1617 		kfree(edesc);
1618 	}
1619 
1620 	return ret;
1621 }
1622 
1623 /*
1624  * allocate and map the ablkcipher extended descriptor for ablkcipher
1625  */
1626 static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
1627 						       *req, int desc_bytes,
1628 						       bool *iv_contig_out)
1629 {
1630 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1631 	struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1632 	struct device *jrdev = ctx->jrdev;
1633 	gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1634 					  CRYPTO_TFM_REQ_MAY_SLEEP)) ?
1635 		       GFP_KERNEL : GFP_ATOMIC;
1636 	int src_nents, dst_nents = 0, link_tbl_bytes;
1637 	struct ablkcipher_edesc *edesc;
1638 	dma_addr_t iv_dma = 0;
1639 	bool iv_contig = false;
1640 	int sgc;
1641 	int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1642 	int link_tbl_index;
1643 
1644 	src_nents = sg_count(req->src, req->nbytes);
1645 
1646 	if (unlikely(req->dst != req->src))
1647 		dst_nents = sg_count(req->dst, req->nbytes);
1648 
1649 	if (likely(req->src == req->dst)) {
1650 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1651 				 DMA_BIDIRECTIONAL);
1652 	} else {
1653 		sgc = dma_map_sg(jrdev, req->src, src_nents ? : 1,
1654 				 DMA_TO_DEVICE);
1655 		sgc = dma_map_sg(jrdev, req->dst, dst_nents ? : 1,
1656 				 DMA_FROM_DEVICE);
1657 	}
1658 
1659 	/*
1660 	 * Check if iv can be contiguous with source and destination.
1661 	 * If so, include it. If not, create scatterlist.
1662 	 */
1663 	iv_dma = dma_map_single(jrdev, req->info, ivsize, DMA_TO_DEVICE);
1664 	if (!src_nents && iv_dma + ivsize == sg_dma_address(req->src))
1665 		iv_contig = true;
1666 	else
1667 		src_nents = src_nents ? : 1;
1668 	link_tbl_bytes = ((iv_contig ? 0 : 1) + src_nents + dst_nents) *
1669 			 sizeof(struct link_tbl_entry);
1670 
1671 	/* allocate space for base edesc and hw desc commands, link tables */
1672 	edesc = kmalloc(sizeof(struct ablkcipher_edesc) + desc_bytes +
1673 			link_tbl_bytes, GFP_DMA | flags);
1674 	if (!edesc) {
1675 		dev_err(jrdev, "could not allocate extended descriptor\n");
1676 		return ERR_PTR(-ENOMEM);
1677 	}
1678 
1679 	edesc->src_nents = src_nents;
1680 	edesc->dst_nents = dst_nents;
1681 	edesc->link_tbl_bytes = link_tbl_bytes;
1682 	edesc->link_tbl = (void *)edesc + sizeof(struct ablkcipher_edesc) +
1683 			  desc_bytes;
1684 
1685 	link_tbl_index = 0;
1686 	if (!iv_contig) {
1687 		sg_to_link_tbl_one(edesc->link_tbl, iv_dma, ivsize, 0);
1688 		sg_to_link_tbl_last(req->src, src_nents,
1689 				    edesc->link_tbl + 1, 0);
1690 		link_tbl_index += 1 + src_nents;
1691 	}
1692 
1693 	if (unlikely(dst_nents)) {
1694 		sg_to_link_tbl_last(req->dst, dst_nents,
1695 			edesc->link_tbl + link_tbl_index, 0);
1696 	}
1697 
1698 	edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
1699 					     link_tbl_bytes, DMA_TO_DEVICE);
1700 	edesc->iv_dma = iv_dma;
1701 
1702 #ifdef DEBUG
1703 	print_hex_dump(KERN_ERR, "ablkcipher link_tbl@"xstr(__LINE__)": ",
1704 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
1705 		       link_tbl_bytes, 1);
1706 #endif
1707 
1708 	*iv_contig_out = iv_contig;
1709 	return edesc;
1710 }
1711 
1712 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1713 {
1714 	struct ablkcipher_edesc *edesc;
