1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 #include <linux/err.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/errno.h> 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/platform_device.h> 13 #include <linux/scatterlist.h> 14 #include <linux/crypto.h> 15 #include <linux/kthread.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/sched.h> 18 #include <linux/of_address.h> 19 #include <linux/of_device.h> 20 #include <linux/io.h> 21 #include <linux/bitops.h> 22 23 #include <crypto/algapi.h> 24 #include <crypto/aead.h> 25 #include <crypto/internal/aead.h> 26 #include <crypto/aes.h> 27 #include <crypto/internal/des.h> 28 #include <crypto/hmac.h> 29 #include <crypto/sha.h> 30 #include <crypto/md5.h> 31 #include <crypto/authenc.h> 32 #include <crypto/skcipher.h> 33 #include <crypto/hash.h> 34 #include <crypto/sha3.h> 35 36 #include "util.h" 37 #include "cipher.h" 38 #include "spu.h" 39 #include "spum.h" 40 #include "spu2.h" 41 42 /* ================= Device Structure ================== */ 43 44 struct device_private iproc_priv; 45 46 /* ==================== Parameters ===================== */ 47 48 int flow_debug_logging; 49 module_param(flow_debug_logging, int, 0644); 50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 51 52 int packet_debug_logging; 53 module_param(packet_debug_logging, int, 0644); 54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 55 56 int debug_logging_sleep; 57 module_param(debug_logging_sleep, int, 0644); 58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 59 60 /* 61 * The value of these module parameters is used to set the priority for each 62 * algo type when this driver registers algos with the kernel crypto API. 63 * To use a priority other than the default, set the priority in the insmod or 64 * modprobe. Changing the module priority after init time has no effect. 65 * 66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 67 * algos, but more preferred than generic software algos. 68 */ 69 static int cipher_pri = 150; 70 module_param(cipher_pri, int, 0644); 71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 72 73 static int hash_pri = 100; 74 module_param(hash_pri, int, 0644); 75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 76 77 static int aead_pri = 150; 78 module_param(aead_pri, int, 0644); 79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 80 81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 83 * 0x60 - ring 0 84 * 0x68 - ring 1 85 * 0x70 - ring 2 86 * 0x78 - ring 3 87 */ 88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 89 /* 90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 91 * is set dynamically after reading SPU type from device tree. 92 */ 93 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 94 95 /* min and max time to sleep before retrying when mbox queue is full. usec */ 96 #define MBOX_SLEEP_MIN 800 97 #define MBOX_SLEEP_MAX 1000 98 99 /** 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects 101 * channel in round robin order. 102 * 103 * Return: channel index 104 */ 105 static u8 select_channel(void) 106 { 107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 108 109 return chan_idx % iproc_priv.spu.num_chan; 110 } 111 112 /** 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to 114 * receive a SPU response message for an skcipher request. Includes buffers to 115 * catch SPU message headers and the response data. 116 * @mssg: mailbox message containing the receive sg 117 * @rctx: crypto request context 118 * @rx_frag_num: number of scatterlist elements required to hold the 119 * SPU response message 120 * @chunksize: Number of bytes of response data expected 121 * @stat_pad_len: Number of bytes required to pad the STAT field to 122 * a 4-byte boundary 123 * 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 125 * when the request completes, whether the request is handled successfully or 126 * there is an error. 127 * 128 * Returns: 129 * 0 if successful 130 * < 0 if an error 131 */ 132 static int 133 spu_skcipher_rx_sg_create(struct brcm_message *mssg, 134 struct iproc_reqctx_s *rctx, 135 u8 rx_frag_num, 136 unsigned int chunksize, u32 stat_pad_len) 137 { 138 struct spu_hw *spu = &iproc_priv.spu; 139 struct scatterlist *sg; /* used to build sgs in mbox message */ 140 struct iproc_ctx_s *ctx = rctx->ctx; 141 u32 datalen; /* Number of bytes of response data expected */ 142 143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 144 rctx->gfp); 145 if (!mssg->spu.dst) 146 return -ENOMEM; 147 148 sg = mssg->spu.dst; 149 sg_init_table(sg, rx_frag_num); 150 /* Space for SPU message header */ 151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 152 153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 155 spu->spu_xts_tweak_in_payload()) 156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 157 SPU_XTS_TWEAK_SIZE); 158 159 /* Copy in each dst sg entry from request, up to chunksize */ 160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 161 rctx->dst_nents, chunksize); 162 if (datalen < chunksize) { 163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 164 __func__, chunksize, datalen); 165 return -EFAULT; 166 } 167 168 if (stat_pad_len) 169 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 170 171 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 172 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 173 174 return 0; 175 } 176 177 /** 178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to 179 * send a SPU request message for an skcipher request. Includes SPU message 180 * headers and the request data. 181 * @mssg: mailbox message containing the transmit sg 182 * @rctx: crypto request context 183 * @tx_frag_num: number of scatterlist elements required to construct the 184 * SPU request message 185 * @chunksize: Number of bytes of request data 186 * @pad_len: Number of pad bytes 187 * 188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 189 * when the request completes, whether the request is handled successfully or 190 * there is an error. 191 * 192 * Returns: 193 * 0 if successful 194 * < 0 if an error 195 */ 196 static int 197 spu_skcipher_tx_sg_create(struct brcm_message *mssg, 198 struct iproc_reqctx_s *rctx, 199 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 200 { 201 struct spu_hw *spu = &iproc_priv.spu; 202 struct scatterlist *sg; /* used to build sgs in mbox message */ 203 struct iproc_ctx_s *ctx = rctx->ctx; 204 u32 datalen; /* Number of bytes of response data expected */ 205 u32 stat_len; 206 207 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 208 rctx->gfp); 209 if (unlikely(!mssg->spu.src)) 210 return -ENOMEM; 211 212 sg = mssg->spu.src; 213 sg_init_table(sg, tx_frag_num); 214 215 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 216 BCM_HDR_LEN + ctx->spu_req_hdr_len); 217 218 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 219 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 220 spu->spu_xts_tweak_in_payload()) 221 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 222 223 /* Copy in each src sg entry from request, up to chunksize */ 224 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 225 rctx->src_nents, chunksize); 226 if (unlikely(datalen < chunksize)) { 227 pr_err("%s(): failed to copy src sg to mbox msg", 228 __func__); 229 return -EFAULT; 230 } 231 232 if (pad_len) 233 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 234 235 stat_len = spu->spu_tx_status_len(); 236 if (stat_len) { 237 memset(rctx->msg_buf.tx_stat, 0, stat_len); 238 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 239 } 240 return 0; 241 } 242 243 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 244 u8 chan_idx) 245 { 246 int err; 247 int retry_cnt = 0; 248 struct device *dev = &(iproc_priv.pdev->dev); 249 250 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 251 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 252 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 253 /* 254 * Mailbox queue is full. Since MAY_SLEEP is set, assume 255 * not in atomic context and we can wait and try again. 256 */ 257 retry_cnt++; 258 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 259 err = mbox_send_message(iproc_priv.mbox[chan_idx], 260 mssg); 261 atomic_inc(&iproc_priv.mb_no_spc); 262 } 263 } 264 if (err < 0) { 265 atomic_inc(&iproc_priv.mb_send_fail); 266 return err; 267 } 268 269 /* Check error returned by mailbox controller */ 270 err = mssg->error; 271 if (unlikely(err < 0)) { 272 dev_err(dev, "message error %d", err); 273 /* Signal txdone for mailbox channel */ 274 } 275 276 /* Signal txdone for mailbox channel */ 277 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 278 return err; 279 } 280 281 /** 282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in 283 * a single SPU request message, starting at the current position in the request 284 * data. 285 * @rctx: Crypto request context 286 * 287 * This may be called on the crypto API thread, or, when a request is so large 288 * it must be broken into multiple SPU messages, on the thread used to invoke 289 * the response callback. When requests are broken into multiple SPU 290 * messages, we assume subsequent messages depend on previous results, and 291 * thus always wait for previous results before submitting the next message. 292 * Because requests are submitted in lock step like this, there is no need 293 * to synchronize access to request data structures. 294 * 295 * Return: -EINPROGRESS: request has been accepted and result will be returned 296 * asynchronously 297 * Any other value indicates an error 298 */ 299 static int handle_skcipher_req(struct iproc_reqctx_s *rctx) 300 { 301 struct spu_hw *spu = &iproc_priv.spu; 302 struct crypto_async_request *areq = rctx->parent; 303 struct skcipher_request *req = 304 container_of(areq, struct skcipher_request, base); 305 struct iproc_ctx_s *ctx = rctx->ctx; 306 struct spu_cipher_parms cipher_parms; 307 int err; 308 unsigned int chunksize; /* Num bytes of request to submit */ 309 int remaining; /* Bytes of request still to process */ 310 int chunk_start; /* Beginning of data for current SPU msg */ 311 312 /* IV or ctr value to use in this SPU msg */ 313 u8 local_iv_ctr[MAX_IV_SIZE]; 314 u32 stat_pad_len; /* num bytes to align status field */ 315 u32 pad_len; /* total length of all padding */ 316 struct brcm_message *mssg; /* mailbox message */ 317 318 /* number of entries in src and dst sg in mailbox message. */ 319 u8 rx_frag_num = 2; /* response header and STATUS */ 320 u8 tx_frag_num = 1; /* request header */ 321 322 flow_log("%s\n", __func__); 323 324 cipher_parms.alg = ctx->cipher.alg; 325 cipher_parms.mode = ctx->cipher.mode; 326 cipher_parms.type = ctx->cipher_type; 327 cipher_parms.key_len = ctx->enckeylen; 328 cipher_parms.key_buf = ctx->enckey; 329 cipher_parms.iv_buf = local_iv_ctr; 330 cipher_parms.iv_len = rctx->iv_ctr_len; 331 332 mssg = &rctx->mb_mssg; 333 chunk_start = rctx->src_sent; 334 remaining = rctx->total_todo - chunk_start; 335 336 /* determine the chunk we are breaking off and update the indexes */ 337 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 338 (remaining > ctx->max_payload)) 339 chunksize = ctx->max_payload; 340 else 341 chunksize = remaining; 342 343 rctx->src_sent += chunksize; 344 rctx->total_sent = rctx->src_sent; 345 346 /* Count number of sg entries to be included in this request */ 347 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 348 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 349 350 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 351 rctx->is_encrypt && chunk_start) 352 /* 353 * Encrypting non-first first chunk. Copy last block of 354 * previous result to IV for this chunk. 355 */ 356 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 357 rctx->iv_ctr_len, 358 chunk_start - rctx->iv_ctr_len); 359 360 if (rctx->iv_ctr_len) { 361 /* get our local copy of the iv */ 362 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 363 rctx->iv_ctr_len); 364 365 /* generate the next IV if possible */ 366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 367 !rctx->is_encrypt) { 368 /* 369 * CBC Decrypt: next IV is the last ciphertext block in 370 * this chunk 371 */ 372 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 373 rctx->iv_ctr_len, 374 rctx->src_sent - rctx->iv_ctr_len); 375 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 376 /* 377 * The SPU hardware increments the counter once for 378 * each AES block of 16 bytes. So update the counter 379 * for the next chunk, if there is one. Note that for 380 * this chunk, the counter has already been copied to 381 * local_iv_ctr. We can assume a block size of 16, 382 * because we only support CTR mode for AES, not for 383 * any other cipher alg. 384 */ 385 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 386 } 387 } 388 389 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 390 flow_log("max_payload infinite\n"); 391 else 392 flow_log("max_payload %u\n", ctx->max_payload); 393 394 flow_log("sent:%u start:%u remains:%u size:%u\n", 395 rctx->src_sent, chunk_start, remaining, chunksize); 396 397 /* Copy SPU header template created at setkey time */ 398 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 399 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 400 401 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 402 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 403 &cipher_parms, chunksize); 404 405 atomic64_add(chunksize, &iproc_priv.bytes_out); 406 407 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 408 if (stat_pad_len) 409 rx_frag_num++; 410 pad_len = stat_pad_len; 411 if (pad_len) { 412 tx_frag_num++; 413 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 414 0, ctx->auth.alg, ctx->auth.mode, 415 rctx->total_sent, stat_pad_len); 416 } 417 418 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 419 ctx->spu_req_hdr_len); 420 packet_log("payload:\n"); 421 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 422 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 423 424 /* 425 * Build mailbox message containing SPU request msg and rx buffers 426 * to catch response message 427 */ 428 memset(mssg, 0, sizeof(*mssg)); 429 mssg->type = BRCM_MESSAGE_SPU; 430 mssg->ctx = rctx; /* Will be returned in response */ 431 432 /* Create rx scatterlist to catch result */ 433 rx_frag_num += rctx->dst_nents; 434 435 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 436 spu->spu_xts_tweak_in_payload()) 437 rx_frag_num++; /* extra sg to insert tweak */ 438 439 err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 440 stat_pad_len); 441 if (err) 442 return err; 443 444 /* Create tx scatterlist containing SPU request message */ 445 tx_frag_num += rctx->src_nents; 446 if (spu->spu_tx_status_len()) 447 tx_frag_num++; 448 449 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 450 spu->spu_xts_tweak_in_payload()) 451 tx_frag_num++; /* extra sg to insert tweak */ 452 453 err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 454 pad_len); 455 if (err) 456 return err; 457 458 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 459 if (unlikely(err < 0)) 460 return err; 461 462 return -EINPROGRESS; 463 } 464 465 /** 466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the 467 * total received count for the request and updates global stats. 468 * @rctx: Crypto request context 469 */ 470 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx) 471 { 472 struct spu_hw *spu = &iproc_priv.spu; 473 #ifdef DEBUG 474 struct crypto_async_request *areq = rctx->parent; 475 struct skcipher_request *req = skcipher_request_cast(areq); 476 #endif 477 struct iproc_ctx_s *ctx = rctx->ctx; 478 u32 payload_len; 479 480 /* See how much data was returned */ 481 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 482 483 /* 484 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 485 * encrypted tweak ("i") value; we don't count those. 486 */ 487 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 488 spu->spu_xts_tweak_in_payload() && 489 (payload_len >= SPU_XTS_TWEAK_SIZE)) 490 payload_len -= SPU_XTS_TWEAK_SIZE; 491 492 atomic64_add(payload_len, &iproc_priv.bytes_in); 493 494 flow_log("%s() offset: %u, bd_len: %u BD:\n", 495 __func__, rctx->total_received, payload_len); 496 497 dump_sg(req->dst, rctx->total_received, payload_len); 498 499 rctx->total_received += payload_len; 500 if (rctx->total_received == rctx->total_todo) { 501 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 502 atomic_inc( 503 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 504 } 505 } 506 507 /** 508 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 509 * receive a SPU response message for an ahash request. 510 * @mssg: mailbox message containing the receive sg 511 * @rctx: crypto request context 512 * @rx_frag_num: number of scatterlist elements required to hold the 513 * SPU response message 514 * @digestsize: length of hash digest, in bytes 515 * @stat_pad_len: Number of bytes required to pad the STAT field to 516 * a 4-byte boundary 517 * 518 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 519 * when the request completes, whether the request is handled successfully or 520 * there is an error. 521 * 522 * Return: 523 * 0 if successful 524 * < 0 if an error 525 */ 526 static int 527 spu_ahash_rx_sg_create(struct brcm_message *mssg, 528 struct iproc_reqctx_s *rctx, 529 u8 rx_frag_num, unsigned int digestsize, 530 u32 stat_pad_len) 531 { 532 struct spu_hw *spu = &iproc_priv.spu; 533 struct scatterlist *sg; /* used to build sgs in mbox message */ 534 struct iproc_ctx_s *ctx = rctx->ctx; 535 536 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 537 rctx->gfp); 538 if (!mssg->spu.dst) 539 return -ENOMEM; 540 541 sg = mssg->spu.dst; 542 sg_init_table(sg, rx_frag_num); 543 /* Space for SPU message header */ 544 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 545 546 /* Space for digest */ 547 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 548 549 if (stat_pad_len) 550 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 551 552 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 553 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 554 return 0; 555 } 556 557 /** 558 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 559 * a SPU request message for an ahash request. Includes SPU message headers and 560 * the request data. 561 * @mssg: mailbox message containing the transmit sg 562 * @rctx: crypto request context 563 * @tx_frag_num: number of scatterlist elements required to construct the 564 * SPU request message 565 * @spu_hdr_len: length in bytes of SPU message header 566 * @hash_carry_len: Number of bytes of data carried over from previous req 567 * @new_data_len: Number of bytes of new request data 568 * @pad_len: Number of pad bytes 569 * 570 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 571 * when the request completes, whether the request is handled successfully or 572 * there is an error. 