1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/debugfs.h> 7 8 #include "cipher.h" 9 #include "util.h" 10 11 /* offset of SPU_OFIFO_CTRL register */ 12 #define SPU_OFIFO_CTRL 0x40 13 #define SPU_FIFO_WATERMARK 0x1FF 14 15 /** 16 * spu_sg_at_offset() - Find the scatterlist entry at a given distance from the 17 * start of a scatterlist. 18 * @sg: [in] Start of a scatterlist 19 * @skip: [in] Distance from the start of the scatterlist, in bytes 20 * @sge: [out] Scatterlist entry at skip bytes from start 21 * @sge_offset: [out] Number of bytes from start of sge buffer to get to 22 * requested distance. 23 * 24 * Return: 0 if entry found at requested distance 25 * < 0 otherwise 26 */ 27 int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip, 28 struct scatterlist **sge, unsigned int *sge_offset) 29 { 30 /* byte index from start of sg to the end of the previous entry */ 31 unsigned int index = 0; 32 /* byte index from start of sg to the end of the current entry */ 33 unsigned int next_index; 34 35 next_index = sg->length; 36 while (next_index <= skip) { 37 sg = sg_next(sg); 38 index = next_index; 39 if (!sg) 40 return -EINVAL; 41 next_index += sg->length; 42 } 43 44 *sge_offset = skip - index; 45 *sge = sg; 46 return 0; 47 } 48 49 /* Copy len bytes of sg data, starting at offset skip, to a dest buffer */ 50 void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest, 51 unsigned int len, unsigned int skip) 52 { 53 size_t copied; 54 unsigned int nents = sg_nents(src); 55 56 copied = sg_pcopy_to_buffer(src, nents, dest, len, skip); 57 if (copied != len) { 58 flow_log("%s copied %u bytes of %u requested. ", 59 __func__, (u32)copied, len); 60 flow_log("sg with %u entries and skip %u\n", nents, skip); 61 } 62 } 63 64 /* 65 * Copy data into a scatterlist starting at a specified offset in the 66 * scatterlist. Specifically, copy len bytes of data in the buffer src 67 * into the scatterlist dest, starting skip bytes into the scatterlist. 68 */ 69 void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src, 70 unsigned int len, unsigned int skip) 71 { 72 size_t copied; 73 unsigned int nents = sg_nents(dest); 74 75 copied = sg_pcopy_from_buffer(dest, nents, src, len, skip); 76 if (copied != len) { 77 flow_log("%s copied %u bytes of %u requested. ", 78 __func__, (u32)copied, len); 79 flow_log("sg with %u entries and skip %u\n", nents, skip); 80 } 81 } 82 83 /** 84 * spu_sg_count() - Determine number of elements in scatterlist to provide a 85 * specified number of bytes. 86 * @sg_list: scatterlist to examine 87 * @skip: index of starting point 88 * @nbytes: consider elements of scatterlist until reaching this number of 89 * bytes 90 * 91 * Return: the number of sg entries contributing to nbytes of data 92 */ 93 int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes) 94 { 95 struct scatterlist *sg; 96 int sg_nents = 0; 97 unsigned int offset; 98 99 if (!sg_list) 100 return 0; 101 102 if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0) 103 return 0; 104 105 while (sg && (nbytes > 0)) { 106 sg_nents++; 107 nbytes -= (sg->length - offset); 108 offset = 0; 109 sg = sg_next(sg); 110 } 111 return sg_nents; 112 } 113 114 /** 115 * spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a 116 * given length. 117 * @to_sg: scatterlist to copy to 118 * @from_sg: scatterlist to copy from 119 * @from_skip: number of bytes to skip in from_sg. Non-zero when previous 120 * request included part of the buffer in entry in from_sg. 121 * Assumes from_skip < from_sg->length. 