xref: /openbmc/linux/drivers/crypto/bcm/cipher.c (revision bbecb07f)
1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
33 
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/aes.h>
46 #include <crypto/sha3.h>
47 
48 #include "util.h"
49 #include "cipher.h"
50 #include "spu.h"
51 #include "spum.h"
52 #include "spu2.h"
53 
54 /* ================= Device Structure ================== */
55 
56 struct device_private iproc_priv;
57 
58 /* ==================== Parameters ===================== */
59 
60 int flow_debug_logging;
61 module_param(flow_debug_logging, int, 0644);
62 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
63 
64 int packet_debug_logging;
65 module_param(packet_debug_logging, int, 0644);
66 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
67 
68 int debug_logging_sleep;
69 module_param(debug_logging_sleep, int, 0644);
70 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
71 
72 /*
73  * The value of these module parameters is used to set the priority for each
74  * algo type when this driver registers algos with the kernel crypto API.
75  * To use a priority other than the default, set the priority in the insmod or
76  * modprobe. Changing the module priority after init time has no effect.
77  *
78  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
79  * algos, but more preferred than generic software algos.
80  */
81 static int cipher_pri = 150;
82 module_param(cipher_pri, int, 0644);
83 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
84 
85 static int hash_pri = 100;
86 module_param(hash_pri, int, 0644);
87 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
88 
89 static int aead_pri = 150;
90 module_param(aead_pri, int, 0644);
91 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
92 
93 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
94  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
95  * 0x60 - ring 0
96  * 0x68 - ring 1
97  * 0x70 - ring 2
98  * 0x78 - ring 3
99  */
100 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
101 /*
102  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
103  * is set dynamically after reading SPU type from device tree.
104  */
105 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
106 
107 /* min and max time to sleep before retrying when mbox queue is full. usec */
108 #define MBOX_SLEEP_MIN  800
109 #define MBOX_SLEEP_MAX 1000
110 
111 /**
112  * select_channel() - Select a SPU channel to handle a crypto request. Selects
113  * channel in round robin order.
114  *
115  * Return:  channel index
116  */
117 static u8 select_channel(void)
118 {
119 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
120 
121 	return chan_idx % iproc_priv.spu.num_chan;
122 }
123 
124 /**
125  * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
126  * receive a SPU response message for an ablkcipher request. Includes buffers to
127  * catch SPU message headers and the response data.
128  * @mssg:	mailbox message containing the receive sg
129  * @rctx:	crypto request context
130  * @rx_frag_num: number of scatterlist elements required to hold the
131  *		SPU response message
132  * @chunksize:	Number of bytes of response data expected
133  * @stat_pad_len: Number of bytes required to pad the STAT field to
134  *		a 4-byte boundary
135  *
136  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
137  * when the request completes, whether the request is handled successfully or
138  * there is an error.
139  *
140  * Returns:
141  *   0 if successful
142  *   < 0 if an error
143  */
144 static int
145 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
146 			    struct iproc_reqctx_s *rctx,
147 			    u8 rx_frag_num,
148 			    unsigned int chunksize, u32 stat_pad_len)
149 {
150 	struct spu_hw *spu = &iproc_priv.spu;
151 	struct scatterlist *sg;	/* used to build sgs in mbox message */
152 	struct iproc_ctx_s *ctx = rctx->ctx;
153 	u32 datalen;		/* Number of bytes of response data expected */
154 
155 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
156 				rctx->gfp);
157 	if (!mssg->spu.dst)
158 		return -ENOMEM;
159 
160 	sg = mssg->spu.dst;
161 	sg_init_table(sg, rx_frag_num);
162 	/* Space for SPU message header */
163 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
164 
165 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
166 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
167 	    spu->spu_xts_tweak_in_payload())
168 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
169 			   SPU_XTS_TWEAK_SIZE);
170 
171 	/* Copy in each dst sg entry from request, up to chunksize */
172 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
173 				 rctx->dst_nents, chunksize);
174 	if (datalen < chunksize) {
175 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
176 		       __func__, chunksize, datalen);
177 		return -EFAULT;
178 	}
179 
180 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
181 		/* Add buffer to catch 260-byte SUPDT field for RC4 */
182 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
183 
184 	if (stat_pad_len)
185 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
186 
187 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
188 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
189 
190 	return 0;
191 }
192 
193 /**
194  * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
195  * send a SPU request message for an ablkcipher request. Includes SPU message
196  * headers and the request data.