573 * 574 * Return: 575 * 0 if successful 576 * < 0 if an error 577 */ 578 static int 579 spu_ahash_tx_sg_create(struct brcm_message *mssg, 580 struct iproc_reqctx_s *rctx, 581 u8 tx_frag_num, 582 u32 spu_hdr_len, 583 unsigned int hash_carry_len, 584 unsigned int new_data_len, u32 pad_len) 585 { 586 struct spu_hw *spu = &iproc_priv.spu; 587 struct scatterlist *sg; /* used to build sgs in mbox message */ 588 u32 datalen; /* Number of bytes of response data expected */ 589 u32 stat_len; 590 591 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 592 rctx->gfp); 593 if (!mssg->spu.src) 594 return -ENOMEM; 595 596 sg = mssg->spu.src; 597 sg_init_table(sg, tx_frag_num); 598 599 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 600 BCM_HDR_LEN + spu_hdr_len); 601 602 if (hash_carry_len) 603 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 604 605 if (new_data_len) { 606 /* Copy in each src sg entry from request, up to chunksize */ 607 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 608 rctx->src_nents, new_data_len); 609 if (datalen < new_data_len) { 610 pr_err("%s(): failed to copy src sg to mbox msg", 611 __func__); 612 return -EFAULT; 613 } 614 } 615 616 if (pad_len) 617 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 618 619 stat_len = spu->spu_tx_status_len(); 620 if (stat_len) { 621 memset(rctx->msg_buf.tx_stat, 0, stat_len); 622 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 623 } 624 625 return 0; 626 } 627 628 /** 629 * handle_ahash_req() - Process an asynchronous hash request from the crypto 630 * API. 631 * @rctx: Crypto request context 632 * 633 * Builds a SPU request message embedded in a mailbox message and submits the 634 * mailbox message on a selected mailbox channel. The SPU request message is 635 * constructed as a scatterlist, including entries from the crypto API's 636 * src scatterlist to avoid copying the data to be hashed. This function is 637 * called either on the thread from the crypto API, or, in the case that the 638 * crypto API request is too large to fit in a single SPU request message, 639 * on the thread that invokes the receive callback with a response message. 640 * Because some operations require the response from one chunk before the next 641 * chunk can be submitted, we always wait for the response for the previous 642 * chunk before submitting the next chunk. Because requests are submitted in 643 * lock step like this, there is no need to synchronize access to request data 644 * structures. 645 * 646 * Return: 647 * -EINPROGRESS: request has been submitted to SPU and response will be 648 * returned asynchronously 649 * -EAGAIN: non-final request included a small amount of data, which for 650 * efficiency we did not submit to the SPU, but instead stored 651 * to be submitted to the SPU with the next part of the request 652 * other: an error code 653 */ 654 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 655 { 656 struct spu_hw *spu = &iproc_priv.spu; 657 struct crypto_async_request *areq = rctx->parent; 658 struct ahash_request *req = ahash_request_cast(areq); 659 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 660 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 661 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 662 struct iproc_ctx_s *ctx = rctx->ctx; 663 664 /* number of bytes still to be hashed in this req */ 665 unsigned int nbytes_to_hash = 0; 666 int err; 667 unsigned int chunksize = 0; /* length of hash carry + new data */ 668 /* 669 * length of new data, not from hash carry, to be submitted in 670 * this hw request 671 */ 672 unsigned int new_data_len; 673 674 unsigned int __maybe_unused chunk_start = 0; 675 u32 db_size; /* Length of data field, incl gcm and hash padding */ 676 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 677 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 678 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 679 struct brcm_message *mssg; /* mailbox message */ 680 struct spu_request_opts req_opts; 681 struct spu_cipher_parms cipher_parms; 682 struct spu_hash_parms hash_parms; 683 struct spu_aead_parms aead_parms; 684 unsigned int local_nbuf; 685 u32 spu_hdr_len; 686 unsigned int digestsize; 687 u16 rem = 0; 688 689 /* 690 * number of entries in src and dst sg. Always includes SPU msg header. 691 * rx always includes a buffer to catch digest and STATUS. 692 */ 693 u8 rx_frag_num = 3; 694 u8 tx_frag_num = 1; 695 696 flow_log("total_todo %u, total_sent %u\n", 697 rctx->total_todo, rctx->total_sent); 698 699 memset(&req_opts, 0, sizeof(req_opts)); 700 memset(&cipher_parms, 0, sizeof(cipher_parms)); 701 memset(&hash_parms, 0, sizeof(hash_parms)); 702 memset(&aead_parms, 0, sizeof(aead_parms)); 703 704 req_opts.bd_suppress = true; 705 hash_parms.alg = ctx->auth.alg; 706 hash_parms.mode = ctx->auth.mode; 707 hash_parms.type = HASH_TYPE_NONE; 708 hash_parms.key_buf = (u8 *)ctx->authkey; 709 hash_parms.key_len = ctx->authkeylen; 710 711 /* 712 * For hash algorithms below assignment looks bit odd but 713 * it's needed for AES-XCBC and AES-CMAC hash algorithms 714 * to differentiate between 128, 192, 256 bit key values. 715 * Based on the key values, hash algorithm is selected. 716 * For example for 128 bit key, hash algorithm is AES-128. 717 */ 718 cipher_parms.type = ctx->cipher_type; 719 720 mssg = &rctx->mb_mssg; 721 chunk_start = rctx->src_sent; 722 723 /* 724 * Compute the amount remaining to hash. This may include data 725 * carried over from previous requests. 726 */ 727 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 728 chunksize = nbytes_to_hash; 729 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 730 (chunksize > ctx->max_payload)) 731 chunksize = ctx->max_payload; 732 733 /* 734 * If this is not a final request and the request data is not a multiple 735 * of a full block, then simply park the extra data and prefix it to the 736 * data for the next request. 737 */ 738 if (!rctx->is_final) { 739 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 740 u16 new_len; /* len of data to add to hash carry */ 741 742 rem = chunksize % blocksize; /* remainder */ 743 if (rem) { 744 /* chunksize not a multiple of blocksize */ 745 chunksize -= rem; 746 if (chunksize == 0) { 747 /* Don't have a full block to submit to hw */ 748 new_len = rem - rctx->hash_carry_len; 749 sg_copy_part_to_buf(req->src, dest, new_len, 750 rctx->src_sent); 751 rctx->hash_carry_len = rem; 752 flow_log("Exiting with hash carry len: %u\n", 753 rctx->hash_carry_len); 754 packet_dump(" buf: ", 755 rctx->hash_carry, 756 rctx->hash_carry_len); 757 return -EAGAIN; 758 } 759 } 760 } 761 762 /* if we have hash carry, then prefix it to the data in this request */ 763 local_nbuf = rctx->hash_carry_len; 764 rctx->hash_carry_len = 0; 765 if (local_nbuf) 766 tx_frag_num++; 767 new_data_len = chunksize - local_nbuf; 768 769 /* Count number of sg entries to be used in this request */ 770 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 771 new_data_len); 772 773 /* AES hashing keeps key size in type field, so need to copy it here */ 774 if (hash_parms.alg == HASH_ALG_AES) 775 hash_parms.type = (enum hash_type)cipher_parms.type; 776 else 777 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 778 779 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 780 hash_parms.type); 781 hash_parms.digestsize = digestsize; 782 783 /* update the indexes */ 784 rctx->total_sent += chunksize; 785 /* if you sent a prebuf then that wasn't from this req->src */ 786 rctx->src_sent += new_data_len; 787 788 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 789 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 790 hash_parms.mode, 791 chunksize, 792 blocksize); 793 794 /* 795 * If a non-first chunk, then include the digest returned from the 796 * previous chunk so that hw can add to it (except for AES types). 797 */ 798 if ((hash_parms.type == HASH_TYPE_UPDT) && 799 (hash_parms.alg != HASH_ALG_AES)) { 800 hash_parms.key_buf = rctx->incr_hash; 801 hash_parms.key_len = digestsize; 802 } 803 804 atomic64_add(chunksize, &iproc_priv.bytes_out); 805 806 flow_log("%s() final: %u nbuf: %u ", 807 __func__, rctx->is_final, local_nbuf); 808 809 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 810 flow_log("max_payload infinite\n"); 811 else 812 flow_log("max_payload %u\n", ctx->max_payload); 813 814 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 815 816 /* Prepend SPU header with type 3 BCM header */ 817 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 818 819 hash_parms.prebuf_len = local_nbuf; 820 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 821 BCM_HDR_LEN, 822 &req_opts, &cipher_parms, 823 &hash_parms, &aead_parms, 824 new_data_len); 825 826 if (spu_hdr_len == 0) { 827 pr_err("Failed to create SPU request header\n"); 828 return -EFAULT; 829 } 830 831 /* 832 * Determine total length of padding required. Put all padding in one 833 * buffer. 834 */ 835 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 836 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 837 0, 0, hash_parms.pad_len); 838 if (spu->spu_tx_status_len()) 839 stat_pad_len = spu->spu_wordalign_padlen(db_size); 840 if (stat_pad_len) 841 rx_frag_num++; 842 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 843 if (pad_len) { 844 tx_frag_num++; 845 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 846 hash_parms.pad_len, ctx->auth.alg, 847 ctx->auth.mode, rctx->total_sent, 848 stat_pad_len); 849 } 850 851 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 852 spu_hdr_len); 853 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 854 flow_log("Data:\n"); 855 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 856 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 857 858 /* 859 * Build mailbox message containing SPU request msg and rx buffers 860 * to catch response message 861 */ 862 memset(mssg, 0, sizeof(*mssg)); 863 mssg->type = BRCM_MESSAGE_SPU; 864 mssg->ctx = rctx; /* Will be returned in response */ 865 866 /* Create rx scatterlist to catch result */ 867 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 868 stat_pad_len); 869 if (err) 870 return err; 871 872 /* Create tx scatterlist containing SPU request message */ 873 tx_frag_num += rctx->src_nents; 874 if (spu->spu_tx_status_len()) 875 tx_frag_num++; 876 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 877 local_nbuf, new_data_len, pad_len); 878 if (err) 879 return err; 880 881 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 882 if (unlikely(err < 0)) 883 return err; 884 885 return -EINPROGRESS; 886 } 887 888 /** 889 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 890 * for an HMAC request. 891 * @req: The HMAC request from the crypto API 892 * @ctx: The session context 893 * 894 * Return: 0 if synchronous hash operation successful 895 * -EINVAL if the hash algo is unrecognized 896 * any other value indicates an error 897 */ 898 static int spu_hmac_outer_hash(struct ahash_request *req, 899 struct iproc_ctx_s *ctx) 900 { 901 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 902 unsigned int blocksize = 903 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 904 int rc; 905 906 switch (ctx->auth.alg) { 907 case HASH_ALG_MD5: 908 rc = do_shash("md5", req->result, ctx->opad, blocksize, 909 req->result, ctx->digestsize, NULL, 0); 910 break; 911 case HASH_ALG_SHA1: 912 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 913 req->result, ctx->digestsize, NULL, 0); 914 break; 915 case HASH_ALG_SHA224: 916 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 917 req->result, ctx->digestsize, NULL, 0); 918 break; 919 case HASH_ALG_SHA256: 920 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 921 req->result, ctx->digestsize, NULL, 0); 922 break; 923 case HASH_ALG_SHA384: 924 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 925 req->result, ctx->digestsize, NULL, 0); 926 break; 927 case HASH_ALG_SHA512: 928 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 929 req->result, ctx->digestsize, NULL, 0); 930 break; 931 default: 932 pr_err("%s() Error : unknown hmac type\n", __func__); 933 rc = -EINVAL; 934 } 935 return rc; 936 } 937 938 /** 939 * ahash_req_done() - Process a hash result from the SPU hardware. 940 * @rctx: Crypto request context 941 * 942 * Return: 0 if successful 943 * < 0 if an error 944 */ 945 static int ahash_req_done(struct iproc_reqctx_s *rctx) 946 { 947 struct spu_hw *spu = &iproc_priv.spu; 948 struct crypto_async_request *areq = rctx->parent; 949 struct ahash_request *req = ahash_request_cast(areq); 950 struct iproc_ctx_s *ctx = rctx->ctx; 951 int err; 952 953 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 954 955 if (spu->spu_type == SPU_TYPE_SPUM) { 956 /* byte swap the output from the UPDT function to network byte 957 * order 958 */ 959 if (ctx->auth.alg == HASH_ALG_MD5) { 960 __swab32s((u32 *)req->result); 961 __swab32s(((u32 *)req->result) + 1); 962 __swab32s(((u32 *)req->result) + 2); 963 __swab32s(((u32 *)req->result) + 3); 964 __swab32s(((u32 *)req->result) + 4); 965 } 966 } 967 968 flow_dump(" digest ", req->result, ctx->digestsize); 969 970 /* if this an HMAC then do the outer hash */ 971 if (rctx->is_sw_hmac) { 972 err = spu_hmac_outer_hash(req, ctx); 973 if (err < 0) 974 return err; 975 flow_dump(" hmac: ", req->result, ctx->digestsize); 976 } 977 978 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 979 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 980 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 981 } else { 982 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 983 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 984 } 985 986 return 0; 987 } 988 989 /** 990 * handle_ahash_resp() - Process a SPU response message for a hash request. 991 * Checks if the entire crypto API request has been processed, and if so, 992 * invokes post processing on the result. 993 * @rctx: Crypto request context 994 */ 995 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 996 { 997 struct iproc_ctx_s *ctx = rctx->ctx; 998 #ifdef DEBUG 999 struct crypto_async_request *areq = rctx->parent; 1000 struct ahash_request *req = ahash_request_cast(areq); 1001 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1002 unsigned int blocksize = 1003 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1004 #endif 1005 /* 1006 * Save hash to use as input to next op if incremental. Might be copying 1007 * too much, but that's easier than figuring out actual digest size here 1008 */ 1009 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1010 1011 flow_log("%s() blocksize:%u digestsize:%u\n", 1012 __func__, blocksize, ctx->digestsize); 1013 1014 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1015 1016 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1017 ahash_req_done(rctx); 1018 } 1019 1020 /** 1021 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1022 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1023 * message headers and the response data. 1024 * @mssg: mailbox message containing the receive sg 1025 * @rctx: crypto request context 1026 * @rx_frag_num: number of scatterlist elements required to hold the 1027 * SPU response message 1028 * @assoc_len: Length of associated data included in the crypto request 1029 * @ret_iv_len: Length of IV returned in response 1030 * @resp_len: Number of bytes of response data expected to be written to 1031 * dst buffer from crypto API 1032 * @digestsize: Length of hash digest, in bytes 1033 * @stat_pad_len: Number of bytes required to pad the STAT field to 1034 * a 4-byte boundary 1035 * 1036 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1037 * when the request completes, whether the request is handled successfully or 1038 * there is an error. 1039 * 1040 * Returns: 1041 * 0 if successful 1042 * < 0 if an error 1043 */ 1044 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1045 struct aead_request *req, 1046 struct iproc_reqctx_s *rctx, 1047 u8 rx_frag_num, 1048 unsigned int assoc_len, 1049 u32 ret_iv_len, unsigned int resp_len, 1050 unsigned int digestsize, u32 stat_pad_len) 1051 { 1052 struct spu_hw *spu = &iproc_priv.spu; 1053 struct scatterlist *sg; /* used to build sgs in mbox message */ 1054 struct iproc_ctx_s *ctx = rctx->ctx; 1055 u32 datalen; /* Number of bytes of response data expected */ 1056 u32 assoc_buf_len; 1057 u8 data_padlen = 0; 1058 1059 if (ctx->is_rfc4543) { 1060 /* RFC4543: only pad after data, not after AAD */ 1061 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1062 assoc_len + resp_len); 1063 assoc_buf_len = assoc_len; 1064 } else { 1065 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1066 resp_len); 1067 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1068 assoc_len, ret_iv_len, 1069 rctx->is_encrypt); 1070 } 1071 1072 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1073 /* ICV (after data) must be in the next 32-bit word for CCM */ 1074 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1075 resp_len + 1076 data_padlen); 1077 1078 if (data_padlen) 1079 /* have to catch gcm pad in separate buffer */ 1080 rx_frag_num++; 1081 1082 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1083 rctx->gfp); 1084 if (!mssg->spu.dst) 1085 return -ENOMEM; 1086 1087 sg = mssg->spu.dst; 1088 sg_init_table(sg, rx_frag_num); 1089 1090 /* Space for SPU message header */ 1091 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1092 1093 if (assoc_buf_len) { 1094 /* 1095 * Don't write directly to req->dst, because SPU may pad the 1096 * assoc data in the response 1097 */ 1098 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1099 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1100 } 1101 1102 if (resp_len) { 1103 /* 1104 * Copy in each dst sg entry from request, up to chunksize. 