1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/errno.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/scatterlist.h> 14 #include <linux/crypto.h> 15 #include <linux/kthread.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/sched.h> 18 #include <linux/of.h> 19 #include <linux/io.h> 20 #include <linux/bitops.h> 21 22 #include <crypto/algapi.h> 23 #include <crypto/aead.h> 24 #include <crypto/internal/aead.h> 25 #include <crypto/aes.h> 26 #include <crypto/internal/des.h> 27 #include <crypto/hmac.h> 28 #include <crypto/md5.h> 29 #include <crypto/authenc.h> 30 #include <crypto/skcipher.h> 31 #include <crypto/hash.h> 32 #include <crypto/sha1.h> 33 #include <crypto/sha2.h> 34 #include <crypto/sha3.h> 35 36 #include "util.h" 37 #include "cipher.h" 38 #include "spu.h" 39 #include "spum.h" 40 #include "spu2.h" 41 42 /* ================= Device Structure ================== */ 43 44 struct bcm_device_private iproc_priv; 45 46 /* ==================== Parameters ===================== */ 47 48 int flow_debug_logging; 49 module_param(flow_debug_logging, int, 0644); 50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 51 52 int packet_debug_logging; 53 module_param(packet_debug_logging, int, 0644); 54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 55 56 int debug_logging_sleep; 57 module_param(debug_logging_sleep, int, 0644); 58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 59 60 /* 61 * The value of these module parameters is used to set the priority for each 62 * algo type when this driver registers algos with the kernel crypto API. 63 * To use a priority other than the default, set the priority in the insmod or 64 * modprobe. Changing the module priority after init time has no effect. 65 * 66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 67 * algos, but more preferred than generic software algos. 68 */ 69 static int cipher_pri = 150; 70 module_param(cipher_pri, int, 0644); 71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 72 73 static int hash_pri = 100; 74 module_param(hash_pri, int, 0644); 75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 76 77 static int aead_pri = 150; 78 module_param(aead_pri, int, 0644); 79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 80 81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 83 * 0x60 - ring 0 84 * 0x68 - ring 1 85 * 0x70 - ring 2 86 * 0x78 - ring 3 87 */ 88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 89 /* 90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 91 * is set dynamically after reading SPU type from device tree. 92 */ 93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 94 95 /* min and max time to sleep before retrying when mbox queue is full. usec */ 96 #define MBOX_SLEEP_MIN 800 97 #define MBOX_SLEEP_MAX 1000 98 99 /** 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects 101 * channel in round robin order. 102 * 103 * Return: channel index 104 */ 105 static u8 select_channel(void) 106 { 107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 108 109 return chan_idx % iproc_priv.spu.num_chan; 110 } 111 112 /** 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to 114 * receive a SPU response message for an skcipher request. Includes buffers to 115 * catch SPU message headers and the response data. 116 * @mssg: mailbox message containing the receive sg 117 * @rctx: crypto request context 118 * @rx_frag_num: number of scatterlist elements required to hold the 119 * SPU response message 120 * @chunksize: Number of bytes of response data expected 121 * @stat_pad_len: Number of bytes required to pad the STAT field to 122 * a 4-byte boundary 123 * 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 125 * when the request completes, whether the request is handled successfully or 126 * there is an error. 127 * 128 * Returns: 129 * 0 if successful 130 * < 0 if an error 131 */ 132 static int 133 spu_skcipher_rx_sg_create(struct brcm_message *mssg, 134 struct iproc_reqctx_s *rctx, 135 u8 rx_frag_num, 136 unsigned int chunksize, u32 stat_pad_len) 137 { 138 struct spu_hw *spu = &iproc_priv.spu; 139 struct scatterlist *sg; /* used to build sgs in mbox message */ 140 struct iproc_ctx_s *ctx = rctx->ctx; 141 u32 datalen; /* Number of bytes of response data expected */ 142 143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 144 rctx->gfp); 145 if (!mssg->spu.dst) 146 return -ENOMEM; 147 148 sg = mssg->spu.dst; 149 sg_init_table(sg, rx_frag_num); 150 /* Space for SPU message header */ 151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 152 153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 155 spu->spu_xts_tweak_in_payload()) 156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 157 SPU_XTS_TWEAK_SIZE); 158 159 /* Copy in each dst sg entry from request, up to chunksize */ 160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 161 rctx->dst_nents, chunksize); 162 if (datalen < chunksize) { 163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 164 __func__, chunksize, datalen); 165 return -EFAULT; 166 } 167 168 if (stat_pad_len) 169 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 170 171 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 172 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 173 174 return 0; 175 } 176 177 /** 178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to 179 * send a SPU request message for an skcipher request. Includes SPU message 180 * headers and the request data. 181 * @mssg: mailbox message containing the transmit sg 182 * @rctx: crypto request context 183 * @tx_frag_num: number of scatterlist elements required to construct the 184 * SPU request message 185 * @chunksize: Number of bytes of request data 186 * @pad_len: Number of pad bytes 187 * 188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 189 * when the request completes, whether the request is handled successfully or 190 * there is an error. 191 * 192 * Returns: 193 * 0 if successful 194 * < 0 if an error 195 */ 196 static int 197 spu_skcipher_tx_sg_create(struct brcm_message *mssg, 198 struct iproc_reqctx_s *rctx, 199 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 200 { 201 struct spu_hw *spu = &iproc_priv.spu; 202 struct scatterlist *sg; /* used to build sgs in mbox message */ 203 struct iproc_ctx_s *ctx = rctx->ctx; 204 u32 datalen; /* Number of bytes of response data expected */ 205 u32 stat_len; 206 207 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 208 rctx->gfp); 209 if (unlikely(!mssg->spu.src)) 210 return -ENOMEM; 211 212 sg = mssg->spu.src; 213 sg_init_table(sg, tx_frag_num); 214 215 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 216 BCM_HDR_LEN + ctx->spu_req_hdr_len); 217 218 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 219 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 220 spu->spu_xts_tweak_in_payload()) 221 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 222 223 /* Copy in each src sg entry from request, up to chunksize */ 224 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 225 rctx->src_nents, chunksize); 226 if (unlikely(datalen < chunksize)) { 227 pr_err("%s(): failed to copy src sg to mbox msg", 228 __func__); 229 return -EFAULT; 230 } 231 232 if (pad_len) 233 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 234 235 stat_len = spu->spu_tx_status_len(); 236 if (stat_len) { 237 memset(rctx->msg_buf.tx_stat, 0, stat_len); 238 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 239 } 240 return 0; 241 } 242 243 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 244 u8 chan_idx) 245 { 246 int err; 247 int retry_cnt = 0; 248 struct device *dev = &(iproc_priv.pdev->dev); 249 250 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 251 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 252 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 253 /* 254 * Mailbox queue is full. Since MAY_SLEEP is set, assume 255 * not in atomic context and we can wait and try again. 256 */ 257 retry_cnt++; 258 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 259 err = mbox_send_message(iproc_priv.mbox[chan_idx], 260 mssg); 261 atomic_inc(&iproc_priv.mb_no_spc); 262 } 263 } 264 if (err < 0) { 265 atomic_inc(&iproc_priv.mb_send_fail); 266 return err; 267 } 268 269 /* Check error returned by mailbox controller */ 270 err = mssg->error; 271 if (unlikely(err < 0)) { 272 dev_err(dev, "message error %d", err); 273 /* Signal txdone for mailbox channel */ 274 } 275 276 /* Signal txdone for mailbox channel */ 277 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 278 return err; 279 } 280 281 /** 282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in 283 * a single SPU request message, starting at the current position in the request 284 * data. 285 * @rctx: Crypto request context 286 * 287 * This may be called on the crypto API thread, or, when a request is so large 288 * it must be broken into multiple SPU messages, on the thread used to invoke 289 * the response callback. When requests are broken into multiple SPU 290 * messages, we assume subsequent messages depend on previous results, and 291 * thus always wait for previous results before submitting the next message. 292 * Because requests are submitted in lock step like this, there is no need 293 * to synchronize access to request data structures. 294 * 295 * Return: -EINPROGRESS: request has been accepted and result will be returned 296 * asynchronously 297 * Any other value indicates an error 298 */ 299 static int handle_skcipher_req(struct iproc_reqctx_s *rctx) 300 { 301 struct spu_hw *spu = &iproc_priv.spu; 302 struct crypto_async_request *areq = rctx->parent; 303 struct skcipher_request *req = 304 container_of(areq, struct skcipher_request, base); 305 struct iproc_ctx_s *ctx = rctx->ctx; 306 struct spu_cipher_parms cipher_parms; 307 int err; 308 unsigned int chunksize; /* Num bytes of request to submit */ 309 int remaining; /* Bytes of request still to process */ 310 int chunk_start; /* Beginning of data for current SPU msg */ 311 312 /* IV or ctr value to use in this SPU msg */ 313 u8 local_iv_ctr[MAX_IV_SIZE]; 314 u32 stat_pad_len; /* num bytes to align status field */ 315 u32 pad_len; /* total length of all padding */ 316 struct brcm_message *mssg; /* mailbox message */ 317 318 /* number of entries in src and dst sg in mailbox message. */ 319 u8 rx_frag_num = 2; /* response header and STATUS */ 320 u8 tx_frag_num = 1; /* request header */ 321 322 flow_log("%s\n", __func__); 323 324 cipher_parms.alg = ctx->cipher.alg; 325 cipher_parms.mode = ctx->cipher.mode; 326 cipher_parms.type = ctx->cipher_type; 327 cipher_parms.key_len = ctx->enckeylen; 328 cipher_parms.key_buf = ctx->enckey; 329 cipher_parms.iv_buf = local_iv_ctr; 330 cipher_parms.iv_len = rctx->iv_ctr_len; 331 332 mssg = &rctx->mb_mssg; 333 chunk_start = rctx->src_sent; 334 remaining = rctx->total_todo - chunk_start; 335 336 /* determine the chunk we are breaking off and update the indexes */ 337 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 338 (remaining > ctx->max_payload)) 339 chunksize = ctx->max_payload; 340 else 341 chunksize = remaining; 342 343 rctx->src_sent += chunksize; 344 rctx->total_sent = rctx->src_sent; 345 346 /* Count number of sg entries to be included in this request */ 347 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 348 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 349 350 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 351 rctx->is_encrypt && chunk_start) 352 /* 353 * Encrypting non-first first chunk. Copy last block of 354 * previous result to IV for this chunk. 355 */ 356 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 357 rctx->iv_ctr_len, 358 chunk_start - rctx->iv_ctr_len); 359 360 if (rctx->iv_ctr_len) { 361 /* get our local copy of the iv */ 362 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 363 rctx->iv_ctr_len); 364 365 /* generate the next IV if possible */ 366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 367 !rctx->is_encrypt) { 368 /* 369 * CBC Decrypt: next IV is the last ciphertext block in 370 * this chunk 371 */ 372 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 373 rctx->iv_ctr_len, 374 rctx->src_sent - rctx->iv_ctr_len); 375 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 376 /* 377 * The SPU hardware increments the counter once for 378 * each AES block of 16 bytes. So update the counter 379 * for the next chunk, if there is one. Note that for 380 * this chunk, the counter has already been copied to 381 * local_iv_ctr. We can assume a block size of 16, 382 * because we only support CTR mode for AES, not for 383 * any other cipher alg. 384 */ 385 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 386 } 387 } 388 389 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 390 flow_log("max_payload infinite\n"); 391 else 392 flow_log("max_payload %u\n", ctx->max_payload); 393 394 flow_log("sent:%u start:%u remains:%u size:%u\n", 395 rctx->src_sent, chunk_start, remaining, chunksize); 396 397 /* Copy SPU header template created at setkey time */ 398 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 399 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 400 401 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 402 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 403 &cipher_parms, chunksize); 404 405 atomic64_add(chunksize, &iproc_priv.bytes_out); 406 407 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 408 if (stat_pad_len) 409 rx_frag_num++; 410 pad_len = stat_pad_len; 411 if (pad_len) { 412 tx_frag_num++; 413 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 414 0, ctx->auth.alg, ctx->auth.mode, 415 rctx->total_sent, stat_pad_len); 416 } 417 418 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 419 ctx->spu_req_hdr_len); 420 packet_log("payload:\n"); 421 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 422 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 423 424 /* 425 * Build mailbox message containing SPU request msg and rx buffers 426 * to catch response message 427 */ 428 memset(mssg, 0, sizeof(*mssg)); 429 mssg->type = BRCM_MESSAGE_SPU; 430 mssg->ctx = rctx; /* Will be returned in response */ 431 432 /* Create rx scatterlist to catch result */ 433 rx_frag_num += rctx->dst_nents; 434 435 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 436 spu->spu_xts_tweak_in_payload()) 437 rx_frag_num++; /* extra sg to insert tweak */ 438 439 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 440 stat_pad_len); 441 if (err) 442 return err; 443 444 /* Create tx scatterlist containing SPU request message */ 445 tx_frag_num += rctx->src_nents; 446 if (spu->spu_tx_status_len()) 447 tx_frag_num++; 448 449 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 450 spu->spu_xts_tweak_in_payload()) 451 tx_frag_num++; /* extra sg to insert tweak */ 452 453 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 454 pad_len); 455 if (err) 456 return err; 457 458 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 459 if (unlikely(err < 0)) 460 return err; 461 462 return -EINPROGRESS; 463 } 464 465 /** 466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the 467 * total received count for the request and updates global stats. 468 * @rctx: Crypto request context 469 */ 470 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx) 471 { 472 struct spu_hw *spu = &iproc_priv.spu; 473 struct crypto_async_request *areq = rctx->parent; 474 struct skcipher_request *req = skcipher_request_cast(areq); 475 struct iproc_ctx_s *ctx = rctx->ctx; 476 u32 payload_len; 477 478 /* See how much data was returned */ 479 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 480 481 /* 482 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 483 * encrypted tweak ("i") value; we don't count those. 484 */ 485 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 486 spu->spu_xts_tweak_in_payload() && 487 (payload_len >= SPU_XTS_TWEAK_SIZE)) 488 payload_len -= SPU_XTS_TWEAK_SIZE; 489 490 atomic64_add(payload_len, &iproc_priv.bytes_in); 491 492 flow_log("%s() offset: %u, bd_len: %u BD:\n", 493 __func__, rctx->total_received, payload_len); 494 495 dump_sg(req->dst, rctx->total_received, payload_len); 496 497 rctx->total_received += payload_len; 498 if (rctx->total_received == rctx->total_todo) { 499 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 500 atomic_inc( 501 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 502 } 503 } 504 505 /** 506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 507 * receive a SPU response message for an ahash request. 508 * @mssg: mailbox message containing the receive sg 509 * @rctx: crypto request context 510 * @rx_frag_num: number of scatterlist elements required to hold the 511 * SPU response message 512 * @digestsize: length of hash digest, in bytes 513 * @stat_pad_len: Number of bytes required to pad the STAT field to 514 * a 4-byte boundary 515 * 516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 517 * when the request completes, whether the request is handled successfully or 518 * there is an error. 519 * 520 * Return: 521 * 0 if successful 522 * < 0 if an error 523 */ 524 static int 525 spu_ahash_rx_sg_create(struct brcm_message *mssg, 526 struct iproc_reqctx_s *rctx, 527 u8 rx_frag_num, unsigned int digestsize, 528 u32 stat_pad_len) 529 { 530 struct spu_hw *spu = &iproc_priv.spu; 531 struct scatterlist *sg; /* used to build sgs in mbox message */ 532 struct iproc_ctx_s *ctx = rctx->ctx; 533 534 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 535 rctx->gfp); 536 if (!mssg->spu.dst) 537 return -ENOMEM; 538 539 sg = mssg->spu.dst; 540 sg_init_table(sg, rx_frag_num); 541 /* Space for SPU message header */ 542 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 543 544 /* Space for digest */ 545 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 546 547 if (stat_pad_len) 548 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 549 550 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 551 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 552 return 0; 553 } 554 555 /** 556 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 557 * a SPU request message for an ahash request. Includes SPU message headers and 558 * the request data. 559 * @mssg: mailbox message containing the transmit sg 560 * @rctx: crypto request context 561 * @tx_frag_num: number of scatterlist elements required to construct the 562 * SPU request message 563 * @spu_hdr_len: length in bytes of SPU message header 564 * @hash_carry_len: Number of bytes of data carried over from previous req 565 * @new_data_len: Number of bytes of new request data 566 * @pad_len: Number of pad bytes 567 * 568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 569 * when the request completes, whether the request is handled successfully or 570 * there is an error. 