1 /* 2 * Copyright 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation (the "GPL"). 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License version 2 (GPLv2) for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * version 2 (GPLv2) along with this source code. 15 */ 16 17 #include <linux/debugfs.h> 18 19 #include "cipher.h" 20 #include "util.h" 21 22 /* offset of SPU_OFIFO_CTRL register */ 23 #define SPU_OFIFO_CTRL 0x40 24 #define SPU_FIFO_WATERMARK 0x1FF 25 26 /** 27 * spu_sg_at_offset() - Find the scatterlist entry at a given distance from the 28 * start of a scatterlist. 29 * @sg: [in] Start of a scatterlist 30 * @skip: [in] Distance from the start of the scatterlist, in bytes 31 * @sge: [out] Scatterlist entry at skip bytes from start 32 * @sge_offset: [out] Number of bytes from start of sge buffer to get to 33 * requested distance. 34 * 35 * Return: 0 if entry found at requested distance 36 * < 0 otherwise 37 */ 38 int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip, 39 struct scatterlist **sge, unsigned int *sge_offset) 40 { 41 /* byte index from start of sg to the end of the previous entry */ 42 unsigned int index = 0; 43 /* byte index from start of sg to the end of the current entry */ 44 unsigned int next_index; 45 46 next_index = sg->length; 47 while (next_index <= skip) { 48 sg = sg_next(sg); 49 index = next_index; 50 if (!sg) 51 return -EINVAL; 52 next_index += sg->length; 53 } 54 55 *sge_offset = skip - index; 56 *sge = sg; 57 return 0; 58 } 59 60 /* Copy len bytes of sg data, starting at offset skip, to a dest buffer */ 61 void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest, 62 unsigned int len, unsigned int skip) 63 { 64 size_t copied; 65 unsigned int nents = sg_nents(src); 66 67 copied = sg_pcopy_to_buffer(src, nents, dest, len, skip); 68 if (copied != len) { 69 flow_log("%s copied %u bytes of %u requested. ", 70 __func__, (u32)copied, len); 71 flow_log("sg with %u entries and skip %u\n", nents, skip); 72 } 73 } 74 75 /* 76 * Copy data into a scatterlist starting at a specified offset in the 77 * scatterlist. Specifically, copy len bytes of data in the buffer src 78 * into the scatterlist dest, starting skip bytes into the scatterlist. 79 */ 80 void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src, 81 unsigned int len, unsigned int skip) 82 { 83 size_t copied; 84 unsigned int nents = sg_nents(dest); 85 86 copied = sg_pcopy_from_buffer(dest, nents, src, len, skip); 87 if (copied != len) { 88 flow_log("%s copied %u bytes of %u requested. ", 89 __func__, (u32)copied, len); 90 flow_log("sg with %u entries and skip %u\n", nents, skip); 91 } 92 } 93 94 /** 95 * spu_sg_count() - Determine number of elements in scatterlist to provide a 96 * specified number of bytes. 97 * @sg_list: scatterlist to examine 98 * @skip: index of starting point 99 * @nbytes: consider elements of scatterlist until reaching this number of 100 * bytes 101 * 102 * Return: the number of sg entries contributing to nbytes of data 103 */ 104 int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes) 105 { 106 struct scatterlist *sg; 107 int sg_nents = 0; 108 unsigned int offset; 109 110 if (!sg_list) 111 return 0; 112 113 if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0) 114 return 0; 115 116 while (sg && (nbytes > 0)) { 117 sg_nents++; 118 nbytes -= (sg->length - offset); 119 offset = 0; 120 sg = sg_next(sg); 121 } 122 return sg_nents; 123 } 124 125 /** 126 * spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a 127 * given length. 