1105 * dst sg catches just the data. digest caught in separate buf. 1106 */ 1107 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1108 rctx->dst_nents, resp_len); 1109 if (datalen < (resp_len)) { 1110 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1111 __func__, resp_len, datalen); 1112 return -EFAULT; 1113 } 1114 } 1115 1116 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1117 if (data_padlen) { 1118 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1119 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1120 } 1121 1122 /* Always catch ICV in separate buffer */ 1123 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1124 1125 flow_log("stat_pad_len %u\n", stat_pad_len); 1126 if (stat_pad_len) { 1127 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1128 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1129 } 1130 1131 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1132 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1139 * SPU request message for an AEAD request. Includes SPU message headers and the 1140 * request data. 1141 * @mssg: mailbox message containing the transmit sg 1142 * @rctx: crypto request context 1143 * @tx_frag_num: number of scatterlist elements required to construct the 1144 * SPU request message 1145 * @spu_hdr_len: length of SPU message header in bytes 1146 * @assoc: crypto API associated data scatterlist 1147 * @assoc_len: length of associated data 1148 * @assoc_nents: number of scatterlist entries containing assoc data 1149 * @aead_iv_len: length of AEAD IV, if included 1150 * @chunksize: Number of bytes of request data 1151 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1152 * @pad_len: Number of pad bytes 1153 * @incl_icv: If true, write separate ICV buffer after data and 1154 * any padding 1155 * 1156 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1157 * when the request completes, whether the request is handled successfully or 1158 * there is an error. 1159 * 1160 * Return: 1161 * 0 if successful 1162 * < 0 if an error 1163 */ 1164 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1165 struct iproc_reqctx_s *rctx, 1166 u8 tx_frag_num, 1167 u32 spu_hdr_len, 1168 struct scatterlist *assoc, 1169 unsigned int assoc_len, 1170 int assoc_nents, 1171 unsigned int aead_iv_len, 1172 unsigned int chunksize, 1173 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1174 { 1175 struct spu_hw *spu = &iproc_priv.spu; 1176 struct scatterlist *sg; /* used to build sgs in mbox message */ 1177 struct scatterlist *assoc_sg = assoc; 1178 struct iproc_ctx_s *ctx = rctx->ctx; 1179 u32 datalen; /* Number of bytes of data to write */ 1180 u32 written; /* Number of bytes of data written */ 1181 u32 assoc_offset = 0; 1182 u32 stat_len; 1183 1184 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1185 rctx->gfp); 1186 if (!mssg->spu.src) 1187 return -ENOMEM; 1188 1189 sg = mssg->spu.src; 1190 sg_init_table(sg, tx_frag_num); 1191 1192 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1193 BCM_HDR_LEN + spu_hdr_len); 1194 1195 if (assoc_len) { 1196 /* Copy in each associated data sg entry from request */ 1197 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1198 assoc_nents, assoc_len); 1199 if (written < assoc_len) { 1200 pr_err("%s(): failed to copy assoc sg to mbox msg", 1201 __func__); 1202 return -EFAULT; 1203 } 1204 } 1205 1206 if (aead_iv_len) 1207 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1208 1209 if (aad_pad_len) { 1210 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1211 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1212 } 1213 1214 datalen = chunksize; 1215 if ((chunksize > ctx->digestsize) && incl_icv) 1216 datalen -= ctx->digestsize; 1217 if (datalen) { 1218 /* For aead, a single msg should consume the entire src sg */ 1219 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1220 rctx->src_nents, datalen); 1221 if (written < datalen) { 1222 pr_err("%s(): failed to copy src sg to mbox msg", 1223 __func__); 1224 return -EFAULT; 1225 } 1226 } 1227 1228 if (pad_len) { 1229 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1230 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1231 } 1232 1233 if (incl_icv) 1234 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1235 1236 stat_len = spu->spu_tx_status_len(); 1237 if (stat_len) { 1238 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1239 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1240 } 1241 return 0; 1242 } 1243 1244 /** 1245 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1246 * current AEAD request. 1247 * @rctx: Crypto request context 1248 * 1249 * Unlike other operation types, we assume the length of the request fits in 1250 * a single SPU request message. aead_enqueue() makes sure this is true. 1251 * Comments for other op types regarding threads applies here as well. 1252 * 1253 * Unlike incremental hash ops, where the spu returns the entire hash for 1254 * truncated algs like sha-224, the SPU returns just the truncated hash in 1255 * response to aead requests. So digestsize is always ctx->digestsize here. 1256 * 1257 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1258 * returned asynchronously 1259 * Any other value indicates an error 1260 */ 1261 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1262 { 1263 struct spu_hw *spu = &iproc_priv.spu; 1264 struct crypto_async_request *areq = rctx->parent; 1265 struct aead_request *req = container_of(areq, 1266 struct aead_request, base); 1267 struct iproc_ctx_s *ctx = rctx->ctx; 1268 int err; 1269 unsigned int chunksize; 1270 unsigned int resp_len; 1271 u32 spu_hdr_len; 1272 u32 db_size; 1273 u32 stat_pad_len; 1274 u32 pad_len; 1275 struct brcm_message *mssg; /* mailbox message */ 1276 struct spu_request_opts req_opts; 1277 struct spu_cipher_parms cipher_parms; 1278 struct spu_hash_parms hash_parms; 1279 struct spu_aead_parms aead_parms; 1280 int assoc_nents = 0; 1281 bool incl_icv = false; 1282 unsigned int digestsize = ctx->digestsize; 1283 1284 /* number of entries in src and dst sg. Always includes SPU msg header. 1285 */ 1286 u8 rx_frag_num = 2; /* and STATUS */ 1287 u8 tx_frag_num = 1; 1288 1289 /* doing the whole thing at once */ 1290 chunksize = rctx->total_todo; 1291 1292 flow_log("%s: chunksize %u\n", __func__, chunksize); 1293 1294 memset(&req_opts, 0, sizeof(req_opts)); 1295 memset(&hash_parms, 0, sizeof(hash_parms)); 1296 memset(&aead_parms, 0, sizeof(aead_parms)); 1297 1298 req_opts.is_inbound = !(rctx->is_encrypt); 1299 req_opts.auth_first = ctx->auth_first; 1300 req_opts.is_aead = true; 1301 req_opts.is_esp = ctx->is_esp; 1302 1303 cipher_parms.alg = ctx->cipher.alg; 1304 cipher_parms.mode = ctx->cipher.mode; 1305 cipher_parms.type = ctx->cipher_type; 1306 cipher_parms.key_buf = ctx->enckey; 1307 cipher_parms.key_len = ctx->enckeylen; 1308 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1309 cipher_parms.iv_len = rctx->iv_ctr_len; 1310 1311 hash_parms.alg = ctx->auth.alg; 1312 hash_parms.mode = ctx->auth.mode; 1313 hash_parms.type = HASH_TYPE_NONE; 1314 hash_parms.key_buf = (u8 *)ctx->authkey; 1315 hash_parms.key_len = ctx->authkeylen; 1316 hash_parms.digestsize = digestsize; 1317 1318 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1319 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1320 hash_parms.key_len = SHA224_DIGEST_SIZE; 1321 1322 aead_parms.assoc_size = req->assoclen; 1323 if (ctx->is_esp && !ctx->is_rfc4543) { 1324 /* 1325 * 8-byte IV is included assoc data in request. SPU2 1326 * expects AAD to include just SPI and seqno. So 1327 * subtract off the IV len. 1328 */ 1329 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1330 1331 if (rctx->is_encrypt) { 1332 aead_parms.return_iv = true; 1333 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1334 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1335 } 1336 } else { 1337 aead_parms.ret_iv_len = 0; 1338 } 1339 1340 /* 1341 * Count number of sg entries from the crypto API request that are to 1342 * be included in this mailbox message. For dst sg, don't count space 1343 * for digest. Digest gets caught in a separate buffer and copied back 1344 * to dst sg when processing response. 1345 */ 1346 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1347 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1348 if (aead_parms.assoc_size) 1349 assoc_nents = spu_sg_count(rctx->assoc, 0, 1350 aead_parms.assoc_size); 1351 1352 mssg = &rctx->mb_mssg; 1353 1354 rctx->total_sent = chunksize; 1355 rctx->src_sent = chunksize; 1356 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1357 aead_parms.assoc_size, 1358 aead_parms.ret_iv_len, 1359 rctx->is_encrypt)) 1360 rx_frag_num++; 1361 1362 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1363 rctx->iv_ctr_len); 1364 1365 if (ctx->auth.alg == HASH_ALG_AES) 1366 hash_parms.type = (enum hash_type)ctx->cipher_type; 1367 1368 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1369 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1370 aead_parms.assoc_size); 1371 1372 /* General case data padding (CCM decrypt special case below) */ 1373 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1374 chunksize); 1375 1376 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1377 /* 1378 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1379 * 128-bit aligned 1380 */ 1381 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1382 ctx->cipher.mode, 1383 aead_parms.assoc_size + 2); 1384 1385 /* 1386 * And when decrypting CCM, need to pad without including 1387 * size of ICV which is tacked on to end of chunk 1388 */ 1389 if (!rctx->is_encrypt) 1390 aead_parms.data_pad_len = 1391 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1392 chunksize - digestsize); 1393 1394 /* CCM also requires software to rewrite portions of IV: */ 1395 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1396 chunksize, rctx->is_encrypt, 1397 ctx->is_esp); 1398 } 1399 1400 if (ctx->is_rfc4543) { 1401 /* 1402 * RFC4543: data is included in AAD, so don't pad after AAD 1403 * and pad data based on both AAD + data size 1404 */ 1405 aead_parms.aad_pad_len = 0; 1406 if (!rctx->is_encrypt) 1407 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1408 ctx->cipher.mode, 1409 aead_parms.assoc_size + chunksize - 1410 digestsize); 1411 else 1412 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1413 ctx->cipher.mode, 1414 aead_parms.assoc_size + chunksize); 1415 1416 req_opts.is_rfc4543 = true; 1417 } 1418 1419 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1420 incl_icv = true; 1421 tx_frag_num++; 1422 /* Copy ICV from end of src scatterlist to digest buf */ 1423 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1424 req->assoclen + rctx->total_sent - 1425 digestsize); 1426 } 1427 1428 atomic64_add(chunksize, &iproc_priv.bytes_out); 1429 1430 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1431 1432 /* Prepend SPU header with type 3 BCM header */ 1433 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1434 1435 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1436 BCM_HDR_LEN, &req_opts, 1437 &cipher_parms, &hash_parms, 1438 &aead_parms, chunksize); 1439 1440 /* Determine total length of padding. Put all padding in one buffer. */ 1441 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1442 chunksize, aead_parms.aad_pad_len, 1443 aead_parms.data_pad_len, 0); 1444 1445 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1446 1447 if (stat_pad_len) 1448 rx_frag_num++; 1449 pad_len = aead_parms.data_pad_len + stat_pad_len; 1450 if (pad_len) { 1451 tx_frag_num++; 1452 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1453 aead_parms.data_pad_len, 0, 1454 ctx->auth.alg, ctx->auth.mode, 1455 rctx->total_sent, stat_pad_len); 1456 } 1457 1458 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1459 spu_hdr_len); 1460 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1461 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1462 packet_log("BD:\n"); 1463 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1464 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1465 1466 /* 1467 * Build mailbox message containing SPU request msg and rx buffers 1468 * to catch response message 1469 */ 1470 memset(mssg, 0, sizeof(*mssg)); 1471 mssg->type = BRCM_MESSAGE_SPU; 1472 mssg->ctx = rctx; /* Will be returned in response */ 1473 1474 /* Create rx scatterlist to catch result */ 1475 rx_frag_num += rctx->dst_nents; 1476 resp_len = chunksize; 1477 1478 /* 1479 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1480 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1481 * sends entire digest back. 1482 */ 1483 rx_frag_num++; 1484 1485 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1486 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1487 /* 1488 * Input is ciphertxt plus ICV, but ICV not incl 1489 * in output. 1490 */ 1491 resp_len -= ctx->digestsize; 1492 if (resp_len == 0) 1493 /* no rx frags to catch output data */ 1494 rx_frag_num -= rctx->dst_nents; 1495 } 1496 1497 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1498 aead_parms.assoc_size, 1499 aead_parms.ret_iv_len, resp_len, digestsize, 1500 stat_pad_len); 1501 if (err) 1502 return err; 1503 1504 /* Create tx scatterlist containing SPU request message */ 1505 tx_frag_num += rctx->src_nents; 1506 tx_frag_num += assoc_nents; 1507 if (aead_parms.aad_pad_len) 1508 tx_frag_num++; 1509 if (aead_parms.iv_len) 1510 tx_frag_num++; 1511 if (spu->spu_tx_status_len()) 1512 tx_frag_num++; 1513 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1514 rctx->assoc, aead_parms.assoc_size, 1515 assoc_nents, aead_parms.iv_len, chunksize, 1516 aead_parms.aad_pad_len, pad_len, incl_icv); 1517 if (err) 1518 return err; 1519 1520 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1521 if (unlikely(err < 0)) 1522 return err; 1523 1524 return -EINPROGRESS; 1525 } 1526 1527 /** 1528 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1529 * @rctx: Crypto request context 1530 */ 1531 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1532 { 1533 struct spu_hw *spu = &iproc_priv.spu; 1534 struct crypto_async_request *areq = rctx->parent; 1535 struct aead_request *req = container_of(areq, 1536 struct aead_request, base); 1537 struct iproc_ctx_s *ctx = rctx->ctx; 1538 u32 payload_len; 1539 unsigned int icv_offset; 1540 u32 result_len; 1541 1542 /* See how much data was returned */ 1543 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1544 flow_log("payload_len %u\n", payload_len); 1545 1546 /* only count payload */ 1547 atomic64_add(payload_len, &iproc_priv.bytes_in); 1548 1549 if (req->assoclen) 1550 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1551 req->assoclen); 1552 1553 /* 1554 * Copy the ICV back to the destination 1555 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1556 * API doesn't expect ICV in dst buffer. 1557 */ 1558 result_len = req->cryptlen; 1559 if (rctx->is_encrypt) { 1560 icv_offset = req->assoclen + rctx->total_sent; 1561 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1562 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1563 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1564 ctx->digestsize, icv_offset); 1565 result_len += ctx->digestsize; 1566 } 1567 1568 packet_log("response data: "); 1569 dump_sg(req->dst, req->assoclen, result_len); 1570 1571 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1572 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1573 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1574 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1575 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1576 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1577 else 1578 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1579 } else { 1580 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1581 } 1582 } 1583 1584 /** 1585 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1586 * @rctx: request context 1587 * 1588 * Mailbox scatterlists are allocated for each chunk. So free them after 1589 * processing each chunk. 1590 */ 1591 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1592 { 1593 /* mailbox message used to tx request */ 1594 struct brcm_message *mssg = &rctx->mb_mssg; 1595 1596 kfree(mssg->spu.src); 1597 kfree(mssg->spu.dst); 1598 memset(mssg, 0, sizeof(struct brcm_message)); 1599 } 1600 1601 /** 1602 * finish_req() - Used to invoke the complete callback from the requester when 1603 * a request has been handled asynchronously. 1604 * @rctx: Request context 1605 * @err: Indicates whether the request was successful or not 1606 * 1607 * Ensures that cleanup has been done for request 1608 */ 1609 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1610 { 1611 struct crypto_async_request *areq = rctx->parent; 1612 1613 flow_log("%s() err:%d\n\n", __func__, err); 1614 1615 /* No harm done if already called */ 1616 spu_chunk_cleanup(rctx); 1617 1618 if (areq) 1619 areq->complete(areq, err); 1620 } 1621 1622 /** 1623 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1624 * @cl: mailbox client structure for SPU driver 1625 * @msg: mailbox message containing SPU response 1626 */ 1627 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1628 { 1629 struct spu_hw *spu = &iproc_priv.spu; 1630 struct brcm_message *mssg = msg; 1631 struct iproc_reqctx_s *rctx; 1632 int err; 1633 1634 rctx = mssg->ctx; 1635 if (unlikely(!rctx)) { 1636 /* This is fatal */ 1637 pr_err("%s(): no request context", __func__); 1638 err = -EFAULT; 1639 goto cb_finish; 1640 } 1641 1642 /* process the SPU status */ 1643 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1644 if (err != 0) { 1645 if (err == SPU_INVALID_ICV) 1646 atomic_inc(&iproc_priv.bad_icv); 1647 err = -EBADMSG; 1648 goto cb_finish; 1649 } 1650 1651 /* Process the SPU response message */ 1652 switch (rctx->ctx->alg->type) { 1653 case CRYPTO_ALG_TYPE_SKCIPHER: 1654 handle_skcipher_resp(rctx); 1655 break; 1656 case CRYPTO_ALG_TYPE_AHASH: 1657 handle_ahash_resp(rctx); 1658 break; 1659 case CRYPTO_ALG_TYPE_AEAD: 1660 handle_aead_resp(rctx); 1661 break; 1662 default: 1663 err = -EINVAL; 1664 goto cb_finish; 1665 } 1666 1667 /* 1668 * If this response does not complete the request, then send the next 1669 * request chunk. 