571 * 572 * Return: 573 * 0 if successful 574 * < 0 if an error 575 */ 576 static int 577 spu_ahash_tx_sg_create(struct brcm_message *mssg, 578 struct iproc_reqctx_s *rctx, 579 u8 tx_frag_num, 580 u32 spu_hdr_len, 581 unsigned int hash_carry_len, 582 unsigned int new_data_len, u32 pad_len) 583 { 584 struct spu_hw *spu = &iproc_priv.spu; 585 struct scatterlist *sg; /* used to build sgs in mbox message */ 586 u32 datalen; /* Number of bytes of response data expected */ 587 u32 stat_len; 588 589 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 590 rctx->gfp); 591 if (!mssg->spu.src) 592 return -ENOMEM; 593 594 sg = mssg->spu.src; 595 sg_init_table(sg, tx_frag_num); 596 597 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 598 BCM_HDR_LEN + spu_hdr_len); 599 600 if (hash_carry_len) 601 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 602 603 if (new_data_len) { 604 /* Copy in each src sg entry from request, up to chunksize */ 605 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 606 rctx->src_nents, new_data_len); 607 if (datalen < new_data_len) { 608 pr_err("%s(): failed to copy src sg to mbox msg", 609 __func__); 610 return -EFAULT; 611 } 612 } 613 614 if (pad_len) 615 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 616 617 stat_len = spu->spu_tx_status_len(); 618 if (stat_len) { 619 memset(rctx->msg_buf.tx_stat, 0, stat_len); 620 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 621 } 622 623 return 0; 624 } 625 626 /** 627 * handle_ahash_req() - Process an asynchronous hash request from the crypto 628 * API. 629 * @rctx: Crypto request context 630 * 631 * Builds a SPU request message embedded in a mailbox message and submits the 632 * mailbox message on a selected mailbox channel. The SPU request message is 633 * constructed as a scatterlist, including entries from the crypto API's 634 * src scatterlist to avoid copying the data to be hashed. This function is 635 * called either on the thread from the crypto API, or, in the case that the 636 * crypto API request is too large to fit in a single SPU request message, 637 * on the thread that invokes the receive callback with a response message. 638 * Because some operations require the response from one chunk before the next 639 * chunk can be submitted, we always wait for the response for the previous 640 * chunk before submitting the next chunk. Because requests are submitted in 641 * lock step like this, there is no need to synchronize access to request data 642 * structures. 643 * 644 * Return: 645 * -EINPROGRESS: request has been submitted to SPU and response will be 646 * returned asynchronously 647 * -EAGAIN: non-final request included a small amount of data, which for 648 * efficiency we did not submit to the SPU, but instead stored 649 * to be submitted to the SPU with the next part of the request 650 * other: an error code 651 */ 652 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 653 { 654 struct spu_hw *spu = &iproc_priv.spu; 655 struct crypto_async_request *areq = rctx->parent; 656 struct ahash_request *req = ahash_request_cast(areq); 657 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 658 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 659 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 660 struct iproc_ctx_s *ctx = rctx->ctx; 661 662 /* number of bytes still to be hashed in this req */ 663 unsigned int nbytes_to_hash = 0; 664 int err; 665 unsigned int chunksize = 0; /* length of hash carry + new data */ 666 /* 667 * length of new data, not from hash carry, to be submitted in 668 * this hw request 669 */ 670 unsigned int new_data_len; 671 672 unsigned int __maybe_unused chunk_start = 0; 673 u32 db_size; /* Length of data field, incl gcm and hash padding */ 674 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 675 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 676 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 677 struct brcm_message *mssg; /* mailbox message */ 678 struct spu_request_opts req_opts; 679 struct spu_cipher_parms cipher_parms; 680 struct spu_hash_parms hash_parms; 681 struct spu_aead_parms aead_parms; 682 unsigned int local_nbuf; 683 u32 spu_hdr_len; 684 unsigned int digestsize; 685 u16 rem = 0; 686 687 /* 688 * number of entries in src and dst sg. Always includes SPU msg header. 689 * rx always includes a buffer to catch digest and STATUS. 690 */ 691 u8 rx_frag_num = 3; 692 u8 tx_frag_num = 1; 693 694 flow_log("total_todo %u, total_sent %u\n", 695 rctx->total_todo, rctx->total_sent); 696 697 memset(&req_opts, 0, sizeof(req_opts)); 698 memset(&cipher_parms, 0, sizeof(cipher_parms)); 699 memset(&hash_parms, 0, sizeof(hash_parms)); 700 memset(&aead_parms, 0, sizeof(aead_parms)); 701 702 req_opts.bd_suppress = true; 703 hash_parms.alg = ctx->auth.alg; 704 hash_parms.mode = ctx->auth.mode; 705 hash_parms.type = HASH_TYPE_NONE; 706 hash_parms.key_buf = (u8 *)ctx->authkey; 707 hash_parms.key_len = ctx->authkeylen; 708 709 /* 710 * For hash algorithms below assignment looks bit odd but 711 * it's needed for AES-XCBC and AES-CMAC hash algorithms 712 * to differentiate between 128, 192, 256 bit key values. 713 * Based on the key values, hash algorithm is selected. 714 * For example for 128 bit key, hash algorithm is AES-128. 715 */ 716 cipher_parms.type = ctx->cipher_type; 717 718 mssg = &rctx->mb_mssg; 719 chunk_start = rctx->src_sent; 720 721 /* 722 * Compute the amount remaining to hash. This may include data 723 * carried over from previous requests. 724 */ 725 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 726 chunksize = nbytes_to_hash; 727 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 728 (chunksize > ctx->max_payload)) 729 chunksize = ctx->max_payload; 730 731 /* 732 * If this is not a final request and the request data is not a multiple 733 * of a full block, then simply park the extra data and prefix it to the 734 * data for the next request. 735 */ 736 if (!rctx->is_final) { 737 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 738 u16 new_len; /* len of data to add to hash carry */ 739 740 rem = chunksize % blocksize; /* remainder */ 741 if (rem) { 742 /* chunksize not a multiple of blocksize */ 743 chunksize -= rem; 744 if (chunksize == 0) { 745 /* Don't have a full block to submit to hw */ 746 new_len = rem - rctx->hash_carry_len; 747 sg_copy_part_to_buf(req->src, dest, new_len, 748 rctx->src_sent); 749 rctx->hash_carry_len = rem; 750 flow_log("Exiting with hash carry len: %u\n", 751 rctx->hash_carry_len); 752 packet_dump(" buf: ", 753 rctx->hash_carry, 754 rctx->hash_carry_len); 755 return -EAGAIN; 756 } 757 } 758 } 759 760 /* if we have hash carry, then prefix it to the data in this request */ 761 local_nbuf = rctx->hash_carry_len; 762 rctx->hash_carry_len = 0; 763 if (local_nbuf) 764 tx_frag_num++; 765 new_data_len = chunksize - local_nbuf; 766 767 /* Count number of sg entries to be used in this request */ 768 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 769 new_data_len); 770 771 /* AES hashing keeps key size in type field, so need to copy it here */ 772 if (hash_parms.alg == HASH_ALG_AES) 773 hash_parms.type = (enum hash_type)cipher_parms.type; 774 else 775 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 776 777 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 778 hash_parms.type); 779 hash_parms.digestsize = digestsize; 780 781 /* update the indexes */ 782 rctx->total_sent += chunksize; 783 /* if you sent a prebuf then that wasn't from this req->src */ 784 rctx->src_sent += new_data_len; 785 786 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 787 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 788 hash_parms.mode, 789 chunksize, 790 blocksize); 791 792 /* 793 * If a non-first chunk, then include the digest returned from the 794 * previous chunk so that hw can add to it (except for AES types). 795 */ 796 if ((hash_parms.type == HASH_TYPE_UPDT) && 797 (hash_parms.alg != HASH_ALG_AES)) { 798 hash_parms.key_buf = rctx->incr_hash; 799 hash_parms.key_len = digestsize; 800 } 801 802 atomic64_add(chunksize, &iproc_priv.bytes_out); 803 804 flow_log("%s() final: %u nbuf: %u ", 805 __func__, rctx->is_final, local_nbuf); 806 807 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 808 flow_log("max_payload infinite\n"); 809 else 810 flow_log("max_payload %u\n", ctx->max_payload); 811 812 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 813 814 /* Prepend SPU header with type 3 BCM header */ 815 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 816 817 hash_parms.prebuf_len = local_nbuf; 818 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 819 BCM_HDR_LEN, 820 &req_opts, &cipher_parms, 821 &hash_parms, &aead_parms, 822 new_data_len); 823 824 if (spu_hdr_len == 0) { 825 pr_err("Failed to create SPU request header\n"); 826 return -EFAULT; 827 } 828 829 /* 830 * Determine total length of padding required. Put all padding in one 831 * buffer. 832 */ 833 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 834 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 835 0, 0, hash_parms.pad_len); 836 if (spu->spu_tx_status_len()) 837 stat_pad_len = spu->spu_wordalign_padlen(db_size); 838 if (stat_pad_len) 839 rx_frag_num++; 840 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 841 if (pad_len) { 842 tx_frag_num++; 843 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 844 hash_parms.pad_len, ctx->auth.alg, 845 ctx->auth.mode, rctx->total_sent, 846 stat_pad_len); 847 } 848 849 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 850 spu_hdr_len); 851 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 852 flow_log("Data:\n"); 853 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 854 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 855 856 /* 857 * Build mailbox message containing SPU request msg and rx buffers 858 * to catch response message 859 */ 860 memset(mssg, 0, sizeof(*mssg)); 861 mssg->type = BRCM_MESSAGE_SPU; 862 mssg->ctx = rctx; /* Will be returned in response */ 863 864 /* Create rx scatterlist to catch result */ 865 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 866 stat_pad_len); 867 if (err) 868 return err; 869 870 /* Create tx scatterlist containing SPU request message */ 871 tx_frag_num += rctx->src_nents; 872 if (spu->spu_tx_status_len()) 873 tx_frag_num++; 874 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 875 local_nbuf, new_data_len, pad_len); 876 if (err) 877 return err; 878 879 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 880 if (unlikely(err < 0)) 881 return err; 882 883 return -EINPROGRESS; 884 } 885 886 /** 887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 888 * for an HMAC request. 889 * @req: The HMAC request from the crypto API 890 * @ctx: The session context 891 * 892 * Return: 0 if synchronous hash operation successful 893 * -EINVAL if the hash algo is unrecognized 894 * any other value indicates an error 895 */ 896 static int spu_hmac_outer_hash(struct ahash_request *req, 897 struct iproc_ctx_s *ctx) 898 { 899 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 900 unsigned int blocksize = 901 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 902 int rc; 903 904 switch (ctx->auth.alg) { 905 case HASH_ALG_MD5: 906 rc = do_shash("md5", req->result, ctx->opad, blocksize, 907 req->result, ctx->digestsize, NULL, 0); 908 break; 909 case HASH_ALG_SHA1: 910 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 911 req->result, ctx->digestsize, NULL, 0); 912 break; 913 case HASH_ALG_SHA224: 914 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 915 req->result, ctx->digestsize, NULL, 0); 916 break; 917 case HASH_ALG_SHA256: 918 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 919 req->result, ctx->digestsize, NULL, 0); 920 break; 921 case HASH_ALG_SHA384: 922 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 923 req->result, ctx->digestsize, NULL, 0); 924 break; 925 case HASH_ALG_SHA512: 926 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 927 req->result, ctx->digestsize, NULL, 0); 928 break; 929 default: 930 pr_err("%s() Error : unknown hmac type\n", __func__); 931 rc = -EINVAL; 932 } 933 return rc; 934 } 935 936 /** 937 * ahash_req_done() - Process a hash result from the SPU hardware. 938 * @rctx: Crypto request context 939 * 940 * Return: 0 if successful 941 * < 0 if an error 942 */ 943 static int ahash_req_done(struct iproc_reqctx_s *rctx) 944 { 945 struct spu_hw *spu = &iproc_priv.spu; 946 struct crypto_async_request *areq = rctx->parent; 947 struct ahash_request *req = ahash_request_cast(areq); 948 struct iproc_ctx_s *ctx = rctx->ctx; 949 int err; 950 951 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 952 953 if (spu->spu_type == SPU_TYPE_SPUM) { 954 /* byte swap the output from the UPDT function to network byte 955 * order 956 */ 957 if (ctx->auth.alg == HASH_ALG_MD5) { 958 __swab32s((u32 *)req->result); 959 __swab32s(((u32 *)req->result) + 1); 960 __swab32s(((u32 *)req->result) + 2); 961 __swab32s(((u32 *)req->result) + 3); 962 __swab32s(((u32 *)req->result) + 4); 963 } 964 } 965 966 flow_dump(" digest ", req->result, ctx->digestsize); 967 968 /* if this an HMAC then do the outer hash */ 969 if (rctx->is_sw_hmac) { 970 err = spu_hmac_outer_hash(req, ctx); 971 if (err < 0) 972 return err; 973 flow_dump(" hmac: ", req->result, ctx->digestsize); 974 } 975 976 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 977 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 978 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 979 } else { 980 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 981 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 982 } 983 984 return 0; 985 } 986 987 /** 988 * handle_ahash_resp() - Process a SPU response message for a hash request. 989 * Checks if the entire crypto API request has been processed, and if so, 990 * invokes post processing on the result. 991 * @rctx: Crypto request context 992 */ 993 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 994 { 995 struct iproc_ctx_s *ctx = rctx->ctx; 996 struct crypto_async_request *areq = rctx->parent; 997 struct ahash_request *req = ahash_request_cast(areq); 998 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 999 unsigned int blocksize = 1000 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1001 /* 1002 * Save hash to use as input to next op if incremental. Might be copying 1003 * too much, but that's easier than figuring out actual digest size here 1004 */ 1005 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1006 1007 flow_log("%s() blocksize:%u digestsize:%u\n", 1008 __func__, blocksize, ctx->digestsize); 1009 1010 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1011 1012 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1013 ahash_req_done(rctx); 1014 } 1015 1016 /** 1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1019 * message headers and the response data. 1020 * @mssg: mailbox message containing the receive sg 1021 * @req: Crypto API request 1022 * @rctx: crypto request context 1023 * @rx_frag_num: number of scatterlist elements required to hold the 1024 * SPU response message 1025 * @assoc_len: Length of associated data included in the crypto request 1026 * @ret_iv_len: Length of IV returned in response 1027 * @resp_len: Number of bytes of response data expected to be written to 1028 * dst buffer from crypto API 1029 * @digestsize: Length of hash digest, in bytes 1030 * @stat_pad_len: Number of bytes required to pad the STAT field to 1031 * a 4-byte boundary 1032 * 1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1034 * when the request completes, whether the request is handled successfully or 1035 * there is an error. 1036 * 1037 * Returns: 1038 * 0 if successful 1039 * < 0 if an error 1040 */ 1041 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1042 struct aead_request *req, 1043 struct iproc_reqctx_s *rctx, 1044 u8 rx_frag_num, 1045 unsigned int assoc_len, 1046 u32 ret_iv_len, unsigned int resp_len, 1047 unsigned int digestsize, u32 stat_pad_len) 1048 { 1049 struct spu_hw *spu = &iproc_priv.spu; 1050 struct scatterlist *sg; /* used to build sgs in mbox message */ 1051 struct iproc_ctx_s *ctx = rctx->ctx; 1052 u32 datalen; /* Number of bytes of response data expected */ 1053 u32 assoc_buf_len; 1054 u8 data_padlen = 0; 1055 1056 if (ctx->is_rfc4543) { 1057 /* RFC4543: only pad after data, not after AAD */ 1058 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1059 assoc_len + resp_len); 1060 assoc_buf_len = assoc_len; 1061 } else { 1062 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1063 resp_len); 1064 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1065 assoc_len, ret_iv_len, 1066 rctx->is_encrypt); 1067 } 1068 1069 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1070 /* ICV (after data) must be in the next 32-bit word for CCM */ 1071 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1072 resp_len + 1073 data_padlen); 1074 1075 if (data_padlen) 1076 /* have to catch gcm pad in separate buffer */ 1077 rx_frag_num++; 1078 1079 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1080 rctx->gfp); 1081 if (!mssg->spu.dst) 1082 return -ENOMEM; 1083 1084 sg = mssg->spu.dst; 1085 sg_init_table(sg, rx_frag_num); 1086 1087 /* Space for SPU message header */ 1088 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1089 1090 if (assoc_buf_len) { 1091 /* 1092 * Don't write directly to req->dst, because SPU may pad the 1093 * assoc data in the response 1094 */ 1095 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1096 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1097 } 1098 1099 if (resp_len) { 1100 /* 1101 * Copy in each dst sg entry from request, up to chunksize. 