128 * @to_sg: scatterlist to copy to 129 * @from_sg: scatterlist to copy from 130 * @from_skip: number of bytes to skip in from_sg. Non-zero when previous 131 * request included part of the buffer in entry in from_sg. 132 * Assumes from_skip < from_sg->length. 133 * @from_nents number of entries in from_sg 134 * @length number of bytes to copy. may reach this limit before exhausting 135 * from_sg. 136 * 137 * Copies the entries themselves, not the data in the entries. Assumes to_sg has 138 * enough entries. Does not limit the size of an individual buffer in to_sg. 139 * 140 * to_sg, from_sg, skip are all updated to end of copy 141 * 142 * Return: Number of bytes copied 143 */ 144 u32 spu_msg_sg_add(struct scatterlist **to_sg, 145 struct scatterlist **from_sg, u32 *from_skip, 146 u8 from_nents, u32 length) 147 { 148 struct scatterlist *sg; /* an entry in from_sg */ 149 struct scatterlist *to = *to_sg; 150 struct scatterlist *from = *from_sg; 151 u32 skip = *from_skip; 152 u32 offset; 153 int i; 154 u32 entry_len = 0; 155 u32 frag_len = 0; /* length of entry added to to_sg */ 156 u32 copied = 0; /* number of bytes copied so far */ 157 158 if (length == 0) 159 return 0; 160 161 for_each_sg(from, sg, from_nents, i) { 162 /* number of bytes in this from entry not yet used */ 163 entry_len = sg->length - skip; 164 frag_len = min(entry_len, length - copied); 165 offset = sg->offset + skip; 166 if (frag_len) 167 sg_set_page(to++, sg_page(sg), frag_len, offset); 168 copied += frag_len; 169 if (copied == entry_len) { 170 /* used up all of from entry */ 171 skip = 0; /* start at beginning of next entry */ 172 } 173 if (copied == length) 174 break; 175 } 176 *to_sg = to; 177 *from_sg = sg; 178 if (frag_len < entry_len) 179 *from_skip = skip + frag_len; 180 else 181 *from_skip = 0; 182 183 return copied; 184 } 185 186 void add_to_ctr(u8 *ctr_pos, unsigned int increment) 187 { 188 __be64 *high_be = (__be64 *)ctr_pos; 189 __be64 *low_be = high_be + 1; 190 u64 orig_low = __be64_to_cpu(*low_be); 191 u64 new_low = orig_low + (u64)increment; 192 193 *low_be = __cpu_to_be64(new_low); 194 if (new_low < orig_low) 195 /* there was a carry from the low 8 bytes */ 196 *high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1); 197 } 198 199 struct sdesc { 200 struct shash_desc shash; 201 char ctx[]; 202 }; 203 204 /* do a synchronous decrypt operation */ 205 int do_decrypt(char *alg_name, 206 void *key_ptr, unsigned int key_len, 207 void *iv_ptr, void *src_ptr, void *dst_ptr, 208 unsigned int block_len) 209 { 210 struct scatterlist sg_in[1], sg_out[1]; 211 struct crypto_blkcipher *tfm = 212 crypto_alloc_blkcipher(alg_name, 0, CRYPTO_ALG_ASYNC); 213 struct blkcipher_desc desc = {.tfm = tfm, .flags = 0 }; 214 int ret = 0; 215 void *iv; 216 int ivsize; 217 218 flow_log("%s() name:%s block_len:%u\n", __func__, alg_name, block_len); 219 220 if (IS_ERR(tfm)) 221 return PTR_ERR(tfm); 222 223 crypto_blkcipher_setkey((void *)tfm, key_ptr, key_len); 224 225 sg_init_table(sg_in, 1); 226 sg_set_buf(sg_in, src_ptr, block_len); 227 228 sg_init_table(sg_out, 1); 229 sg_set_buf(sg_out, dst_ptr, block_len); 230 231 iv = crypto_blkcipher_crt(tfm)->iv; 232 ivsize = crypto_blkcipher_ivsize(tfm); 233 memcpy(iv, iv_ptr, ivsize); 234 235 ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, block_len); 236 