1670 */ 1671 if (rctx->total_sent < rctx->total_todo) { 1672 /* Deallocate anything specific to previous chunk */ 1673 spu_chunk_cleanup(rctx); 1674 1675 switch (rctx->ctx->alg->type) { 1676 case CRYPTO_ALG_TYPE_SKCIPHER: 1677 err = handle_skcipher_req(rctx); 1678 break; 1679 case CRYPTO_ALG_TYPE_AHASH: 1680 err = handle_ahash_req(rctx); 1681 if (err == -EAGAIN) 1682 /* 1683 * we saved data in hash carry, but tell crypto 1684 * API we successfully completed request. 1685 */ 1686 err = 0; 1687 break; 1688 case CRYPTO_ALG_TYPE_AEAD: 1689 err = handle_aead_req(rctx); 1690 break; 1691 default: 1692 err = -EINVAL; 1693 } 1694 1695 if (err == -EINPROGRESS) 1696 /* Successfully submitted request for next chunk */ 1697 return; 1698 } 1699 1700 cb_finish: 1701 finish_req(rctx, err); 1702 } 1703 1704 /* ==================== Kernel Cryptographic API ==================== */ 1705 1706 /** 1707 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request. 1708 * @req: Crypto API request 1709 * @encrypt: true if encrypting; false if decrypting 1710 * 1711 * Return: -EINPROGRESS if request accepted and result will be returned 1712 * asynchronously 1713 * < 0 if an error 1714 */ 1715 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt) 1716 { 1717 struct iproc_reqctx_s *rctx = skcipher_request_ctx(req); 1718 struct iproc_ctx_s *ctx = 1719 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); 1720 int err; 1721 1722 flow_log("%s() enc:%u\n", __func__, encrypt); 1723 1724 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1725 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1726 rctx->parent = &req->base; 1727 rctx->is_encrypt = encrypt; 1728 rctx->bd_suppress = false; 1729 rctx->total_todo = req->cryptlen; 1730 rctx->src_sent = 0; 1731 rctx->total_sent = 0; 1732 rctx->total_received = 0; 1733 rctx->ctx = ctx; 1734 1735 /* Initialize current position in src and dst scatterlists */ 1736 rctx->src_sg = req->src; 1737 rctx->src_nents = 0; 1738 rctx->src_skip = 0; 1739 rctx->dst_sg = req->dst; 1740 rctx->dst_nents = 0; 1741 rctx->dst_skip = 0; 1742 1743 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1744 ctx->cipher.mode == CIPHER_MODE_CTR || 1745 ctx->cipher.mode == CIPHER_MODE_OFB || 1746 ctx->cipher.mode == CIPHER_MODE_XTS || 1747 ctx->cipher.mode == CIPHER_MODE_GCM || 1748 ctx->cipher.mode == CIPHER_MODE_CCM) { 1749 rctx->iv_ctr_len = 1750 crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req)); 1751 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len); 1752 } else { 1753 rctx->iv_ctr_len = 0; 1754 } 1755 1756 /* Choose a SPU to process this request */ 1757 rctx->chan_idx = select_channel(); 1758 err = handle_skcipher_req(rctx); 1759 if (err != -EINPROGRESS) 1760 /* synchronous result */ 1761 spu_chunk_cleanup(rctx); 1762 1763 return err; 1764 } 1765 1766 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key, 1767 unsigned int keylen) 1768 { 1769 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1770 int err; 1771 1772 err = verify_skcipher_des_key(cipher, key); 1773 if (err) 1774 return err; 1775 1776 ctx->cipher_type = CIPHER_TYPE_DES; 1777 return 0; 1778 } 1779 1780 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1781 unsigned int keylen) 1782 { 1783 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1784 int err; 1785 1786 err = verify_skcipher_des3_key(cipher, key); 1787 if (err) 1788 return err; 1789 1790 ctx->cipher_type = CIPHER_TYPE_3DES; 1791 return 0; 1792 } 1793 1794 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key, 1795 unsigned int keylen) 1796 { 1797 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1798 1799 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1800 /* XTS includes two keys of equal length */ 1801 keylen = keylen / 2; 1802 1803 switch (keylen) { 1804 case AES_KEYSIZE_128: 1805 ctx->cipher_type = CIPHER_TYPE_AES128; 1806 break; 1807 case AES_KEYSIZE_192: 1808 ctx->cipher_type = CIPHER_TYPE_AES192; 1809 break; 1810 case AES_KEYSIZE_256: 1811 ctx->cipher_type = CIPHER_TYPE_AES256; 1812 break; 1813 default: 1814 return -EINVAL; 1815 } 1816 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1817 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1818 return 0; 1819 } 1820 1821 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key, 1822 unsigned int keylen) 1823 { 1824 struct spu_hw *spu = &iproc_priv.spu; 1825 struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher); 1826 struct spu_cipher_parms cipher_parms; 1827 u32 alloc_len = 0; 1828 int err; 1829 1830 flow_log("skcipher_setkey() keylen: %d\n", keylen); 1831 flow_dump(" key: ", key, keylen); 1832 1833 switch (ctx->cipher.alg) { 1834 case CIPHER_ALG_DES: 1835 err = des_setkey(cipher, key, keylen); 1836 break; 1837 case CIPHER_ALG_3DES: 1838 err = threedes_setkey(cipher, key, keylen); 1839 break; 1840 case CIPHER_ALG_AES: 1841 err = aes_setkey(cipher, key, keylen); 1842 break; 1843 default: 1844 pr_err("%s() Error: unknown cipher alg\n", __func__); 1845 err = -EINVAL; 1846 } 1847 if (err) 1848 return err; 1849 1850 memcpy(ctx->enckey, key, keylen); 1851 ctx->enckeylen = keylen; 1852 1853 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1854 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1855 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1856 unsigned int xts_keylen = keylen / 2; 1857 1858 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1859 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1860 } 1861 1862 if (spu->spu_type == SPU_TYPE_SPUM) 1863 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1864 else if (spu->spu_type == SPU_TYPE_SPU2) 1865 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1866 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1867 cipher_parms.iv_buf = NULL; 1868 cipher_parms.iv_len = crypto_skcipher_ivsize(cipher); 1869 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1870 1871 cipher_parms.alg = ctx->cipher.alg; 1872 cipher_parms.mode = ctx->cipher.mode; 1873 cipher_parms.type = ctx->cipher_type; 1874 cipher_parms.key_buf = ctx->enckey; 1875 cipher_parms.key_len = ctx->enckeylen; 1876 1877 /* Prepend SPU request message with BCM header */ 1878 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1879 ctx->spu_req_hdr_len = 1880 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1881 &cipher_parms); 1882 1883 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1884 ctx->enckeylen, 1885 false); 1886 1887 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1888 1889 return 0; 1890 } 1891 1892 static int skcipher_encrypt(struct skcipher_request *req) 1893 { 1894 flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen); 1895 1896 return skcipher_enqueue(req, true); 1897 } 1898 1899 static int skcipher_decrypt(struct skcipher_request *req) 1900 { 1901 flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen); 1902 return skcipher_enqueue(req, false); 1903 } 1904 1905 static int ahash_enqueue(struct ahash_request *req) 1906 { 1907 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1908 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1909 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1910 int err; 1911 const char *alg_name; 1912 1913 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 1914 1915 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1916 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1917 rctx->parent = &req->base; 1918 rctx->ctx = ctx; 1919 rctx->bd_suppress = true; 1920 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 1921 1922 /* Initialize position in src scatterlist */ 1923 rctx->src_sg = req->src; 1924 rctx->src_skip = 0; 1925 rctx->src_nents = 0; 1926 rctx->dst_sg = NULL; 1927 rctx->dst_skip = 0; 1928 rctx->dst_nents = 0; 1929 1930 /* SPU2 hardware does not compute hash of zero length data */ 1931 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 1932 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 1933 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 1934 flow_log("Doing %sfinal %s zero-len hash request in software\n", 1935 rctx->is_final ? "" : "non-", alg_name); 1936 err = do_shash((unsigned char *)alg_name, req->result, 1937 NULL, 0, NULL, 0, ctx->authkey, 1938 ctx->authkeylen); 1939 if (err < 0) 1940 flow_log("Hash request failed with error %d\n", err); 1941 return err; 1942 } 1943 /* Choose a SPU to process this request */ 1944 rctx->chan_idx = select_channel(); 1945 1946 err = handle_ahash_req(rctx); 1947 if (err != -EINPROGRESS) 1948 /* synchronous result */ 1949 spu_chunk_cleanup(rctx); 1950 1951 if (err == -EAGAIN) 1952 /* 1953 * we saved data in hash carry, but tell crypto API 1954 * we successfully completed request. 1955 */ 1956 err = 0; 1957 1958 return err; 1959 } 1960 1961 static int __ahash_init(struct ahash_request *req) 1962 { 1963 struct spu_hw *spu = &iproc_priv.spu; 1964 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 1965 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1966 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 1967 1968 flow_log("%s()\n", __func__); 1969 1970 /* Initialize the context */ 1971 rctx->hash_carry_len = 0; 1972 rctx->is_final = 0; 1973 1974 rctx->total_todo = 0; 1975 rctx->src_sent = 0; 1976 rctx->total_sent = 0; 1977 rctx->total_received = 0; 1978 1979 ctx->digestsize = crypto_ahash_digestsize(tfm); 1980 /* If we add a hash whose digest is larger, catch it here. */ 1981 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 1982 1983 rctx->is_sw_hmac = false; 1984 1985 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 1986 true); 1987 1988 return 0; 1989 } 1990 1991 /** 1992 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 1993 * @ctx: Crypto session context 1994 * 1995 * SPU-2 does not support incremental hashing (we'll have to revisit and 1996 * condition based on chip revision or device tree entry if future versions do 1997 * support incremental hash) 1998 * 1999 * SPU-M also doesn't support incremental hashing of AES-XCBC 2000 * 2001 * Return: true if incremental hashing is not supported 2002 * false otherwise 2003 */ 2004 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2005 { 2006 struct spu_hw *spu = &iproc_priv.spu; 2007 2008 if (spu->spu_type == SPU_TYPE_SPU2) 2009 return true; 2010 2011 if ((ctx->auth.alg == HASH_ALG_AES) && 2012 (ctx->auth.mode == HASH_MODE_XCBC)) 2013 return true; 2014 2015 /* Otherwise, incremental hashing is supported */ 2016 return false; 2017 } 2018 2019 static int ahash_init(struct ahash_request *req) 2020 { 2021 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2022 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2023 const char *alg_name; 2024 struct crypto_shash *hash; 2025 int ret; 2026 gfp_t gfp; 2027 2028 if (spu_no_incr_hash(ctx)) { 2029 /* 2030 * If we get an incremental hashing request and it's not 2031 * supported by the hardware, we need to handle it in software 2032 * by calling synchronous hash functions. 2033 */ 2034 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2035 hash = crypto_alloc_shash(alg_name, 0, 0); 2036 if (IS_ERR(hash)) { 2037 ret = PTR_ERR(hash); 2038 goto err; 2039 } 2040 2041 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2042 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2043 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2044 crypto_shash_descsize(hash), gfp); 2045 if (!ctx->shash) { 2046 ret = -ENOMEM; 2047 goto err_hash; 2048 } 2049 ctx->shash->tfm = hash; 2050 2051 /* Set the key using data we already have from setkey */ 2052 if (ctx->authkeylen > 0) { 2053 ret = crypto_shash_setkey(hash, ctx->authkey, 2054 ctx->authkeylen); 2055 if (ret) 2056 goto err_shash; 2057 } 2058 2059 /* Initialize hash w/ this key and other params */ 2060 ret = crypto_shash_init(ctx->shash); 2061 if (ret) 2062 goto err_shash; 2063 } else { 2064 /* Otherwise call the internal function which uses SPU hw */ 2065 ret = __ahash_init(req); 2066 } 2067 2068 return ret; 2069 2070 err_shash: 2071 kfree(ctx->shash); 2072 err_hash: 2073 crypto_free_shash(hash); 2074 err: 2075 return ret; 2076 } 2077 2078 static int __ahash_update(struct ahash_request *req) 2079 { 2080 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2081 2082 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2083 2084 if (!req->nbytes) 2085 return 0; 2086 rctx->total_todo += req->nbytes; 2087 rctx->src_sent = 0; 2088 2089 return ahash_enqueue(req); 2090 } 2091 2092 static int ahash_update(struct ahash_request *req) 2093 { 2094 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2095 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2096 u8 *tmpbuf; 2097 int ret; 2098 int nents; 2099 gfp_t gfp; 2100 2101 if (spu_no_incr_hash(ctx)) { 2102 /* 2103 * If we get an incremental hashing request and it's not 2104 * supported by the hardware, we need to handle it in software 2105 * by calling synchronous hash functions. 2106 */ 2107 if (req->src) 2108 nents = sg_nents(req->src); 2109 else 2110 return -EINVAL; 2111 2112 /* Copy data from req scatterlist to tmp buffer */ 2113 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2114 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2115 tmpbuf = kmalloc(req->nbytes, gfp); 2116 if (!tmpbuf) 2117 return -ENOMEM; 2118 2119 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2120 req->nbytes) { 2121 kfree(tmpbuf); 2122 return -EINVAL; 2123 } 2124 2125 /* Call synchronous update */ 2126 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2127 kfree(tmpbuf); 2128 } else { 2129 /* Otherwise call the internal function which uses SPU hw */ 2130 ret = __ahash_update(req); 2131 } 2132 2133 return ret; 2134 } 2135 2136 static int __ahash_final(struct ahash_request *req) 2137 { 2138 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2139 2140 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2141 2142 rctx->is_final = 1; 2143 2144 return ahash_enqueue(req); 2145 } 2146 2147 static int ahash_final(struct ahash_request *req) 2148 { 2149 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2150 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2151 int ret; 2152 2153 if (spu_no_incr_hash(ctx)) { 2154 /* 2155 * If we get an incremental hashing request and it's not 2156 * supported by the hardware, we need to handle it in software 2157 * by calling synchronous hash functions. 2158 */ 2159 ret = crypto_shash_final(ctx->shash, req->result); 2160 2161 /* Done with hash, can deallocate it now */ 2162 crypto_free_shash(ctx->shash->tfm); 2163 kfree(ctx->shash); 2164 2165 } else { 2166 /* Otherwise call the internal function which uses SPU hw */ 2167 ret = __ahash_final(req); 2168 } 2169 2170 return ret; 2171 } 2172 2173 static int __ahash_finup(struct ahash_request *req) 2174 { 2175 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2176 2177 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2178 2179 rctx->total_todo += req->nbytes; 2180 rctx->src_sent = 0; 2181 rctx->is_final = 1; 2182 2183 return ahash_enqueue(req); 2184 } 2185 2186 static int ahash_finup(struct ahash_request *req) 2187 { 2188 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2189 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2190 u8 *tmpbuf; 2191 int ret; 2192 int nents; 2193 gfp_t gfp; 2194 2195 if (spu_no_incr_hash(ctx)) { 2196 /* 2197 * If we get an incremental hashing request and it's not 2198 * supported by the hardware, we need to handle it in software 2199 * by calling synchronous hash functions. 