1715 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1716 	struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1717 	struct device *jrdev = ctx->jrdev;
1718 	bool iv_contig;
1719 	u32 *desc;
1720 	int ret = 0;
1721 
1722 	/* allocate extended descriptor */
1723 	edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
1724 				       CAAM_CMD_SZ, &iv_contig);
1725 	if (IS_ERR(edesc))
1726 		return PTR_ERR(edesc);
1727 
1728 	/* Create and submit job descriptor*/
1729 	init_ablkcipher_job(ctx->sh_desc_enc,
1730 		ctx->sh_desc_enc_dma, edesc, req, iv_contig);
1731 #ifdef DEBUG
1732 	print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
1733 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
1734 		       desc_bytes(edesc->hw_desc), 1);
1735 #endif
1736 	desc = edesc->hw_desc;
1737 	ret = caam_jr_enqueue(jrdev, desc, ablkcipher_encrypt_done, req);
1738 
1739 	if (!ret) {
1740 		ret = -EINPROGRESS;
1741 	} else {
1742 		ablkcipher_unmap(jrdev, edesc, req);
1743 		kfree(edesc);
1744 	}
1745 
1746 	return ret;
1747 }
1748 
1749 static int ablkcipher_decrypt(struct ablkcipher_request *req)
1750 {
1751 	struct ablkcipher_edesc *edesc;
1752 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1753 	struct caam_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1754 	struct device *jrdev = ctx->jrdev;
1755 	bool iv_contig;
1756 	u32 *desc;
1757 	int ret = 0;
1758 
1759 	/* allocate extended descriptor */
1760 	edesc = ablkcipher_edesc_alloc(req, DESC_JOB_IO_LEN *
1761 				       CAAM_CMD_SZ, &iv_contig);
1762 	if (IS_ERR(edesc))
1763 		return PTR_ERR(edesc);
1764 
1765 	/* Create and submit job descriptor*/
1766 	init_ablkcipher_job(ctx->sh_desc_dec,
1767 		ctx->sh_desc_dec_dma, edesc, req, iv_contig);
1768 	desc = edesc->hw_desc;
1769 #ifdef DEBUG
1770 	print_hex_dump(KERN_ERR, "ablkcipher jobdesc@"xstr(__LINE__)": ",
1771 		       DUMP_PREFIX_ADDRESS, 16, 4, edesc->hw_desc,
1772 		       desc_bytes(edesc->hw_desc), 1);
1773 #endif
1774 
1775 	ret = caam_jr_enqueue(jrdev, desc, ablkcipher_decrypt_done, req);
1776 	if (!ret) {
1777 		ret = -EINPROGRESS;
1778 	} else {
1779 		ablkcipher_unmap(jrdev, edesc, req);
1780 		kfree(edesc);
1781 	}
1782 
1783 	return ret;
1784 }
1785 
1786 #define template_aead		template_u.aead
1787 #define template_ablkcipher	template_u.ablkcipher
1788 struct caam_alg_template {
1789 	char name[CRYPTO_MAX_ALG_NAME];
1790 	char driver_name[CRYPTO_MAX_ALG_NAME];
1791 	unsigned int blocksize;
1792 	u32 type;
1793 	union {
1794 		struct ablkcipher_alg ablkcipher;
1795 		struct aead_alg aead;
1796 		struct blkcipher_alg blkcipher;
1797 		struct cipher_alg cipher;
1798 		struct compress_alg compress;
1799 		struct rng_alg rng;
1800 	} template_u;
1801 	u32 class1_alg_type;
1802 	u32 class2_alg_type;
1803 	u32 alg_op;
1804 };
1805 
1806 static struct caam_alg_template driver_algs[] = {
1807 	/* single-pass ipsec_esp descriptor */
1808 	{
1809 		.name = "authenc(hmac(md5),cbc(aes))",
1810 		.driver_name = "authenc-hmac-md5-cbc-aes-caam",
1811 		.blocksize = AES_BLOCK_SIZE,
1812 		.type = CRYPTO_ALG_TYPE_AEAD,
1813 		.template_aead = {
1814 			.setkey = aead_setkey,
1815 			.setauthsize = aead_setauthsize,
1816 			.encrypt = aead_encrypt,
1817 			.decrypt = aead_decrypt,
1818 			.givencrypt = aead_givencrypt,
1819 			.geniv = "<built-in>",