122 * @from_nents number of entries in from_sg 123 * @length number of bytes to copy. may reach this limit before exhausting 124 * from_sg. 125 * 126 * Copies the entries themselves, not the data in the entries. Assumes to_sg has 127 * enough entries. Does not limit the size of an individual buffer in to_sg. 128 * 129 * to_sg, from_sg, skip are all updated to end of copy 130 * 131 * Return: Number of bytes copied 132 */ 133 u32 spu_msg_sg_add(struct scatterlist **to_sg, 134 struct scatterlist **from_sg, u32 *from_skip, 135 u8 from_nents, u32 length) 136 { 137 struct scatterlist *sg; /* an entry in from_sg */ 138 struct scatterlist *to = *to_sg; 139 struct scatterlist *from = *from_sg; 140 u32 skip = *from_skip; 141 u32 offset; 142 int i; 143 u32 entry_len = 0; 144 u32 frag_len = 0; /* length of entry added to to_sg */ 145 u32 copied = 0; /* number of bytes copied so far */ 146 147 if (length == 0) 148 return 0; 149 150 for_each_sg(from, sg, from_nents, i) { 151 /* number of bytes in this from entry not yet used */ 152 entry_len = sg->length - skip; 153 frag_len = min(entry_len, length - copied); 154 offset = sg->offset + skip; 155 if (frag_len) 156 sg_set_page(to++, sg_page(sg), frag_len, offset); 157 copied += frag_len; 158 if (copied == entry_len) { 159 /* used up all of from entry */ 160 skip = 0; /* start at beginning of next entry */ 161 } 162 if (copied == length) 163 break; 164 } 165 *to_sg = to; 166 *from_sg = sg; 167 if (frag_len < entry_len) 168 *from_skip = skip + frag_len; 169 else 170 *from_skip = 0; 171 172 return copied; 173 } 174 175 void add_to_ctr(u8 *ctr_pos, unsigned int increment) 176 { 177 __be64 *high_be = (__be64 *)ctr_pos; 178 __be64 *low_be = high_be + 1; 179 u64 orig_low = __be64_to_cpu(*low_be); 180 u64 new_low = orig_low + (u64)increment; 181 182 *low_be = __cpu_to_be64(new_low); 183 if (new_low < orig_low) 184 /* there was a carry from the low 8 bytes */ 185 *high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1); 186 } 187 188 struct sdesc { 189 struct shash_desc shash; 190 char ctx[]; 191 }; 192 193 /** 194 * do_shash() - Do a synchronous hash operation in software 195 * @name: The name of the hash algorithm 196 * @result: Buffer where digest is to be written 197 * @data1: First part of data to hash. May be NULL. 198 * @data1_len: Length of data1, in bytes 199 * @data2: Second part of data to hash. May be NULL. 200 * @data2_len: Length of data2, in bytes 201 * @key: Key (if keyed hash) 202 * @key_len: Length of key, in bytes (or 0 if non-keyed hash) 203 * 204 * Note that the crypto API will not select this driver's own transform because 205 * this driver only registers asynchronous algos. 206 * 207 * Return: 0 if hash successfully stored in result 208 * < 0 otherwise 209 */ 210 int do_shash(unsigned char *name, unsigned char *result, 211 const u8 *data1, unsigned int data1_len, 212 const u8 *data2, unsigned int data2_len, 213 const u8 *key, unsigned int key_len) 214 { 215 int rc; 216 unsigned int size; 217 struct crypto_shash *hash; 218 struct sdesc *sdesc; 219 220 hash = crypto_alloc_shash(name, 0, 0); 221 if (IS_ERR(hash)) { 222 rc = PTR_ERR(hash); 223 pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc); 224 return rc; 225 } 226 227 size = sizeof(struct shash_desc) + crypto_shash_descsize(hash); 228 sdesc = kmalloc(size, GFP_KERNEL); 229 if (!sdesc) { 230 rc = -ENOMEM; 231 goto do_shash_err; 232 } 233 sdesc->shash.tfm = hash; 234 235 if (key_len > 0) { 236 rc = crypto_shash_setkey(hash, key, key_len); 237 if (rc) { 238 pr_err("%s: Could not setkey %s shash\n", __func__, name); 239 goto do_shash_err; 240 } 241 } 242 243 rc = crypto_shash_init(&sdesc->shash); 244 if (rc) { 245 pr_err("%s: Could not init %s shash\n", __func__, name); 246 goto do_shash_err; 247 } 248 rc = crypto_shash_update(&sdesc->shash, data1, data1_len); 249 if (rc) { 250 pr_err("%s: Could not update1\n", __func__); 251 goto do_shash_err; 252 } 253 if (data2 && data2_len) { 254 rc = crypto_shash_update(&sdesc->shash, data2, data2_len); 255 if (rc) { 256 pr_err("%s: Could not update2\n", __func__); 257 goto do_shash_err; 258 } 259 } 260 rc = crypto_shash_final(&sdesc->shash, result); 261 if (rc) 262 pr_err("%s: Could not generate %s hash\n", __func__, name); 263 264 do_shash_err: 265 crypto_free_shash(hash); 266 kfree(sdesc); 267 268 return rc; 269 } 270 271 /* Dump len bytes of a scatterlist starting at skip bytes into the sg */ 272 void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len) 273 { 274 u8 dbuf[16]; 275 unsigned int idx = skip; 276 unsigned int num_out = 0; /* number of bytes dumped so far */ 277 unsigned int count; 278 279 if (packet_debug_logging) { 280 while (num_out < len) { 281 count = (len - num_out > 16) ? 