2200 */ 2201 if (req->src) { 2202 nents = sg_nents(req->src); 2203 } else { 2204 ret = -EINVAL; 2205 goto ahash_finup_exit; 2206 } 2207 2208 /* Copy data from req scatterlist to tmp buffer */ 2209 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2210 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2211 tmpbuf = kmalloc(req->nbytes, gfp); 2212 if (!tmpbuf) { 2213 ret = -ENOMEM; 2214 goto ahash_finup_exit; 2215 } 2216 2217 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2218 req->nbytes) { 2219 ret = -EINVAL; 2220 goto ahash_finup_free; 2221 } 2222 2223 /* Call synchronous update */ 2224 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2225 req->result); 2226 } else { 2227 /* Otherwise call the internal function which uses SPU hw */ 2228 return __ahash_finup(req); 2229 } 2230 ahash_finup_free: 2231 kfree(tmpbuf); 2232 2233 ahash_finup_exit: 2234 /* Done with hash, can deallocate it now */ 2235 crypto_free_shash(ctx->shash->tfm); 2236 kfree(ctx->shash); 2237 return ret; 2238 } 2239 2240 static int ahash_digest(struct ahash_request *req) 2241 { 2242 int err; 2243 2244 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2245 2246 /* whole thing at once */ 2247 err = __ahash_init(req); 2248 if (!err) 2249 err = __ahash_finup(req); 2250 2251 return err; 2252 } 2253 2254 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2255 unsigned int keylen) 2256 { 2257 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2258 2259 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2260 __func__, ahash, key, keylen); 2261 flow_dump(" key: ", key, keylen); 2262 2263 if (ctx->auth.alg == HASH_ALG_AES) { 2264 switch (keylen) { 2265 case AES_KEYSIZE_128: 2266 ctx->cipher_type = CIPHER_TYPE_AES128; 2267 break; 2268 case AES_KEYSIZE_192: 2269 ctx->cipher_type = CIPHER_TYPE_AES192; 2270 break; 2271 case AES_KEYSIZE_256: 2272 ctx->cipher_type = CIPHER_TYPE_AES256; 2273 break; 2274 default: 2275 pr_err("%s() Error: Invalid key length\n", __func__); 2276 return -EINVAL; 2277 } 2278 } else { 2279 pr_err("%s() Error: unknown hash alg\n", __func__); 2280 return -EINVAL; 2281 } 2282 memcpy(ctx->authkey, key, keylen); 2283 ctx->authkeylen = keylen; 2284 2285 return 0; 2286 } 2287 2288 static int ahash_export(struct ahash_request *req, void *out) 2289 { 2290 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2291 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2292 2293 spu_exp->total_todo = rctx->total_todo; 2294 spu_exp->total_sent = rctx->total_sent; 2295 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2296 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2297 spu_exp->hash_carry_len = rctx->hash_carry_len; 2298 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2299 2300 return 0; 2301 } 2302 2303 static int ahash_import(struct ahash_request *req, const void *in) 2304 { 2305 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2306 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2307 2308 rctx->total_todo = spu_exp->total_todo; 2309 rctx->total_sent = spu_exp->total_sent; 2310 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2311 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2312 rctx->hash_carry_len = spu_exp->hash_carry_len; 2313 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2314 2315 return 0; 2316 } 2317 2318 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2319 unsigned int keylen) 2320 { 2321 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2322 unsigned int blocksize = 2323 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2324 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2325 unsigned int index; 2326 int rc; 2327 2328 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2329 __func__, ahash, key, keylen, blocksize, digestsize); 2330 flow_dump(" key: ", key, keylen); 2331 2332 if (keylen > blocksize) { 2333 switch (ctx->auth.alg) { 2334 case HASH_ALG_MD5: 2335 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2336 0, NULL, 0); 2337 break; 2338 case HASH_ALG_SHA1: 2339 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2340 0, NULL, 0); 2341 break; 2342 case HASH_ALG_SHA224: 2343 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2344 0, NULL, 0); 2345 break; 2346 case HASH_ALG_SHA256: 2347 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2348 0, NULL, 0); 2349 break; 2350 case HASH_ALG_SHA384: 2351 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2352 0, NULL, 0); 2353 break; 2354 case HASH_ALG_SHA512: 2355 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2356 0, NULL, 0); 2357 break; 2358 case HASH_ALG_SHA3_224: 2359 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2360 NULL, 0, NULL, 0); 2361 break; 2362 case HASH_ALG_SHA3_256: 2363 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2364 NULL, 0, NULL, 0); 2365 break; 2366 case HASH_ALG_SHA3_384: 2367 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2368 NULL, 0, NULL, 0); 2369 break; 2370 case HASH_ALG_SHA3_512: 2371 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2372 NULL, 0, NULL, 0); 2373 break; 2374 default: 2375 pr_err("%s() Error: unknown hash alg\n", __func__); 2376 return -EINVAL; 2377 } 2378 if (rc < 0) { 2379 pr_err("%s() Error %d computing shash for %s\n", 2380 __func__, rc, hash_alg_name[ctx->auth.alg]); 2381 return rc; 2382 } 2383 ctx->authkeylen = digestsize; 2384 2385 flow_log(" keylen > digestsize... hashed\n"); 2386 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2387 } else { 2388 memcpy(ctx->authkey, key, keylen); 2389 ctx->authkeylen = keylen; 2390 } 2391 2392 /* 2393 * Full HMAC operation in SPUM is not verified, 2394 * So keeping the generation of IPAD, OPAD and 2395 * outer hashing in software. 2396 */ 2397 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2398 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2399 memset(ctx->ipad + ctx->authkeylen, 0, 2400 blocksize - ctx->authkeylen); 2401 ctx->authkeylen = 0; 2402 memcpy(ctx->opad, ctx->ipad, blocksize); 2403 2404 for (index = 0; index < blocksize; index++) { 2405 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2406 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2407 } 2408 2409 flow_dump(" ipad: ", ctx->ipad, blocksize); 2410 flow_dump(" opad: ", ctx->opad, blocksize); 2411 } 2412 ctx->digestsize = digestsize; 2413 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2414 2415 return 0; 2416 } 2417 2418 static int ahash_hmac_init(struct ahash_request *req) 2419 { 2420 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2421 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2422 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2423 unsigned int blocksize = 2424 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2425 2426 flow_log("ahash_hmac_init()\n"); 2427 2428 /* init the context as a hash */ 2429 ahash_init(req); 2430 2431 if (!spu_no_incr_hash(ctx)) { 2432 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2433 rctx->is_sw_hmac = true; 2434 ctx->auth.mode = HASH_MODE_HASH; 2435 /* start with a prepended ipad */ 2436 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2437 rctx->hash_carry_len = blocksize; 2438 rctx->total_todo += blocksize; 2439 } 2440 2441 return 0; 2442 } 2443 2444 static int ahash_hmac_update(struct ahash_request *req) 2445 { 2446 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2447 2448 if (!req->nbytes) 2449 return 0; 2450 2451 return ahash_update(req); 2452 } 2453 2454 static int ahash_hmac_final(struct ahash_request *req) 2455 { 2456 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2457 2458 return ahash_final(req); 2459 } 2460 2461 static int ahash_hmac_finup(struct ahash_request *req) 2462 { 2463 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2464 2465 return ahash_finup(req); 2466 } 2467 2468 static int ahash_hmac_digest(struct ahash_request *req) 2469 { 2470 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2471 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2472 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2473 unsigned int blocksize = 2474 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2475 2476 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2477 2478 /* Perform initialization and then call finup */ 2479 __ahash_init(req); 2480 2481 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2482 /* 2483 * SPU2 supports full HMAC implementation in the 2484 * hardware, need not to generate IPAD, OPAD and 2485 * outer hash in software. 2486 * Only for hash key len > hash block size, SPU2 2487 * expects to perform hashing on the key, shorten 2488 * it to digest size and feed it as hash key. 2489 */ 2490 rctx->is_sw_hmac = false; 2491 ctx->auth.mode = HASH_MODE_HMAC; 2492 } else { 2493 rctx->is_sw_hmac = true; 2494 ctx->auth.mode = HASH_MODE_HASH; 2495 /* start with a prepended ipad */ 2496 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2497 rctx->hash_carry_len = blocksize; 2498 rctx->total_todo += blocksize; 2499 } 2500 2501 return __ahash_finup(req); 2502 } 2503 2504 /* aead helpers */ 2505 2506 static int aead_need_fallback(struct aead_request *req) 2507 { 2508 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2509 struct spu_hw *spu = &iproc_priv.spu; 2510 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2511 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2512 u32 payload_len; 2513 2514 /* 2515 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2516 * and AAD are both 0 bytes long. So use fallback in this case. 2517 */ 2518 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2519 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2520 (req->assoclen == 0)) { 2521 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2522 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2523 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2524 return 1; 2525 } 2526 } 2527 2528 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2529 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2530 (spu->spu_type == SPU_TYPE_SPUM) && 2531 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2532 (ctx->digestsize != 16)) { 2533 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2534 __func__, ctx->digestsize); 2535 return 1; 2536 } 2537 2538 /* 2539 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2540 * when AAD size is 0 2541 */ 2542 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2543 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2544 (req->assoclen == 0)) { 2545 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2546 __func__); 2547 return 1; 2548 } 2549 2550 /* 2551 * RFC4106 and RFC4543 cannot handle the case where AAD is other than 2552 * 16 or 20 bytes long. So use fallback in this case. 2553 */ 2554 if (ctx->cipher.mode == CIPHER_MODE_GCM && 2555 ctx->cipher.alg == CIPHER_ALG_AES && 2556 rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE && 2557 req->assoclen != 16 && req->assoclen != 20) { 2558 flow_log("RFC4106/RFC4543 needs fallback for assoclen" 2559 " other than 16 or 20 bytes\n"); 2560 return 1; 2561 } 2562 2563 payload_len = req->cryptlen; 2564 if (spu->spu_type == SPU_TYPE_SPUM) 2565 payload_len += req->assoclen; 2566 2567 flow_log("%s() payload len: %u\n", __func__, payload_len); 2568 2569 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2570 return 0; 2571 else 2572 return payload_len > ctx->max_payload; 2573 } 2574 2575 static void aead_complete(struct crypto_async_request *areq, int err) 2576 { 2577 struct aead_request *req = 2578 container_of(areq, struct aead_request, base); 2579 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2580 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2581 2582 flow_log("%s() err:%d\n", __func__, err); 2583 2584 areq->tfm = crypto_aead_tfm(aead); 2585 2586 areq->complete = rctx->old_complete; 2587 areq->data = rctx->old_data; 2588 2589 areq->complete(areq, err); 2590 } 2591 2592 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2593 { 2594 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2595 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2596 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2597 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2598 int err; 2599 u32 req_flags; 2600 2601 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2602 2603 if (ctx->fallback_cipher) { 2604 /* Store the cipher tfm and then use the fallback tfm */ 2605 rctx->old_tfm = tfm; 2606 aead_request_set_tfm(req, ctx->fallback_cipher); 2607 /* 2608 * Save the callback and chain ourselves in, so we can restore 2609 * the tfm 2610 */ 2611 rctx->old_complete = req->base.complete; 2612 rctx->old_data = req->base.data; 2613 req_flags = aead_request_flags(req); 2614 aead_request_set_callback(req, req_flags, aead_complete, req); 2615 err = is_encrypt ? crypto_aead_encrypt(req) : 2616 crypto_aead_decrypt(req); 2617 2618 if (err == 0) { 2619 /* 2620 * fallback was synchronous (did not return 2621 * -EINPROGRESS). So restore request state here. 2622 */ 2623 aead_request_set_callback(req, req_flags, 2624 rctx->old_complete, req); 2625 req->base.data = rctx->old_data; 2626 aead_request_set_tfm(req, aead); 2627 flow_log("%s() fallback completed successfully\n\n", 2628 __func__); 2629 } 2630 } else { 2631 err = -EINVAL; 2632 } 2633 2634 return err; 2635 } 2636 2637 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2638 { 2639 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2640 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2641 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2642 int err; 2643 2644 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2645 2646 if (req->assoclen > MAX_ASSOC_SIZE) { 2647 pr_err 2648 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2649 __func__, req->assoclen, MAX_ASSOC_SIZE); 2650 return -EINVAL; 2651 } 2652 2653 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2654 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2655 rctx->parent = &req->base; 2656 rctx->is_encrypt = is_encrypt; 2657 rctx->bd_suppress = false; 2658 rctx->total_todo = req->cryptlen; 2659 rctx->src_sent = 0; 2660 rctx->total_sent = 0; 2661 rctx->total_received = 0; 2662 rctx->is_sw_hmac = false; 2663 rctx->ctx = ctx; 2664 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2665 2666 /* assoc data is at start of src sg */ 2667 rctx->assoc = req->src; 2668 2669 /* 2670 * Init current position in src scatterlist to be after assoc data. 2671 * src_skip set to buffer offset where data begins. (Assoc data could 2672 * end in the middle of a buffer.) 2673 */ 2674 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2675 &rctx->src_skip) < 0) { 2676 pr_err("%s() Error: Unable to find start of src data\n", 2677 __func__); 2678 return -EINVAL; 2679 } 2680 2681 rctx->src_nents = 0; 2682 rctx->dst_nents = 0; 2683 if (req->dst == req->src) { 2684 rctx->dst_sg = rctx->src_sg; 2685 rctx->dst_skip = rctx->src_skip; 2686 } else { 2687 /* 2688 * Expect req->dst to have room for assoc data followed by 2689 * output data and ICV, if encrypt. So initialize dst_sg 2690 * to point beyond assoc len offset. 2691 */ 2692 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2693 &rctx->dst_skip) < 0) { 2694 pr_err("%s() Error: Unable to find start of dst data\n", 2695 __func__); 2696 return -EINVAL; 2697 } 2698 } 2699 2700 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2701 ctx->cipher.mode == CIPHER_MODE_CTR || 2702 ctx->cipher.mode == CIPHER_MODE_OFB || 2703 ctx->cipher.mode == CIPHER_MODE_XTS || 2704 ctx->cipher.mode == CIPHER_MODE_GCM) { 2705 rctx->iv_ctr_len = 2706 ctx->salt_len + 2707 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2708 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2709 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2710 } else { 2711 rctx->iv_ctr_len = 0; 2712 } 2713 2714 rctx->hash_carry_len = 0; 2715 2716 flow_log(" src sg: %p\n", req->src); 2717 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2718 rctx->src_sg, rctx->src_skip); 2719 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2720 flow_log(" dst sg: %p\n", req->dst); 2721 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2722 rctx->dst_sg, rctx->dst_skip); 2723 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2724 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2725 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2726 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2727 2728 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2729 flow_log(" max_payload infinite"); 2730 else 2731 flow_log(" max_payload: %u\n", ctx->max_payload); 2732 2733 if (unlikely(aead_need_fallback(req))) 2734 return aead_do_fallback(req, is_encrypt); 2735 2736 /* 2737 * Do memory allocations for request after fallback check, because if we 2738 * do fallback, we won't call finish_req() to dealloc. 2739 */ 2740 if (rctx->iv_ctr_len) { 2741 if (ctx->salt_len) 2742 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2743 ctx->salt, ctx->salt_len); 2744 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2745 req->iv, 2746 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2747 } 2748 2749 rctx->chan_idx = select_channel(); 2750 err = handle_aead_req(rctx); 2751 if (err != -EINPROGRESS) 2752 /* synchronous result */ 2753 spu_chunk_cleanup(rctx); 2754 2755 return err; 2756 } 2757 2758 static int aead_authenc_setkey(struct crypto_aead *cipher, 2759 const u8 *key, unsigned int keylen) 2760 { 2761 struct spu_hw *spu = &iproc_priv.spu; 2762 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2763 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2764 struct crypto_authenc_keys keys; 2765 int ret; 2766 2767 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2768 keylen); 2769 flow_dump(" key: ", key, keylen); 2770 2771 ret = crypto_authenc_extractkeys(&keys, key, keylen); 2772 if (ret) 2773 goto badkey; 2774 2775 if (keys.enckeylen > MAX_KEY_SIZE || 2776 keys.authkeylen > MAX_KEY_SIZE) 2777 goto badkey; 2778 2779 ctx->enckeylen = keys.enckeylen; 2780 ctx->authkeylen = keys.authkeylen; 2781 2782 memcpy(ctx->enckey, keys.enckey, keys.enckeylen); 2783 /* May end up padding auth key. So make sure it's zeroed. */ 2784 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2785 memcpy(ctx->authkey, keys.authkey, keys.authkeylen); 2786 2787 switch (ctx->alg->cipher_info.alg) { 2788 case CIPHER_ALG_DES: 2789 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen)) 2790 return -EINVAL; 2791 2792 ctx->cipher_type = CIPHER_TYPE_DES; 2793 break; 2794 case CIPHER_ALG_3DES: 2795 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen)) 2796 return -EINVAL; 2797 2798 ctx->cipher_type = CIPHER_TYPE_3DES; 2799 break; 2800 case CIPHER_ALG_AES: 2801 switch (ctx->enckeylen) { 2802 case AES_KEYSIZE_128: 2803 ctx->cipher_type = CIPHER_TYPE_AES128; 2804 break; 2805 case AES_KEYSIZE_192: 2806 ctx->cipher_type = CIPHER_TYPE_AES192; 2807 break; 2808 case AES_KEYSIZE_256: 2809 ctx->cipher_type = CIPHER_TYPE_AES256; 2810 break; 2811 default: 2812 goto badkey; 2813 } 2814 break; 2815 default: 2816 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2817 return -EINVAL; 2818 } 2819 2820 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2821 ctx->authkeylen); 2822 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2823 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2824 2825 /* setkey the fallback just in case we needto use it */ 2826 if (ctx->fallback_cipher) { 2827 flow_log(" running fallback setkey()\n"); 2828 2829 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2830 ctx->fallback_cipher->base.crt_flags |= 2831 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2832 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); 2833 if (ret) 2834 flow_log(" fallback setkey() returned:%d\n", ret); 2835 } 2836 2837 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2838 ctx->enckeylen, 2839 false); 2840 2841 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2842 2843 return ret; 2844 2845 badkey: 2846 ctx->enckeylen = 0; 2847 ctx->authkeylen = 0; 2848 ctx->digestsize = 0; 2849 2850 return -EINVAL; 2851 } 2852 2853 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2854 const u8 *key, unsigned int keylen) 2855 { 2856 struct spu_hw *spu = &iproc_priv.spu; 2857 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2858 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2859 2860 int ret = 0; 2861 2862 flow_log("%s() keylen:%u\n", __func__, keylen); 2863 flow_dump(" key: ", key, keylen); 2864 2865 if (!ctx->is_esp) 2866 ctx->digestsize = keylen; 2867 2868 ctx->enckeylen = keylen; 2869 ctx->authkeylen = 0; 2870 2871 switch (ctx->enckeylen) { 2872 case AES_KEYSIZE_128: 2873 ctx->cipher_type = CIPHER_TYPE_AES128; 2874 break; 2875 case AES_KEYSIZE_192: 2876 ctx->cipher_type = CIPHER_TYPE_AES192; 2877 break; 2878 case AES_KEYSIZE_256: 2879 ctx->cipher_type = CIPHER_TYPE_AES256; 2880 break; 2881 default: 2882 goto badkey; 2883 } 2884 2885 memcpy(ctx->enckey, key, ctx->enckeylen); 2886 2887 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2888 ctx->authkeylen); 2889 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2890 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2891 2892 /* setkey the fallback just in case we need to use it */ 2893 if (ctx->fallback_cipher) { 2894 flow_log(" running fallback setkey()\n"); 2895 2896 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2897 ctx->fallback_cipher->base.crt_flags |= 2898 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2899 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 2900 keylen + ctx->salt_len); 2901 if (ret) 2902 flow_log(" fallback setkey() returned:%d\n", ret); 2903 } 2904 2905 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2906 ctx->enckeylen, 2907 false); 2908 2909 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2910 2911 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2912 ctx->authkeylen); 2913 2914 return ret; 2915 2916 badkey: 2917 ctx->enckeylen = 0; 2918 ctx->authkeylen = 0; 2919 ctx->digestsize = 0; 2920 2921 return -EINVAL; 2922 } 2923 2924 /** 2925 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 2926 * @cipher: AEAD structure 2927 * @key: Key followed by 4 bytes of salt 2928 * @keylen: Length of key plus salt, in bytes 2929 * 2930 * Extracts salt from key and stores it to be prepended to IV on each request. 