1820 			.ivsize = AES_BLOCK_SIZE,
1821 			.maxauthsize = MD5_DIGEST_SIZE,
1822 			},
1823 		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1824 		.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
1825 		.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
1826 	},
1827 	{
1828 		.name = "authenc(hmac(sha1),cbc(aes))",
1829 		.driver_name = "authenc-hmac-sha1-cbc-aes-caam",
1830 		.blocksize = AES_BLOCK_SIZE,
1831 		.type = CRYPTO_ALG_TYPE_AEAD,
1832 		.template_aead = {
1833 			.setkey = aead_setkey,
1834 			.setauthsize = aead_setauthsize,
1835 			.encrypt = aead_encrypt,
1836 			.decrypt = aead_decrypt,
1837 			.givencrypt = aead_givencrypt,
1838 			.geniv = "<built-in>",
1839 			.ivsize = AES_BLOCK_SIZE,
1840 			.maxauthsize = SHA1_DIGEST_SIZE,
1841 			},
1842 		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1843 		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
1844 		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
1845 	},
1846 	{
1847 		.name = "authenc(hmac(sha256),cbc(aes))",
1848 		.driver_name = "authenc-hmac-sha256-cbc-aes-caam",
1849 		.blocksize = AES_BLOCK_SIZE,
1850 		.type = CRYPTO_ALG_TYPE_AEAD,
1851 		.template_aead = {
1852 			.setkey = aead_setkey,
1853 			.setauthsize = aead_setauthsize,
1854 			.encrypt = aead_encrypt,
1855 			.decrypt = aead_decrypt,
1856 			.givencrypt = aead_givencrypt,
1857 			.geniv = "<built-in>",
1858 			.ivsize = AES_BLOCK_SIZE,
1859 			.maxauthsize = SHA256_DIGEST_SIZE,
1860 			},
1861 		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1862 		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
1863 				   OP_ALG_AAI_HMAC_PRECOMP,
1864 		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
1865 	},
1866 	{
1867 		.name = "authenc(hmac(sha512),cbc(aes))",
1868 		.driver_name = "authenc-hmac-sha512-cbc-aes-caam",
1869 		.blocksize = AES_BLOCK_SIZE,
1870 		.type = CRYPTO_ALG_TYPE_AEAD,
1871 		.template_aead = {
1872 			.setkey = aead_setkey,
1873 			.setauthsize = aead_setauthsize,
1874 			.encrypt = aead_encrypt,
1875 			.decrypt = aead_decrypt,
1876 			.givencrypt = aead_givencrypt,
1877 			.geniv = "<built-in>",
1878 			.ivsize = AES_BLOCK_SIZE,
1879 			.maxauthsize = SHA512_DIGEST_SIZE,
1880 			},
1881 		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
1882 		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
1883 				   OP_ALG_AAI_HMAC_PRECOMP,
1884 		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
1885 	},
1886 	{
1887 		.name = "authenc(hmac(md5),cbc(des3_ede))",
1888 		.driver_name = "authenc-hmac-md5-cbc-des3_ede-caam",
1889 		.blocksize = DES3_EDE_BLOCK_SIZE,
1890 		.type = CRYPTO_ALG_TYPE_AEAD,
1891 		.template_aead = {
1892 			.setkey = aead_setkey,
1893 			.setauthsize = aead_setauthsize,
1894 			.encrypt = aead_encrypt,
1895 			.decrypt = aead_decrypt,
1896 			.givencrypt = aead_givencrypt,
1897 			.geniv = "<built-in>",
1898 			.ivsize = DES3_EDE_BLOCK_SIZE,
1899 			.maxauthsize = MD5_DIGEST_SIZE,
1900 			},
1901 		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1902 		.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
1903 		.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
1904 	},
1905 	{
1906 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
1907 		.driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
1908 		.blocksize = DES3_EDE_BLOCK_SIZE,