1102 * dst sg catches just the data. digest caught in separate buf. 1103 */ 1104 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1105 rctx->dst_nents, resp_len); 1106 if (datalen < (resp_len)) { 1107 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1108 __func__, resp_len, datalen); 1109 return -EFAULT; 1110 } 1111 } 1112 1113 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1114 if (data_padlen) { 1115 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1116 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1117 } 1118 1119 /* Always catch ICV in separate buffer */ 1120 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1121 1122 flow_log("stat_pad_len %u\n", stat_pad_len); 1123 if (stat_pad_len) { 1124 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1125 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1126 } 1127 1128 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1129 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1130 1131 return 0; 1132 } 1133 1134 /** 1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1136 * SPU request message for an AEAD request. Includes SPU message headers and the 1137 * request data. 1138 * @mssg: mailbox message containing the transmit sg 1139 * @rctx: crypto request context 1140 * @tx_frag_num: number of scatterlist elements required to construct the 1141 * SPU request message 1142 * @spu_hdr_len: length of SPU message header in bytes 1143 * @assoc: crypto API associated data scatterlist 1144 * @assoc_len: length of associated data 1145 * @assoc_nents: number of scatterlist entries containing assoc data 1146 * @aead_iv_len: length of AEAD IV, if included 1147 * @chunksize: Number of bytes of request data 1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1149 * @pad_len: Number of pad bytes 1150 * @incl_icv: If true, write separate ICV buffer after data and 1151 * any padding 1152 * 1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1154 * when the request completes, whether the request is handled successfully or 1155 * there is an error. 1156 * 1157 * Return: 1158 * 0 if successful 1159 * < 0 if an error 1160 */ 1161 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1162 struct iproc_reqctx_s *rctx, 1163 u8 tx_frag_num, 1164 u32 spu_hdr_len, 1165 struct scatterlist *assoc, 1166 unsigned int assoc_len, 1167 int assoc_nents, 1168 unsigned int aead_iv_len, 1169 unsigned int chunksize, 1170 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1171 { 1172 struct spu_hw *spu = &iproc_priv.spu; 1173 struct scatterlist *sg; /* used to build sgs in mbox message */ 1174 struct scatterlist *assoc_sg = assoc; 1175 struct iproc_ctx_s *ctx = rctx->ctx; 1176 u32 datalen; /* Number of bytes of data to write */ 1177 u32 written; /* Number of bytes of data written */ 1178 u32 assoc_offset = 0; 1179 u32 stat_len; 1180 1181 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1182 rctx->gfp); 1183 if (!mssg->spu.src) 1184 return -ENOMEM; 1185 1186 sg = mssg->spu.src; 1187 sg_init_table(sg, tx_frag_num); 1188 1189 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1190 BCM_HDR_LEN + spu_hdr_len); 1191 1192 if (assoc_len) { 1193 /* Copy in each associated data sg entry from request */ 1194 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1195 assoc_nents, assoc_len); 1196 if (written < assoc_len) { 1197 pr_err("%s(): failed to copy assoc sg to mbox msg", 1198 __func__); 1199 return -EFAULT; 1200 } 1201 } 1202 1203 if (aead_iv_len) 1204 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1205 1206 if (aad_pad_len) { 1207 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1208 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1209 } 1210 1211 datalen = chunksize; 1212 if ((chunksize > ctx->digestsize) && incl_icv) 1213 datalen -= ctx->digestsize; 1214 if (datalen) { 1215 /* For aead, a single msg should consume the entire src sg */ 1216 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1217 rctx->src_nents, datalen); 1218 if (written < datalen) { 1219 pr_err("%s(): failed to copy src sg to mbox msg", 1220 __func__); 1221 return -EFAULT; 1222 } 1223 } 1224 1225 if (pad_len) { 1226 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1227 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1228 } 1229 1230 if (incl_icv) 1231 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1232 1233 stat_len = spu->spu_tx_status_len(); 1234 if (stat_len) { 1235 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1236 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1237 } 1238 return 0; 1239 } 1240 1241 /** 1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1243 * current AEAD request. 1244 * @rctx: Crypto request context 1245 * 1246 * Unlike other operation types, we assume the length of the request fits in 1247 * a single SPU request message. aead_enqueue() makes sure this is true. 1248 * Comments for other op types regarding threads applies here as well. 1249 * 1250 * Unlike incremental hash ops, where the spu returns the entire hash for 1251 * truncated algs like sha-224, the SPU returns just the truncated hash in 1252 * response to aead requests. So digestsize is always ctx->digestsize here. 1253 * 1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1255 * returned asynchronously 1256 * Any other value indicates an error 1257 */ 1258 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1259 { 1260 struct spu_hw *spu = &iproc_priv.spu; 1261 struct crypto_async_request *areq = rctx->parent; 1262 struct aead_request *req = container_of(areq, 1263 struct aead_request, base); 1264 struct iproc_ctx_s *ctx = rctx->ctx; 1265 int err; 1266 unsigned int chunksize; 1267 unsigned int resp_len; 1268 u32 spu_hdr_len; 1269 u32 db_size; 1270 u32 stat_pad_len; 1271 u32 pad_len; 1272 struct brcm_message *mssg; /* mailbox message */ 1273 struct spu_request_opts req_opts; 1274 struct spu_cipher_parms cipher_parms; 1275 struct spu_hash_parms hash_parms; 1276 struct spu_aead_parms aead_parms; 1277 int assoc_nents = 0; 1278 bool incl_icv = false; 1279 unsigned int digestsize = ctx->digestsize; 1280 1281 /* number of entries in src and dst sg. Always includes SPU msg header. 1282 */ 1283 u8 rx_frag_num = 2; /* and STATUS */ 1284 u8 tx_frag_num = 1; 1285 1286 /* doing the whole thing at once */ 1287 chunksize = rctx->total_todo; 1288 1289 flow_log("%s: chunksize %u\n", __func__, chunksize); 1290 1291 memset(&req_opts, 0, sizeof(req_opts)); 1292 memset(&hash_parms, 0, sizeof(hash_parms)); 1293 memset(&aead_parms, 0, sizeof(aead_parms)); 1294 1295 req_opts.is_inbound = !(rctx->is_encrypt); 1296 req_opts.auth_first = ctx->auth_first; 1297 req_opts.is_aead = true; 1298 req_opts.is_esp = ctx->is_esp; 1299 1300 cipher_parms.alg = ctx->cipher.alg; 1301 cipher_parms.mode = ctx->cipher.mode; 1302 cipher_parms.type = ctx->cipher_type; 1303 cipher_parms.key_buf = ctx->enckey; 1304 cipher_parms.key_len = ctx->enckeylen; 1305 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1306 cipher_parms.iv_len = rctx->iv_ctr_len; 1307 1308 hash_parms.alg = ctx->auth.alg; 1309 hash_parms.mode = ctx->auth.mode; 1310 hash_parms.type = HASH_TYPE_NONE; 1311 hash_parms.key_buf = (u8 *)ctx->authkey; 1312 hash_parms.key_len = ctx->authkeylen; 1313 hash_parms.digestsize = digestsize; 1314 1315 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1316 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1317 hash_parms.key_len = SHA224_DIGEST_SIZE; 1318 1319 aead_parms.assoc_size = req->assoclen; 1320 if (ctx->is_esp && !ctx->is_rfc4543) { 1321 /* 1322 * 8-byte IV is included assoc data in request. SPU2 1323 * expects AAD to include just SPI and seqno. So 1324 * subtract off the IV len. 1325 */ 1326 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1327 1328 if (rctx->is_encrypt) { 1329 aead_parms.return_iv = true; 1330 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1331 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1332 } 1333 } else { 1334 aead_parms.ret_iv_len = 0; 1335 } 1336 1337 /* 1338 * Count number of sg entries from the crypto API request that are to 1339 * be included in this mailbox message. For dst sg, don't count space 1340 * for digest. Digest gets caught in a separate buffer and copied back 1341 * to dst sg when processing response. 1342 */ 1343 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1344 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1345 if (aead_parms.assoc_size) 1346 assoc_nents = spu_sg_count(rctx->assoc, 0, 1347 aead_parms.assoc_size); 1348 1349 mssg = &rctx->mb_mssg; 1350 1351 rctx->total_sent = chunksize; 1352 rctx->src_sent = chunksize; 1353 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1354 aead_parms.assoc_size, 1355 aead_parms.ret_iv_len, 1356 rctx->is_encrypt)) 1357 rx_frag_num++; 1358 1359 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1360 rctx->iv_ctr_len); 1361 1362 if (ctx->auth.alg == HASH_ALG_AES) 1363 hash_parms.type = (enum hash_type)ctx->cipher_type; 1364 1365 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1366 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1367 aead_parms.assoc_size); 1368 1369 /* General case data padding (CCM decrypt special case below) */ 1370 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1371 chunksize); 1372 1373 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1374 /* 1375 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1376 * 128-bit aligned 1377 */ 1378 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1379 ctx->cipher.mode, 1380 aead_parms.assoc_size + 2); 1381 1382 /* 1383 * And when decrypting CCM, need to pad without including 1384 * size of ICV which is tacked on to end of chunk 1385 */ 1386 if (!rctx->is_encrypt) 1387 aead_parms.data_pad_len = 1388 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1389 chunksize - digestsize); 1390 1391 /* CCM also requires software to rewrite portions of IV: */ 1392 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1393 chunksize, rctx->is_encrypt, 1394 ctx->is_esp); 1395 } 1396 1397 if (ctx->is_rfc4543) { 1398 /* 1399 * RFC4543: data is included in AAD, so don't pad after AAD 1400 * and pad data based on both AAD + data size 1401 */ 1402 aead_parms.aad_pad_len = 0; 1403 if (!rctx->is_encrypt) 1404 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1405 ctx->cipher.mode, 1406 aead_parms.assoc_size + chunksize - 1407 digestsize); 1408 else 1409 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1410 ctx->cipher.mode, 1411 aead_parms.assoc_size + chunksize); 1412 1413 req_opts.is_rfc4543 = true; 1414 } 1415 1416 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1417 incl_icv = true; 1418 tx_frag_num++; 1419 /* Copy ICV from end of src scatterlist to digest buf */ 1420 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1421 req->assoclen + rctx->total_sent - 1422 digestsize); 1423 } 1424 1425 atomic64_add(chunksize, &iproc_priv.bytes_out); 1426 1427 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1428 1429 /* Prepend SPU header with type 3 BCM header */ 1430 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1431 1432 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1433 BCM_HDR_LEN, &req_opts, 1434 &cipher_parms, &hash_parms, 1435 &aead_parms, chunksize); 1436 1437 /* Determine total length of padding. Put all padding in one buffer. */ 1438 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1439 chunksize, aead_parms.aad_pad_len, 1440 aead_parms.data_pad_len, 0); 1441 1442 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1443 1444 if (stat_pad_len) 1445 rx_frag_num++; 1446 pad_len = aead_parms.data_pad_len + stat_pad_len; 1447 if (pad_len) { 1448 tx_frag_num++; 1449 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1450 aead_parms.data_pad_len, 0, 1451 ctx->auth.alg, ctx->auth.mode, 1452 rctx->total_sent, stat_pad_len); 1453 } 1454 1455 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1456 spu_hdr_len); 1457 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1458 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1459 packet_log("BD:\n"); 1460 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1461 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1462 1463 /* 1464 * Build mailbox message containing SPU request msg and rx buffers 1465 * to catch response message 1466 */ 1467 memset(mssg, 0, sizeof(*mssg)); 1468 mssg->type = BRCM_MESSAGE_SPU; 1469 mssg->ctx = rctx; /* Will be returned in response */ 1470 1471 /* Create rx scatterlist to catch result */ 1472 rx_frag_num += rctx->dst_nents; 1473 resp_len = chunksize; 1474 1475 /* 1476 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1477 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1478 * sends entire digest back. 1479 */ 1480 rx_frag_num++; 1481 1482 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1483 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1484 /* 1485 * Input is ciphertxt plus ICV, but ICV not incl 1486 * in output. 1487 */ 1488 resp_len -= ctx->digestsize; 1489 if (resp_len == 0) 1490 /* no rx frags to catch output data */ 1491 rx_frag_num -= rctx->dst_nents; 1492 } 1493 1494 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1495 aead_parms.assoc_size, 1496 aead_parms.ret_iv_len, resp_len, digestsize, 1497 stat_pad_len); 1498 if (err) 1499 return err; 1500 1501 /* Create tx scatterlist containing SPU request message */ 1502 tx_frag_num += rctx->src_nents; 1503 tx_frag_num += assoc_nents; 1504 if (aead_parms.aad_pad_len) 1505 tx_frag_num++; 1506 if (aead_parms.iv_len) 1507 tx_frag_num++; 1508 if (spu->spu_tx_status_len()) 1509 tx_frag_num++; 1510 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1511 rctx->assoc, aead_parms.assoc_size, 1512 assoc_nents, aead_parms.iv_len, chunksize, 1513 aead_parms.aad_pad_len, pad_len, incl_icv); 1514 if (err) 1515 return err; 1516 1517 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1518 if (unlikely(err < 0)) 1519 return err; 1520 1521 return -EINPROGRESS; 1522 } 1523 1524 /** 1525 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1526 * @rctx: Crypto request context 1527 */ 1528 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1529 { 1530 struct spu_hw *spu = &iproc_priv.spu; 1531 struct crypto_async_request *areq = rctx->parent; 1532 struct aead_request *req = container_of(areq, 1533 struct aead_request, base); 1534 struct iproc_ctx_s *ctx = rctx->ctx; 1535 u32 payload_len; 1536 unsigned int icv_offset; 1537 u32 result_len; 1538 1539 /* See how much data was returned */ 1540 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1541 flow_log("payload_len %u\n", payload_len); 1542 1543 /* only count payload */ 1544 atomic64_add(payload_len, &iproc_priv.bytes_in); 1545 1546 if (req->assoclen) 1547 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1548 req->assoclen); 1549 1550 /* 1551 * Copy the ICV back to the destination 1552 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1553 * API doesn't expect ICV in dst buffer. 1554 */ 1555 result_len = req->cryptlen; 1556 if (rctx->is_encrypt) { 1557 icv_offset = req->assoclen + rctx->total_sent; 1558 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1559 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1560 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1561 ctx->digestsize, icv_offset); 1562 result_len += ctx->digestsize; 1563 } 1564 1565 packet_log("response data: "); 1566 dump_sg(req->dst, req->assoclen, result_len); 1567 1568 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1569 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1570 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1571 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1572 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1573 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1574 else 1575 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1576 } else { 1577 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1578 } 1579 } 1580 1581 /** 1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1583 * @rctx: request context 1584 * 1585 * Mailbox scatterlists are allocated for each chunk. So free them after 1586 * processing each chunk. 1587 */ 1588 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1589 { 1590 /* mailbox message used to tx request */ 1591 struct brcm_message *mssg = &rctx->mb_mssg; 1592 1593 kfree(mssg->spu.src); 1594 kfree(mssg->spu.dst); 1595 memset(mssg, 0, sizeof(struct brcm_message)); 1596 } 1597 1598 /** 1599 * finish_req() - Used to invoke the complete callback from the requester when 1600 * a request has been handled asynchronously. 1601 * @rctx: Request context 1602 * @err: Indicates whether the request was successful or not 1603 * 1604 * Ensures that cleanup has been done for request 1605 */ 1606 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1607 { 1608 struct crypto_async_request *areq = rctx->parent; 1609 1610 flow_log("%s() err:%d\n\n", __func__, err); 1611 1612 /* No harm done if already called */ 1613 spu_chunk_cleanup(rctx); 1614 1615 if (areq) 1616 crypto_request_complete(areq, err); 1617 } 1618 1619 /** 1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1621 * @cl: mailbox client structure for SPU driver 1622 * @msg: mailbox message containing SPU response 1623 */ 1624 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1625 { 1626 struct spu_hw *spu = &iproc_priv.spu; 1627 struct brcm_message *mssg = msg; 1628 struct iproc_reqctx_s *rctx; 1629 int err; 1630 1631 rctx = mssg->ctx; 1632 if (unlikely(!rctx)) { 1633 /* This is fatal */ 1634 pr_err("%s(): no request context", __func__); 1635 err = -EFAULT; 1636 goto cb_finish; 1637 } 1638 1639 /* process the SPU status */ 1640 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1641 if (err != 0) { 1642 if (err == SPU_INVALID_ICV) 1643 atomic_inc(&iproc_priv.bad_icv); 1644 err = -EBADMSG; 1645 goto cb_finish; 1646 } 1647 1648 /* Process the SPU response message */ 1649 switch (rctx->ctx->alg->type) { 1650 case CRYPTO_ALG_TYPE_SKCIPHER: 1651 handle_skcipher_resp(rctx); 1652 break; 1653 case CRYPTO_ALG_TYPE_AHASH: 1654 handle_ahash_resp(rctx); 1655 break; 1656 case CRYPTO_ALG_TYPE_AEAD: 1657 handle_aead_resp(rctx); 1658 break; 1659 default: 1660 err = -EINVAL; 1661 goto cb_finish; 1662 } 1663 1664 /* 1665 * If this response does not complete the request, then send the next 1666 * request chunk. 