197  * @mssg:	mailbox message containing the transmit sg
198  * @rctx:	crypto request context
199  * @tx_frag_num: number of scatterlist elements required to construct the
200  *		SPU request message
201  * @chunksize:	Number of bytes of request data
202  * @pad_len:	Number of pad bytes
203  *
204  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
205  * when the request completes, whether the request is handled successfully or
206  * there is an error.
207  *
208  * Returns:
209  *   0 if successful
210  *   < 0 if an error
211  */
212 static int
213 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
214 			    struct iproc_reqctx_s *rctx,
215 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
216 {
217 	struct spu_hw *spu = &iproc_priv.spu;
218 	struct scatterlist *sg;	/* used to build sgs in mbox message */
219 	struct iproc_ctx_s *ctx = rctx->ctx;
220 	u32 datalen;		/* Number of bytes of response data expected */
221 	u32 stat_len;
222 
223 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
224 				rctx->gfp);
225 	if (unlikely(!mssg->spu.src))
226 		return -ENOMEM;
227 
228 	sg = mssg->spu.src;
229 	sg_init_table(sg, tx_frag_num);
230 
231 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
232 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
233 
234 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
235 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
236 	    spu->spu_xts_tweak_in_payload())
237 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
238 
239 	/* Copy in each src sg entry from request, up to chunksize */
240 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
241 				 rctx->src_nents, chunksize);
242 	if (unlikely(datalen < chunksize)) {
243 		pr_err("%s(): failed to copy src sg to mbox msg",
244 		       __func__);
245 		return -EFAULT;
246 	}
247 
248 	if (pad_len)
249 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
250 
251 	stat_len = spu->spu_tx_status_len();
252 	if (stat_len) {
253 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
254 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
255 	}
256 	return 0;
257 }
258 
259 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
260 				u8 chan_idx)
261 {
262 	int err;
263 	int retry_cnt = 0;
264 	struct device *dev = &(iproc_priv.pdev->dev);
265 
266 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
267 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
268 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
269 			/*
270 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
271 			 * not in atomic context and we can wait and try again.
272 			 */
273 			retry_cnt++;
274 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
275 			err = mbox_send_message(iproc_priv.mbox[chan_idx],
276 						mssg);
277 			atomic_inc(&iproc_priv.mb_no_spc);
278 		}
279 	}
280 	if (err < 0) {
281 		atomic_inc(&iproc_priv.mb_send_fail);
282 		return err;
283 	}
284 
285 	/* Check error returned by mailbox controller */
286 	err = mssg->error;
287 	if (unlikely(err < 0)) {
288 		dev_err(dev, "message error %d", err);
289 		/* Signal txdone for mailbox channel */
290 	}
291 
292 	/* Signal txdone for mailbox channel */
293 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
294 	return err;
295 }
296 
297 /**
298  * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
299  * a single SPU request message, starting at the current position in the request
300  * data.
301  * @rctx:	Crypto request context
302  *
303  * This may be called on the crypto API thread, or, when a request is so large
304  * it must be broken into multiple SPU messages, on the thread used to invoke
305  * the response callback. When requests are broken into multiple SPU
306  * messages, we assume subsequent messages depend on previous results, and
307  * thus always wait for previous results before submitting the next message.
308  * Because requests are submitted in lock step like this, there is no need
309  * to synchronize access to request data structures.