crypto_free_blkcipher(tfm); 237 238 if (ret < 0) 239 pr_err("aes_decrypt failed %d\n", ret); 240 241 return ret; 242 } 243 244 /** 245 * do_shash() - Do a synchronous hash operation in software 246 * @name: The name of the hash algorithm 247 * @result: Buffer where digest is to be written 248 * @data1: First part of data to hash. May be NULL. 249 * @data1_len: Length of data1, in bytes 250 * @data2: Second part of data to hash. May be NULL. 251 * @data2_len: Length of data2, in bytes 252 * @key: Key (if keyed hash) 253 * @key_len: Length of key, in bytes (or 0 if non-keyed hash) 254 * 255 * Note that the crypto API will not select this driver's own transform because 256 * this driver only registers asynchronous algos. 257 * 258 * Return: 0 if hash successfully stored in result 259 * < 0 otherwise 260 */ 261 int do_shash(unsigned char *name, unsigned char *result, 262 const u8 *data1, unsigned int data1_len, 263 const u8 *data2, unsigned int data2_len, 264 const u8 *key, unsigned int key_len) 265 { 266 int rc; 267 unsigned int size; 268 struct crypto_shash *hash; 269 struct sdesc *sdesc; 270 271 hash = crypto_alloc_shash(name, 0, 0); 272 if (IS_ERR(hash)) { 273 rc = PTR_ERR(hash); 274 pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc); 275 return rc; 276 } 277 278 size = sizeof(struct shash_desc) + crypto_shash_descsize(hash); 279 sdesc = kmalloc(size, GFP_KERNEL); 280 if (!sdesc) { 281 rc = -ENOMEM; 282 goto do_shash_err; 283 } 284 sdesc->shash.tfm = hash; 285 sdesc->shash.flags = 0x0; 286 287 if (key_len > 0) { 288 rc = crypto_shash_setkey(hash, key, key_len); 289 if (rc) { 290 pr_err("%s: Could not setkey %s shash\n", __func__, name); 291 goto do_shash_err; 292 } 293 } 294 295 rc = crypto_shash_init(&sdesc->shash); 296 if (rc) { 297 pr_err("%s: Could not init %s shash\n", __func__, name); 298 goto do_shash_err; 299 } 300 rc = crypto_shash_update(&sdesc->shash, data1, data1_len); 301 if (rc) { 302 pr_err("%s: Could not update1\n", __func__); 303 goto do_shash_err; 304 } 305 if (data2 && data2_len) { 306 rc = crypto_shash_update(&sdesc->shash, data2, data2_len); 307 if (rc) { 308 pr_err("%s: Could not update2\n", __func__); 309 goto do_shash_err; 310 } 311 } 312 rc = crypto_shash_final(&sdesc->shash, result); 313 if (rc) 314 pr_err("%s: Could not generate %s hash\n", __func__, name); 315 316 do_shash_err: 317 crypto_free_shash(hash); 318 kfree(sdesc); 319 320 return rc; 321 } 322 323 /* Dump len bytes of a scatterlist starting at skip bytes into the sg */ 324 void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len) 325 { 326 u8 dbuf[16]; 327 unsigned int idx = skip; 328 unsigned int num_out = 0; /* number of bytes dumped so far */ 329 unsigned int count; 330 331 if (packet_debug_logging) { 332 while (num_out < len) { 333 count = (len - num_out > 16) ? 16 : len - num_out; 334 sg_copy_part_to_buf(sg, dbuf, count, idx); 335 num_out += count; 336 print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE, 337 4, 1, dbuf, count, false); 338 idx += 16; 339 } 340 } 341 if (debug_logging_sleep) 342 msleep(debug_logging_sleep); 343 } 344 345 /* Returns the name for a given cipher alg/mode */ 346 char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode) 347 { 348 switch (alg) { 349 case CIPHER_ALG_RC4: 350 return "rc4"; 351 case CIPHER_ALG_AES: 352 switch (mode) { 353 case CIPHER_MODE_CBC: 354 return "cbc(aes)"; 355 case CIPHER_MODE_ECB: 356 return "ecb(aes)"; 357 case CIPHER_MODE_OFB: 358 return "ofb(aes)"; 359 case CIPHER_MODE_CFB: 360 return "cfb(aes)"; 361 case CIPHER_MODE_CTR: 362 return "ctr(aes)"; 363 case CIPHER_MODE_XTS: 364 return "xts(aes)"; 365 case CIPHER_MODE_GCM: 366 return "gcm(aes)"; 367 default: 368 return "aes"; 369 } 370 break; 371 case CIPHER_ALG_DES: 372 switch (mode) { 373 case CIPHER_MODE_CBC: 374 return "cbc(des)"; 375 case CIPHER_MODE_ECB: 376 return "ecb(des)"; 377 case CIPHER_MODE_CTR: 378 return "ctr(des)"; 379 default: 380 return "des"; 381 } 382 break; 383 case CIPHER_ALG_3DES: 384 switch (mode) { 385 case CIPHER_MODE_CBC: 386 return "cbc(des3_ede)"; 387 case CIPHER_MODE_ECB: 388 return "ecb(des3_ede)"; 389 case CIPHER_MODE_CTR: 390 return "ctr(des3_ede)"; 391 default: 392 return "3des"; 393 } 394 break; 395 default: 396 return "other"; 397 } 398 } 399 400 static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf, 401 size_t count, loff_t *offp) 402 { 403 struct device_private *ipriv; 404 char *buf; 405 ssize_t ret, out_offset, out_count; 406 int i; 407 u32 fifo_len; 408 u32 spu_ofifo_ctrl; 409 u32 alg; 410 u32 mode; 411 u32 op_cnt; 412 413 out_count = 2048; 414 415 buf = kmalloc(out_count, GFP_KERNEL); 416 if (!buf) 417 return -ENOMEM; 418 419 ipriv = filp->private_data; 420 out_offset = 0; 421 out_offset += snprintf(buf + out_offset, out_count - out_offset, 422 "Number of SPUs.........%u\n", 423 ipriv->spu.num_spu); 424 out_offset += snprintf(buf + out_offset, out_count - out_offset, 425 "Current sessions.......%u\n", 426 atomic_read(&ipriv->session_count)); 427 out_offset += snprintf(buf + out_offset, out_count - out_offset, 428 "Session count..........%u\n", 429 atomic_read(&ipriv->stream_count)); 430 out_offset += snprintf(buf + out_offset, out_count - out_offset, 431 "Cipher setkey..........%u\n", 432 atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER])); 433 out_offset += snprintf(buf + out_offset, out_count - out_offset, 434 "Cipher Ops.............%u\n", 435 atomic_read(&ipriv->op_counts[SPU_OP_CIPHER])); 436 for (alg = 0; alg < CIPHER_ALG_LAST; alg++) { 437 for (mode = 0; mode < CIPHER_MODE_LAST; mode++) { 438 op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]); 439 if (op_cnt) { 440 out_offset += snprintf(buf + out_offset, 441 out_count - out_offset, 442 " %-13s%11u\n", 443 spu_alg_name(alg, mode), op_cnt); 444 } 445 } 446 } 447 out_offset += snprintf(buf + out_offset, out_count - out_offset, 448 "Hash Ops...............%u\n", 449 atomic_read(&ipriv->op_counts[SPU_OP_HASH])); 450 for (alg = 0; alg < HASH_ALG_LAST; alg++) { 451 op_cnt = atomic_read(&ipriv->hash_cnt[alg]); 452 if (op_cnt) { 453 out_offset += snprintf(buf + out_offset, 454 out_count - out_offset, 455 " %-13s%11u\n", 456 hash_alg_name[alg], op_cnt); 457 } 458 } 459 out_offset += snprintf(buf + out_offset, out_count - out_offset, 460 "HMAC setkey............%u\n", 461 atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC])); 462 out_offset += snprintf(buf + out_offset, out_count - out_offset, 463 "HMAC Ops...............%u\n", 464 atomic_read(&ipriv->op_counts[SPU_OP_HMAC])); 465 for (alg = 0; alg < HASH_ALG_LAST; alg++) { 466 op_cnt = atomic_read(&ipriv->hmac_cnt[alg]); 467 if (op_cnt) { 468 out_offset += snprintf(buf + out_offset, 469 out_count - out_offset, 470 " %-13s%11u\n", 471 hash_alg_name[alg], op_cnt); 472 } 473 } 474 out_offset += snprintf(buf + out_offset, out_count - out_offset, 475 "AEAD setkey............