1667 */ 1668 if (rctx->total_sent < rctx->total_todo) { 1669 /* Deallocate anything specific to previous chunk */ 1670 spu_chunk_cleanup(rctx); 1671 1672 switch (rctx->ctx->alg->type) { 1673 case CRYPTO_ALG_TYPE_SKCIPHER: 1674 err = handle_skcipher_req(rctx); 1675 break; 1676 case CRYPTO_ALG_TYPE_AHASH: 1677 err = handle_ahash_req(rctx); 1678 if (err == -EAGAIN) 1679 /* 1680 * we saved data in hash carry, but tell crypto 1681 * API we successfully completed request. 1682 */ 1683 err = 0; 1684 break; 1685 case CRYPTO_ALG_TYPE_AEAD: 1686 err = handle_aead_req(rctx); 1687 break; 1688 default: 1689 err = -EINVAL; 1690 } 1691 1692 if (err == -EINPROGRESS) 1693 /* Successfully submitted request for next chunk */ 1694 return; 1695 } 1696 1697 cb_finish: 1698 finish_req(rctx, err); 1699 } 1700 1701 /* ==================== Kernel Cryptographic API ==================== */ 1702 1703 /** 1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request. 1705 * @req: Crypto API request 1706 * @encrypt: true if encrypting; false if decrypting 1707 * 1708 * Return: -EINPROGRESS if request accepted and result will be returned 1709 * asynchronously 1710 * < 0 if an error 1711 */ 1712 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt) 1713 { 1714 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req); 1715 struct iproc_ctx_s *ctx = 1716 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 1717 int err; 1718 1719 flow_log("%s() enc:%u\n", __func__, encrypt); 1720 1721 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1722 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1723 rctx->parent = &req->base; 1724 rctx->is_encrypt = encrypt; 1725 rctx->bd_suppress = false; 1726 rctx->total_todo = req->cryptlen; 1727 rctx->src_sent = 0; 1728 rctx->total_sent = 0; 1729 rctx->total_received = 0; 1730 rctx->ctx = ctx; 1731 1732 /* Initialize current position in src and dst scatterlists */ 1733 rctx->src_sg = req->src; 1734 rctx->src_nents = 0; 1735 rctx->src_skip = 0; 1736 rctx->dst_sg = req->dst; 1737 rctx->dst_nents = 0; 1738 rctx->dst_skip = 0; 1739 1740 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1741 ctx->cipher.mode == CIPHER_MODE_CTR || 1742 ctx->cipher.mode == CIPHER_MODE_OFB || 1743 ctx->cipher.mode == CIPHER_MODE_XTS || 1744 ctx->cipher.mode == CIPHER_MODE_GCM || 1745 ctx->cipher.mode == CIPHER_MODE_CCM) { 1746 rctx->iv_ctr_len = 1747 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req)); 1748 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len); 1749 } else { 1750 rctx->iv_ctr_len = 0; 1751 } 1752 1753 /* Choose a SPU to process this request */ 1754 rctx->chan_idx = select_channel(); 1755 err = handle_skcipher_req(rctx); 1756 if (err != -EINPROGRESS) 1757 /* synchronous result */ 1758 spu_chunk_cleanup(rctx); 1759 1760 return err; 1761 } 1762 1763 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key, 1764 unsigned int keylen) 1765 { 1766 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1767 int err; 1768 1769 err = verify_skcipher_des_key(cipher, key); 1770 if (err) 1771 return err; 1772 1773 ctx->cipher_type = CIPHER_TYPE_DES; 1774 return 0; 1775 } 1776 1777 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1778 unsigned int keylen) 1779 { 1780 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1781 int err; 1782 1783 err = verify_skcipher_des3_key(cipher, key); 1784 if (err) 1785 return err; 1786 1787 ctx->cipher_type = CIPHER_TYPE_3DES; 1788 return 0; 1789 } 1790 1791 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1792 unsigned int keylen) 1793 { 1794 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1795 1796 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1797 /* XTS includes two keys of equal length */ 1798 keylen = keylen / 2; 1799 1800 switch (keylen) { 1801 case AES_KEYSIZE_128: 1802 ctx->cipher_type = CIPHER_TYPE_AES128; 1803 break; 1804 case AES_KEYSIZE_192: 1805 ctx->cipher_type = CIPHER_TYPE_AES192; 1806 break; 1807 case AES_KEYSIZE_256: 1808 ctx->cipher_type = CIPHER_TYPE_AES256; 1809 break; 1810 default: 1811 return -EINVAL; 1812 } 1813 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1814 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1815 return 0; 1816 } 1817 1818 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key, 1819 unsigned int keylen) 1820 { 1821 struct spu_hw *spu = &iproc_priv.spu; 1822 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1823 struct spu_cipher_parms cipher_parms; 1824 u32 alloc_len = 0; 1825 int err; 1826 1827 flow_log("skcipher_setkey() keylen: %d\n", keylen); 1828 flow_dump(" key: ", key, keylen); 1829 1830 switch (ctx->cipher.alg) { 1831 case CIPHER_ALG_DES: 1832 err = des_setkey(cipher, key, keylen); 1833 break; 1834 case CIPHER_ALG_3DES: 1835 err = threedes_setkey(cipher, key, keylen); 1836 break; 1837 case CIPHER_ALG_AES: 1838 err = aes_setkey(cipher, key, keylen); 1839 break; 1840 default: 1841 pr_err("%s() Error: unknown cipher alg\n", __func__); 1842 err = -EINVAL; 1843 } 1844 if (err) 1845 return err; 1846 1847 memcpy(ctx->enckey, key, keylen); 1848 ctx->enckeylen = keylen; 1849 1850 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1851 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1852 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1853 unsigned int xts_keylen = keylen / 2; 1854 1855 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1856 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1857 } 1858 1859 if (spu->spu_type == SPU_TYPE_SPUM) 1860 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1861 else if (spu->spu_type == SPU_TYPE_SPU2) 1862 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1863 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1864 cipher_parms.iv_buf = NULL; 1865 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher); 1866 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1867 1868 cipher_parms.alg = ctx->cipher.alg; 1869 cipher_parms.mode = ctx->cipher.mode; 1870 cipher_parms.type = ctx->cipher_type; 1871 cipher_parms.key_buf = ctx->enckey; 1872 cipher_parms.key_len = ctx->enckeylen; 1873 1874 /* Prepend SPU request message with BCM header */ 1875 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1876 ctx->spu_req_hdr_len = 1877 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1878 &cipher_parms); 1879 1880 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1881 ctx->enckeylen, 1882 false); 1883 1884 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1885 1886 return 0; 1887 } 1888 1889 static int skcipher_encrypt(struct skcipher_request *req) 1890 { 1891 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen); 1892 1893 return skcipher_enqueue(req, true); 1894 } 1895 1896 static int skcipher_decrypt(struct skcipher_request *req) 1897 { 1898 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen); 1899 return skcipher_enqueue(req, false); 1900 } 1901 1902 static int ahash_enqueue(struct ahash_request *req) 1903 { 1904 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1905 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1906 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1907 int err; 1908 const char *alg_name; 1909 1910 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 1911 1912 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1913 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1914 rctx->parent = &req->base; 1915 rctx->ctx = ctx; 1916 rctx->bd_suppress = true; 1917 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 1918 1919 /* Initialize position in src scatterlist */ 1920 rctx->src_sg = req->src; 1921 rctx->src_skip = 0; 1922 rctx->src_nents = 0; 1923 rctx->dst_sg = NULL; 1924 rctx->dst_skip = 0; 1925 rctx->dst_nents = 0; 1926 1927 /* SPU2 hardware does not compute hash of zero length data */ 1928 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 1929 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 1930 alg_name = crypto_ahash_alg_name(tfm); 1931 flow_log("Doing %sfinal %s zero-len hash request in software\n", 1932 rctx->is_final ? "" : "non-", alg_name); 1933 err = do_shash((unsigned char *)alg_name, req->result, 1934 NULL, 0, NULL, 0, ctx->authkey, 1935 ctx->authkeylen); 1936 if (err < 0) 1937 flow_log("Hash request failed with error %d\n", err); 1938 return err; 1939 } 1940 /* Choose a SPU to process this request */ 1941 rctx->chan_idx = select_channel(); 1942 1943 err = handle_ahash_req(rctx); 1944 if (err != -EINPROGRESS) 1945 /* synchronous result */ 1946 spu_chunk_cleanup(rctx); 1947 1948 if (err == -EAGAIN) 1949 /* 1950 * we saved data in hash carry, but tell crypto API 1951 * we successfully completed request. 1952 */ 1953 err = 0; 1954 1955 return err; 1956 } 1957 1958 static int __ahash_init(struct ahash_request *req) 1959 { 1960 struct spu_hw *spu = &iproc_priv.spu; 1961 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1962 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1963 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1964 1965 flow_log("%s()\n", __func__); 1966 1967 /* Initialize the context */ 1968 rctx->hash_carry_len = 0; 1969 rctx->is_final = 0; 1970 1971 rctx->total_todo = 0; 1972 rctx->src_sent = 0; 1973 rctx->total_sent = 0; 1974 rctx->total_received = 0; 1975 1976 ctx->digestsize = crypto_ahash_digestsize(tfm); 1977 /* If we add a hash whose digest is larger, catch it here. */ 1978 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 1979 1980 rctx->is_sw_hmac = false; 1981 1982 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 1983 true); 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 1990 * @ctx: Crypto session context 1991 * 1992 * SPU-2 does not support incremental hashing (we'll have to revisit and 1993 * condition based on chip revision or device tree entry if future versions do 1994 * support incremental hash) 1995 * 1996 * SPU-M also doesn't support incremental hashing of AES-XCBC 1997 * 1998 * Return: true if incremental hashing is not supported 1999 * false otherwise 2000 */ 2001 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2002 { 2003 struct spu_hw *spu = &iproc_priv.spu; 2004 2005 if (spu->spu_type == SPU_TYPE_SPU2) 2006 return true; 2007 2008 if ((ctx->auth.alg == HASH_ALG_AES) && 2009 (ctx->auth.mode == HASH_MODE_XCBC)) 2010 return true; 2011 2012 /* Otherwise, incremental hashing is supported */ 2013 return false; 2014 } 2015 2016 static int ahash_init(struct ahash_request *req) 2017 { 2018 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2019 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2020 const char *alg_name; 2021 struct crypto_shash *hash; 2022 int ret; 2023 gfp_t gfp; 2024 2025 if (spu_no_incr_hash(ctx)) { 2026 /* 2027 * If we get an incremental hashing request and it's not 2028 * supported by the hardware, we need to handle it in software 2029 * by calling synchronous hash functions. 2030 */ 2031 alg_name = crypto_ahash_alg_name(tfm); 2032 hash = crypto_alloc_shash(alg_name, 0, 0); 2033 if (IS_ERR(hash)) { 2034 ret = PTR_ERR(hash); 2035 goto err; 2036 } 2037 2038 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2039 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2040 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2041 crypto_shash_descsize(hash), gfp); 2042 if (!ctx->shash) { 2043 ret = -ENOMEM; 2044 goto err_hash; 2045 } 2046 ctx->shash->tfm = hash; 2047 2048 /* Set the key using data we already have from setkey */ 2049 if (ctx->authkeylen > 0) { 2050 ret = crypto_shash_setkey(hash, ctx->authkey, 2051 ctx->authkeylen); 2052 if (ret) 2053 goto err_shash; 2054 } 2055 2056 /* Initialize hash w/ this key and other params */ 2057 ret = crypto_shash_init(ctx->shash); 2058 if (ret) 2059 goto err_shash; 2060 } else { 2061 /* Otherwise call the internal function which uses SPU hw */ 2062 ret = __ahash_init(req); 2063 } 2064 2065 return ret; 2066 2067 err_shash: 2068 kfree(ctx->shash); 2069 err_hash: 2070 crypto_free_shash(hash); 2071 err: 2072 return ret; 2073 } 2074 2075 static int __ahash_update(struct ahash_request *req) 2076 { 2077 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2078 2079 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2080 2081 if (!req->nbytes) 2082 return 0; 2083 rctx->total_todo += req->nbytes; 2084 rctx->src_sent = 0; 2085 2086 return ahash_enqueue(req); 2087 } 2088 2089 static int ahash_update(struct ahash_request *req) 2090 { 2091 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2092 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2093 u8 *tmpbuf; 2094 int ret; 2095 int nents; 2096 gfp_t gfp; 2097 2098 if (spu_no_incr_hash(ctx)) { 2099 /* 2100 * If we get an incremental hashing request and it's not 2101 * supported by the hardware, we need to handle it in software 2102 * by calling synchronous hash functions. 2103 */ 2104 if (req->src) 2105 nents = sg_nents(req->src); 2106 else 2107 return -EINVAL; 2108 2109 /* Copy data from req scatterlist to tmp buffer */ 2110 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2111 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2112 tmpbuf = kmalloc(req->nbytes, gfp); 2113 if (!tmpbuf) 2114 return -ENOMEM; 2115 2116 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2117 req->nbytes) { 2118 kfree(tmpbuf); 2119 return -EINVAL; 2120 } 2121 2122 /* Call synchronous update */ 2123 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2124 kfree(tmpbuf); 2125 } else { 2126 /* Otherwise call the internal function which uses SPU hw */ 2127 ret = __ahash_update(req); 2128 } 2129 2130 return ret; 2131 } 2132 2133 static int __ahash_final(struct ahash_request *req) 2134 { 2135 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2136 2137 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2138 2139 rctx->is_final = 1; 2140 2141 return ahash_enqueue(req); 2142 } 2143 2144 static int ahash_final(struct ahash_request *req) 2145 { 2146 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2147 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2148 int ret; 2149 2150 if (spu_no_incr_hash(ctx)) { 2151 /* 2152 * If we get an incremental hashing request and it's not 2153 * supported by the hardware, we need to handle it in software 2154 * by calling synchronous hash functions. 2155 */ 2156 ret = crypto_shash_final(ctx->shash, req->result); 2157 2158 /* Done with hash, can deallocate it now */ 2159 crypto_free_shash(ctx->shash->tfm); 2160 kfree(ctx->shash); 2161 2162 } else { 2163 /* Otherwise call the internal function which uses SPU hw */ 2164 ret = __ahash_final(req); 2165 } 2166 2167 return ret; 2168 } 2169 2170 static int __ahash_finup(struct ahash_request *req) 2171 { 2172 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2173 2174 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2175 2176 rctx->total_todo += req->nbytes; 2177 rctx->src_sent = 0; 2178 rctx->is_final = 1; 2179 2180 return ahash_enqueue(req); 2181 } 2182 2183 static int ahash_finup(struct ahash_request *req) 2184 { 2185 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2186 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2187 u8 *tmpbuf; 2188 int ret; 2189 int nents; 2190 gfp_t gfp; 2191 2192 if (spu_no_incr_hash(ctx)) { 2193 /* 2194 * If we get an incremental hashing request and it's not 2195 * supported by the hardware, we need to handle it in software 2196 * by calling synchronous hash functions. 