310  *
311  * Return: -EINPROGRESS: request has been accepted and result will be returned
312  *			 asynchronously
313  *         Any other value indicates an error
314  */
315 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
316 {
317 	struct spu_hw *spu = &iproc_priv.spu;
318 	struct crypto_async_request *areq = rctx->parent;
319 	struct ablkcipher_request *req =
320 	    container_of(areq, struct ablkcipher_request, base);
321 	struct iproc_ctx_s *ctx = rctx->ctx;
322 	struct spu_cipher_parms cipher_parms;
323 	int err = 0;
324 	unsigned int chunksize = 0;	/* Num bytes of request to submit */
325 	int remaining = 0;	/* Bytes of request still to process */
326 	int chunk_start;	/* Beginning of data for current SPU msg */
327 
328 	/* IV or ctr value to use in this SPU msg */
329 	u8 local_iv_ctr[MAX_IV_SIZE];
330 	u32 stat_pad_len;	/* num bytes to align status field */
331 	u32 pad_len;		/* total length of all padding */
332 	bool update_key = false;
333 	struct brcm_message *mssg;	/* mailbox message */
334 
335 	/* number of entries in src and dst sg in mailbox message. */
336 	u8 rx_frag_num = 2;	/* response header and STATUS */
337 	u8 tx_frag_num = 1;	/* request header */
338 
339 	flow_log("%s\n", __func__);
340 
341 	cipher_parms.alg = ctx->cipher.alg;
342 	cipher_parms.mode = ctx->cipher.mode;
343 	cipher_parms.type = ctx->cipher_type;
344 	cipher_parms.key_len = ctx->enckeylen;
345 	cipher_parms.key_buf = ctx->enckey;
346 	cipher_parms.iv_buf = local_iv_ctr;
347 	cipher_parms.iv_len = rctx->iv_ctr_len;
348 
349 	mssg = &rctx->mb_mssg;
350 	chunk_start = rctx->src_sent;
351 	remaining = rctx->total_todo - chunk_start;
352 
353 	/* determine the chunk we are breaking off and update the indexes */
354 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
355 	    (remaining > ctx->max_payload))
356 		chunksize = ctx->max_payload;
357 	else
358 		chunksize = remaining;
359 
360 	rctx->src_sent += chunksize;
361 	rctx->total_sent = rctx->src_sent;
362 
363 	/* Count number of sg entries to be included in this request */
364 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
365 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
366 
367 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
368 	    rctx->is_encrypt && chunk_start)
369 		/*
370 		 * Encrypting non-first first chunk. Copy last block of
371 		 * previous result to IV for this chunk.
372 		 */
373 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
374 				    rctx->iv_ctr_len,
375 				    chunk_start - rctx->iv_ctr_len);
376 
377 	if (rctx->iv_ctr_len) {
378 		/* get our local copy of the iv */
379 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
380 				 rctx->iv_ctr_len);
381 
382 		/* generate the next IV if possible */
383 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
384 		    !rctx->is_encrypt) {
385 			/*
386 			 * CBC Decrypt: next IV is the last ciphertext block in
387 			 * this chunk
388 			 */
389 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
390 					    rctx->iv_ctr_len,
391 					    rctx->src_sent - rctx->iv_ctr_len);
392 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
393 			/*
394 			 * The SPU hardware increments the counter once for
395 			 * each AES block of 16 bytes. So update the counter
396 			 * for the next chunk, if there is one. Note that for
397 			 * this chunk, the counter has already been copied to
398 			 * local_iv_ctr. We can assume a block size of 16,
399 			 * because we only support CTR mode for AES, not for
400 			 * any other cipher alg.
401 			 */
402 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
403 		}
404 	}
405 
406 	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
407 		rx_frag_num++;
408 		if (chunk_start) {
409 			/*
410 			 * for non-first RC4 chunks, use SUPDT from previous
411 			 * response as key for this chunk.
412 			 */
413 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
414 			update_key = true;
415 			cipher_parms.type = CIPHER_TYPE_UPDT;
416 		} else if (!rctx->is_encrypt) {
417 			/*
418 			 * First RC4 chunk. For decrypt, key in pre-built msg
419 			 * header may have been changed if encrypt required
420 			 * multiple chunks. So revert the key to the
421 			 * ctx->enckey value.