16 : len - num_out; 282 sg_copy_part_to_buf(sg, dbuf, count, idx); 283 num_out += count; 284 print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE, 285 4, 1, dbuf, count, false); 286 idx += 16; 287 } 288 } 289 if (debug_logging_sleep) 290 msleep(debug_logging_sleep); 291 } 292 293 /* Returns the name for a given cipher alg/mode */ 294 char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode) 295 { 296 switch (alg) { 297 case CIPHER_ALG_RC4: 298 return "rc4"; 299 case CIPHER_ALG_AES: 300 switch (mode) { 301 case CIPHER_MODE_CBC: 302 return "cbc(aes)"; 303 case CIPHER_MODE_ECB: 304 return "ecb(aes)"; 305 case CIPHER_MODE_OFB: 306 return "ofb(aes)"; 307 case CIPHER_MODE_CFB: 308 return "cfb(aes)"; 309 case CIPHER_MODE_CTR: 310 return "ctr(aes)"; 311 case CIPHER_MODE_XTS: 312 return "xts(aes)"; 313 case CIPHER_MODE_GCM: 314 return "gcm(aes)"; 315 default: 316 return "aes"; 317 } 318 break; 319 case CIPHER_ALG_DES: 320 switch (mode) { 321 case CIPHER_MODE_CBC: 322 return "cbc(des)"; 323 case CIPHER_MODE_ECB: 324 return "ecb(des)"; 325 case CIPHER_MODE_CTR: 326 return "ctr(des)"; 327 default: 328 return "des"; 329 } 330 break; 331 case CIPHER_ALG_3DES: 332 switch (mode) { 333 case CIPHER_MODE_CBC: 334 return "cbc(des3_ede)"; 335 case CIPHER_MODE_ECB: 336 return "ecb(des3_ede)"; 337 case CIPHER_MODE_CTR: 338 return "ctr(des3_ede)"; 339 default: 340 return "3des"; 341 } 342 break; 343 default: 344 return "other"; 345 } 346 } 347 348 static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf, 349 size_t count, loff_t *offp) 350 { 351 struct device_private *ipriv; 352 char *buf; 353 ssize_t ret, out_offset, out_count; 354 int i; 355 u32 fifo_len; 356 u32 spu_ofifo_ctrl; 357 u32 alg; 358 u32 mode; 359 u32 op_cnt; 360 361 out_count = 2048; 362 363 buf = kmalloc(out_count, GFP_KERNEL); 364 if (!buf) 365 return -ENOMEM; 366 367 ipriv = filp->private_data; 368 out_offset = 0; 369 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 370 "Number of SPUs.........%u\n", 371 ipriv->spu.num_spu); 372 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 373 "Current sessions.......%u\n", 374 atomic_read(&ipriv->session_count)); 375 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 376 "Session count..........%u\n", 377 atomic_read(&ipriv->stream_count)); 378 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 379 "Cipher setkey..........%u\n", 380 atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER])); 381 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 382 "Cipher Ops.............%u\n", 383 atomic_read(&ipriv->op_counts[SPU_OP_CIPHER])); 384 for (alg = 0; alg < CIPHER_ALG_LAST; alg++) { 385 for (mode = 0; mode < CIPHER_MODE_LAST; mode++) { 386 op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]); 387 if (op_cnt) { 388 out_offset += scnprintf(buf + out_offset, 389 out_count - out_offset, 390 " %-13s%11u\n", 391 spu_alg_name(alg, mode), op_cnt); 392 } 393 } 394 } 395 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 396 "Hash Ops...............%u\n", 397 atomic_read(&ipriv->op_counts[SPU_OP_HASH])); 398 for (alg = 0; alg < HASH_ALG_LAST; alg++) { 399 op_cnt = atomic_read(&ipriv->hash_cnt[alg]); 400 if (op_cnt) { 401 out_offset += scnprintf(buf + out_offset, 402 out_count - out_offset, 403 " %-13s%11u\n", 404 hash_alg_name[alg], op_cnt); 405 } 406 } 407 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 408 "HMAC setkey............