2931 * Digest is always 16 bytes 2932 * 2933 * Return: Value from generic gcm setkey. 2934 */ 2935 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 2936 const u8 *key, unsigned int keylen) 2937 { 2938 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2939 2940 flow_log("%s\n", __func__); 2941 2942 if (keylen < GCM_ESP_SALT_SIZE) 2943 return -EINVAL; 2944 2945 ctx->salt_len = GCM_ESP_SALT_SIZE; 2946 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2947 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2948 keylen -= GCM_ESP_SALT_SIZE; 2949 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2950 ctx->is_esp = true; 2951 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2952 2953 return aead_gcm_ccm_setkey(cipher, key, keylen); 2954 } 2955 2956 /** 2957 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 2958 * cipher: AEAD structure 2959 * key: Key followed by 4 bytes of salt 2960 * keylen: Length of key plus salt, in bytes 2961 * 2962 * Extracts salt from key and stores it to be prepended to IV on each request. 2963 * Digest is always 16 bytes 2964 * 2965 * Return: Value from generic gcm setkey. 2966 */ 2967 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 2968 const u8 *key, unsigned int keylen) 2969 { 2970 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2971 2972 flow_log("%s\n", __func__); 2973 2974 if (keylen < GCM_ESP_SALT_SIZE) 2975 return -EINVAL; 2976 2977 ctx->salt_len = GCM_ESP_SALT_SIZE; 2978 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 2979 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 2980 keylen -= GCM_ESP_SALT_SIZE; 2981 ctx->digestsize = GCM_ESP_DIGESTSIZE; 2982 ctx->is_esp = true; 2983 ctx->is_rfc4543 = true; 2984 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 2985 2986 return aead_gcm_ccm_setkey(cipher, key, keylen); 2987 } 2988 2989 /** 2990 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 2991 * @cipher: AEAD structure 2992 * @key: Key followed by 4 bytes of salt 2993 * @keylen: Length of key plus salt, in bytes 2994 * 2995 * Extracts salt from key and stores it to be prepended to IV on each request. 2996 * Digest is always 16 bytes 2997 * 2998 * Return: Value from generic ccm setkey. 2999 */ 3000 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 3001 const u8 *key, unsigned int keylen) 3002 { 3003 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3004 3005 flow_log("%s\n", __func__); 3006 3007 if (keylen < CCM_ESP_SALT_SIZE) 3008 return -EINVAL; 3009 3010 ctx->salt_len = CCM_ESP_SALT_SIZE; 3011 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 3012 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 3013 keylen -= CCM_ESP_SALT_SIZE; 3014 ctx->is_esp = true; 3015 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 3016 3017 return aead_gcm_ccm_setkey(cipher, key, keylen); 3018 } 3019 3020 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 3021 { 3022 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3023 int ret = 0; 3024 3025 flow_log("%s() authkeylen:%u authsize:%u\n", 3026 __func__, ctx->authkeylen, authsize); 3027 3028 ctx->digestsize = authsize; 3029 3030 /* setkey the fallback just in case we needto use it */ 3031 if (ctx->fallback_cipher) { 3032 flow_log(" running fallback setauth()\n"); 3033 3034 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 3035 if (ret) 3036 flow_log(" fallback setauth() returned:%d\n", ret); 3037 } 3038 3039 return ret; 3040 } 3041 3042 static int aead_encrypt(struct aead_request *req) 3043 { 3044 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3045 req->cryptlen); 3046 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3047 flow_log(" assoc_len:%u\n", req->assoclen); 3048 3049 return aead_enqueue(req, true); 3050 } 3051 3052 static int aead_decrypt(struct aead_request *req) 3053 { 3054 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3055 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3056 flow_log(" assoc_len:%u\n", req->assoclen); 3057 3058 return aead_enqueue(req, false); 3059 } 3060 3061 /* ==================== Supported Cipher Algorithms ==================== */ 3062 3063 static struct iproc_alg_s driver_algs[] = { 3064 { 3065 .type = CRYPTO_ALG_TYPE_AEAD, 3066 .alg.aead = { 3067 .base = { 3068 .cra_name = "gcm(aes)", 3069 .cra_driver_name = "gcm-aes-iproc", 3070 .cra_blocksize = AES_BLOCK_SIZE, 3071 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3072 }, 3073 .setkey = aead_gcm_ccm_setkey, 3074 .ivsize = GCM_AES_IV_SIZE, 3075 .maxauthsize = AES_BLOCK_SIZE, 3076 }, 3077 .cipher_info = { 3078 .alg = CIPHER_ALG_AES, 3079 .mode = CIPHER_MODE_GCM, 3080 }, 3081 .auth_info = { 3082 .alg = HASH_ALG_AES, 3083 .mode = HASH_MODE_GCM, 3084 }, 3085 .auth_first = 0, 3086 }, 3087 { 3088 .type = CRYPTO_ALG_TYPE_AEAD, 3089 .alg.aead = { 3090 .base = { 3091 .cra_name = "ccm(aes)", 3092 .cra_driver_name = "ccm-aes-iproc", 3093 .cra_blocksize = AES_BLOCK_SIZE, 3094 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3095 }, 3096 .setkey = aead_gcm_ccm_setkey, 3097 .ivsize = CCM_AES_IV_SIZE, 3098 .maxauthsize = AES_BLOCK_SIZE, 3099 }, 3100 .cipher_info = { 3101 .alg = CIPHER_ALG_AES, 3102 .mode = CIPHER_MODE_CCM, 3103 }, 3104 .auth_info = { 3105 .alg = HASH_ALG_AES, 3106 .mode = HASH_MODE_CCM, 3107 }, 3108 .auth_first = 0, 3109 }, 3110 { 3111 .type = CRYPTO_ALG_TYPE_AEAD, 3112 .alg.aead = { 3113 .base = { 3114 .cra_name = "rfc4106(gcm(aes))", 3115 .cra_driver_name = "gcm-aes-esp-iproc", 3116 .cra_blocksize = AES_BLOCK_SIZE, 3117 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3118 }, 3119 .setkey = aead_gcm_esp_setkey, 3120 .ivsize = GCM_RFC4106_IV_SIZE, 3121 .maxauthsize = AES_BLOCK_SIZE, 3122 }, 3123 .cipher_info = { 3124 .alg = CIPHER_ALG_AES, 3125 .mode = CIPHER_MODE_GCM, 3126 }, 3127 .auth_info = { 3128 .alg = HASH_ALG_AES, 3129 .mode = HASH_MODE_GCM, 3130 }, 3131 .auth_first = 0, 3132 }, 3133 { 3134 .type = CRYPTO_ALG_TYPE_AEAD, 3135 .alg.aead = { 3136 .base = { 3137 .cra_name = "rfc4309(ccm(aes))", 3138 .cra_driver_name = "ccm-aes-esp-iproc", 3139 .cra_blocksize = AES_BLOCK_SIZE, 3140 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3141 }, 3142 .setkey = aead_ccm_esp_setkey, 3143 .ivsize = CCM_AES_IV_SIZE, 3144 .maxauthsize = AES_BLOCK_SIZE, 3145 }, 3146 .cipher_info = { 3147 .alg = CIPHER_ALG_AES, 3148 .mode = CIPHER_MODE_CCM, 3149 }, 3150 .auth_info = { 3151 .alg = HASH_ALG_AES, 3152 .mode = HASH_MODE_CCM, 3153 }, 3154 .auth_first = 0, 3155 }, 3156 { 3157 .type = CRYPTO_ALG_TYPE_AEAD, 3158 .alg.aead = { 3159 .base = { 3160 .cra_name = "rfc4543(gcm(aes))", 3161 .cra_driver_name = "gmac-aes-esp-iproc", 3162 .cra_blocksize = AES_BLOCK_SIZE, 3163 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3164 }, 3165 .setkey = rfc4543_gcm_esp_setkey, 3166 .ivsize = GCM_RFC4106_IV_SIZE, 3167 .maxauthsize = AES_BLOCK_SIZE, 3168 }, 3169 .cipher_info = { 3170 .alg = CIPHER_ALG_AES, 3171 .mode = CIPHER_MODE_GCM, 3172 }, 3173 .auth_info = { 3174 .alg = HASH_ALG_AES, 3175 .mode = HASH_MODE_GCM, 3176 }, 3177 .auth_first = 0, 3178 }, 3179 { 3180 .type = CRYPTO_ALG_TYPE_AEAD, 3181 .alg.aead = { 3182 .base = { 3183 .cra_name = "authenc(hmac(md5),cbc(aes))", 3184 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3185 .cra_blocksize = AES_BLOCK_SIZE, 3186 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3187 CRYPTO_ALG_ASYNC | 3188 CRYPTO_ALG_ALLOCATES_MEMORY 3189 }, 3190 .setkey = aead_authenc_setkey, 3191 .ivsize = AES_BLOCK_SIZE, 3192 .maxauthsize = MD5_DIGEST_SIZE, 3193 }, 3194 .cipher_info = { 3195 .alg = CIPHER_ALG_AES, 3196 .mode = CIPHER_MODE_CBC, 3197 }, 3198 .auth_info = { 3199 .alg = HASH_ALG_MD5, 3200 .mode = HASH_MODE_HMAC, 3201 }, 3202 .auth_first = 0, 3203 }, 3204 { 3205 .type = CRYPTO_ALG_TYPE_AEAD, 3206 .alg.aead = { 3207 .base = { 3208 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3209 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3210 .cra_blocksize = AES_BLOCK_SIZE, 3211 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3212 CRYPTO_ALG_ASYNC | 3213 CRYPTO_ALG_ALLOCATES_MEMORY 3214 }, 3215 .setkey = aead_authenc_setkey, 3216 .ivsize = AES_BLOCK_SIZE, 3217 .maxauthsize = SHA1_DIGEST_SIZE, 3218 }, 3219 .cipher_info = { 3220 .alg = CIPHER_ALG_AES, 3221 .mode = CIPHER_MODE_CBC, 3222 }, 3223 .auth_info = { 3224 .alg = HASH_ALG_SHA1, 3225 .mode = HASH_MODE_HMAC, 3226 }, 3227 .auth_first = 0, 3228 }, 3229 { 3230 .type = CRYPTO_ALG_TYPE_AEAD, 3231 .alg.aead = { 3232 .base = { 3233 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3234 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3235 .cra_blocksize = AES_BLOCK_SIZE, 3236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3237 CRYPTO_ALG_ASYNC | 3238 CRYPTO_ALG_ALLOCATES_MEMORY 3239 }, 3240 .setkey = aead_authenc_setkey, 3241 .ivsize = AES_BLOCK_SIZE, 3242 .maxauthsize = SHA256_DIGEST_SIZE, 3243 }, 3244 .cipher_info = { 3245 .alg = CIPHER_ALG_AES, 3246 .mode = CIPHER_MODE_CBC, 3247 }, 3248 .auth_info = { 3249 .alg = HASH_ALG_SHA256, 3250 .mode = HASH_MODE_HMAC, 3251 }, 3252 .auth_first = 0, 3253 }, 3254 { 3255 .type = CRYPTO_ALG_TYPE_AEAD, 3256 .alg.aead = { 3257 .base = { 3258 .cra_name = "authenc(hmac(md5),cbc(des))", 3259 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3260 .cra_blocksize = DES_BLOCK_SIZE, 3261 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3262 CRYPTO_ALG_ASYNC | 3263 CRYPTO_ALG_ALLOCATES_MEMORY 3264 }, 3265 .setkey = aead_authenc_setkey, 3266 .ivsize = DES_BLOCK_SIZE, 3267 .maxauthsize = MD5_DIGEST_SIZE, 3268 }, 3269 .cipher_info = { 3270 .alg = CIPHER_ALG_DES, 3271 .mode = CIPHER_MODE_CBC, 3272 }, 3273 .auth_info = { 3274 .alg = HASH_ALG_MD5, 3275 .mode = HASH_MODE_HMAC, 3276 }, 3277 .auth_first = 0, 3278 }, 3279 { 3280 .type = CRYPTO_ALG_TYPE_AEAD, 3281 .alg.aead = { 3282 .base = { 3283 .cra_name = "authenc(hmac(sha1),cbc(des))", 3284 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3285 .cra_blocksize = DES_BLOCK_SIZE, 3286 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3287 CRYPTO_ALG_ASYNC | 3288 CRYPTO_ALG_ALLOCATES_MEMORY 3289 }, 3290 .setkey = aead_authenc_setkey, 3291 .ivsize = DES_BLOCK_SIZE, 3292 .maxauthsize = SHA1_DIGEST_SIZE, 3293 }, 3294 .cipher_info = { 3295 .alg = CIPHER_ALG_DES, 3296 .mode = CIPHER_MODE_CBC, 3297 }, 3298 .auth_info = { 3299 .alg = HASH_ALG_SHA1, 3300 .mode = HASH_MODE_HMAC, 3301 }, 3302 .auth_first = 0, 3303 }, 3304 { 3305 .type = CRYPTO_ALG_TYPE_AEAD, 3306 .alg.aead = { 3307 .base = { 3308 .cra_name = "authenc(hmac(sha224),cbc(des))", 3309 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3310 .cra_blocksize = DES_BLOCK_SIZE, 3311 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3312 CRYPTO_ALG_ASYNC | 3313 CRYPTO_ALG_ALLOCATES_MEMORY 3314 }, 3315 .setkey = aead_authenc_setkey, 3316 .ivsize = DES_BLOCK_SIZE, 3317 .maxauthsize = SHA224_DIGEST_SIZE, 3318 }, 3319 .cipher_info = { 3320 .alg = CIPHER_ALG_DES, 3321 .mode = CIPHER_MODE_CBC, 3322 }, 3323 .auth_info = { 3324 .alg = HASH_ALG_SHA224, 3325 .mode = HASH_MODE_HMAC, 3326 }, 3327 .auth_first = 0, 3328 }, 3329 { 3330 .type = CRYPTO_ALG_TYPE_AEAD, 3331 .alg.aead = { 3332 .base = { 3333 .cra_name = "authenc(hmac(sha256),cbc(des))", 3334 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3335 .cra_blocksize = DES_BLOCK_SIZE, 3336 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3337 CRYPTO_ALG_ASYNC | 3338 CRYPTO_ALG_ALLOCATES_MEMORY 3339 }, 3340 .setkey = aead_authenc_setkey, 3341 .ivsize = DES_BLOCK_SIZE, 3342 .maxauthsize = SHA256_DIGEST_SIZE, 3343 }, 3344 .cipher_info = { 3345 .alg = CIPHER_ALG_DES, 3346 .mode = CIPHER_MODE_CBC, 3347 }, 3348 .auth_info = { 3349 .alg = HASH_ALG_SHA256, 3350 .mode = HASH_MODE_HMAC, 3351 }, 3352 .auth_first = 0, 3353 }, 3354 { 3355 .type = CRYPTO_ALG_TYPE_AEAD, 3356 .alg.aead = { 3357 .base = { 3358 .cra_name = "authenc(hmac(sha384),cbc(des))", 3359 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3360 .cra_blocksize = DES_BLOCK_SIZE, 3361 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3362 CRYPTO_ALG_ASYNC | 3363 CRYPTO_ALG_ALLOCATES_MEMORY 3364 }, 3365 .setkey = aead_authenc_setkey, 3366 .ivsize = DES_BLOCK_SIZE, 3367 .maxauthsize = SHA384_DIGEST_SIZE, 3368 }, 3369 .cipher_info = { 3370 .alg = CIPHER_ALG_DES, 3371 .mode = CIPHER_MODE_CBC, 3372 }, 3373 .auth_info = { 3374 .alg = HASH_ALG_SHA384, 3375 .mode = HASH_MODE_HMAC, 3376 }, 3377 .auth_first = 0, 3378 }, 3379 { 3380 .type = CRYPTO_ALG_TYPE_AEAD, 3381 .alg.aead = { 3382 .base = { 3383 .cra_name = "authenc(hmac(sha512),cbc(des))", 3384 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3385 .cra_blocksize = DES_BLOCK_SIZE, 3386 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3387 CRYPTO_ALG_ASYNC | 3388 CRYPTO_ALG_ALLOCATES_MEMORY 3389 }, 3390 .setkey = aead_authenc_setkey, 3391 .ivsize = DES_BLOCK_SIZE, 3392 .maxauthsize = SHA512_DIGEST_SIZE, 3393 }, 3394 .cipher_info = { 3395 .alg = CIPHER_ALG_DES, 3396 .mode = CIPHER_MODE_CBC, 3397 }, 3398 .auth_info = { 3399 .alg = HASH_ALG_SHA512, 3400 .mode = HASH_MODE_HMAC, 3401 }, 3402 .auth_first = 0, 3403 }, 3404 { 3405 .type = CRYPTO_ALG_TYPE_AEAD, 3406 .alg.aead = { 3407 .base = { 3408 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3409 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3410 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3411 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3412 CRYPTO_ALG_ASYNC | 3413 CRYPTO_ALG_ALLOCATES_MEMORY 3414 }, 3415 .setkey = aead_authenc_setkey, 3416 .ivsize = DES3_EDE_BLOCK_SIZE, 3417 .maxauthsize = MD5_DIGEST_SIZE, 3418 }, 3419 .cipher_info = { 3420 .alg = CIPHER_ALG_3DES, 3421 .mode = CIPHER_MODE_CBC, 3422 }, 3423 .auth_info = { 3424 .alg = HASH_ALG_MD5, 3425 .mode = HASH_MODE_HMAC, 3426 }, 3427 .auth_first = 0, 3428 }, 3429 { 3430 .type = CRYPTO_ALG_TYPE_AEAD, 3431 .alg.aead = { 3432 .base = { 3433 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3434 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3435 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3436 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3437 CRYPTO_ALG_ASYNC | 3438 CRYPTO_ALG_ALLOCATES_MEMORY 3439 }, 3440 .setkey = aead_authenc_setkey, 3441 .ivsize = DES3_EDE_BLOCK_SIZE, 3442 .maxauthsize = SHA1_DIGEST_SIZE, 3443 }, 3444 .cipher_info = { 3445 .alg = CIPHER_ALG_3DES, 3446 .mode = CIPHER_MODE_CBC, 3447 }, 3448 .auth_info = { 3449 .alg = HASH_ALG_SHA1, 3450 .mode = HASH_MODE_HMAC, 3451 }, 3452 .auth_first = 0, 3453 }, 3454 { 3455 .type = CRYPTO_ALG_TYPE_AEAD, 3456 .alg.aead = { 3457 .base = { 3458 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3459 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3460 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3461 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3462 CRYPTO_ALG_ASYNC | 3463 CRYPTO_ALG_ALLOCATES_MEMORY 3464 }, 3465 .setkey = aead_authenc_setkey, 3466 .ivsize = DES3_EDE_BLOCK_SIZE, 3467 .maxauthsize = SHA224_DIGEST_SIZE, 3468 }, 3469 .cipher_info = { 3470 .alg = CIPHER_ALG_3DES, 3471 .mode = CIPHER_MODE_CBC, 3472 }, 3473 .auth_info = { 3474 .alg = HASH_ALG_SHA224, 3475 .mode = HASH_MODE_HMAC, 3476 }, 3477 .auth_first = 0, 3478 }, 3479 { 3480 .type = CRYPTO_ALG_TYPE_AEAD, 3481 .alg.aead = { 3482 .base = { 3483 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3484 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3485 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3486 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3487 CRYPTO_ALG_ASYNC | 3488 CRYPTO_ALG_ALLOCATES_MEMORY 3489 }, 3490 .setkey = aead_authenc_setkey, 3491 .ivsize = DES3_EDE_BLOCK_SIZE, 3492 .maxauthsize = SHA256_DIGEST_SIZE, 3493 }, 3494 .cipher_info = { 3495 .alg = CIPHER_ALG_3DES, 3496 .mode = CIPHER_MODE_CBC, 3497 }, 3498 .auth_info = { 3499 .alg = HASH_ALG_SHA256, 3500 .mode = HASH_MODE_HMAC, 3501 }, 3502 .auth_first = 0, 3503 }, 3504 { 3505 .type = CRYPTO_ALG_TYPE_AEAD, 3506 .alg.aead = { 3507 .base = { 3508 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3509 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3510 