422 			 */
423 			update_key = true;
424 			cipher_parms.type = CIPHER_TYPE_INIT;
425 		}
426 	}
427 
428 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
429 		flow_log("max_payload infinite\n");
430 	else
431 		flow_log("max_payload %u\n", ctx->max_payload);
432 
433 	flow_log("sent:%u start:%u remains:%u size:%u\n",
434 		 rctx->src_sent, chunk_start, remaining, chunksize);
435 
436 	/* Copy SPU header template created at setkey time */
437 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
438 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
439 
440 	/*
441 	 * Pass SUPDT field as key. Key field in finish() call is only used
442 	 * when update_key has been set above for RC4. Will be ignored in
443 	 * all other cases.
444 	 */
445 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
446 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
447 				   &cipher_parms, update_key, chunksize);
448 
449 	atomic64_add(chunksize, &iproc_priv.bytes_out);
450 
451 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
452 	if (stat_pad_len)
453 		rx_frag_num++;
454 	pad_len = stat_pad_len;
455 	if (pad_len) {
456 		tx_frag_num++;
457 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
458 				     0, ctx->auth.alg, ctx->auth.mode,
459 				     rctx->total_sent, stat_pad_len);
460 	}
461 
462 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
463 			      ctx->spu_req_hdr_len);
464 	packet_log("payload:\n");
465 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
466 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
467 
468 	/*
469 	 * Build mailbox message containing SPU request msg and rx buffers
470 	 * to catch response message
471 	 */
472 	memset(mssg, 0, sizeof(*mssg));
473 	mssg->type = BRCM_MESSAGE_SPU;
474 	mssg->ctx = rctx;	/* Will be returned in response */
475 
476 	/* Create rx scatterlist to catch result */
477 	rx_frag_num += rctx->dst_nents;
478 
479 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
480 	    spu->spu_xts_tweak_in_payload())
481 		rx_frag_num++;	/* extra sg to insert tweak */
482 
483 	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
484 					  stat_pad_len);
485 	if (err)
486 		return err;
487 
488 	/* Create tx scatterlist containing SPU request message */
489 	tx_frag_num += rctx->src_nents;
490 	if (spu->spu_tx_status_len())
491 		tx_frag_num++;
492 
493 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
494 	    spu->spu_xts_tweak_in_payload())
495 		tx_frag_num++;	/* extra sg to insert tweak */
496 
497 	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
498 					  pad_len);
499 	if (err)
500 		return err;
501 
502 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
503 	if (unlikely(err < 0))
504 		return err;
505 
506 	return -EINPROGRESS;
507 }
508 
509 /**
510  * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
511  * total received count for the request and updates global stats.
512  * @rctx:	Crypto request context
513  */
514 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
515 {
516 	struct spu_hw *spu = &iproc_priv.spu;
517 #ifdef DEBUG
518 	struct crypto_async_request *areq = rctx->parent;
519 	struct ablkcipher_request *req = ablkcipher_request_cast(areq);
520 #endif
521 	struct iproc_ctx_s *ctx = rctx->ctx;
522 	u32 payload_len;
523 
524 	/* See how much data was returned */
525 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
526 
527 	/*
528 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
529 	 * encrypted tweak ("i") value; we don't count those.
530 	 */
531 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
532 	    spu->spu_xts_tweak_in_payload() &&
533 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
534 		payload_len -= SPU_XTS_TWEAK_SIZE;
535 
536 	atomic64_add(payload_len, &iproc_priv.bytes_in);
537 
538 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
539 		 __func__, rctx->total_received, payload_len);
540 
541 	dump_sg(req->dst, rctx->total_received, payload_len);
542 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
543 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
544 			    SPU_SUPDT_LEN);
545 
546 	rctx->total_received += payload_len;
547 	if (rctx->total_received == rctx->total_todo) {
548 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
549 		atomic_inc(
550 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
551 	}
552 }
553 
554 /**
555  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
556  * receive a SPU response message for an ahash request.
557  * @mssg:	mailbox message containing the receive sg
558  * @rctx:	crypto request context
559  * @rx_frag_num: number of scatterlist elements required to hold the
560  *		SPU response message
561  * @digestsize: length of hash digest, in bytes
562  * @stat_pad_len: Number of bytes required to pad the STAT field to
563  *		a 4-byte boundary
564  *
565  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
566  * when the request completes, whether the request is handled successfully or
567  * there is an error.