%u\n", 476 atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD])); 477 478 out_offset += snprintf(buf + out_offset, out_count - out_offset, 479 "AEAD Ops...............%u\n", 480 atomic_read(&ipriv->op_counts[SPU_OP_AEAD])); 481 for (alg = 0; alg < AEAD_TYPE_LAST; alg++) { 482 op_cnt = atomic_read(&ipriv->aead_cnt[alg]); 483 if (op_cnt) { 484 out_offset += snprintf(buf + out_offset, 485 out_count - out_offset, 486 " %-13s%11u\n", 487 aead_alg_name[alg], op_cnt); 488 } 489 } 490 out_offset += snprintf(buf + out_offset, out_count - out_offset, 491 "Bytes of req data......%llu\n", 492 (u64)atomic64_read(&ipriv->bytes_out)); 493 out_offset += snprintf(buf + out_offset, out_count - out_offset, 494 "Bytes of resp data.....%llu\n", 495 (u64)atomic64_read(&ipriv->bytes_in)); 496 out_offset += snprintf(buf + out_offset, out_count - out_offset, 497 "Mailbox full...........%u\n", 498 atomic_read(&ipriv->mb_no_spc)); 499 out_offset += snprintf(buf + out_offset, out_count - out_offset, 500 "Mailbox send failures..%u\n", 501 atomic_read(&ipriv->mb_send_fail)); 502 out_offset += snprintf(buf + out_offset, out_count - out_offset, 503 "Check ICV errors.......%u\n", 504 atomic_read(&ipriv->bad_icv)); 505 if (ipriv->spu.spu_type == SPU_TYPE_SPUM) 506 for (i = 0; i < ipriv->spu.num_spu; i++) { 507 spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] + 508 SPU_OFIFO_CTRL); 509 fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK; 510 out_offset += snprintf(buf + out_offset, 511 out_count - out_offset, 512 "SPU %d output FIFO high water.....%u\n", 513 i, fifo_len); 514 } 515 516 if (out_offset > out_count) 517 out_offset = out_count; 518 519 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 520 kfree(buf); 521 return ret; 522 } 523 524 static const struct file_operations spu_debugfs_stats = { 525 .owner = THIS_MODULE, 526 .open = simple_open, 527 .read = spu_debugfs_read, 528 }; 529 530 /* 531 * Create the debug FS directories. If the top-level directory has not yet 532 * been created, create it now. Create a stats file in this directory for 533 * a SPU. 534 */ 535 void spu_setup_debugfs(void) 536 { 537 if (!debugfs_initialized()) 538 return; 539 540 if (!iproc_priv.debugfs_dir) 541 iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, 542 NULL); 543 544 if (!iproc_priv.debugfs_stats) 545 /* Create file with permissions S_IRUSR */ 546 debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir, 547 &iproc_priv, &spu_debugfs_stats); 548 } 549 550 void spu_free_debugfs(void) 551 { 552 debugfs_remove_recursive(iproc_priv.debugfs_dir); 553 iproc_priv.debugfs_dir = NULL; 554 } 555 556 /** 557 * format_value_ccm() - Format a value into a buffer, using a specified number 558 * of bytes (i.e. maybe writing value X into a 4 byte 559 * buffer, or maybe into a 12 byte buffer), as per the 560 * SPU CCM spec. 561 * 562 * @val: value to write (up to max of unsigned int) 563 * @buf: (pointer to) buffer to write the value 564 * @len: number of bytes to use (0 to 255) 565 * 566 */ 567 void format_value_ccm(unsigned int val, u8 *buf, u8 len) 568 { 569 int i; 570 571 /* First clear full output buffer */ 572 memset(buf, 0, len); 573 574 /* Then, starting from right side, fill in with data */ 575 for (i = 0; i < len; i++) { 576 buf[len - i - 1] = (val >> (8 * i)) & 0xff; 577 if (i >= 3) 578 break; /* Only handle up to 32 bits of 'val' */ 579 } 580 } 581