1909 		.type = CRYPTO_ALG_TYPE_AEAD,
1910 		.template_aead = {
1911 			.setkey = aead_setkey,
1912 			.setauthsize = aead_setauthsize,
1913 			.encrypt = aead_encrypt,
1914 			.decrypt = aead_decrypt,
1915 			.givencrypt = aead_givencrypt,
1916 			.geniv = "<built-in>",
1917 			.ivsize = DES3_EDE_BLOCK_SIZE,
1918 			.maxauthsize = SHA1_DIGEST_SIZE,
1919 			},
1920 		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1921 		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
1922 		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
1923 	},
1924 	{
1925 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
1926 		.driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
1927 		.blocksize = DES3_EDE_BLOCK_SIZE,
1928 		.type = CRYPTO_ALG_TYPE_AEAD,
1929 		.template_aead = {
1930 			.setkey = aead_setkey,
1931 			.setauthsize = aead_setauthsize,
1932 			.encrypt = aead_encrypt,
1933 			.decrypt = aead_decrypt,
1934 			.givencrypt = aead_givencrypt,
1935 			.geniv = "<built-in>",
1936 			.ivsize = DES3_EDE_BLOCK_SIZE,
1937 			.maxauthsize = SHA256_DIGEST_SIZE,
1938 			},
1939 		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1940 		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
1941 				   OP_ALG_AAI_HMAC_PRECOMP,
1942 		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
1943 	},
1944 	{
1945 		.name = "authenc(hmac(sha512),cbc(des3_ede))",
1946 		.driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
1947 		.blocksize = DES3_EDE_BLOCK_SIZE,
1948 		.type = CRYPTO_ALG_TYPE_AEAD,
1949 		.template_aead = {
1950 			.setkey = aead_setkey,
1951 			.setauthsize = aead_setauthsize,
1952 			.encrypt = aead_encrypt,
1953 			.decrypt = aead_decrypt,
1954 			.givencrypt = aead_givencrypt,
1955 			.geniv = "<built-in>",
1956 			.ivsize = DES3_EDE_BLOCK_SIZE,
1957 			.maxauthsize = SHA512_DIGEST_SIZE,
1958 			},
1959 		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
1960 		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
1961 				   OP_ALG_AAI_HMAC_PRECOMP,
1962 		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
1963 	},
1964 	{
1965 		.name = "authenc(hmac(md5),cbc(des))",
1966 		.driver_name = "authenc-hmac-md5-cbc-des-caam",
1967 		.blocksize = DES_BLOCK_SIZE,
1968 		.type = CRYPTO_ALG_TYPE_AEAD,
1969 		.template_aead = {
1970 			.setkey = aead_setkey,
1971 			.setauthsize = aead_setauthsize,
1972 			.encrypt = aead_encrypt,
1973 			.decrypt = aead_decrypt,
1974 			.givencrypt = aead_givencrypt,
1975 			.geniv = "<built-in>",
1976 			.ivsize = DES_BLOCK_SIZE,
1977 			.maxauthsize = MD5_DIGEST_SIZE,
1978 			},
1979 		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1980 		.class2_alg_type = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC_PRECOMP,
1981 		.alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
1982 	},
1983 	{
1984 		.name = "authenc(hmac(sha1),cbc(des))",
1985 		.driver_name = "authenc-hmac-sha1-cbc-des-caam",
1986 		.blocksize = DES_BLOCK_SIZE,
1987 		.type = CRYPTO_ALG_TYPE_AEAD,
1988 		.template_aead = {
1989 			.setkey = aead_setkey,
1990 			.setauthsize = aead_setauthsize,
1991 			.encrypt = aead_encrypt,
1992 			.decrypt = aead_decrypt,
1993 			.givencrypt = aead_givencrypt,
1994 			.geniv = "<built-in>",
1995 			.ivsize = DES_BLOCK_SIZE,
1996 			.maxauthsize = SHA1_DIGEST_SIZE,