2197 */ 2198 if (req->src) { 2199 nents = sg_nents(req->src); 2200 } else { 2201 ret = -EINVAL; 2202 goto ahash_finup_exit; 2203 } 2204 2205 /* Copy data from req scatterlist to tmp buffer */ 2206 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2207 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2208 tmpbuf = kmalloc(req->nbytes, gfp); 2209 if (!tmpbuf) { 2210 ret = -ENOMEM; 2211 goto ahash_finup_exit; 2212 } 2213 2214 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2215 req->nbytes) { 2216 ret = -EINVAL; 2217 goto ahash_finup_free; 2218 } 2219 2220 /* Call synchronous update */ 2221 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2222 req->result); 2223 } else { 2224 /* Otherwise call the internal function which uses SPU hw */ 2225 return __ahash_finup(req); 2226 } 2227 ahash_finup_free: 2228 kfree(tmpbuf); 2229 2230 ahash_finup_exit: 2231 /* Done with hash, can deallocate it now */ 2232 crypto_free_shash(ctx->shash->tfm); 2233 kfree(ctx->shash); 2234 return ret; 2235 } 2236 2237 static int ahash_digest(struct ahash_request *req) 2238 { 2239 int err; 2240 2241 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2242 2243 /* whole thing at once */ 2244 err = __ahash_init(req); 2245 if (!err) 2246 err = __ahash_finup(req); 2247 2248 return err; 2249 } 2250 2251 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2252 unsigned int keylen) 2253 { 2254 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2255 2256 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2257 __func__, ahash, key, keylen); 2258 flow_dump(" key: ", key, keylen); 2259 2260 if (ctx->auth.alg == HASH_ALG_AES) { 2261 switch (keylen) { 2262 case AES_KEYSIZE_128: 2263 ctx->cipher_type = CIPHER_TYPE_AES128; 2264 break; 2265 case AES_KEYSIZE_192: 2266 ctx->cipher_type = CIPHER_TYPE_AES192; 2267 break; 2268 case AES_KEYSIZE_256: 2269 ctx->cipher_type = CIPHER_TYPE_AES256; 2270 break; 2271 default: 2272 pr_err("%s() Error: Invalid key length\n", __func__); 2273 return -EINVAL; 2274 } 2275 } else { 2276 pr_err("%s() Error: unknown hash alg\n", __func__); 2277 return -EINVAL; 2278 } 2279 memcpy(ctx->authkey, key, keylen); 2280 ctx->authkeylen = keylen; 2281 2282 return 0; 2283 } 2284 2285 static int ahash_export(struct ahash_request *req, void *out) 2286 { 2287 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2288 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2289 2290 spu_exp->total_todo = rctx->total_todo; 2291 spu_exp->total_sent = rctx->total_sent; 2292 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2293 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2294 spu_exp->hash_carry_len = rctx->hash_carry_len; 2295 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2296 2297 return 0; 2298 } 2299 2300 static int ahash_import(struct ahash_request *req, const void *in) 2301 { 2302 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2303 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2304 2305 rctx->total_todo = spu_exp->total_todo; 2306 rctx->total_sent = spu_exp->total_sent; 2307 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2308 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2309 rctx->hash_carry_len = spu_exp->hash_carry_len; 2310 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2311 2312 return 0; 2313 } 2314 2315 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2316 unsigned int keylen) 2317 { 2318 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2319 unsigned int blocksize = 2320 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2321 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2322 unsigned int index; 2323 int rc; 2324 2325 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2326 __func__, ahash, key, keylen, blocksize, digestsize); 2327 flow_dump(" key: ", key, keylen); 2328 2329 if (keylen > blocksize) { 2330 switch (ctx->auth.alg) { 2331 case HASH_ALG_MD5: 2332 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2333 0, NULL, 0); 2334 break; 2335 case HASH_ALG_SHA1: 2336 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2337 0, NULL, 0); 2338 break; 2339 case HASH_ALG_SHA224: 2340 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2341 0, NULL, 0); 2342 break; 2343 case HASH_ALG_SHA256: 2344 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2345 0, NULL, 0); 2346 break; 2347 case HASH_ALG_SHA384: 2348 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2349 0, NULL, 0); 2350 break; 2351 case HASH_ALG_SHA512: 2352 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2353 0, NULL, 0); 2354 break; 2355 case HASH_ALG_SHA3_224: 2356 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2357 NULL, 0, NULL, 0); 2358 break; 2359 case HASH_ALG_SHA3_256: 2360 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2361 NULL, 0, NULL, 0); 2362 break; 2363 case HASH_ALG_SHA3_384: 2364 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2365 NULL, 0, NULL, 0); 2366 break; 2367 case HASH_ALG_SHA3_512: 2368 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2369 NULL, 0, NULL, 0); 2370 break; 2371 default: 2372 pr_err("%s() Error: unknown hash alg\n", __func__); 2373 return -EINVAL; 2374 } 2375 if (rc < 0) { 2376 pr_err("%s() Error %d computing shash for %s\n", 2377 __func__, rc, hash_alg_name[ctx->auth.alg]); 2378 return rc; 2379 } 2380 ctx->authkeylen = digestsize; 2381 2382 flow_log(" keylen > digestsize... hashed\n"); 2383 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2384 } else { 2385 memcpy(ctx->authkey, key, keylen); 2386 ctx->authkeylen = keylen; 2387 } 2388 2389 /* 2390 * Full HMAC operation in SPUM is not verified, 2391 * So keeping the generation of IPAD, OPAD and 2392 * outer hashing in software. 2393 */ 2394 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2395 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2396 memset(ctx->ipad + ctx->authkeylen, 0, 2397 blocksize - ctx->authkeylen); 2398 ctx->authkeylen = 0; 2399 unsafe_memcpy(ctx->opad, ctx->ipad, blocksize, 2400 "fortified memcpy causes -Wrestrict warning"); 2401 2402 for (index = 0; index < blocksize; index++) { 2403 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2404 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2405 } 2406 2407 flow_dump(" ipad: ", ctx->ipad, blocksize); 2408 flow_dump(" opad: ", ctx->opad, blocksize); 2409 } 2410 ctx->digestsize = digestsize; 2411 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2412 2413 return 0; 2414 } 2415 2416 static int ahash_hmac_init(struct ahash_request *req) 2417 { 2418 int ret; 2419 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2420 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2421 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2422 unsigned int blocksize = 2423 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2424 2425 flow_log("ahash_hmac_init()\n"); 2426 2427 /* init the context as a hash */ 2428 ret = ahash_init(req); 2429 if (ret) 2430 return ret; 2431 2432 if (!spu_no_incr_hash(ctx)) { 2433 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2434 rctx->is_sw_hmac = true; 2435 ctx->auth.mode = HASH_MODE_HASH; 2436 /* start with a prepended ipad */ 2437 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2438 rctx->hash_carry_len = blocksize; 2439 rctx->total_todo += blocksize; 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int ahash_hmac_update(struct ahash_request *req) 2446 { 2447 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2448 2449 if (!req->nbytes) 2450 return 0; 2451 2452 return ahash_update(req); 2453 } 2454 2455 static int ahash_hmac_final(struct ahash_request *req) 2456 { 2457 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2458 2459 return ahash_final(req); 2460 } 2461 2462 static int ahash_hmac_finup(struct ahash_request *req) 2463 { 2464 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2465 2466 return ahash_finup(req); 2467 } 2468 2469 static int ahash_hmac_digest(struct ahash_request *req) 2470 { 2471 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2472 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2473 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2474 unsigned int blocksize = 2475 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2476 2477 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2478 2479 /* Perform initialization and then call finup */ 2480 __ahash_init(req); 2481 2482 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2483 /* 2484 * SPU2 supports full HMAC implementation in the 2485 * hardware, need not to generate IPAD, OPAD and 2486 * outer hash in software. 2487 * Only for hash key len > hash block size, SPU2 2488 * expects to perform hashing on the key, shorten 2489 * it to digest size and feed it as hash key. 2490 */ 2491 rctx->is_sw_hmac = false; 2492 ctx->auth.mode = HASH_MODE_HMAC; 2493 } else { 2494 rctx->is_sw_hmac = true; 2495 ctx->auth.mode = HASH_MODE_HASH; 2496 /* start with a prepended ipad */ 2497 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2498 rctx->hash_carry_len = blocksize; 2499 rctx->total_todo += blocksize; 2500 } 2501 2502 return __ahash_finup(req); 2503 } 2504 2505 /* aead helpers */ 2506 2507 static int aead_need_fallback(struct aead_request *req) 2508 { 2509 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2510 struct spu_hw *spu = &iproc_priv.spu; 2511 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2512 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2513 u32 payload_len; 2514 2515 /* 2516 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2517 * and AAD are both 0 bytes long. So use fallback in this case. 2518 */ 2519 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2520 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2521 (req->assoclen == 0)) { 2522 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2523 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2524 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2525 return 1; 2526 } 2527 } 2528 2529 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2530 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2531 (spu->spu_type == SPU_TYPE_SPUM) && 2532 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2533 (ctx->digestsize != 16)) { 2534 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2535 __func__, ctx->digestsize); 2536 return 1; 2537 } 2538 2539 /* 2540 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2541 * when AAD size is 0 2542 */ 2543 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2544 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2545 (req->assoclen == 0)) { 2546 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2547 __func__); 2548 return 1; 2549 } 2550 2551 /* 2552 * RFC4106 and RFC4543 cannot handle the case where AAD is other than 2553 * 16 or 20 bytes long. So use fallback in this case. 2554 */ 2555 if (ctx->cipher.mode == CIPHER_MODE_GCM && 2556 ctx->cipher.alg == CIPHER_ALG_AES && 2557 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE && 2558 req->assoclen != 16 && req->assoclen != 20) { 2559 flow_log("RFC4106/RFC4543 needs fallback for assoclen" 2560 " other than 16 or 20 bytes\n"); 2561 return 1; 2562 } 2563 2564 payload_len = req->cryptlen; 2565 if (spu->spu_type == SPU_TYPE_SPUM) 2566 payload_len += req->assoclen; 2567 2568 flow_log("%s() payload len: %u\n", __func__, payload_len); 2569 2570 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2571 return 0; 2572 else 2573 return payload_len > ctx->max_payload; 2574 } 2575 2576 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2577 { 2578 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2579 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2580 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2581 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2582 struct aead_request *subreq; 2583 2584 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2585 2586 if (!ctx->fallback_cipher) 2587 return -EINVAL; 2588 2589 subreq = &rctx->req; 2590 aead_request_set_tfm(subreq, ctx->fallback_cipher); 2591 aead_request_set_callback(subreq, aead_request_flags(req), 2592 req->base.complete, req->base.data); 2593 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 2594 req->iv); 2595 aead_request_set_ad(subreq, req->assoclen); 2596 2597 return is_encrypt ? crypto_aead_encrypt(req) : 2598 crypto_aead_decrypt(req); 2599 } 2600 2601 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2602 { 2603 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2604 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2605 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2606 int err; 2607 2608 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2609 2610 if (req->assoclen > MAX_ASSOC_SIZE) { 2611 pr_err 2612 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2613 __func__, req->assoclen, MAX_ASSOC_SIZE); 2614 return -EINVAL; 2615 } 2616 2617 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2618 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2619 rctx->parent = &req->base; 2620 rctx->is_encrypt = is_encrypt; 2621 rctx->bd_suppress = false; 2622 rctx->total_todo = req->cryptlen; 2623 rctx->src_sent = 0; 2624 rctx->total_sent = 0; 2625 rctx->total_received = 0; 2626 rctx->is_sw_hmac = false; 2627 rctx->ctx = ctx; 2628 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2629 2630 /* assoc data is at start of src sg */ 2631 rctx->assoc = req->src; 2632 2633 /* 2634 * Init current position in src scatterlist to be after assoc data. 2635 * src_skip set to buffer offset where data begins. (Assoc data could 2636 * end in the middle of a buffer.) 2637 */ 2638 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2639 &rctx->src_skip) < 0) { 2640 pr_err("%s() Error: Unable to find start of src data\n", 2641 __func__); 2642 return -EINVAL; 2643 } 2644 2645 rctx->src_nents = 0; 2646 rctx->dst_nents = 0; 2647 if (req->dst == req->src) { 2648 rctx->dst_sg = rctx->src_sg; 2649 rctx->dst_skip = rctx->src_skip; 2650 } else { 2651 /* 2652 * Expect req->dst to have room for assoc data followed by 2653 * output data and ICV, if encrypt. So initialize dst_sg 2654 * to point beyond assoc len offset. 2655 */ 2656 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2657 &rctx->dst_skip) < 0) { 2658 pr_err("%s() Error: Unable to find start of dst data\n", 2659 __func__); 2660 return -EINVAL; 2661 } 2662 } 2663 2664 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2665 ctx->cipher.mode == CIPHER_MODE_CTR || 2666 ctx->cipher.mode == CIPHER_MODE_OFB || 2667 ctx->cipher.mode == CIPHER_MODE_XTS || 2668 ctx->cipher.mode == CIPHER_MODE_GCM) { 2669 rctx->iv_ctr_len = 2670 ctx->salt_len + 2671 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2672 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2673 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2674 } else { 2675 rctx->iv_ctr_len = 0; 2676 } 2677 2678 rctx->hash_carry_len = 0; 2679 2680 flow_log(" src sg: %p\n", req->src); 2681 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2682 rctx->src_sg, rctx->src_skip); 2683 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2684 flow_log(" dst sg: %p\n", req->dst); 2685 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2686 rctx->dst_sg, rctx->dst_skip); 2687 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2688 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2689 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2690 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2691 2692 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2693 flow_log(" max_payload infinite"); 2694 else 2695 flow_log(" max_payload: %u\n", ctx->max_payload); 2696 2697 if (unlikely(aead_need_fallback(req))) 2698 return aead_do_fallback(req, is_encrypt); 2699 2700 /* 2701 * Do memory allocations for request after fallback check, because if we 2702 * do fallback, we won't call finish_req() to dealloc. 2703 */ 2704 if (rctx->iv_ctr_len) { 2705 if (ctx->salt_len) 2706 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2707 ctx->salt, ctx->salt_len); 2708 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2709 req->iv, 2710 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2711 } 2712 2713 rctx->chan_idx = select_channel(); 2714 err = handle_aead_req(rctx); 2715 if (err != -EINPROGRESS) 2716 /* synchronous result */ 2717 spu_chunk_cleanup(rctx); 2718 2719 return err; 2720 } 2721 2722 static int aead_authenc_setkey(struct crypto_aead *cipher, 2723 const u8 *key, unsigned int keylen) 2724 { 2725 struct spu_hw *spu = &iproc_priv.spu; 2726 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2727 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2728 struct crypto_authenc_keys keys; 2729 int ret; 2730 2731 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2732 keylen); 2733 flow_dump(" key: ", key, keylen); 2734 2735 ret = crypto_authenc_extractkeys(&keys, key, keylen); 2736 if (ret) 2737 goto badkey; 2738 2739 if (keys.enckeylen > MAX_KEY_SIZE || 2740 keys.authkeylen > MAX_KEY_SIZE) 2741 goto badkey; 2742 2743 ctx->enckeylen = keys.enckeylen; 2744 ctx->authkeylen = keys.authkeylen; 2745 2746 memcpy(ctx->enckey, keys.enckey, keys.enckeylen); 2747 /* May end up padding auth key. So make sure it's zeroed. */ 2748 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2749 memcpy(ctx->authkey, keys.authkey, keys.authkeylen); 2750 2751 switch (ctx->alg->cipher_info.alg) { 2752 case CIPHER_ALG_DES: 2753 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen)) 2754 return -EINVAL; 2755 2756 ctx->cipher_type = CIPHER_TYPE_DES; 2757 break; 2758 case CIPHER_ALG_3DES: 2759 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen)) 2760 return -EINVAL; 2761 2762 ctx->cipher_type = CIPHER_TYPE_3DES; 2763 break; 2764 case CIPHER_ALG_AES: 2765 switch (ctx->enckeylen) { 2766 case AES_KEYSIZE_128: 2767 ctx->cipher_type = CIPHER_TYPE_AES128; 2768 break; 2769 case AES_KEYSIZE_192: 2770 ctx->cipher_type = CIPHER_TYPE_AES192; 2771 break; 2772 case AES_KEYSIZE_256: 2773 ctx->cipher_type = CIPHER_TYPE_AES256; 2774 break; 2775 default: 2776 goto badkey; 2777 } 2778 break; 2779 default: 2780 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2781 return -EINVAL; 2782 } 2783 2784 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2785 ctx->authkeylen); 2786 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2787 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2788 2789 /* setkey the fallback just in case we needto use it */ 2790 if (ctx->fallback_cipher) { 2791 flow_log(" running fallback setkey()\n"); 2792 2793 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2794 ctx->fallback_cipher->base.crt_flags |= 2795 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2796 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); 2797 if (ret) 2798 flow_log(" fallback setkey() returned:%d\n", ret); 2799 } 2800 2801 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2802 ctx->enckeylen, 2803 false); 2804 2805 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2806 2807 return ret; 2808 2809 badkey: 2810 ctx->enckeylen = 0; 2811 ctx->authkeylen = 0; 2812 ctx->digestsize = 0; 2813 2814 return -EINVAL; 2815 } 2816 2817 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2818 const u8 *key, unsigned int keylen) 2819 { 2820 struct spu_hw *spu = &iproc_priv.spu; 2821 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2822 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2823 2824 int ret = 0; 2825 2826 flow_log("%s() keylen:%u\n", __func__, keylen); 2827 flow_dump(" key: ", key, keylen); 2828 2829 if (!ctx->is_esp) 2830 ctx->digestsize = keylen; 2831 2832 ctx->enckeylen = keylen; 2833 ctx->authkeylen = 0; 2834 2835 switch (ctx->enckeylen) { 2836 case AES_KEYSIZE_128: 2837 ctx->cipher_type = CIPHER_TYPE_AES128; 2838 break; 2839 case AES_KEYSIZE_192: 2840 ctx->cipher_type = CIPHER_TYPE_AES192; 2841 break; 2842 case AES_KEYSIZE_256: 2843 ctx->cipher_type = CIPHER_TYPE_AES256; 2844 break; 2845 default: 2846 goto badkey; 2847 } 2848 2849 memcpy(ctx->enckey, key, ctx->enckeylen); 2850 2851 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2852 ctx->authkeylen); 2853 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2854 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2855 2856 /* setkey the fallback just in case we need to use it */ 2857 if (ctx->fallback_cipher) { 2858 flow_log(" running fallback setkey()\n"); 2859 2860 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2861 ctx->fallback_cipher->base.crt_flags |= 2862 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2863 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 2864 keylen + ctx->salt_len); 2865 if (ret) 2866 flow_log(" fallback setkey() returned:%d\n", ret); 2867 } 2868 2869 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2870 ctx->enckeylen, 2871 false); 2872 2873 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2874 2875 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2876 ctx->authkeylen); 2877 2878 return ret; 2879 2880 badkey: 2881 ctx->enckeylen = 0; 2882 ctx->authkeylen = 0; 2883 ctx->digestsize = 0; 2884 2885 return -EINVAL; 2886 } 2887 2888 /** 2889 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 2890 * @cipher: AEAD structure 2891 * @key: Key followed by 4 bytes of salt 2892 * @keylen: Length of key plus salt, in bytes 2893 * 2894 * Extracts salt from key and stores it to be prepended to IV on each request. 