568  *
569  * Return:
570  *   0 if successful
571  *   < 0 if an error
572  */
573 static int
574 spu_ahash_rx_sg_create(struct brcm_message *mssg,
575 		       struct iproc_reqctx_s *rctx,
576 		       u8 rx_frag_num, unsigned int digestsize,
577 		       u32 stat_pad_len)
578 {
579 	struct spu_hw *spu = &iproc_priv.spu;
580 	struct scatterlist *sg;	/* used to build sgs in mbox message */
581 	struct iproc_ctx_s *ctx = rctx->ctx;
582 
583 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
584 				rctx->gfp);
585 	if (!mssg->spu.dst)
586 		return -ENOMEM;
587 
588 	sg = mssg->spu.dst;
589 	sg_init_table(sg, rx_frag_num);
590 	/* Space for SPU message header */
591 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
592 
593 	/* Space for digest */
594 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
595 
596 	if (stat_pad_len)
597 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
598 
599 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
600 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
601 	return 0;
602 }
603 
604 /**
605  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
606  * a SPU request message for an ahash request. Includes SPU message headers and
607  * the request data.
608  * @mssg:	mailbox message containing the transmit sg
609  * @rctx:	crypto request context
610  * @tx_frag_num: number of scatterlist elements required to construct the
611  *		SPU request message
612  * @spu_hdr_len: length in bytes of SPU message header
613  * @hash_carry_len: Number of bytes of data carried over from previous req
614  * @new_data_len: Number of bytes of new request data
615  * @pad_len:	Number of pad bytes
616  *
617  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
618  * when the request completes, whether the request is handled successfully or
619  * there is an error.
620  *
621  * Return:
622  *   0 if successful
623  *   < 0 if an error
624  */
625 static int
626 spu_ahash_tx_sg_create(struct brcm_message *mssg,
627 		       struct iproc_reqctx_s *rctx,
628 		       u8 tx_frag_num,
629 		       u32 spu_hdr_len,
630 		       unsigned int hash_carry_len,
631 		       unsigned int new_data_len, u32 pad_len)
632 {
633 	struct spu_hw *spu = &iproc_priv.spu;
634 	struct scatterlist *sg;	/* used to build sgs in mbox message */
635 	u32 datalen;		/* Number of bytes of response data expected */
636 	u32 stat_len;
637 
638 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
639 				rctx->gfp);
640 	if (!mssg->spu.src)
641 		return -ENOMEM;
642 
643 	sg = mssg->spu.src;
644 	sg_init_table(sg, tx_frag_num);
645 
646 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
647 		   BCM_HDR_LEN + spu_hdr_len);
648 
649 	if (hash_carry_len)
650 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
651 
652 	if (new_data_len) {
653 		/* Copy in each src sg entry from request, up to chunksize */
654 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
655 					 rctx->src_nents, new_data_len);
656 		if (datalen < new_data_len) {
657 			pr_err("%s(): failed to copy src sg to mbox msg",
658 			       __func__);
659 			return -EFAULT;
660 		}
661 	}
662 
663 	if (pad_len)
664 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
665 
666 	stat_len = spu->spu_tx_status_len();
667 	if (stat_len) {
668 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
669 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
670 	}
671 
672 	return 0;
673 }
674 
675 /**
676  * handle_ahash_req() - Process an asynchronous hash request from the crypto
677  * API.
678  * @rctx:  Crypto request context
679  *
680  * Builds a SPU request message embedded in a mailbox message and submits the
681  * mailbox message on a selected mailbox channel. The SPU request message is
682  * constructed as a scatterlist, including entries from the crypto API's
683  * src scatterlist to avoid copying the data to be hashed. This function is
684  * called either on the thread from the crypto API, or, in the case that the
685  * crypto API request is too large to fit in a single SPU request message,
686  * on the thread that invokes the receive callback with a response message.