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3511 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3512 CRYPTO_ALG_ASYNC | 3513 CRYPTO_ALG_ALLOCATES_MEMORY 3514 }, 3515 .setkey = aead_authenc_setkey, 3516 .ivsize = DES3_EDE_BLOCK_SIZE, 3517 .maxauthsize = SHA384_DIGEST_SIZE, 3518 }, 3519 .cipher_info = { 3520 .alg = CIPHER_ALG_3DES, 3521 .mode = CIPHER_MODE_CBC, 3522 }, 3523 .auth_info = { 3524 .alg = HASH_ALG_SHA384, 3525 .mode = HASH_MODE_HMAC, 3526 }, 3527 .auth_first = 0, 3528 }, 3529 { 3530 .type = CRYPTO_ALG_TYPE_AEAD, 3531 .alg.aead = { 3532 .base = { 3533 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3534 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3535 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3536 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | 3537 CRYPTO_ALG_ASYNC | 3538 CRYPTO_ALG_ALLOCATES_MEMORY 3539 }, 3540 .setkey = aead_authenc_setkey, 3541 .ivsize = DES3_EDE_BLOCK_SIZE, 3542 .maxauthsize = SHA512_DIGEST_SIZE, 3543 }, 3544 .cipher_info = { 3545 .alg = CIPHER_ALG_3DES, 3546 .mode = CIPHER_MODE_CBC, 3547 }, 3548 .auth_info = { 3549 .alg = HASH_ALG_SHA512, 3550 .mode = HASH_MODE_HMAC, 3551 }, 3552 .auth_first = 0, 3553 }, 3554 3555 /* SKCIPHER algorithms. */ 3556 { 3557 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3558 .alg.skcipher = { 3559 .base.cra_name = "ofb(des)", 3560 .base.cra_driver_name = "ofb-des-iproc", 3561 .base.cra_blocksize = DES_BLOCK_SIZE, 3562 .min_keysize = DES_KEY_SIZE, 3563 .max_keysize = DES_KEY_SIZE, 3564 .ivsize = DES_BLOCK_SIZE, 3565 }, 3566 .cipher_info = { 3567 .alg = CIPHER_ALG_DES, 3568 .mode = CIPHER_MODE_OFB, 3569 }, 3570 .auth_info = { 3571 .alg = HASH_ALG_NONE, 3572 .mode = HASH_MODE_NONE, 3573 }, 3574 }, 3575 { 3576 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3577 .alg.skcipher = { 3578 .base.cra_name = "cbc(des)", 3579 .base.cra_driver_name = "cbc-des-iproc", 3580 .base.cra_blocksize = DES_BLOCK_SIZE, 3581 .min_keysize = DES_KEY_SIZE, 3582 .max_keysize = DES_KEY_SIZE, 3583 .ivsize = DES_BLOCK_SIZE, 3584 }, 3585 .cipher_info = { 3586 .alg = CIPHER_ALG_DES, 3587 .mode = CIPHER_MODE_CBC, 3588 }, 3589 .auth_info = { 3590 .alg = HASH_ALG_NONE, 3591 .mode = HASH_MODE_NONE, 3592 }, 3593 }, 3594 { 3595 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3596 .alg.skcipher = { 3597 .base.cra_name = "ecb(des)", 3598 .base.cra_driver_name = "ecb-des-iproc", 3599 .base.cra_blocksize = DES_BLOCK_SIZE, 3600 .min_keysize = DES_KEY_SIZE, 3601 .max_keysize = DES_KEY_SIZE, 3602 .ivsize = 0, 3603 }, 3604 .cipher_info = { 3605 .alg = CIPHER_ALG_DES, 3606 .mode = CIPHER_MODE_ECB, 3607 }, 3608 .auth_info = { 3609 .alg = HASH_ALG_NONE, 3610 .mode = HASH_MODE_NONE, 3611 }, 3612 }, 3613 { 3614 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3615 .alg.skcipher = { 3616 .base.cra_name = "ofb(des3_ede)", 3617 .base.cra_driver_name = "ofb-des3-iproc", 3618 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3619 .min_keysize = DES3_EDE_KEY_SIZE, 3620 .max_keysize = DES3_EDE_KEY_SIZE, 3621 .ivsize = DES3_EDE_BLOCK_SIZE, 3622 }, 3623 .cipher_info = { 3624 .alg = CIPHER_ALG_3DES, 3625 .mode = CIPHER_MODE_OFB, 3626 }, 3627 .auth_info = { 3628 .alg = HASH_ALG_NONE, 3629 .mode = HASH_MODE_NONE, 3630 }, 3631 }, 3632 { 3633 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3634 .alg.skcipher = { 3635 .base.cra_name = "cbc(des3_ede)", 3636 .base.cra_driver_name = "cbc-des3-iproc", 3637 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3638 .min_keysize = DES3_EDE_KEY_SIZE, 3639 .max_keysize = DES3_EDE_KEY_SIZE, 3640 .ivsize = DES3_EDE_BLOCK_SIZE, 3641 }, 3642 .cipher_info = { 3643 .alg = CIPHER_ALG_3DES, 3644 .mode = CIPHER_MODE_CBC, 3645 }, 3646 .auth_info = { 3647 .alg = HASH_ALG_NONE, 3648 .mode = HASH_MODE_NONE, 3649 }, 3650 }, 3651 { 3652 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3653 .alg.skcipher = { 3654 .base.cra_name = "ecb(des3_ede)", 3655 .base.cra_driver_name = "ecb-des3-iproc", 3656 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, 3657 .min_keysize = DES3_EDE_KEY_SIZE, 3658 .max_keysize = DES3_EDE_KEY_SIZE, 3659 .ivsize = 0, 3660 }, 3661 .cipher_info = { 3662 .alg = CIPHER_ALG_3DES, 3663 .mode = CIPHER_MODE_ECB, 3664 }, 3665 .auth_info = { 3666 .alg = HASH_ALG_NONE, 3667 .mode = HASH_MODE_NONE, 3668 }, 3669 }, 3670 { 3671 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3672 .alg.skcipher = { 3673 .base.cra_name = "ofb(aes)", 3674 .base.cra_driver_name = "ofb-aes-iproc", 3675 .base.cra_blocksize = AES_BLOCK_SIZE, 3676 .min_keysize = AES_MIN_KEY_SIZE, 3677 .max_keysize = AES_MAX_KEY_SIZE, 3678 .ivsize = AES_BLOCK_SIZE, 3679 }, 3680 .cipher_info = { 3681 .alg = CIPHER_ALG_AES, 3682 .mode = CIPHER_MODE_OFB, 3683 }, 3684 .auth_info = { 3685 .alg = HASH_ALG_NONE, 3686 .mode = HASH_MODE_NONE, 3687 }, 3688 }, 3689 { 3690 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3691 .alg.skcipher = { 3692 .base.cra_name = "cbc(aes)", 3693 .base.cra_driver_name = "cbc-aes-iproc", 3694 .base.cra_blocksize = AES_BLOCK_SIZE, 3695 .min_keysize = AES_MIN_KEY_SIZE, 3696 .max_keysize = AES_MAX_KEY_SIZE, 3697 .ivsize = AES_BLOCK_SIZE, 3698 }, 3699 .cipher_info = { 3700 .alg = CIPHER_ALG_AES, 3701 .mode = CIPHER_MODE_CBC, 3702 }, 3703 .auth_info = { 3704 .alg = HASH_ALG_NONE, 3705 .mode = HASH_MODE_NONE, 3706 }, 3707 }, 3708 { 3709 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3710 .alg.skcipher = { 3711 .base.cra_name = "ecb(aes)", 3712 .base.cra_driver_name = "ecb-aes-iproc", 3713 .base.cra_blocksize = AES_BLOCK_SIZE, 3714 .min_keysize = AES_MIN_KEY_SIZE, 3715 .max_keysize = AES_MAX_KEY_SIZE, 3716 .ivsize = 0, 3717 }, 3718 .cipher_info = { 3719 .alg = CIPHER_ALG_AES, 3720 .mode = CIPHER_MODE_ECB, 3721 }, 3722 .auth_info = { 3723 .alg = HASH_ALG_NONE, 3724 .mode = HASH_MODE_NONE, 3725 }, 3726 }, 3727 { 3728 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3729 .alg.skcipher = { 3730 .base.cra_name = "ctr(aes)", 3731 .base.cra_driver_name = "ctr-aes-iproc", 3732 .base.cra_blocksize = AES_BLOCK_SIZE, 3733 .min_keysize = AES_MIN_KEY_SIZE, 3734 .max_keysize = AES_MAX_KEY_SIZE, 3735 .ivsize = AES_BLOCK_SIZE, 3736 }, 3737 .cipher_info = { 3738 .alg = CIPHER_ALG_AES, 3739 .mode = CIPHER_MODE_CTR, 3740 }, 3741 .auth_info = { 3742 .alg = HASH_ALG_NONE, 3743 .mode = HASH_MODE_NONE, 3744 }, 3745 }, 3746 { 3747 .type = CRYPTO_ALG_TYPE_SKCIPHER, 3748 .alg.skcipher = { 3749 .base.cra_name = "xts(aes)", 3750 .base.cra_driver_name = "xts-aes-iproc", 3751 .base.cra_blocksize = AES_BLOCK_SIZE, 3752 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3753 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3754 .ivsize = AES_BLOCK_SIZE, 3755 }, 3756 .cipher_info = { 3757 .alg = CIPHER_ALG_AES, 3758 .mode = CIPHER_MODE_XTS, 3759 }, 3760 .auth_info = { 3761 .alg = HASH_ALG_NONE, 3762 .mode = HASH_MODE_NONE, 3763 }, 3764 }, 3765 3766 /* AHASH algorithms. */ 3767 { 3768 .type = CRYPTO_ALG_TYPE_AHASH, 3769 .alg.hash = { 3770 .halg.digestsize = MD5_DIGEST_SIZE, 3771 .halg.base = { 3772 .cra_name = "md5", 3773 .cra_driver_name = "md5-iproc", 3774 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3775 .cra_flags = CRYPTO_ALG_ASYNC | 3776 CRYPTO_ALG_ALLOCATES_MEMORY, 3777 } 3778 }, 3779 .cipher_info = { 3780 .alg = CIPHER_ALG_NONE, 3781 .mode = CIPHER_MODE_NONE, 3782 }, 3783 .auth_info = { 3784 .alg = HASH_ALG_MD5, 3785 .mode = HASH_MODE_HASH, 3786 }, 3787 }, 3788 { 3789 .type = CRYPTO_ALG_TYPE_AHASH, 3790 .alg.hash = { 3791 .halg.digestsize = MD5_DIGEST_SIZE, 3792 .halg.base = { 3793 .cra_name = "hmac(md5)", 3794 .cra_driver_name = "hmac-md5-iproc", 3795 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3796 } 3797 }, 3798 .cipher_info = { 3799 .alg = CIPHER_ALG_NONE, 3800 .mode = CIPHER_MODE_NONE, 3801 }, 3802 .auth_info = { 3803 .alg = HASH_ALG_MD5, 3804 .mode = HASH_MODE_HMAC, 3805 }, 3806 }, 3807 {.type = CRYPTO_ALG_TYPE_AHASH, 3808 .alg.hash = { 3809 .halg.digestsize = SHA1_DIGEST_SIZE, 3810 .halg.base = { 3811 .cra_name = "sha1", 3812 .cra_driver_name = "sha1-iproc", 3813 .cra_blocksize = SHA1_BLOCK_SIZE, 3814 } 3815 }, 3816 .cipher_info = { 3817 .alg = CIPHER_ALG_NONE, 3818 .mode = CIPHER_MODE_NONE, 3819 }, 3820 .auth_info = { 3821 .alg = HASH_ALG_SHA1, 3822 .mode = HASH_MODE_HASH, 3823 }, 3824 }, 3825 {.type = CRYPTO_ALG_TYPE_AHASH, 3826 .alg.hash = { 3827 .halg.digestsize = SHA1_DIGEST_SIZE, 3828 .halg.base = { 3829 .cra_name = "hmac(sha1)", 3830 .cra_driver_name = "hmac-sha1-iproc", 3831 .cra_blocksize = SHA1_BLOCK_SIZE, 3832 } 3833 }, 3834 .cipher_info = { 3835 .alg = CIPHER_ALG_NONE, 3836 .mode = CIPHER_MODE_NONE, 3837 }, 3838 .auth_info = { 3839 .alg = HASH_ALG_SHA1, 3840 .mode = HASH_MODE_HMAC, 3841 }, 3842 }, 3843 {.type = CRYPTO_ALG_TYPE_AHASH, 3844 .alg.hash = { 3845 .halg.digestsize = SHA224_DIGEST_SIZE, 3846 .halg.base = { 3847 .cra_name = "sha224", 3848 .cra_driver_name = "sha224-iproc", 3849 .cra_blocksize = SHA224_BLOCK_SIZE, 3850 } 3851 }, 3852 .cipher_info = { 3853 .alg = CIPHER_ALG_NONE, 3854 .mode = CIPHER_MODE_NONE, 3855 }, 3856 .auth_info = { 3857 .alg = HASH_ALG_SHA224, 3858 .mode = HASH_MODE_HASH, 3859 }, 3860 }, 3861 {.type = CRYPTO_ALG_TYPE_AHASH, 3862 .alg.hash = { 3863 .halg.digestsize = SHA224_DIGEST_SIZE, 3864 .halg.base = { 3865 .cra_name = "hmac(sha224)", 3866 .cra_driver_name = "hmac-sha224-iproc", 3867 .cra_blocksize = SHA224_BLOCK_SIZE, 3868 } 3869 }, 3870 .cipher_info = { 3871 .alg = CIPHER_ALG_NONE, 3872 .mode = CIPHER_MODE_NONE, 3873 }, 3874 .auth_info = { 3875 .alg = HASH_ALG_SHA224, 3876 .mode = HASH_MODE_HMAC, 3877 }, 3878 }, 3879 {.type = CRYPTO_ALG_TYPE_AHASH, 3880 .alg.hash = { 3881 .halg.digestsize = SHA256_DIGEST_SIZE, 3882 .halg.base = { 3883 .cra_name = "sha256", 3884 .cra_driver_name = "sha256-iproc", 3885 .cra_blocksize = SHA256_BLOCK_SIZE, 3886 } 3887 }, 3888 .cipher_info = { 3889 .alg = CIPHER_ALG_NONE, 3890 .mode = CIPHER_MODE_NONE, 3891 }, 3892 .auth_info = { 3893 .alg = HASH_ALG_SHA256, 3894 .mode = HASH_MODE_HASH, 3895 }, 3896 }, 3897 {.type = CRYPTO_ALG_TYPE_AHASH, 3898 .alg.hash = { 3899 .halg.digestsize = SHA256_DIGEST_SIZE, 3900 .halg.base = { 3901 .cra_name = "hmac(sha256)", 3902 .cra_driver_name = "hmac-sha256-iproc", 3903 .cra_blocksize = SHA256_BLOCK_SIZE, 3904 } 3905 }, 3906 .cipher_info = { 3907 .alg = CIPHER_ALG_NONE, 3908 .mode = CIPHER_MODE_NONE, 3909 }, 3910 .auth_info = { 3911 .alg = HASH_ALG_SHA256, 3912 .mode = HASH_MODE_HMAC, 3913 }, 3914 }, 3915 { 3916 .type = CRYPTO_ALG_TYPE_AHASH, 3917 .alg.hash = { 3918 .halg.digestsize = SHA384_DIGEST_SIZE, 3919 .halg.base = { 3920 .cra_name = "sha384", 3921 .cra_driver_name = "sha384-iproc", 3922 .cra_blocksize = SHA384_BLOCK_SIZE, 3923 } 3924 }, 3925 .cipher_info = { 3926 .alg = CIPHER_ALG_NONE, 3927 .mode = CIPHER_MODE_NONE, 3928 }, 3929 .auth_info = { 3930 .alg = HASH_ALG_SHA384, 3931 .mode = HASH_MODE_HASH, 3932 }, 3933 }, 3934 { 3935 .type = CRYPTO_ALG_TYPE_AHASH, 3936 .alg.hash = { 3937 .halg.digestsize = SHA384_DIGEST_SIZE, 3938 .halg.base = { 3939 .cra_name = "hmac(sha384)", 3940 .cra_driver_name = "hmac-sha384-iproc", 3941 .cra_blocksize = SHA384_BLOCK_SIZE, 3942 } 3943 }, 3944 .cipher_info = { 3945 .alg = CIPHER_ALG_NONE, 3946 .mode = CIPHER_MODE_NONE, 3947 }, 3948 .auth_info = { 3949 .alg = HASH_ALG_SHA384, 3950 .mode = HASH_MODE_HMAC, 3951 }, 3952 }, 3953 { 3954 .type = CRYPTO_ALG_TYPE_AHASH, 3955 .alg.hash = { 3956 .halg.digestsize = SHA512_DIGEST_SIZE, 3957 .halg.base = { 3958 .cra_name = "sha512", 3959 .cra_driver_name = "sha512-iproc", 3960 .cra_blocksize = SHA512_BLOCK_SIZE, 3961 } 3962 }, 3963 .cipher_info = { 3964 .alg = CIPHER_ALG_NONE, 3965 .mode = CIPHER_MODE_NONE, 3966 }, 3967 .auth_info = { 3968 .alg = HASH_ALG_SHA512, 3969 .mode = HASH_MODE_HASH, 3970 }, 3971 }, 3972 { 3973 .type = CRYPTO_ALG_TYPE_AHASH, 3974 .alg.hash = { 3975 .halg.digestsize = SHA512_DIGEST_SIZE, 3976 .halg.base = { 3977 .cra_name = "hmac(sha512)", 3978 .cra_driver_name = "hmac-sha512-iproc", 3979 .cra_blocksize = SHA512_BLOCK_SIZE, 3980 } 3981 }, 3982 .cipher_info = { 3983 .alg = CIPHER_ALG_NONE, 3984 .mode = CIPHER_MODE_NONE, 3985 }, 3986 .auth_info = { 3987 .alg = HASH_ALG_SHA512, 3988 .mode = HASH_MODE_HMAC, 3989 }, 3990 }, 3991 { 3992 .type = CRYPTO_ALG_TYPE_AHASH, 3993 .alg.hash = { 3994 .halg.digestsize = SHA3_224_DIGEST_SIZE, 3995 .halg.base = { 3996 .cra_name = "sha3-224", 3997 .cra_driver_name = "sha3-224-iproc", 3998 .cra_blocksize = SHA3_224_BLOCK_SIZE, 3999 } 4000 }, 4001 .cipher_info = { 4002 .alg = CIPHER_ALG_NONE, 4003 .mode = CIPHER_MODE_NONE, 4004 }, 4005 .auth_info = { 4006 .alg = HASH_ALG_SHA3_224, 4007 .mode = HASH_MODE_HASH, 4008 }, 4009 }, 4010 { 4011 .type = CRYPTO_ALG_TYPE_AHASH, 4012 .alg.hash = { 4013 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4014 .halg.base = { 4015 .cra_name = "hmac(sha3-224)", 4016 .cra_driver_name = "hmac-sha3-224-iproc", 4017 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4018 } 4019 }, 4020 .cipher_info = { 4021 .alg = CIPHER_ALG_NONE, 4022 .mode = CIPHER_MODE_NONE, 4023 }, 4024 .auth_info = { 4025 .alg = HASH_ALG_SHA3_224, 4026 .mode = HASH_MODE_HMAC 4027 }, 4028 }, 4029 { 4030 .type = CRYPTO_ALG_TYPE_AHASH, 4031 .alg.hash = { 4032 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4033 .halg.base = { 4034 .cra_name = "sha3-256", 4035 .cra_driver_name = "sha3-256-iproc", 4036 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4037 } 4038 }, 4039 .cipher_info = { 4040 .alg = CIPHER_ALG_NONE, 4041 .mode = CIPHER_MODE_NONE, 4042 }, 4043 .auth_info = { 4044 .alg = HASH_ALG_SHA3_256, 4045 .mode = HASH_MODE_HASH, 4046 }, 4047 }, 4048 { 4049 .type = CRYPTO_ALG_TYPE_AHASH, 4050 .alg.hash = { 4051 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4052 .halg.base = { 4053 .cra_name = "hmac(sha3-256)", 4054 .cra_driver_name = "hmac-sha3-256-iproc", 4055 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4056 } 4057 }, 4058 .cipher_info = { 4059 .alg = CIPHER_ALG_NONE, 4060 .mode = CIPHER_MODE_NONE, 4061 }, 4062 .auth_info = { 4063 .alg = HASH_ALG_SHA3_256, 4064 .mode = HASH_MODE_HMAC, 4065 }, 4066 }, 4067 { 4068 .type = CRYPTO_ALG_TYPE_AHASH, 4069 .alg.hash = { 4070 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4071 .halg.base = { 4072 .cra_name = "sha3-384", 4073 .cra_driver_name = "sha3-384-iproc", 4074 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4075 } 4076 }, 4077 .cipher_info = { 4078 .alg = CIPHER_ALG_NONE, 4079 .mode = CIPHER_MODE_NONE, 4080 }, 4081 .auth_info = { 4082 .alg = HASH_ALG_SHA3_384, 4083 .mode = HASH_MODE_HASH, 4084 }, 4085 }, 4086 { 4087 .type = CRYPTO_ALG_TYPE_AHASH, 4088 .alg.hash = { 4089 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4090 .halg.base = { 4091 .cra_name = "hmac(sha3-384)", 4092 .cra_driver_name = "hmac-sha3-384-iproc", 4093 .cra_blocksize = SHA3_384_BLOCK_SIZE, 4094 } 4095 }, 4096 .cipher_info = { 4097 .alg = CIPHER_ALG_NONE, 4098 .mode = CIPHER_MODE_NONE, 4099 }, 4100 .auth_info = { 4101 .alg = HASH_ALG_SHA3_384, 4102 .mode = HASH_MODE_HMAC, 4103 }, 4104 }, 4105 { 4106 .type = CRYPTO_ALG_TYPE_AHASH, 4107 .alg.hash = { 4108 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4109 .halg.base = { 4110 .cra_name = "sha3-512", 4111 .cra_driver_name = "sha3-512-iproc", 4112 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4113 } 4114 }, 4115 .cipher_info = { 4116 .alg = CIPHER_ALG_NONE, 4117 .mode = CIPHER_MODE_NONE, 4118 }, 4119 .auth_info = { 4120 .alg = HASH_ALG_SHA3_512, 4121 .mode = HASH_MODE_HASH, 4122 }, 4123 }, 4124 { 4125 .type = CRYPTO_ALG_TYPE_AHASH, 4126 .alg.hash = { 4127 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4128 .halg.base = { 4129 .cra_name = "hmac(sha3-512)", 4130 .cra_driver_name = "hmac-sha3-512-iproc", 4131 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4132 } 4133 }, 4134 .cipher_info = { 4135 .alg = CIPHER_ALG_NONE, 4136 .mode = CIPHER_MODE_NONE, 4137 }, 4138 .auth_info = { 4139 .alg = HASH_ALG_SHA3_512, 4140 .mode = HASH_MODE_HMAC, 4141 }, 4142 }, 4143 { 4144 .type = CRYPTO_ALG_TYPE_AHASH, 4145 .alg.hash = { 4146 .halg.digestsize = AES_BLOCK_SIZE, 4147 .halg.base = { 4148 .cra_name = "xcbc(aes)", 4149 .cra_driver_name = "xcbc-aes-iproc", 4150 .cra_blocksize = AES_BLOCK_SIZE, 4151 } 4152 }, 4153 .cipher_info = { 4154 .alg = CIPHER_ALG_NONE, 4155 .mode = CIPHER_MODE_NONE, 4156 }, 4157 .auth_info = { 4158 .alg = HASH_ALG_AES, 4159 .mode = HASH_MODE_XCBC, 4160 }, 4161 }, 4162 { 4163 .type = CRYPTO_ALG_TYPE_AHASH, 4164 .alg.hash = { 4165 .halg.digestsize = AES_BLOCK_SIZE, 4166 .halg.base = { 4167 .cra_name = "cmac(aes)", 4168 .cra_driver_name = "cmac-aes-iproc", 4169 .cra_blocksize = AES_BLOCK_SIZE, 4170 } 4171 }, 4172 .cipher_info = { 4173 .alg = CIPHER_ALG_NONE, 4174 .mode = CIPHER_MODE_NONE, 4175 }, 4176 .auth_info = { 4177 .alg = HASH_ALG_AES, 4178 .mode = HASH_MODE_CMAC, 4179 }, 4180 }, 4181 }; 4182 4183 static int generic_cra_init(struct crypto_tfm *tfm, 4184 struct iproc_alg_s *cipher_alg) 4185 { 4186 struct spu_hw *spu = &iproc_priv.spu; 4187 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4188 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4189 4190 flow_log("%s()\n", __func__); 4191 4192 ctx->alg = cipher_alg; 4193 ctx->cipher = cipher_alg->cipher_info; 4194 ctx->auth = cipher_alg->auth_info; 4195 ctx->auth_first = cipher_alg->auth_first; 4196 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4197 ctx->cipher.mode, 4198 blocksize); 4199 ctx->fallback_cipher = NULL; 4200 4201 ctx->enckeylen = 0; 4202 ctx->authkeylen = 0; 4203 4204 atomic_inc(&iproc_priv.stream_count); 4205 atomic_inc(&iproc_priv.session_count); 4206 4207 return 0; 4208 } 4209 4210 static int skcipher_init_tfm(struct crypto_skcipher *skcipher) 4211 { 4212 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 4213 struct skcipher_alg *alg = crypto_skcipher_alg(skcipher); 4214 struct iproc_alg_s *cipher_alg; 4215 4216 flow_log("%s()\n", __func__); 4217 4218 crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s)); 4219 4220 cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher); 4221 return generic_cra_init(tfm, cipher_alg); 4222 } 