2895 * Digest is always 16 bytes 2896 * 2897 * Return: Value from generic gcm setkey. 2898 */ 2899 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 2900 const u8 *key, unsigned int keylen) 2901 { 2902 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2903 2904 flow_log("%s\n", __func__); 2905 2906 if (keylen < GCM_ESP_SALT_SIZE) 2907 return -EINVAL; 2908 2909 ctx->salt_len = GCM_ESP_SALT_SIZE; 2910 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2911 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2912 keylen -= GCM_ESP_SALT_SIZE; 2913 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2914 ctx->is_esp = true; 2915 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2916 2917 return aead_gcm_ccm_setkey(cipher, key, keylen); 2918 } 2919 2920 /** 2921 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 2922 * @cipher: AEAD structure 2923 * @key: Key followed by 4 bytes of salt 2924 * @keylen: Length of key plus salt, in bytes 2925 * 2926 * Extracts salt from key and stores it to be prepended to IV on each request. 2927 * Digest is always 16 bytes 2928 * 2929 * Return: Value from generic gcm setkey. 2930 */ 2931 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 2932 const u8 *key, unsigned int keylen) 2933 { 2934 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2935 2936 flow_log("%s\n", __func__); 2937 2938 if (keylen < GCM_ESP_SALT_SIZE) 2939 return -EINVAL; 2940 2941 ctx->salt_len = GCM_ESP_SALT_SIZE; 2942 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2943 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2944 keylen -= GCM_ESP_SALT_SIZE; 2945 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2946 ctx->is_esp = true; 2947 ctx->is_rfc4543 = true; 2948 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2949 2950 return aead_gcm_ccm_setkey(cipher, key, keylen); 2951 } 2952 2953 /** 2954 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 2955 * @cipher: AEAD structure 2956 * @key: Key followed by 4 bytes of salt 2957 * @keylen: Length of key plus salt, in bytes 2958 * 2959 * Extracts salt from key and stores it to be prepended to IV on each request. 2960 * Digest is always 16 bytes 2961 * 2962 * Return: Value from generic ccm setkey. 2963 */ 2964 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 2965 const u8 *key, unsigned int keylen) 2966 { 2967 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2968 2969 flow_log("%s\n", __func__); 2970 2971 if (keylen < CCM_ESP_SALT_SIZE) 2972 return -EINVAL; 2973 2974 ctx->salt_len = CCM_ESP_SALT_SIZE; 2975 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 2976 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 2977 keylen -= CCM_ESP_SALT_SIZE; 2978 ctx->is_esp = true; 2979 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 2980 2981 return aead_gcm_ccm_setkey(cipher, key, keylen); 2982 } 2983 2984 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 2985 { 2986 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2987 int ret = 0; 2988 2989 flow_log("%s() authkeylen:%u authsize:%u\n", 2990 __func__, ctx->authkeylen, authsize); 2991 2992 ctx->digestsize = authsize; 2993 2994 /* setkey the fallback just in case we needto use it */ 2995 if (ctx->fallback_cipher) { 2996 flow_log(" running fallback setauth()\n"); 2997 2998 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 2999 if (ret) 3000 flow_log(" fallback setauth() returned:%d\n", ret); 3001 } 3002 3003 return ret; 3004 } 3005 3006 static int aead_encrypt(struct aead_request *req) 3007 { 3008 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3009 req->cryptlen); 3010 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3011 flow_log(" assoc_len:%u\n", req->assoclen); 3012 3013 return aead_enqueue(req, true); 3014 } 3015 3016 static int aead_decrypt(struct aead_request *req) 3017 { 3018 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3019 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3020 flow_log(" assoc_len:%u\n", req->assoclen); 3021 3022 return aead_enqueue(req, false); 3023 } 3024 3025 /* ==================== Supported Cipher Algorithms ==================== */ 3026 3027 static struct iproc_alg_s driver_algs[] = { 3028 { 3029 .type = CRYPTO_ALG_TYPE_AEAD, 3030 .alg.aead = { 3031 .base = { 3032 .cra_name = "gcm(aes)", 3033 .cra_driver_name = "gcm-aes-iproc", 3034 .cra_blocksize = AES_BLOCK_SIZE, 3035 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3036 }, 3037 .setkey = aead_gcm_ccm_setkey, 3038 .ivsize = GCM_AES_IV_SIZE, 3039 .maxauthsize = AES_BLOCK_SIZE, 3040 }, 3041 .cipher_info = { 3042 .alg = CIPHER_ALG_AES, 3043 .mode = CIPHER_MODE_GCM, 3044 }, 3045 .auth_info = { 3046 .alg = HASH_ALG_AES, 3047 .mode = HASH_MODE_GCM, 3048 }, 3049 .auth_first = 0, 3050 }, 3051 { 3052 .type = CRYPTO_ALG_TYPE_AEAD, 3053 .alg.aead = { 3054 .base = { 3055 .cra_name = "ccm(aes)", 3056 .cra_driver_name = "ccm-aes-iproc", 3057 .cra_blocksize = AES_BLOCK_SIZE, 3058 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3059 }, 3060 .setkey = aead_gcm_ccm_setkey, 3061 .ivsize = CCM_AES_IV_SIZE, 3062 .maxauthsize = AES_BLOCK_SIZE, 3063 }, 3064 .cipher_info = { 3065 .alg = CIPHER_ALG_AES, 3066 .mode = CIPHER_MODE_CCM, 3067 }, 3068 .auth_info = { 3069 .alg = HASH_ALG_AES, 3070 .mode = HASH_MODE_CCM, 3071 }, 3072 .auth_first = 0, 3073 }, 3074 { 3075 .type = CRYPTO_ALG_TYPE_AEAD, 3076 .alg.aead = { 3077 .base = { 3078 .cra_name = "rfc4106(gcm(aes))", 3079 .cra_driver_name = "gcm-aes-esp-iproc", 3080 .cra_blocksize = AES_BLOCK_SIZE, 3081 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3082 }, 3083 .setkey = aead_gcm_esp_setkey, 3084 .ivsize = GCM_RFC4106_IV_SIZE, 3085 .maxauthsize = AES_BLOCK_SIZE, 3086 }, 3087 .cipher_info = { 3088 .alg = CIPHER_ALG_AES, 3089 .mode = CIPHER_MODE_GCM, 3090 }, 3091 .auth_info = { 3092 .alg = HASH_ALG_AES, 3093 .mode = HASH_MODE_GCM, 3094 }, 3095 .auth_first = 0, 3096 }, 3097 { 3098 .type = CRYPTO_ALG_TYPE_AEAD, 3099 .alg.aead = { 3100 .base = { 3101 .cra_name = "rfc4309(ccm(aes))", 3102 .cra_driver_name = "ccm-aes-esp-iproc", 3103 .cra_blocksize = AES_BLOCK_SIZE, 3104 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3105 }, 3106 .setkey = aead_ccm_esp_setkey, 3107 .ivsize = CCM_AES_IV_SIZE, 3108 .maxauthsize = AES_BLOCK_SIZE, 3109 }, 3110 .cipher_info = { 3111 .alg = CIPHER_ALG_AES, 3112 .mode = CIPHER_MODE_CCM, 3113 }, 3114 .auth_info = { 3115 .alg = HASH_ALG_AES, 3116 .mode = HASH_MODE_CCM, 3117 }, 3118 .auth_first = 0, 3119 }, 3120 { 3121 .type = CRYPTO_ALG_TYPE_AEAD, 3122 .alg.aead = { 3123 .base = { 3124 .cra_name = "rfc4543(gcm(aes))", 3125 .cra_driver_name = "gmac-aes-esp-iproc", 3126 .cra_blocksize = AES_BLOCK_SIZE, 3127 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3128 }, 3129 .setkey = rfc4543_gcm_esp_setkey, 3130 .ivsize = GCM_RFC4106_IV_SIZE, 3131 .maxauthsize = AES_BLOCK_SIZE, 3132 }, 3133 .cipher_info = { 3134 .alg = CIPHER_ALG_AES, 3135 .mode = CIPHER_MODE_GCM, 3136 }, 3137 .auth_info = { 3138 .alg = HASH_ALG_AES, 3139 .mode = HASH_MODE_GCM, 3140 }, 3141 .auth_first = 0, 3142 }, 3143 { 3144 .type = CRYPTO_ALG_TYPE_AEAD, 3145 .alg.aead = { 3146 .base = { 3147 .cra_name = "authenc(hmac(md5),cbc(aes))", 3148 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3149 .cra_blocksize = AES_BLOCK_SIZE, 3150 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3151 CRYPTO_ALG_ASYNC | 3152 CRYPTO_ALG_ALLOCATES_MEMORY 3153 }, 3154 .setkey = aead_authenc_setkey, 3155 .ivsize = AES_BLOCK_SIZE, 3156 .maxauthsize = MD5_DIGEST_SIZE, 3157 }, 3158 .cipher_info = { 3159 .alg = CIPHER_ALG_AES, 3160 .mode = CIPHER_MODE_CBC, 3161 }, 3162 .auth_info = { 3163 .alg = HASH_ALG_MD5, 3164 .mode = HASH_MODE_HMAC, 3165 }, 3166 .auth_first = 0, 3167 }, 3168 { 3169 .type = CRYPTO_ALG_TYPE_AEAD, 3170 .alg.aead = { 3171 .base = { 3172 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3173 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3174 .cra_blocksize = AES_BLOCK_SIZE, 3175 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3176 CRYPTO_ALG_ASYNC | 3177 CRYPTO_ALG_ALLOCATES_MEMORY 3178 }, 3179 .setkey = aead_authenc_setkey, 3180 .ivsize = AES_BLOCK_SIZE, 3181 .maxauthsize = SHA1_DIGEST_SIZE, 3182 }, 3183 .cipher_info = { 3184 .alg = CIPHER_ALG_AES, 3185 .mode = CIPHER_MODE_CBC, 3186 }, 3187 .auth_info = { 3188 .alg = HASH_ALG_SHA1, 3189 .mode = HASH_MODE_HMAC, 3190 }, 3191 .auth_first = 0, 3192 }, 3193 { 3194 .type = CRYPTO_ALG_TYPE_AEAD, 3195 .alg.aead = { 3196 .base = { 3197 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3198 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3199 .cra_blocksize = AES_BLOCK_SIZE, 3200 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3201 CRYPTO_ALG_ASYNC | 3202 CRYPTO_ALG_ALLOCATES_MEMORY 3203 }, 3204 .setkey = aead_authenc_setkey, 3205 .ivsize = AES_BLOCK_SIZE, 3206 .maxauthsize = SHA256_DIGEST_SIZE, 3207 }, 3208 .cipher_info = { 3209 .alg = CIPHER_ALG_AES, 3210 .mode = CIPHER_MODE_CBC, 3211 }, 3212 .auth_info = { 3213 .alg = HASH_ALG_SHA256, 3214 .mode = HASH_MODE_HMAC, 3215 }, 3216 .auth_first = 0, 3217 }, 3218 { 3219 .type = CRYPTO_ALG_TYPE_AEAD, 3220 .alg.aead = { 3221 .base = { 3222 .cra_name = "authenc(hmac(md5),cbc(des))", 3223 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3224 .cra_blocksize = DES_BLOCK_SIZE, 3225 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3226 CRYPTO_ALG_ASYNC | 3227 CRYPTO_ALG_ALLOCATES_MEMORY 3228 }, 3229 .setkey = aead_authenc_setkey, 3230 .ivsize = DES_BLOCK_SIZE, 3231 .maxauthsize = MD5_DIGEST_SIZE, 3232 }, 3233 .cipher_info = { 3234 .alg = CIPHER_ALG_DES, 3235 .mode = CIPHER_MODE_CBC, 3236 }, 3237 .auth_info = { 3238 .alg = HASH_ALG_MD5, 3239 .mode = HASH_MODE_HMAC, 3240 }, 3241 .auth_first = 0, 3242 }, 3243 { 3244 .type = CRYPTO_ALG_TYPE_AEAD, 3245 .alg.aead = { 3246 .base = { 3247 .cra_name = "authenc(hmac(sha1),cbc(des))", 3248 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3249 .cra_blocksize = DES_BLOCK_SIZE, 3250 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3251 CRYPTO_ALG_ASYNC | 3252 CRYPTO_ALG_ALLOCATES_MEMORY 3253 }, 3254 .setkey = aead_authenc_setkey, 3255 .ivsize = DES_BLOCK_SIZE, 3256 .maxauthsize = SHA1_DIGEST_SIZE, 3257 }, 3258 .cipher_info = { 3259 .alg = CIPHER_ALG_DES, 3260 .mode = CIPHER_MODE_CBC, 3261 }, 3262 .auth_info = { 3263 .alg = HASH_ALG_SHA1, 3264 .mode = HASH_MODE_HMAC, 3265 }, 3266 .auth_first = 0, 3267 }, 3268 { 3269 .type = CRYPTO_ALG_TYPE_AEAD, 3270 .alg.aead = { 3271 .base = { 3272 .cra_name = "authenc(hmac(sha224),cbc(des))", 3273 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3274 .cra_blocksize = DES_BLOCK_SIZE, 3275 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3276 CRYPTO_ALG_ASYNC | 3277 CRYPTO_ALG_ALLOCATES_MEMORY 3278 }, 3279 .setkey = aead_authenc_setkey, 3280 .ivsize = DES_BLOCK_SIZE, 3281 .maxauthsize = SHA224_DIGEST_SIZE, 3282 }, 3283 .cipher_info = { 3284 .alg = CIPHER_ALG_DES, 3285 .mode = CIPHER_MODE_CBC, 3286 }, 3287 .auth_info = { 3288 .alg = HASH_ALG_SHA224, 3289 .mode = HASH_MODE_HMAC, 3290 }, 3291 .auth_first = 0, 3292 }, 3293 { 3294 .type = CRYPTO_ALG_TYPE_AEAD, 3295 .alg.aead = { 3296 .base = { 3297 .cra_name = "authenc(hmac(sha256),cbc(des))", 3298 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3299 .cra_blocksize = DES_BLOCK_SIZE, 3300 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3301 CRYPTO_ALG_ASYNC | 3302 CRYPTO_ALG_ALLOCATES_MEMORY 3303 }, 3304 .setkey = aead_authenc_setkey, 3305 .ivsize = DES_BLOCK_SIZE, 3306 .maxauthsize = SHA256_DIGEST_SIZE, 3307 }, 3308 .cipher_info = { 3309 .alg = CIPHER_ALG_DES, 3310 .mode = CIPHER_MODE_CBC, 3311 }, 3312 .auth_info = { 3313 .alg = HASH_ALG_SHA256, 3314 .mode = HASH_MODE_HMAC, 3315 }, 3316 .auth_first = 0, 3317 }, 3318 { 3319 .type = CRYPTO_ALG_TYPE_AEAD, 3320 .alg.aead = { 3321 .base = { 3322 .cra_name = "authenc(hmac(sha384),cbc(des))", 3323 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3324 .cra_blocksize = DES_BLOCK_SIZE, 3325 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3326 CRYPTO_ALG_ASYNC | 3327 CRYPTO_ALG_ALLOCATES_MEMORY 3328 }, 3329 .setkey = aead_authenc_setkey, 3330 .ivsize = DES_BLOCK_SIZE, 3331 .maxauthsize = SHA384_DIGEST_SIZE, 3332 }, 3333 .cipher_info = { 3334 .alg = CIPHER_ALG_DES, 3335 .mode = CIPHER_MODE_CBC, 3336 }, 3337 .auth_info = { 3338 .alg = HASH_ALG_SHA384, 3339 .mode = HASH_MODE_HMAC, 3340 }, 3341 .auth_first = 0, 3342 }, 3343 { 3344 .type = CRYPTO_ALG_TYPE_AEAD, 3345 .alg.aead = { 3346 .base = { 3347 .cra_name = "authenc(hmac(sha512),cbc(des))", 3348 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3349 .cra_blocksize = DES_BLOCK_SIZE, 3350 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3351 CRYPTO_ALG_ASYNC | 3352 CRYPTO_ALG_ALLOCATES_MEMORY 3353 }, 3354 .setkey = aead_authenc_setkey, 3355 .ivsize = DES_BLOCK_SIZE, 3356 .maxauthsize = SHA512_DIGEST_SIZE, 3357 }, 3358 .cipher_info = { 3359 .alg = CIPHER_ALG_DES, 3360 .mode = CIPHER_MODE_CBC, 3361 }, 3362 .auth_info = { 3363 .alg = HASH_ALG_SHA512, 3364 .mode = HASH_MODE_HMAC, 3365 }, 3366 .auth_first = 0, 3367 }, 3368 { 3369 .type = CRYPTO_ALG_TYPE_AEAD, 3370 .alg.aead = { 3371 .base = { 3372 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3373 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3374 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3375 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3376 CRYPTO_ALG_ASYNC | 3377 CRYPTO_ALG_ALLOCATES_MEMORY 3378 }, 3379 .setkey = aead_authenc_setkey, 3380 .ivsize = DES3_EDE_BLOCK_SIZE, 3381 .maxauthsize = MD5_DIGEST_SIZE, 3382 }, 3383 .cipher_info = { 3384 .alg = CIPHER_ALG_3DES, 3385 .mode = CIPHER_MODE_CBC, 3386 }, 3387 .auth_info = { 3388 .alg = HASH_ALG_MD5, 3389 .mode = HASH_MODE_HMAC, 3390 }, 3391 .auth_first = 0, 3392 }, 3393 { 3394 .type = CRYPTO_ALG_TYPE_AEAD, 3395 .alg.aead = { 3396 .base = { 3397 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3398 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3399 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3400 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3401 CRYPTO_ALG_ASYNC | 3402 CRYPTO_ALG_ALLOCATES_MEMORY 3403 }, 3404 .setkey = aead_authenc_setkey, 3405 .ivsize = DES3_EDE_BLOCK_SIZE, 3406 .maxauthsize = SHA1_DIGEST_SIZE, 3407 }, 3408 .cipher_info = { 3409 .alg = CIPHER_ALG_3DES, 3410 .mode = CIPHER_MODE_CBC, 3411 }, 3412 .auth_info = { 3413 .alg = HASH_ALG_SHA1, 3414 .mode = HASH_MODE_HMAC, 3415 }, 3416 .auth_first = 0, 3417 }, 3418 { 3419 .type = CRYPTO_ALG_TYPE_AEAD, 3420 .alg.aead = { 3421 .base = { 3422 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3423 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3424 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3425 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3426 CRYPTO_ALG_ASYNC | 3427 CRYPTO_ALG_ALLOCATES_MEMORY 3428 }, 3429 .setkey = aead_authenc_setkey, 3430 .ivsize = DES3_EDE_BLOCK_SIZE, 3431 .maxauthsize = SHA224_DIGEST_SIZE, 3432 }, 3433 .cipher_info = { 3434 .alg = CIPHER_ALG_3DES, 3435 .mode = CIPHER_MODE_CBC, 3436 }, 3437 .auth_info = { 3438 .alg = HASH_ALG_SHA224, 3439 .mode = HASH_MODE_HMAC, 3440 }, 3441 .auth_first = 0, 3442 }, 3443 { 3444 .type = CRYPTO_ALG_TYPE_AEAD, 3445 .alg.aead = { 3446 .base = { 3447 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3448 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3449 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3450 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3451 CRYPTO_ALG_ASYNC | 3452 CRYPTO_ALG_ALLOCATES_MEMORY 3453 }, 3454 .setkey = aead_authenc_setkey, 3455 .ivsize = DES3_EDE_BLOCK_SIZE, 3456 .maxauthsize = SHA256_DIGEST_SIZE, 3457 }, 3458 .cipher_info = { 3459 .alg = CIPHER_ALG_3DES, 3460 .mode = CIPHER_MODE_CBC, 3461 }, 3462 .auth_info = { 3463 .alg = HASH_ALG_SHA256, 3464 .mode = HASH_MODE_HMAC, 3465 }, 3466 .auth_first = 0, 3467 }, 3468 { 3469 .type = CRYPTO_ALG_TYPE_AEAD, 3470 .alg.aead = { 3471 .base = { 3472 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3473 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3474 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3475 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3476 CRYPTO_ALG_ASYNC | 3477 CRYPTO_ALG_ALLOCATES_MEMORY 3478 }, 3479 .setkey = aead_authenc_setkey, 3480 .ivsize = DES3_EDE_BLOCK_SIZE, 3481 .maxauthsize = SHA384_DIGEST_SIZE, 3482 }, 3483 .cipher_info = { 3484 .alg = CIPHER_ALG_3DES, 3485 .mode = CIPHER_MODE_CBC, 