1997 			},
1998 		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
1999 		.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
2000 		.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
2001 	},
2002 	{
2003 		.name = "authenc(hmac(sha256),cbc(des))",
2004 		.driver_name = "authenc-hmac-sha256-cbc-des-caam",
2005 		.blocksize = DES_BLOCK_SIZE,
2006 		.type = CRYPTO_ALG_TYPE_AEAD,
2007 		.template_aead = {
2008 			.setkey = aead_setkey,
2009 			.setauthsize = aead_setauthsize,
2010 			.encrypt = aead_encrypt,
2011 			.decrypt = aead_decrypt,
2012 			.givencrypt = aead_givencrypt,
2013 			.geniv = "<built-in>",
2014 			.ivsize = DES_BLOCK_SIZE,
2015 			.maxauthsize = SHA256_DIGEST_SIZE,
2016 			},
2017 		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2018 		.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
2019 				   OP_ALG_AAI_HMAC_PRECOMP,
2020 		.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
2021 	},
2022 	{
2023 		.name = "authenc(hmac(sha512),cbc(des))",
2024 		.driver_name = "authenc-hmac-sha512-cbc-des-caam",
2025 		.blocksize = DES_BLOCK_SIZE,
2026 		.type = CRYPTO_ALG_TYPE_AEAD,
2027 		.template_aead = {
2028 			.setkey = aead_setkey,
2029 			.setauthsize = aead_setauthsize,
2030 			.encrypt = aead_encrypt,
2031 			.decrypt = aead_decrypt,
2032 			.givencrypt = aead_givencrypt,
2033 			.geniv = "<built-in>",
2034 			.ivsize = DES_BLOCK_SIZE,
2035 			.maxauthsize = SHA512_DIGEST_SIZE,
2036 			},
2037 		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2038 		.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
2039 				   OP_ALG_AAI_HMAC_PRECOMP,
2040 		.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
2041 	},
2042 	/* ablkcipher descriptor */
2043 	{
2044 		.name = "cbc(aes)",
2045 		.driver_name = "cbc-aes-caam",
2046 		.blocksize = AES_BLOCK_SIZE,
2047 		.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
2048 		.template_ablkcipher = {
2049 			.setkey = ablkcipher_setkey,
2050 			.encrypt = ablkcipher_encrypt,
2051 			.decrypt = ablkcipher_decrypt,
2052 			.geniv = "eseqiv",
2053 			.min_keysize = AES_MIN_KEY_SIZE,
2054 			.max_keysize = AES_MAX_KEY_SIZE,
2055 			.ivsize = AES_BLOCK_SIZE,
2056 			},
2057 		.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
2058 	},
2059 	{
2060 		.name = "cbc(des3_ede)",
2061 		.driver_name = "cbc-3des-caam",
2062 		.blocksize = DES3_EDE_BLOCK_SIZE,
2063 		.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
2064 		.template_ablkcipher = {
2065 			.setkey = ablkcipher_setkey,
2066 			.encrypt = ablkcipher_encrypt,
2067 			.decrypt = ablkcipher_decrypt,
2068 			.geniv = "eseqiv",
2069 			.min_keysize = DES3_EDE_KEY_SIZE,
2070 			.max_keysize = DES3_EDE_KEY_SIZE,
2071 			.ivsize = DES3_EDE_BLOCK_SIZE,
2072 			},
2073 		.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
2074 	},
2075 	{
2076 		.name = "cbc(des)",
2077 		.driver_name = "cbc-des-caam",
2078 		.blocksize = DES_BLOCK_SIZE,
2079 		.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
2080 		.template_ablkcipher = {
2081 			.setkey = ablkcipher_setkey,
2082 			.encrypt = ablkcipher_encrypt,
2083 			.decrypt = ablkcipher_decrypt,
2084 			.geniv = "eseqiv",
2085 			.min_keysize = DES_KEY_SIZE,
2086 			.max_keysize = DES_KEY_SIZE,
2087 			.ivsize = DES_BLOCK_SIZE,
2088 			},