%u\n", 409 atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC])); 410 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 411 "HMAC Ops...............%u\n", 412 atomic_read(&ipriv->op_counts[SPU_OP_HMAC])); 413 for (alg = 0; alg < HASH_ALG_LAST; alg++) { 414 op_cnt = atomic_read(&ipriv->hmac_cnt[alg]); 415 if (op_cnt) { 416 out_offset += scnprintf(buf + out_offset, 417 out_count - out_offset, 418 " %-13s%11u\n", 419 hash_alg_name[alg], op_cnt); 420 } 421 } 422 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 423 "AEAD setkey............%u\n", 424 atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD])); 425 426 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 427 "AEAD Ops...............%u\n", 428 atomic_read(&ipriv->op_counts[SPU_OP_AEAD])); 429 for (alg = 0; alg < AEAD_TYPE_LAST; alg++) { 430 op_cnt = atomic_read(&ipriv->aead_cnt[alg]); 431 if (op_cnt) { 432 out_offset += scnprintf(buf + out_offset, 433 out_count - out_offset, 434 " %-13s%11u\n", 435 aead_alg_name[alg], op_cnt); 436 } 437 } 438 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 439 "Bytes of req data......%llu\n", 440 (u64)atomic64_read(&ipriv->bytes_out)); 441 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 442 "Bytes of resp data.....%llu\n", 443 (u64)atomic64_read(&ipriv->bytes_in)); 444 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 445 "Mailbox full...........%u\n", 446 atomic_read(&ipriv->mb_no_spc)); 447 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 448 "Mailbox send failures..%u\n", 449 atomic_read(&ipriv->mb_send_fail)); 450 out_offset += scnprintf(buf + out_offset, out_count - out_offset, 451 "Check ICV errors.......%u\n", 452 atomic_read(&ipriv->bad_icv)); 453 if (ipriv->spu.spu_type == SPU_TYPE_SPUM) 454 for (i = 0; i < ipriv->spu.num_spu; i++) { 455 spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] + 456 SPU_OFIFO_CTRL); 457 fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK; 458 out_offset += scnprintf(buf + out_offset, 459 out_count - out_offset, 460 "SPU %d output FIFO high water.....%u\n", 461 i, fifo_len); 462 } 463 464 if (out_offset > out_count) 465 out_offset = out_count; 466 467 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 468 kfree(buf); 469 return ret; 470 } 471 472 static const struct file_operations spu_debugfs_stats = { 473 .owner = THIS_MODULE, 474 .open = simple_open, 475 .read = spu_debugfs_read, 476 }; 477 478 /* 479 * Create the debug FS directories. If the top-level directory has not yet 480 * been created, create it now. Create a stats file in this directory for 481 * a SPU. 482 */ 483 void spu_setup_debugfs(void) 484 { 485 if (!debugfs_initialized()) 486 return; 487 488 if (!iproc_priv.debugfs_dir) 489 iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, 490 NULL); 491 492 if (!iproc_priv.debugfs_stats) 493 /* Create file with permissions S_IRUSR */ 494 debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir, 495 &iproc_priv, &spu_debugfs_stats); 496 } 497 498 void spu_free_debugfs(void) 499 { 500 debugfs_remove_recursive(iproc_priv.debugfs_dir); 501 iproc_priv.debugfs_dir = NULL; 502 } 503 504 /** 505 * format_value_ccm() - Format a value into a buffer, using a specified number 506 * of bytes (i.e. maybe writing value X into a 4 byte 507 * buffer, or maybe into a 12 byte buffer), as per the 508 * SPU CCM spec. 509 * 510 * @val: value to write (up to max of unsigned int) 511 * @buf: (pointer to) buffer to write the value 512 * @len: number of bytes to use (0 to 255) 513 * 514 */ 515 void format_value_ccm(unsigned int val, u8 *buf, u8 len) 516 { 517 int i; 518 519 /* First clear full output buffer */ 520 memset(buf, 0, len); 521 522 /* Then, starting from right side, fill in with data */ 523 for (i = 0; i < len; i++) { 524 buf[len - i - 1] = (val >> (8 * i)) & 0xff; 525 if (i >= 3) 526 break; /* Only handle up to 32 bits of 'val' */ 527 } 528 } 529