4223 4224 static int ahash_cra_init(struct crypto_tfm *tfm) 4225 { 4226 int err; 4227 struct crypto_alg *alg = tfm->__crt_alg; 4228 struct iproc_alg_s *cipher_alg; 4229 4230 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4231 alg.hash); 4232 4233 err = generic_cra_init(tfm, cipher_alg); 4234 flow_log("%s()\n", __func__); 4235 4236 /* 4237 * export state size has to be < 512 bytes. So don't include msg bufs 4238 * in state size. 4239 */ 4240 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4241 sizeof(struct iproc_reqctx_s)); 4242 4243 return err; 4244 } 4245 4246 static int aead_cra_init(struct crypto_aead *aead) 4247 { 4248 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4249 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4250 struct crypto_alg *alg = tfm->__crt_alg; 4251 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4252 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4253 alg.aead); 4254 4255 int err = generic_cra_init(tfm, cipher_alg); 4256 4257 flow_log("%s()\n", __func__); 4258 4259 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); 4260 ctx->is_esp = false; 4261 ctx->salt_len = 0; 4262 ctx->salt_offset = 0; 4263 4264 /* random first IV */ 4265 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4266 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4267 4268 if (!err) { 4269 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { 4270 flow_log("%s() creating fallback cipher\n", __func__); 4271 4272 ctx->fallback_cipher = 4273 crypto_alloc_aead(alg->cra_name, 0, 4274 CRYPTO_ALG_ASYNC | 4275 CRYPTO_ALG_NEED_FALLBACK); 4276 if (IS_ERR(ctx->fallback_cipher)) { 4277 pr_err("%s() Error: failed to allocate fallback for %s\n", 4278 __func__, alg->cra_name); 4279 return PTR_ERR(ctx->fallback_cipher); 4280 } 4281 } 4282 } 4283 4284 return err; 4285 } 4286 4287 static void generic_cra_exit(struct crypto_tfm *tfm) 4288 { 4289 atomic_dec(&iproc_priv.session_count); 4290 } 4291 4292 static void skcipher_exit_tfm(struct crypto_skcipher *tfm) 4293 { 4294 generic_cra_exit(crypto_skcipher_tfm(tfm)); 4295 } 4296 4297 static void aead_cra_exit(struct crypto_aead *aead) 4298 { 4299 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4300 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4301 4302 generic_cra_exit(tfm); 4303 4304 if (ctx->fallback_cipher) { 4305 crypto_free_aead(ctx->fallback_cipher); 4306 ctx->fallback_cipher = NULL; 4307 } 4308 } 4309 4310 /** 4311 * spu_functions_register() - Specify hardware-specific SPU functions based on 4312 * SPU type read from device tree. 4313 * @dev: device structure 4314 * @spu_type: SPU hardware generation 4315 * @spu_subtype: SPU hardware version 4316 */ 4317 static void spu_functions_register(struct device *dev, 4318 enum spu_spu_type spu_type, 4319 enum spu_spu_subtype spu_subtype) 4320 { 4321 struct spu_hw *spu = &iproc_priv.spu; 4322 4323 if (spu_type == SPU_TYPE_SPUM) { 4324 dev_dbg(dev, "Registering SPUM functions"); 4325 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4326 spu->spu_payload_length = spum_payload_length; 4327 spu->spu_response_hdr_len = spum_response_hdr_len; 4328 spu->spu_hash_pad_len = spum_hash_pad_len; 4329 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4330 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4331 spu->spu_aead_ivlen = spum_aead_ivlen; 4332 spu->spu_hash_type = spum_hash_type; 4333 spu->spu_digest_size = spum_digest_size; 4334 spu->spu_create_request = spum_create_request; 4335 spu->spu_cipher_req_init = spum_cipher_req_init; 4336 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4337 spu->spu_request_pad = spum_request_pad; 4338 spu->spu_tx_status_len = spum_tx_status_len; 4339 spu->spu_rx_status_len = spum_rx_status_len; 4340 spu->spu_status_process = spum_status_process; 4341 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4342 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4343 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4344 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4345 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4346 else 4347 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4348 } else { 4349 dev_dbg(dev, "Registering SPU2 functions"); 4350 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4351 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4352 spu->spu_payload_length = spu2_payload_length; 4353 spu->spu_response_hdr_len = spu2_response_hdr_len; 4354 spu->spu_hash_pad_len = spu2_hash_pad_len; 4355 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4356 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4357 spu->spu_aead_ivlen = spu2_aead_ivlen; 4358 spu->spu_hash_type = spu2_hash_type; 4359 spu->spu_digest_size = spu2_digest_size; 4360 spu->spu_create_request = spu2_create_request; 4361 spu->spu_cipher_req_init = spu2_cipher_req_init; 4362 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4363 spu->spu_request_pad = spu2_request_pad; 4364 spu->spu_tx_status_len = spu2_tx_status_len; 4365 spu->spu_rx_status_len = spu2_rx_status_len; 4366 spu->spu_status_process = spu2_status_process; 4367 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4368 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4369 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4370 } 4371 } 4372 4373 /** 4374 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4375 * channel for the SPU being probed. 4376 * @dev: SPU driver device structure 4377 * 4378 * Return: 0 if successful 4379 * < 0 otherwise 4380 */ 4381 static int spu_mb_init(struct device *dev) 4382 { 4383 struct mbox_client *mcl = &iproc_priv.mcl; 4384 int err, i; 4385 4386 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4387 sizeof(struct mbox_chan *), GFP_KERNEL); 4388 if (!iproc_priv.mbox) 4389 return -ENOMEM; 4390 4391 mcl->dev = dev; 4392 mcl->tx_block = false; 4393 mcl->tx_tout = 0; 4394 mcl->knows_txdone = true; 4395 mcl->rx_callback = spu_rx_callback; 4396 mcl->tx_done = NULL; 4397 4398 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4399 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4400 if (IS_ERR(iproc_priv.mbox[i])) { 4401 err = PTR_ERR(iproc_priv.mbox[i]); 4402 dev_err(dev, 4403 "Mbox channel %d request failed with err %d", 4404 i, err); 4405 iproc_priv.mbox[i] = NULL; 4406 goto free_channels; 4407 } 4408 } 4409 4410 return 0; 4411 free_channels: 4412 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4413 if (iproc_priv.mbox[i]) 4414 mbox_free_channel(iproc_priv.mbox[i]); 4415 } 4416 4417 return err; 4418 } 4419 4420 static void spu_mb_release(struct platform_device *pdev) 4421 { 4422 int i; 4423 4424 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4425 mbox_free_channel(iproc_priv.mbox[i]); 4426 } 4427 4428 static void spu_counters_init(void) 4429 { 4430 int i; 4431 int j; 4432 4433 atomic_set(&iproc_priv.session_count, 0); 4434 atomic_set(&iproc_priv.stream_count, 0); 4435 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4436 atomic64_set(&iproc_priv.bytes_in, 0); 4437 atomic64_set(&iproc_priv.bytes_out, 0); 4438 for (i = 0; i < SPU_OP_NUM; i++) { 4439 atomic_set(&iproc_priv.op_counts[i], 0); 4440 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4441 } 4442 for (i = 0; i < CIPHER_ALG_LAST; i++) 4443 for (j = 0; j < CIPHER_MODE_LAST; j++) 4444 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4445 4446 for (i = 0; i < HASH_ALG_LAST; i++) { 4447 atomic_set(&iproc_priv.hash_cnt[i], 0); 4448 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4449 } 4450 for (i = 0; i < AEAD_TYPE_LAST; i++) 4451 atomic_set(&iproc_priv.aead_cnt[i], 0); 4452 4453 atomic_set(&iproc_priv.mb_no_spc, 0); 4454 atomic_set(&iproc_priv.mb_send_fail, 0); 4455 atomic_set(&iproc_priv.bad_icv, 0); 4456 } 4457 4458 static int spu_register_skcipher(struct iproc_alg_s *driver_alg) 4459 { 4460 struct skcipher_alg *crypto = &driver_alg->alg.skcipher; 4461 int err; 4462 4463 crypto->base.cra_module = THIS_MODULE; 4464 crypto->base.cra_priority = cipher_pri; 4465 crypto->base.cra_alignmask = 0; 4466 crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4467 crypto->base.cra_flags = CRYPTO_ALG_ASYNC | 4468 CRYPTO_ALG_ALLOCATES_MEMORY | 4469 CRYPTO_ALG_KERN_DRIVER_ONLY; 4470 4471 crypto->init = skcipher_init_tfm; 4472 crypto->exit = skcipher_exit_tfm; 4473 crypto->setkey = skcipher_setkey; 4474 crypto->encrypt = skcipher_encrypt; 4475 crypto->decrypt = skcipher_decrypt; 4476 4477 err = crypto_register_skcipher(crypto); 4478 /* Mark alg as having been registered, if successful */ 4479 if (err == 0) 4480 driver_alg->registered = true; 4481 pr_debug(" registered skcipher %s\n", crypto->base.cra_driver_name); 4482 return err; 4483 } 4484 4485 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4486 { 4487 struct spu_hw *spu = &iproc_priv.spu; 4488 struct ahash_alg *hash = &driver_alg->alg.hash; 4489 int err; 4490 4491 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4492 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4493 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4494 (spu->spu_type == SPU_TYPE_SPUM)) 4495 return 0; 4496 4497 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4498 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4499 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4500 return 0; 4501 4502 hash->halg.base.cra_module = THIS_MODULE; 4503 hash->halg.base.cra_priority = hash_pri; 4504 hash->halg.base.cra_alignmask = 0; 4505 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4506 hash->halg.base.cra_init = ahash_cra_init; 4507 hash->halg.base.cra_exit = generic_cra_exit; 4508 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC | 4509 CRYPTO_ALG_ALLOCATES_MEMORY; 4510 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4511 4512 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4513 hash->init = ahash_init; 4514 hash->update = ahash_update; 4515 hash->final = ahash_final; 4516 hash->finup = ahash_finup; 4517 hash->digest = ahash_digest; 4518 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4519 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || 4520 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { 4521 hash->setkey = ahash_setkey; 4522 } 4523 } else { 4524 hash->setkey = ahash_hmac_setkey; 4525 hash->init = ahash_hmac_init; 4526 hash->update = ahash_hmac_update; 4527 hash->final = ahash_hmac_final; 4528 hash->finup = ahash_hmac_finup; 4529 hash->digest = ahash_hmac_digest; 4530 } 4531 hash->export = ahash_export; 4532 hash->import = ahash_import; 4533 4534 err = crypto_register_ahash(hash); 4535 /* Mark alg as having been registered, if successful */ 4536 if (err == 0) 4537 driver_alg->registered = true; 4538 pr_debug(" registered ahash %s\n", 4539 hash->halg.base.cra_driver_name); 4540 return err; 4541 } 4542 4543 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4544 { 4545 struct aead_alg *aead = &driver_alg->alg.aead; 4546 int err; 4547 4548 aead->base.cra_module = THIS_MODULE; 4549 aead->base.cra_priority = aead_pri; 4550 aead->base.cra_alignmask = 0; 4551 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4552 4553 aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; 4554 /* setkey set in alg initialization */ 4555 aead->setauthsize = aead_setauthsize; 4556 aead->encrypt = aead_encrypt; 4557 aead->decrypt = aead_decrypt; 4558 aead->init = aead_cra_init; 4559 aead->exit = aead_cra_exit; 4560 4561 err = crypto_register_aead(aead); 4562 /* Mark alg as having been registered, if successful */ 4563 if (err == 0) 4564 driver_alg->registered = true; 4565 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4566 return err; 4567 } 4568 4569 /* register crypto algorithms the device supports */ 4570 static int spu_algs_register(struct device *dev) 4571 { 4572 int i, j; 4573 int err; 4574 4575 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4576 switch (driver_algs[i].type) { 4577 case CRYPTO_ALG_TYPE_SKCIPHER: 4578 err = spu_register_skcipher(&driver_algs[i]); 4579 break; 4580 case CRYPTO_ALG_TYPE_AHASH: 4581 err = spu_register_ahash(&driver_algs[i]); 4582 break; 4583 case CRYPTO_ALG_TYPE_AEAD: 4584 err = spu_register_aead(&driver_algs[i]); 4585 break; 4586 default: 4587 dev_err(dev, 4588 "iproc-crypto: unknown alg type: %d", 4589 driver_algs[i].type); 4590 err = -EINVAL; 4591 } 4592 4593 if (err) { 4594 dev_err(dev, "alg registration failed with error %d\n", 4595 err); 4596 goto err_algs; 4597 } 4598 } 4599 4600 return 0; 4601 4602 err_algs: 4603 for (j = 0; j < i; j++) { 4604 /* Skip any algorithm not registered */ 4605 if (!driver_algs[j].registered) 4606 continue; 4607 switch (driver_algs[j].type) { 4608 case CRYPTO_ALG_TYPE_SKCIPHER: 4609 crypto_unregister_skcipher(&driver_algs[j].alg.skcipher); 4610 driver_algs[j].registered = false; 4611 break; 4612 case CRYPTO_ALG_TYPE_AHASH: 4613 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4614 driver_algs[j].registered = false; 4615 break; 4616 case CRYPTO_ALG_TYPE_AEAD: 4617 crypto_unregister_aead(&driver_algs[j].alg.aead); 4618 driver_algs[j].registered = false; 4619 break; 4620 } 4621 } 4622 return err; 4623 } 4624 4625 /* ==================== Kernel Platform API ==================== */ 4626 4627 static struct spu_type_subtype spum_ns2_types = { 4628 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4629 }; 4630 4631 static struct spu_type_subtype spum_nsp_types = { 4632 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4633 }; 4634 4635 static struct spu_type_subtype spu2_types = { 4636 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4637 }; 4638 4639 static struct spu_type_subtype spu2_v2_types = { 4640 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4641 }; 4642 4643 static const struct of_device_id bcm_spu_dt_ids[] = { 4644 { 4645 .compatible = "brcm,spum-crypto", 4646 .data = &spum_ns2_types, 4647 }, 4648 { 4649 .compatible = "brcm,spum-nsp-crypto", 4650 .data = &spum_nsp_types, 4651 }, 4652 { 4653 .compatible = "brcm,spu2-crypto", 4654 .data = &spu2_types, 4655 }, 4656 { 4657 .compatible = "brcm,spu2-v2-crypto", 4658 .data = &spu2_v2_types, 4659 }, 4660 { /* sentinel */ } 4661 }; 4662 4663 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4664 4665 static int spu_dt_read(struct platform_device *pdev) 4666 { 4667 struct device *dev = &pdev->dev; 4668 struct spu_hw *spu = &iproc_priv.spu; 4669 struct resource *spu_ctrl_regs; 4670 const struct spu_type_subtype *matched_spu_type; 4671 struct device_node *dn = pdev->dev.of_node; 4672 int err, i; 4673 4674 /* Count number of mailbox channels */ 4675 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4676 4677 matched_spu_type = of_device_get_match_data(dev); 4678 if (!matched_spu_type) { 4679 dev_err(dev, "Failed to match device\n"); 4680 return -ENODEV; 4681 } 4682 4683 spu->spu_type = matched_spu_type->type; 4684 spu->spu_subtype = matched_spu_type->subtype; 4685 4686 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4687 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4688 4689 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4690 if (IS_ERR(spu->reg_vbase[i])) { 4691 err = PTR_ERR(spu->reg_vbase[i]); 4692 dev_err(dev, "Failed to map registers: %d\n", 4693 err); 4694 spu->reg_vbase[i] = NULL; 4695 return err; 4696 } 4697 } 4698 spu->num_spu = i; 4699 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4700 4701 return 0; 4702 } 4703 4704 static int bcm_spu_probe(struct platform_device *pdev) 4705 { 4706 struct device *dev = &pdev->dev; 4707 struct spu_hw *spu = &iproc_priv.spu; 4708 int err; 4709 4710 iproc_priv.pdev = pdev; 4711 platform_set_drvdata(iproc_priv.pdev, 4712 &iproc_priv); 4713 4714 err = spu_dt_read(pdev); 4715 if (err < 0) 4716 goto failure; 4717 4718 err = spu_mb_init(dev); 4719 if (err < 0) 4720 goto failure; 4721 4722 if (spu->spu_type == SPU_TYPE_SPUM) 4723 iproc_priv.bcm_hdr_len = 8; 4724 else if (spu->spu_type == SPU_TYPE_SPU2) 4725 iproc_priv.bcm_hdr_len = 0; 4726 4727 spu_functions_register(dev, spu->spu_type, spu->spu_subtype); 4728 4729 spu_counters_init(); 4730 4731 spu_setup_debugfs(); 4732 4733 err = spu_algs_register(dev); 4734 if (err < 0) 4735 goto fail_reg; 4736 4737 return 0; 4738 4739 fail_reg: 4740 spu_free_debugfs(); 4741 failure: 4742 spu_mb_release(pdev); 4743 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4744 4745 return err; 4746 } 4747 4748 static int bcm_spu_remove(struct platform_device *pdev) 4749 { 4750 int i; 4751 struct device *dev = &pdev->dev; 4752 char *cdn; 4753 4754 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4755 /* 4756 * Not all algorithms were registered, depending on whether 4757 * hardware is SPU or SPU2. So here we make sure to skip 4758 * those algorithms that were not previously registered. 4759 */ 4760 if (!driver_algs[i].registered) 4761 continue; 4762 4763 switch (driver_algs[i].type) { 4764 case CRYPTO_ALG_TYPE_SKCIPHER: 4765 crypto_unregister_skcipher(&driver_algs[i].alg.skcipher); 4766 dev_dbg(dev, " unregistered cipher %s\n", 4767 driver_algs[i].alg.skcipher.base.cra_driver_name); 4768 driver_algs[i].registered = false; 4769 break; 4770 case CRYPTO_ALG_TYPE_AHASH: 4771 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4772 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4773 dev_dbg(dev, " unregistered hash %s\n", cdn); 4774 driver_algs[i].registered = false; 4775 break; 4776 case CRYPTO_ALG_TYPE_AEAD: 4777 crypto_unregister_aead(&driver_algs[i].alg.aead); 4778 dev_dbg(dev, " unregistered aead %s\n", 4779 driver_algs[i].alg.aead.base.cra_driver_name); 4780 driver_algs[i].registered = false; 4781 break; 4782 } 4783 } 4784 spu_free_debugfs(); 4785 spu_mb_release(pdev); 4786 return 0; 4787 } 4788 4789 /* ===== Kernel Module API ===== */ 4790 4791 static struct platform_driver bcm_spu_pdriver = { 4792 .driver = { 4793 .name = "brcm-spu-crypto", 4794 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4795 }, 4796 .probe = bcm_spu_probe, 4797 .remove = bcm_spu_remove, 4798 }; 4799 module_platform_driver(bcm_spu_pdriver); 4800 4801 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4802 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4803 MODULE_LICENSE("GPL v2"); 4804