2089 		.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
2090 	}
2091 };
2092 
2093 struct caam_crypto_alg {
2094 	struct list_head entry;
2095 	struct device *ctrldev;
2096 	int class1_alg_type;
2097 	int class2_alg_type;
2098 	int alg_op;
2099 	struct crypto_alg crypto_alg;
2100 };
2101 
2102 static int caam_cra_init(struct crypto_tfm *tfm)
2103 {
2104 	struct crypto_alg *alg = tfm->__crt_alg;
2105 	struct caam_crypto_alg *caam_alg =
2106 		 container_of(alg, struct caam_crypto_alg, crypto_alg);
2107 	struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
2108 	struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
2109 	int tgt_jr = atomic_inc_return(&priv->tfm_count);
2110 
2111 	/*
2112 	 * distribute tfms across job rings to ensure in-order
2113 	 * crypto request processing per tfm
2114 	 */
2115 	ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
2116 
2117 	/* copy descriptor header template value */
2118 	ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
2119 	ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
2120 	ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
2121 
2122 	return 0;
2123 }
2124 
2125 static void caam_cra_exit(struct crypto_tfm *tfm)
2126 {
2127 	struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
2128 
2129 	if (ctx->sh_desc_enc_dma &&
2130 	    !dma_mapping_error(ctx->jrdev, ctx->sh_desc_enc_dma))
2131 		dma_unmap_single(ctx->jrdev, ctx->sh_desc_enc_dma,
2132 				 desc_bytes(ctx->sh_desc_enc), DMA_TO_DEVICE);
2133 	if (ctx->sh_desc_dec_dma &&
2134 	    !dma_mapping_error(ctx->jrdev, ctx->sh_desc_dec_dma))
2135 		dma_unmap_single(ctx->jrdev, ctx->sh_desc_dec_dma,
2136 				 desc_bytes(ctx->sh_desc_dec), DMA_TO_DEVICE);
2137 	if (ctx->sh_desc_givenc_dma &&
2138 	    !dma_mapping_error(ctx->jrdev, ctx->sh_desc_givenc_dma))
2139 		dma_unmap_single(ctx->jrdev, ctx->sh_desc_givenc_dma,
2140 				 desc_bytes(ctx->sh_desc_givenc),
2141 				 DMA_TO_DEVICE);
2142 }
2143 
2144 static void __exit caam_algapi_exit(void)
2145 {
2146 
2147 	struct device_node *dev_node;
2148 	struct platform_device *pdev;
2149 	struct device *ctrldev;
2150 	struct caam_drv_private *priv;
2151 	struct caam_crypto_alg *t_alg, *n;
2152 	int i, err;
2153 
2154 	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
2155 	if (!dev_node)
2156 		return;
2157 
2158 	pdev = of_find_device_by_node(dev_node);
2159 	if (!pdev)
2160 		return;
2161 
2162 	ctrldev = &pdev->dev;
2163 	of_node_put(dev_node);
2164 	priv = dev_get_drvdata(ctrldev);
2165 
2166 	if (!priv->alg_list.next)
2167 		return;
2168 
2169 	list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
2170 		crypto_unregister_alg(&t_alg->crypto_alg);
2171 		list_del(&t_alg->entry);
2172 		kfree(t_alg);
2173 	}
2174 
2175 	for (i = 0; i < priv->total_jobrs; i++) {
2176 		err = caam_jr_deregister(priv->algapi_jr[i]);
2177 		if (err < 0)
2178 			break;
2179 	}
2180 	kfree(priv->algapi_jr);
2181 }
2182 
2183 static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
2184 					      struct caam_alg_template
2185 					      *template)
2186 {
2187 	struct caam_crypto_alg *t_alg;
2188 	struct crypto_alg *alg;
2189 
2190 	t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
2191 	if (!t_alg) {
2192 		dev_err(ctrldev, "failed to allocate t_alg\n");
2193 		return ERR_PTR(-ENOMEM);
2194 	}
2195 