3486 }, 3487 .auth_info = { 3488 .alg = HASH_ALG_SHA384, 3489 .mode = HASH_MODE_HMAC, 3490 }, 3491 .auth_first = 0, 3492 }, 3493 { 3494 .type = CRYPTO_ALG_TYPE_AEAD, 3495 .alg.aead = { 3496 .base = { 3497 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3498 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3499 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3500 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3501 CRYPTO_ALG_ASYNC | 3502 CRYPTO_ALG_ALLOCATES_MEMORY 3503 }, 3504 .setkey = aead_authenc_setkey, 3505 .ivsize = DES3_EDE_BLOCK_SIZE, 3506 .maxauthsize = SHA512_DIGEST_SIZE, 3507 }, 3508 .cipher_info = { 3509 .alg = CIPHER_ALG_3DES, 3510 .mode = CIPHER_MODE_CBC, 3511 }, 3512 .auth_info = { 3513 .alg = HASH_ALG_SHA512, 3514 .mode = HASH_MODE_HMAC, 3515 }, 3516 .auth_first = 0, 3517 }, 3518 3519 /* SKCIPHER algorithms. */ 3520 { 3521 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3522 .alg.skcipher = { 3523 .base.cra_name = "ofb(des)", 3524 .base.cra_driver_name = "ofb-des-iproc", 3525 .base.cra_blocksize = DES_BLOCK_SIZE, 3526 .min_keysize = DES_KEY_SIZE, 3527 .max_keysize = DES_KEY_SIZE, 3528 .ivsize = DES_BLOCK_SIZE, 3529 }, 3530 .cipher_info = { 3531 .alg = CIPHER_ALG_DES, 3532 .mode = CIPHER_MODE_OFB, 3533 }, 3534 .auth_info = { 3535 .alg = HASH_ALG_NONE, 3536 .mode = HASH_MODE_NONE, 3537 }, 3538 }, 3539 { 3540 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3541 .alg.skcipher = { 3542 .base.cra_name = "cbc(des)", 3543 .base.cra_driver_name = "cbc-des-iproc", 3544 .base.cra_blocksize = DES_BLOCK_SIZE, 3545 .min_keysize = DES_KEY_SIZE, 3546 .max_keysize = DES_KEY_SIZE, 3547 .ivsize = DES_BLOCK_SIZE, 3548 }, 3549 .cipher_info = { 3550 .alg = CIPHER_ALG_DES, 3551 .mode = CIPHER_MODE_CBC, 3552 }, 3553 .auth_info = { 3554 .alg = HASH_ALG_NONE, 3555 .mode = HASH_MODE_NONE, 3556 }, 3557 }, 3558 { 3559 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3560 .alg.skcipher = { 3561 .base.cra_name = "ecb(des)", 3562 .base.cra_driver_name = "ecb-des-iproc", 3563 .base.cra_blocksize = DES_BLOCK_SIZE, 3564 .min_keysize = DES_KEY_SIZE, 3565 .max_keysize = DES_KEY_SIZE, 3566 .ivsize = 0, 3567 }, 3568 .cipher_info = { 3569 .alg = CIPHER_ALG_DES, 3570 .mode = CIPHER_MODE_ECB, 3571 }, 3572 .auth_info = { 3573 .alg = HASH_ALG_NONE, 3574 .mode = HASH_MODE_NONE, 3575 }, 3576 }, 3577 { 3578 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3579 .alg.skcipher = { 3580 .base.cra_name = "ofb(des3_ede)", 3581 .base.cra_driver_name = "ofb-des3-iproc", 3582 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3583 .min_keysize = DES3_EDE_KEY_SIZE, 3584 .max_keysize = DES3_EDE_KEY_SIZE, 3585 .ivsize = DES3_EDE_BLOCK_SIZE, 3586 }, 3587 .cipher_info = { 3588 .alg = CIPHER_ALG_3DES, 3589 .mode = CIPHER_MODE_OFB, 3590 }, 3591 .auth_info = { 3592 .alg = HASH_ALG_NONE, 3593 .mode = HASH_MODE_NONE, 3594 }, 3595 }, 3596 { 3597 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3598 .alg.skcipher = { 3599 .base.cra_name = "cbc(des3_ede)", 3600 .base.cra_driver_name = "cbc-des3-iproc", 3601 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3602 .min_keysize = DES3_EDE_KEY_SIZE, 3603 .max_keysize = DES3_EDE_KEY_SIZE, 3604 .ivsize = DES3_EDE_BLOCK_SIZE, 3605 }, 3606 .cipher_info = { 3607 .alg = CIPHER_ALG_3DES, 3608 .mode = CIPHER_MODE_CBC, 3609 }, 3610 .auth_info = { 3611 .alg = HASH_ALG_NONE, 3612 .mode = HASH_MODE_NONE, 3613 }, 3614 }, 3615 { 3616 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3617 .alg.skcipher = { 3618 .base.cra_name = "ecb(des3_ede)", 3619 .base.cra_driver_name = "ecb-des3-iproc", 3620 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3621 .min_keysize = DES3_EDE_KEY_SIZE, 3622 .max_keysize = DES3_EDE_KEY_SIZE, 3623 .ivsize = 0, 3624 }, 3625 .cipher_info = { 3626 .alg = CIPHER_ALG_3DES, 3627 .mode = CIPHER_MODE_ECB, 3628 }, 3629 .auth_info = { 3630 .alg = HASH_ALG_NONE, 3631 .mode = HASH_MODE_NONE, 3632 }, 3633 }, 3634 { 3635 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3636 .alg.skcipher = { 3637 .base.cra_name = "ofb(aes)", 3638 .base.cra_driver_name = "ofb-aes-iproc", 3639 .base.cra_blocksize = AES_BLOCK_SIZE, 3640 .min_keysize = AES_MIN_KEY_SIZE, 3641 .max_keysize = AES_MAX_KEY_SIZE, 3642 .ivsize = AES_BLOCK_SIZE, 3643 }, 3644 .cipher_info = { 3645 .alg = CIPHER_ALG_AES, 3646 .mode = CIPHER_MODE_OFB, 3647 }, 3648 .auth_info = { 3649 .alg = HASH_ALG_NONE, 3650 .mode = HASH_MODE_NONE, 3651 }, 3652 }, 3653 { 3654 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3655 .alg.skcipher = { 3656 .base.cra_name = "cbc(aes)", 3657 .base.cra_driver_name = "cbc-aes-iproc", 3658 .base.cra_blocksize = AES_BLOCK_SIZE, 3659 .min_keysize = AES_MIN_KEY_SIZE, 3660 .max_keysize = AES_MAX_KEY_SIZE, 3661 .ivsize = AES_BLOCK_SIZE, 3662 }, 3663 .cipher_info = { 3664 .alg = CIPHER_ALG_AES, 3665 .mode = CIPHER_MODE_CBC, 3666 }, 3667 .auth_info = { 3668 .alg = HASH_ALG_NONE, 3669 .mode = HASH_MODE_NONE, 3670 }, 3671 }, 3672 { 3673 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3674 .alg.skcipher = { 3675 .base.cra_name = "ecb(aes)", 3676 .base.cra_driver_name = "ecb-aes-iproc", 3677 .base.cra_blocksize = AES_BLOCK_SIZE, 3678 .min_keysize = AES_MIN_KEY_SIZE, 3679 .max_keysize = AES_MAX_KEY_SIZE, 3680 .ivsize = 0, 3681 }, 3682 .cipher_info = { 3683 .alg = CIPHER_ALG_AES, 3684 .mode = CIPHER_MODE_ECB, 3685 }, 3686 .auth_info = { 3687 .alg = HASH_ALG_NONE, 3688 .mode = HASH_MODE_NONE, 3689 }, 3690 }, 3691 { 3692 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3693 .alg.skcipher = { 3694 .base.cra_name = "ctr(aes)", 3695 .base.cra_driver_name = "ctr-aes-iproc", 3696 .base.cra_blocksize = AES_BLOCK_SIZE, 3697 .min_keysize = AES_MIN_KEY_SIZE, 3698 .max_keysize = AES_MAX_KEY_SIZE, 3699 .ivsize = AES_BLOCK_SIZE, 3700 }, 3701 .cipher_info = { 3702 .alg = CIPHER_ALG_AES, 3703 .mode = CIPHER_MODE_CTR, 3704 }, 3705 .auth_info = { 3706 .alg = HASH_ALG_NONE, 3707 .mode = HASH_MODE_NONE, 3708 }, 3709 }, 3710 { 3711 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3712 .alg.skcipher = { 3713 .base.cra_name = "xts(aes)", 3714 .base.cra_driver_name = "xts-aes-iproc", 3715 .base.cra_blocksize = AES_BLOCK_SIZE, 3716 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3717 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3718 .ivsize = AES_BLOCK_SIZE, 3719 }, 3720 .cipher_info = { 3721 .alg = CIPHER_ALG_AES, 3722 .mode = CIPHER_MODE_XTS, 3723 }, 3724 .auth_info = { 3725 .alg = HASH_ALG_NONE, 3726 .mode = HASH_MODE_NONE, 3727 }, 3728 }, 3729 3730 /* AHASH algorithms. */ 3731 { 3732 .type = CRYPTO_ALG_TYPE_AHASH, 3733 .alg.hash = { 3734 .halg.digestsize = MD5_DIGEST_SIZE, 3735 .halg.base = { 3736 .cra_name = "md5", 3737 .cra_driver_name = "md5-iproc", 3738 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3739 .cra_flags = CRYPTO_ALG_ASYNC | 3740 CRYPTO_ALG_ALLOCATES_MEMORY, 3741 } 3742 }, 3743 .cipher_info = { 3744 .alg = CIPHER_ALG_NONE, 3745 .mode = CIPHER_MODE_NONE, 3746 }, 3747 .auth_info = { 3748 .alg = HASH_ALG_MD5, 3749 .mode = HASH_MODE_HASH, 3750 }, 3751 }, 3752 { 3753 .type = CRYPTO_ALG_TYPE_AHASH, 3754 .alg.hash = { 3755 .halg.digestsize = MD5_DIGEST_SIZE, 3756 .halg.base = { 3757 .cra_name = "hmac(md5)", 3758 .cra_driver_name = "hmac-md5-iproc", 3759 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3760 } 3761 }, 3762 .cipher_info = { 3763 .alg = CIPHER_ALG_NONE, 3764 .mode = CIPHER_MODE_NONE, 3765 }, 3766 .auth_info = { 3767 .alg = HASH_ALG_MD5, 3768 .mode = HASH_MODE_HMAC, 3769 }, 3770 }, 3771 {.type = CRYPTO_ALG_TYPE_AHASH, 3772 .alg.hash = { 3773 .halg.digestsize = SHA1_DIGEST_SIZE, 3774 .halg.base = { 3775 .cra_name = "sha1", 3776 .cra_driver_name = "sha1-iproc", 3777 .cra_blocksize = SHA1_BLOCK_SIZE, 3778 } 3779 }, 3780 .cipher_info = { 3781 .alg = CIPHER_ALG_NONE, 3782 .mode = CIPHER_MODE_NONE, 3783 }, 3784 .auth_info = { 3785 .alg = HASH_ALG_SHA1, 3786 .mode = HASH_MODE_HASH, 3787 }, 3788 }, 3789 {.type = CRYPTO_ALG_TYPE_AHASH, 3790 .alg.hash = { 3791 .halg.digestsize = SHA1_DIGEST_SIZE, 3792 .halg.base = { 3793 .cra_name = "hmac(sha1)", 3794 .cra_driver_name = "hmac-sha1-iproc", 3795 .cra_blocksize = SHA1_BLOCK_SIZE, 3796 } 3797 }, 3798 .cipher_info = { 3799 .alg = CIPHER_ALG_NONE, 3800 .mode = CIPHER_MODE_NONE, 3801 }, 3802 .auth_info = { 3803 .alg = HASH_ALG_SHA1, 3804 .mode = HASH_MODE_HMAC, 3805 }, 3806 }, 3807 {.type = CRYPTO_ALG_TYPE_AHASH, 3808 .alg.hash = { 3809 .halg.digestsize = SHA224_DIGEST_SIZE, 3810 .halg.base = { 3811 .cra_name = "sha224", 3812 .cra_driver_name = "sha224-iproc", 3813 .cra_blocksize = SHA224_BLOCK_SIZE, 3814 } 3815 }, 3816 .cipher_info = { 3817 .alg = CIPHER_ALG_NONE, 3818 .mode = CIPHER_MODE_NONE, 3819 }, 3820 .auth_info = { 3821 .alg = HASH_ALG_SHA224, 3822 .mode = HASH_MODE_HASH, 3823 }, 3824 }, 3825 {.type = CRYPTO_ALG_TYPE_AHASH, 3826 .alg.hash = { 3827 .halg.digestsize = SHA224_DIGEST_SIZE, 3828 .halg.base = { 3829 .cra_name = "hmac(sha224)", 3830 .cra_driver_name = "hmac-sha224-iproc", 3831 .cra_blocksize = SHA224_BLOCK_SIZE, 3832 } 3833 }, 3834 .cipher_info = { 3835 .alg = CIPHER_ALG_NONE, 3836 .mode = CIPHER_MODE_NONE, 3837 }, 3838 .auth_info = { 3839 .alg = HASH_ALG_SHA224, 3840 .mode = HASH_MODE_HMAC, 3841 }, 3842 }, 3843 {.type = CRYPTO_ALG_TYPE_AHASH, 3844 .alg.hash = { 3845 .halg.digestsize = SHA256_DIGEST_SIZE, 3846 .halg.base = { 3847 .cra_name = "sha256", 3848 .cra_driver_name = "sha256-iproc", 3849 .cra_blocksize = SHA256_BLOCK_SIZE, 3850 } 3851 }, 3852 .cipher_info = { 3853 .alg = CIPHER_ALG_NONE, 3854 .mode = CIPHER_MODE_NONE, 3855 }, 3856 .auth_info = { 3857 .alg = HASH_ALG_SHA256, 3858 .mode = HASH_MODE_HASH, 3859 }, 3860 }, 3861 {.type = CRYPTO_ALG_TYPE_AHASH, 3862 .alg.hash = { 3863 .halg.digestsize = SHA256_DIGEST_SIZE, 3864 .halg.base = { 3865 .cra_name = "hmac(sha256)", 3866 .cra_driver_name = "hmac-sha256-iproc", 3867 .cra_blocksize = SHA256_BLOCK_SIZE, 3868 } 3869 }, 3870 .cipher_info = { 3871 .alg = CIPHER_ALG_NONE, 3872 .mode = CIPHER_MODE_NONE, 3873 }, 3874 .auth_info = { 3875 .alg = HASH_ALG_SHA256, 3876 .mode = HASH_MODE_HMAC, 3877 }, 3878 }, 3879 { 3880 .type = CRYPTO_ALG_TYPE_AHASH, 3881 .alg.hash = { 3882 .halg.digestsize = SHA384_DIGEST_SIZE, 3883 .halg.base = { 3884 .cra_name = "sha384", 3885 .cra_driver_name = "sha384-iproc", 3886 .cra_blocksize = SHA384_BLOCK_SIZE, 3887 } 3888 }, 3889 .cipher_info = { 3890 .alg = CIPHER_ALG_NONE, 3891 .mode = CIPHER_MODE_NONE, 3892 }, 3893 .auth_info = { 3894 .alg = HASH_ALG_SHA384, 3895 .mode = HASH_MODE_HASH, 3896 }, 3897 }, 3898 { 3899 .type = CRYPTO_ALG_TYPE_AHASH, 3900 .alg.hash = { 3901 .halg.digestsize = SHA384_DIGEST_SIZE, 3902 .halg.base = { 3903 .cra_name = "hmac(sha384)", 3904 .cra_driver_name = "hmac-sha384-iproc", 3905 .cra_blocksize = SHA384_BLOCK_SIZE, 3906 } 3907 }, 3908 .cipher_info = { 3909 .alg = CIPHER_ALG_NONE, 3910 .mode = CIPHER_MODE_NONE, 3911 }, 3912 .auth_info = { 3913 .alg = HASH_ALG_SHA384, 3914 .mode = HASH_MODE_HMAC, 3915 }, 3916 }, 3917 { 3918 .type = CRYPTO_ALG_TYPE_AHASH, 3919 .alg.hash = { 3920 .halg.digestsize = SHA512_DIGEST_SIZE, 3921 .halg.base = { 3922 .cra_name = "sha512", 3923 .cra_driver_name = "sha512-iproc", 3924 .cra_blocksize = SHA512_BLOCK_SIZE, 3925 } 3926 }, 3927 .cipher_info = { 3928 .alg = CIPHER_ALG_NONE, 3929 .mode = CIPHER_MODE_NONE, 3930 }, 3931 .auth_info = { 3932 .alg = HASH_ALG_SHA512, 3933 .mode = HASH_MODE_HASH, 3934 }, 3935 }, 3936 { 3937 .type = CRYPTO_ALG_TYPE_AHASH, 3938 .alg.hash = { 3939 .halg.digestsize = SHA512_DIGEST_SIZE, 3940 .halg.base = { 3941 .cra_name = "hmac(sha512)", 3942 .cra_driver_name = "hmac-sha512-iproc", 3943 .cra_blocksize = SHA512_BLOCK_SIZE, 3944 } 3945 }, 3946 .cipher_info = { 3947 .alg = CIPHER_ALG_NONE, 3948 .mode = CIPHER_MODE_NONE, 3949 }, 3950 .auth_info = { 3951 .alg = HASH_ALG_SHA512, 3952 .mode = HASH_MODE_HMAC, 3953 }, 3954 }, 3955 { 3956 .type = CRYPTO_ALG_TYPE_AHASH, 3957 .alg.hash = { 3958 .halg.digestsize = SHA3_224_DIGEST_SIZE, 3959 .halg.base = { 3960 .cra_name = "sha3-224", 3961 .cra_driver_name = "sha3-224-iproc", 3962 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3963 } 3964 }, 3965 .cipher_info = { 3966 .alg = CIPHER_ALG_NONE, 3967 .mode = CIPHER_MODE_NONE, 3968 }, 3969 .auth_info = { 3970 .alg = HASH_ALG_SHA3_224, 3971 .mode = HASH_MODE_HASH, 3972 }, 3973 }, 3974 { 3975 .type = CRYPTO_ALG_TYPE_AHASH, 3976 .alg.hash = { 3977 .halg.digestsize = SHA3_224_DIGEST_SIZE, 3978 .halg.base = { 3979 .cra_name = "hmac(sha3-224)", 3980 .cra_driver_name = "hmac-sha3-224-iproc", 3981 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3982 } 3983 }, 3984 .cipher_info = { 3985 .alg = CIPHER_ALG_NONE, 3986 .mode = CIPHER_MODE_NONE, 3987 }, 3988 .auth_info = { 3989 .alg = HASH_ALG_SHA3_224, 3990 .mode = HASH_MODE_HMAC 3991 }, 3992 }, 3993 { 3994 .type = CRYPTO_ALG_TYPE_AHASH, 3995 .alg.hash = { 3996 .halg.digestsize = SHA3_256_DIGEST_SIZE, 3997 .halg.base = { 3998 .cra_name = "sha3-256", 3999 .cra_driver_name = "sha3-256-iproc", 4000 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4001 } 4002 }, 4003 .cipher_info = { 4004 .alg = CIPHER_ALG_NONE, 4005 .mode = CIPHER_MODE_NONE, 4006 }, 4007 .auth_info = { 4008 .alg = HASH_ALG_SHA3_256, 4009 .mode = HASH_MODE_HASH, 4010 }, 4011 }, 4012 { 4013 .type = CRYPTO_ALG_TYPE_AHASH, 4014 .alg.hash = { 4015 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4016 .halg.base = { 4017 .cra_name = "hmac(sha3-256)", 4018 .cra_driver_name = "hmac-sha3-256-iproc", 4019 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4020 } 4021 }, 4022 .cipher_info = { 4023 .alg = CIPHER_ALG_NONE, 4024 .mode = CIPHER_MODE_NONE, 4025 }, 4026 .auth_info = { 4027 .alg = HASH_ALG_SHA3_256, 4028 .mode = HASH_MODE_HMAC, 4029 }, 4030 }, 4031 { 4032 .type = CRYPTO_ALG_TYPE_AHASH, 4033 .alg.hash = { 4034 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4035 .halg.base = { 4036 .cra_name = "sha3-384", 4037 .cra_driver_name = "sha3-384-iproc", 4038 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4039 } 4040 }, 4041 .cipher_info = { 4042 .alg = CIPHER_ALG_NONE, 4043 .mode = CIPHER_MODE_NONE, 4044 }, 4045 .auth_info = { 4046 .alg = HASH_ALG_SHA3_384, 4047 .mode = HASH_MODE_HASH, 4048 }, 4049 }, 4050 { 4051 .type = CRYPTO_ALG_TYPE_AHASH, 4052 .alg.hash = { 4053 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4054 .halg.base = { 4055 .cra_name = "hmac(sha3-384)", 4056 .cra_driver_name = "hmac-sha3-384-iproc", 4057 .cra_blocksize = SHA3_384_BLOCK_SIZE, 4058 } 4059 }, 4060 .cipher_info = { 4061 .alg = CIPHER_ALG_NONE, 4062 .mode = CIPHER_MODE_NONE, 4063 }, 4064 .auth_info = { 4065 .alg = HASH_ALG_SHA3_384, 4066 .mode = HASH_MODE_HMAC, 4067 }, 4068 }, 4069 { 4070 .type = CRYPTO_ALG_TYPE_AHASH, 4071 .alg.hash = { 4072 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4073 .halg.base = { 4074 .cra_name = "sha3-512", 4075 .cra_driver_name = "sha3-512-iproc", 4076 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4077 } 4078 }, 4079 .cipher_info = { 4080 .alg = CIPHER_ALG_NONE, 4081 .mode = CIPHER_MODE_NONE, 4082 }, 4083 .auth_info = { 4084 .alg = HASH_ALG_SHA3_512, 4085 .mode = HASH_MODE_HASH, 4086 }, 4087 }, 4088 { 4089 .type = CRYPTO_ALG_TYPE_AHASH, 4090 .alg.hash = { 4091 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4092 .halg.base = { 4093 .cra_name = "hmac(sha3-512)", 4094 .cra_driver_name = "hmac-sha3-512-iproc", 4095 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4096 } 4097 }, 4098 .cipher_info = { 4099 .alg = CIPHER_ALG_NONE, 4100 .mode = CIPHER_MODE_NONE, 4101 }, 4102 .auth_info = { 4103 .alg = HASH_ALG_SHA3_512, 4104 .mode = HASH_MODE_HMAC, 4105 }, 4106 }, 4107 { 4108 .type = CRYPTO_ALG_TYPE_AHASH, 4109 .alg.hash = { 4110 .halg.digestsize = AES_BLOCK_SIZE, 4111 .halg.base = { 4112 .cra_name = "xcbc(aes)", 4113 .cra_driver_name = "xcbc-aes-iproc", 4114 .cra_blocksize = AES_BLOCK_SIZE, 4115 } 4116 }, 4117 .cipher_info = { 4118 .alg = CIPHER_ALG_NONE, 4119 .mode = CIPHER_MODE_NONE, 4120 }, 4121 .auth_info = { 4122 .alg = HASH_ALG_AES, 4123 .mode = HASH_MODE_XCBC, 4124 }, 4125 }, 4126 { 4127 .type = CRYPTO_ALG_TYPE_AHASH, 4128 .alg.hash = { 4129 .halg.digestsize = AES_BLOCK_SIZE, 4130 .halg.base = { 4131 .cra_name = "cmac(aes)", 4132 .cra_driver_name = "cmac-aes-iproc", 4133 .cra_blocksize = AES_BLOCK_SIZE, 4134 } 4135 }, 4136 .cipher_info = { 4137 .alg = CIPHER_ALG_NONE, 4138 .mode = CIPHER_MODE_NONE, 4139 }, 4140 .auth_info = { 4141 .alg = HASH_ALG_AES, 4142 .mode = HASH_MODE_CMAC, 4143 }, 4144 }, 4145 }; 4146 4147 static int generic_cra_init(struct crypto_tfm *tfm, 4148 struct iproc_alg_s *cipher_alg) 4149 { 4150 struct spu_hw *spu = &iproc_priv.spu; 4151 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4152 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4153 4154 flow_log("%s()\n", __func__); 4155 4156 ctx->alg = cipher_alg; 4157 ctx->cipher = cipher_alg->cipher_info; 4158 ctx->auth = cipher_alg->auth_info; 4159 ctx->auth_first = cipher_alg->auth_first; 4160 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4161 ctx->cipher.mode, 4162 blocksize); 4163 ctx->fallback_cipher = NULL; 4164 4165 ctx->enckeylen = 0; 4166 ctx->authkeylen = 0; 4167 4168 atomic_inc(&iproc_priv.stream_count); 4169 atomic_inc(&iproc_priv.session_count); 4170 4171 return 0; 4172 } 4173 4174 static int skcipher_init_tfm(struct crypto_skcipher *skcipher) 4175 { 4176 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 4177 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 4178 struct iproc_alg_s *cipher_alg; 4179 4180 flow_log("%s()\n", __func__); 4181 4182 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s)); 4183 4184 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher); 4185 return generic_cra_init(tfm, cipher_alg); 4186 } 4187 4188 static int ahash_cra_init(struct crypto_tfm *tfm) 4189 { 4190 int err; 4191 struct crypto_alg *alg = tfm->__crt_alg; 4192 struct iproc_alg_s *cipher_alg; 4193 4194 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4195 alg.hash); 4196 4197 err = generic_cra_init(tfm, cipher_alg); 4198 flow_log("%s()\n", __func__); 4199 4200 /* 4201 * export state size has to be < 512 bytes. So don't include msg bufs 4202 * in state size. 4203 */ 4204 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4205 sizeof(struct iproc_reqctx_s)); 4206 4207 return err; 4208 } 4209 4210 static int aead_cra_init(struct crypto_aead *aead) 4211 { 4212 unsigned int reqsize = sizeof(struct iproc_reqctx_s); 4213 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4214 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4215 struct crypto_alg *alg = tfm->__crt_alg; 4216 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4217 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4218 alg.aead); 4219 4220 int err = generic_cra_init(tfm, cipher_alg); 4221 4222 flow_log("%s()\n", __func__); 4223 4224 ctx->is_esp = false; 4225 ctx->salt_len = 0; 4226 ctx->salt_offset = 0; 4227 4228 /* random first IV */ 4229 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4230 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4231 4232 if (err) 4233 goto out; 4234 4235 if (!(alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK)) 4236 goto reqsize; 4237 4238 flow_log("%s() creating fallback cipher\n", __func__); 4239 4240 ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0, 4241 CRYPTO_ALG_ASYNC | 4242 CRYPTO_ALG_NEED_FALLBACK); 4243 if (IS_ERR(ctx->fallback_cipher)) { 4244 pr_err("%s() Error: failed to allocate fallback for %s\n", 4245 __func__, alg->cra_name); 4246 return PTR_ERR(ctx->fallback_cipher); 4247 } 4248 4249 reqsize += crypto_aead_reqsize(ctx->fallback_cipher); 4250 4251 reqsize: 4252 crypto_aead_set_reqsize(aead, reqsize); 4253 4254 out: 4255 return err; 4256 } 4257 4258 static void generic_cra_exit(struct crypto_tfm *tfm) 4259 { 4260 atomic_dec(&iproc_priv.session_count); 4261 } 4262 4263 static void skcipher_exit_tfm(struct crypto_skcipher *tfm) 4264 { 4265 generic_cra_exit(crypto_skcipher_tfm(tfm)); 4266 } 4267 4268 static void aead_cra_exit(struct crypto_aead *aead) 4269 { 4270 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4271 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4272 4273 generic_cra_exit(tfm); 4274 4275 if (ctx->fallback_cipher) { 4276 crypto_free_aead(ctx->fallback_cipher); 4277 ctx->fallback_cipher = NULL; 4278 } 4279 } 4280 4281 /** 4282 * spu_functions_register() - Specify hardware-specific SPU functions based on 4283 * SPU type read from device tree. 4284 * @dev: device structure 4285 * @spu_type: SPU hardware generation 4286 * @spu_subtype: SPU hardware version 4287 */ 4288 static void spu_functions_register(struct device *dev, 4289 enum spu_spu_type spu_type, 4290 enum spu_spu_subtype spu_subtype) 4291 { 4292 struct spu_hw *spu = &iproc_priv.spu; 4293 4294 if (spu_type == SPU_TYPE_SPUM) { 4295 dev_dbg(dev, "Registering SPUM functions"); 4296 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4297 spu->spu_payload_length = spum_payload_length; 4298 spu->spu_response_hdr_len = spum_response_hdr_len; 4299 spu->spu_hash_pad_len = spum_hash_pad_len; 4300 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4301 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4302 spu->spu_aead_ivlen = spum_aead_ivlen; 4303 spu->spu_hash_type = spum_hash_type; 4304 spu->spu_digest_size = spum_digest_size; 4305 spu->spu_create_request = spum_create_request; 4306 spu->spu_cipher_req_init = spum_cipher_req_init; 4307 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4308 spu->spu_request_pad = spum_request_pad; 4309 spu->spu_tx_status_len = spum_tx_status_len; 4310 spu->spu_rx_status_len = spum_rx_status_len; 4311 spu->spu_status_process = spum_status_process; 4312 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4313 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4314 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4315 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4316 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4317 else 4318 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4319 } else { 4320 dev_dbg(dev, "Registering SPU2 functions"); 4321 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4322 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4323 spu->spu_payload_length = spu2_payload_length; 4324 spu->spu_response_hdr_len = spu2_response_hdr_len; 4325 spu->spu_hash_pad_len = spu2_hash_pad_len; 4326 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4327 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4328 spu->spu_aead_ivlen = spu2_aead_ivlen; 4329 spu->spu_hash_type = spu2_hash_type; 4330 spu->spu_digest_size = spu2_digest_size; 4331 spu->spu_create_request = spu2_create_request; 4332 spu->spu_cipher_req_init = spu2_cipher_req_init; 4333 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4334 spu->spu_request_pad = spu2_request_pad; 4335 spu->spu_tx_status_len = spu2_tx_status_len; 4336 spu->spu_rx_status_len = spu2_rx_status_len; 4337 spu->spu_status_process = spu2_status_process; 4338 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4339 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4340 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4341 } 4342 } 4343 4344 /** 4345 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4346 * channel for the SPU being probed. 4347 * @dev: SPU driver device structure 4348 * 4349 * Return: 0 if successful 4350 * < 0 otherwise 4351 */ 4352 static int spu_mb_init(struct device *dev) 4353 { 4354 struct mbox_client *mcl = &iproc_priv.mcl; 4355 int err, i; 4356 4357 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4358 sizeof(struct mbox_chan *), GFP_KERNEL); 4359 if (!iproc_priv.mbox) 4360 return -ENOMEM; 4361 4362 mcl->dev = dev; 4363 mcl->tx_block = false; 4364 mcl->tx_tout = 0; 4365 mcl->knows_txdone = true; 4366 mcl->rx_callback = spu_rx_callback; 4367 mcl->tx_done = NULL; 4368 4369 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4370 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4371 if (IS_ERR(iproc_priv.mbox[i])) { 4372 err = PTR_ERR(iproc_priv.mbox[i]); 4373 dev_err(dev, 4374 "Mbox channel %d request failed with err %d", 4375 i, err); 4376 iproc_priv.mbox[i] = NULL; 4377 goto free_channels; 4378 } 4379 } 4380 4381 return 0; 4382 free_channels: 4383 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4384 if (iproc_priv.mbox[i]) 4385 mbox_free_channel(iproc_priv.mbox[i]); 4386 } 4387 4388 return err; 4389 } 4390 4391 static void spu_mb_release(struct platform_device *pdev) 4392 { 4393 int i; 4394 4395 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4396 mbox_free_channel(iproc_priv.mbox[i]); 4397 } 4398 4399 static void spu_counters_init(void) 4400 { 4401 int i; 4402 int j; 4403 4404 atomic_set(&iproc_priv.session_count, 0); 4405 atomic_set(&iproc_priv.stream_count, 0); 4406 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4407 atomic64_set(&iproc_priv.bytes_in, 0); 4408 atomic64_set(&iproc_priv.bytes_out, 0); 4409 for (i = 0; i < SPU_OP_NUM; i++) { 4410 atomic_set(&iproc_priv.op_counts[i], 0); 4411 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4412 } 4413 for (i = 0; i < CIPHER_ALG_LAST; i++) 4414 for (j = 0; j < CIPHER_MODE_LAST; j++) 4415 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4416 4417 for (i = 0; i < HASH_ALG_LAST; i++) { 4418 atomic_set(&iproc_priv.hash_cnt[i], 0); 4419 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4420 } 4421 for (i = 0; i < AEAD_TYPE_LAST; i++) 4422 atomic_set(&iproc_priv.aead_cnt[i], 0); 4423 4424 atomic_set(&iproc_priv.mb_no_spc, 0); 4425 atomic_set(&iproc_priv.mb_send_fail, 0); 4426 atomic_set(&iproc_priv.bad_icv, 0); 4427 } 4428 4429 static int spu_register_skcipher(struct iproc_alg_s *driver_alg) 4430 { 4431 struct skcipher_alg *crypto = &driver_alg->alg.skcipher; 4432 int err; 4433 4434 crypto->base.cra_module = THIS_MODULE; 4435 crypto->base.cra_priority = cipher_pri; 4436 crypto->base.cra_alignmask = 0; 4437 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4438 crypto->base.cra_flags = CRYPTO_ALG_ASYNC | 4439 CRYPTO_ALG_ALLOCATES_MEMORY | 4440 CRYPTO_ALG_KERN_DRIVER_ONLY; 4441 4442 crypto->init = skcipher_init_tfm; 4443 crypto->exit = skcipher_exit_tfm; 4444 crypto->setkey = skcipher_setkey; 4445 crypto->encrypt = skcipher_encrypt; 4446 crypto->decrypt = skcipher_decrypt; 4447 4448 err = crypto_register_skcipher(crypto); 4449 /* Mark alg as having been registered, if successful */ 4450 if (err == 0) 4451 driver_alg->registered = true; 4452 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name); 4453 return err; 4454 } 4455 4456 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4457 { 4458 struct spu_hw *spu = &iproc_priv.spu; 4459 struct ahash_alg *hash = &driver_alg->alg.hash; 4460 int err; 4461 4462 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4463 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4464 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4465 (spu->spu_type == SPU_TYPE_SPUM)) 4466 return 0; 4467 4468 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4469 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4470 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4471 return 0; 4472 4473 hash->halg.base.cra_module = THIS_MODULE; 4474 hash->halg.base.cra_priority = hash_pri; 4475 hash->halg.base.cra_alignmask = 0; 4476 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4477 hash->halg.base.cra_init = ahash_cra_init; 4478 hash->halg.base.cra_exit = generic_cra_exit; 4479 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC | 4480 CRYPTO_ALG_ALLOCATES_MEMORY; 4481 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4482 4483 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4484 hash->init = ahash_init; 4485 hash->update = ahash_update; 4486 hash->final = ahash_final; 4487 hash->finup = ahash_finup; 4488 hash->digest = ahash_digest; 4489 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4490 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || 4491 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { 4492 hash->setkey = ahash_setkey; 4493 } 4494 } else { 4495 hash->setkey = ahash_hmac_setkey; 4496 hash->init = ahash_hmac_init; 4497 hash->update = ahash_hmac_update; 4498 hash->final = ahash_hmac_final; 4499 hash->finup = ahash_hmac_finup; 4500 hash->digest = ahash_hmac_digest; 4501 } 4502 hash->export = ahash_export; 4503 hash->import = ahash_import; 4504 4505 err = crypto_register_ahash(hash); 4506 /* Mark alg as having been registered, if successful */ 4507 if (err == 0) 4508 driver_alg->registered = true; 4509 pr_debug(" registered ahash %s\n", 4510 hash->halg.base.cra_driver_name); 4511 return err; 4512 } 4513 4514 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4515 { 4516 struct aead_alg *aead = &driver_alg->alg.aead; 4517 int err; 4518 4519 aead->base.cra_module = THIS_MODULE; 4520 aead->base.cra_priority = aead_pri; 4521 aead->base.cra_alignmask = 0; 4522 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4523 4524 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 4525 /* setkey set in alg initialization */ 4526 aead->setauthsize = aead_setauthsize; 4527 aead->encrypt = aead_encrypt; 4528 aead->decrypt = aead_decrypt; 4529 aead->init = aead_cra_init; 4530 aead->exit = aead_cra_exit; 4531 4532 err = crypto_register_aead(aead); 4533 /* Mark alg as having been registered, if successful */ 4534 if (err == 0) 4535 driver_alg->registered = true; 4536 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4537 return err; 4538 } 4539 4540 /* register crypto algorithms the device supports */ 4541 static int spu_algs_register(struct device *dev) 4542 { 4543 int i, j; 4544 int err; 4545 4546 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4547 switch (driver_algs[i].type) { 4548 case CRYPTO_ALG_TYPE_SKCIPHER: 4549 err = spu_register_skcipher(&driver_algs[i]); 4550 break; 4551 case CRYPTO_ALG_TYPE_AHASH: 4552 err = spu_register_ahash(&driver_algs[i]); 4553 break; 4554 case CRYPTO_ALG_TYPE_AEAD: 4555 err = spu_register_aead(&driver_algs[i]); 4556 break; 4557 default: 4558 dev_err(dev, 4559 "iproc-crypto: unknown alg type: %d", 4560 driver_algs[i].type); 4561 err = -EINVAL; 4562 } 4563 4564 if (err) { 4565 dev_err(dev, "alg registration failed with error %d\n", 4566 err); 4567 goto err_algs; 4568 } 4569 } 4570 4571 return 0; 4572 4573 err_algs: 4574 for (j = 0; j < i; j++) { 4575 /* Skip any algorithm not registered */ 4576 if (!driver_algs[j].registered) 4577 continue; 4578 switch (driver_algs[j].type) { 4579 case CRYPTO_ALG_TYPE_SKCIPHER: 4580 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher); 4581 driver_algs[j].registered = false; 4582 break; 4583 case CRYPTO_ALG_TYPE_AHASH: 4584 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4585 driver_algs[j].registered = false; 4586 break; 4587 case CRYPTO_ALG_TYPE_AEAD: 4588 crypto_unregister_aead(&driver_algs[j].alg.aead); 4589 driver_algs[j].registered = false; 4590 break; 4591 } 4592 } 4593 return err; 4594 } 4595 4596 /* ==================== Kernel Platform API ==================== */ 4597 4598 static struct spu_type_subtype spum_ns2_types = { 4599 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4600 }; 4601 4602 static struct spu_type_subtype spum_nsp_types = { 4603 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4604 }; 4605 4606 static struct spu_type_subtype spu2_types = { 4607 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4608 }; 4609 4610 static struct spu_type_subtype spu2_v2_types = { 4611 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4612 }; 4613 4614 static const struct of_device_id bcm_spu_dt_ids[] = { 4615 { 4616 .compatible = "brcm,spum-crypto", 4617 .data = &spum_ns2_types, 4618 }, 4619 { 4620 .compatible = "brcm,spum-nsp-crypto", 4621 .data = &spum_nsp_types, 4622 }, 4623 { 4624 .compatible = "brcm,spu2-crypto", 4625 .data = &spu2_types, 4626 }, 4627 { 4628 .compatible = "brcm,spu2-v2-crypto", 4629 .data = &spu2_v2_types, 4630 }, 4631 { /* sentinel */ } 4632 }; 4633 4634 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4635 4636 static int spu_dt_read(struct platform_device *pdev) 4637 { 4638 struct device *dev = &pdev->dev; 4639 struct spu_hw *spu = &iproc_priv.spu; 4640 struct resource *spu_ctrl_regs; 4641 const struct spu_type_subtype *matched_spu_type; 4642 struct device_node *dn = pdev->dev.of_node; 4643 int err, i; 4644 4645 /* Count number of mailbox channels */ 4646 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4647 4648 matched_spu_type = of_device_get_match_data(dev); 4649 if (!matched_spu_type) { 4650 dev_err(dev, "Failed to match device\n"); 4651 return -ENODEV; 4652 } 4653 4654 spu->spu_type = matched_spu_type->type; 4655 spu->spu_subtype = matched_spu_type->subtype; 4656 4657 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4658 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4659 4660 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4661 if (IS_ERR(spu->reg_vbase[i])) { 4662 err = PTR_ERR(spu->reg_vbase[i]); 4663 dev_err(dev, "Failed to map registers: %d\n", 4664 err); 4665 spu->reg_vbase[i] = NULL; 4666 return err; 4667 } 4668 } 4669 spu->num_spu = i; 4670 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4671 4672 return 0; 4673 } 4674 4675 static int bcm_spu_probe(struct platform_device *pdev) 4676 { 4677 struct device *dev = &pdev->dev; 4678 struct spu_hw *spu = &iproc_priv.spu; 4679 int err; 4680 4681 iproc_priv.pdev = pdev; 4682 platform_set_drvdata(iproc_priv.pdev, 4683 &iproc_priv); 4684 4685 err = spu_dt_read(pdev); 4686 if (err < 0) 4687 goto failure; 4688 4689 err = spu_mb_init(dev); 4690 if (err < 0) 4691 goto failure; 4692 4693 if (spu->spu_type == SPU_TYPE_SPUM) 4694 iproc_priv.bcm_hdr_len = 8; 4695 else if (spu->spu_type == SPU_TYPE_SPU2) 4696 iproc_priv.bcm_hdr_len = 0; 4697 4698 spu_functions_register(dev, spu->spu_type, spu->spu_subtype); 4699 4700 spu_counters_init(); 4701 4702 spu_setup_debugfs(); 4703 4704 err = spu_algs_register(dev); 4705 if (err < 0) 4706 goto fail_reg; 4707 4708 return 0; 4709 4710 fail_reg: 4711 spu_free_debugfs(); 4712 failure: 4713 spu_mb_release(pdev); 4714 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4715 4716 return err; 4717 } 4718 4719 static int bcm_spu_remove(struct platform_device *pdev) 4720 { 4721 int i; 4722 struct device *dev = &pdev->dev; 4723 char *cdn; 4724 4725 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4726 /* 4727 * Not all algorithms were registered, depending on whether 4728 * hardware is SPU or SPU2. So here we make sure to skip 4729 * those algorithms that were not previously registered. 4730 */ 4731 if (!driver_algs[i].registered) 4732 continue; 4733 4734 switch (driver_algs[i].type) { 4735 case CRYPTO_ALG_TYPE_SKCIPHER: 4736 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher); 4737 dev_dbg(dev, " unregistered cipher %s\n", 4738 driver_algs[i].alg.skcipher.base.cra_driver_name); 4739 driver_algs[i].registered = false; 4740 break; 4741 case CRYPTO_ALG_TYPE_AHASH: 4742 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4743 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4744 dev_dbg(dev, " unregistered hash %s\n", cdn); 4745 driver_algs[i].registered = false; 4746 break; 4747 case CRYPTO_ALG_TYPE_AEAD: 4748 crypto_unregister_aead(&driver_algs[i].alg.aead); 4749 dev_dbg(dev, " unregistered aead %s\n", 4750 driver_algs[i].alg.aead.base.cra_driver_name); 4751 driver_algs[i].registered = false; 4752 break; 4753 } 4754 } 4755 spu_free_debugfs(); 4756 spu_mb_release(pdev); 4757 return 0; 4758 } 4759 4760 /* ===== Kernel Module API ===== */ 4761 4762 static struct platform_driver bcm_spu_pdriver = { 4763 .driver = { 4764 .name = "brcm-spu-crypto", 4765 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4766 }, 4767 .probe = bcm_spu_probe, 4768 .remove = bcm_spu_remove, 4769 }; 4770 module_platform_driver(bcm_spu_pdriver); 4771 4772 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4773 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4774 MODULE_LICENSE("GPL v2"); 4775