2196 	alg = &t_alg->crypto_alg;
2197 
2198 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
2199 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2200 		 template->driver_name);
2201 	alg->cra_module = THIS_MODULE;
2202 	alg->cra_init = caam_cra_init;
2203 	alg->cra_exit = caam_cra_exit;
2204 	alg->cra_priority = CAAM_CRA_PRIORITY;
2205 	alg->cra_blocksize = template->blocksize;
2206 	alg->cra_alignmask = 0;
2207 	alg->cra_ctxsize = sizeof(struct caam_ctx);
2208 	alg->cra_flags = CRYPTO_ALG_ASYNC | template->type;
2209 	switch (template->type) {
2210 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
2211 		alg->cra_type = &crypto_ablkcipher_type;
2212 		alg->cra_ablkcipher = template->template_ablkcipher;
2213 		break;
2214 	case CRYPTO_ALG_TYPE_AEAD:
2215 		alg->cra_type = &crypto_aead_type;
2216 		alg->cra_aead = template->template_aead;
2217 		break;
2218 	}
2219 
2220 	t_alg->class1_alg_type = template->class1_alg_type;
2221 	t_alg->class2_alg_type = template->class2_alg_type;
2222 	t_alg->alg_op = template->alg_op;
2223 	t_alg->ctrldev = ctrldev;
2224 
2225 	return t_alg;
2226 }
2227 
2228 static int __init caam_algapi_init(void)
2229 {
2230 	struct device_node *dev_node;
2231 	struct platform_device *pdev;
2232 	struct device *ctrldev, **jrdev;
2233 	struct caam_drv_private *priv;
2234 	int i = 0, err = 0;
2235 
2236 	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
2237 	if (!dev_node)
2238 		return -ENODEV;
2239 
2240 	pdev = of_find_device_by_node(dev_node);
2241 	if (!pdev)
2242 		return -ENODEV;
2243 
2244 	ctrldev = &pdev->dev;
2245 	priv = dev_get_drvdata(ctrldev);
2246 	of_node_put(dev_node);
2247 
2248 	INIT_LIST_HEAD(&priv->alg_list);
2249 
2250 	jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
2251 	if (!jrdev)
2252 		return -ENOMEM;
2253 
2254 	for (i = 0; i < priv->total_jobrs; i++) {
2255 		err = caam_jr_register(ctrldev, &jrdev[i]);
2256 		if (err < 0)
2257 			break;
2258 	}
2259 	if (err < 0 && i == 0) {
2260 		dev_err(ctrldev, "algapi error in job ring registration: %d\n",
2261 			err);
2262 		kfree(jrdev);
2263 		return err;
2264 	}
2265 
2266 	priv->num_jrs_for_algapi = i;
2267 	priv->algapi_jr = jrdev;
2268 	atomic_set(&priv->tfm_count, -1);
2269 
2270 	/* register crypto algorithms the device supports */
2271 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
2272 		/* TODO: check if h/w supports alg */
2273 		struct caam_crypto_alg *t_alg;
2274 
2275 		t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
2276 		if (IS_ERR(t_alg)) {
2277 			err = PTR_ERR(t_alg);
2278 			dev_warn(ctrldev, "%s alg allocation failed\n",
2279 				 driver_algs[i].driver_name);
2280 			continue;
2281 		}
2282 
2283 		err = crypto_register_alg(&t_alg->crypto_alg);
2284 		if (err) {
2285 			dev_warn(ctrldev, "%s alg registration failed\n",
2286 				t_alg->crypto_alg.cra_driver_name);
2287 			kfree(t_alg);
2288 		} else {
2289 			list_add_tail(&t_alg->entry, &priv->alg_list);
2290 			dev_info(ctrldev, "%s\n",
2291 				 t_alg->crypto_alg.cra_driver_name);
2292 		}
2293 	}
2294 
2295 	return err;
2296 }
2297 
2298 module_init(caam_algapi_init);
2299 module_exit(caam_algapi_exit);
2300 
2301 MODULE_LICENSE("GPL");
2302 MODULE_DESCRIPTION("FSL CAAM support for crypto API");
2303 MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");
2304