687  * Because some operations require the response from one chunk before the next
688  * chunk can be submitted, we always wait for the response for the previous
689  * chunk before submitting the next chunk. Because requests are submitted in
690  * lock step like this, there is no need to synchronize access to request data
691  * structures.
692  *
693  * Return:
694  *   -EINPROGRESS: request has been submitted to SPU and response will be
695  *		   returned asynchronously
696  *   -EAGAIN:      non-final request included a small amount of data, which for
697  *		   efficiency we did not submit to the SPU, but instead stored
698  *		   to be submitted to the SPU with the next part of the request
699  *   other:        an error code
700  */
701 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
702 {
703 	struct spu_hw *spu = &iproc_priv.spu;
704 	struct crypto_async_request *areq = rctx->parent;
705 	struct ahash_request *req = ahash_request_cast(areq);
706 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
707 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
708 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
709 	struct iproc_ctx_s *ctx = rctx->ctx;
710 
711 	/* number of bytes still to be hashed in this req */
712 	unsigned int nbytes_to_hash = 0;
713 	int err = 0;
714 	unsigned int chunksize = 0;	/* length of hash carry + new data */
715 	/*
716 	 * length of new data, not from hash carry, to be submitted in
717 	 * this hw request
718 	 */
719 	unsigned int new_data_len;
720 
721 	unsigned int chunk_start = 0;
722 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
723 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
724 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
725 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
726 	struct brcm_message *mssg;	/* mailbox message */
727 	struct spu_request_opts req_opts;
728 	struct spu_cipher_parms cipher_parms;
729 	struct spu_hash_parms hash_parms;
730 	struct spu_aead_parms aead_parms;
731 	unsigned int local_nbuf;
732 	u32 spu_hdr_len;
733 	unsigned int digestsize;
734 	u16 rem = 0;
735 
736 	/*
737 	 * number of entries in src and dst sg. Always includes SPU msg header.
738 	 * rx always includes a buffer to catch digest and STATUS.
739 	 */
740 	u8 rx_frag_num = 3;
741 	u8 tx_frag_num = 1;
742 
743 	flow_log("total_todo %u, total_sent %u\n",
744 		 rctx->total_todo, rctx->total_sent);
745 
746 	memset(&req_opts, 0, sizeof(req_opts));
747 	memset(&cipher_parms, 0, sizeof(cipher_parms));
748 	memset(&hash_parms, 0, sizeof(hash_parms));
749 	memset(&aead_parms, 0, sizeof(aead_parms));
750 
751 	req_opts.bd_suppress = true;
752 	hash_parms.alg = ctx->auth.alg;
753 	hash_parms.mode = ctx->auth.mode;
754 	hash_parms.type = HASH_TYPE_NONE;
755 	hash_parms.key_buf = (u8 *)ctx->authkey;
756 	hash_parms.key_len = ctx->authkeylen;
757 
758 	/*
759 	 * For hash algorithms below assignment looks bit odd but
760 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
761 	 * to differentiate between 128, 192, 256 bit key values.
762 	 * Based on the key values, hash algorithm is selected.
763 	 * For example for 128 bit key, hash algorithm is AES-128.
764 	 */
765 	cipher_parms.type = ctx->cipher_type;
766 
767 	mssg = &rctx->mb_mssg;
768 	chunk_start = rctx->src_sent;
769 
770 	/*
771 	 * Compute the amount remaining to hash. This may include data
772 	 * carried over from previous requests.
773 	 */
774 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
775 	chunksize = nbytes_to_hash;
776 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
777 	    (chunksize > ctx->max_payload))
778 		chunksize = ctx->max_payload;
779 
780 	/*
781 	 * If this is not a final request and the request data is not a multiple
782 	 * of a full block, then simply park the extra data and prefix it to the
783 	 * data for the next request.
784 	 */
785 	if (!rctx->is_final) {
786 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
787 		u16 new_len;  /* len of data to add to hash carry */
788 
789 		rem = chunksize % blocksize;   /* remainder */
790 		if (rem) {
791 			/* chunksize not a multiple of blocksize */
792 			chunksize -= rem;
793 			if (chunksize == 0) {
794 				/* Don't have a full block to submit to hw */
795 				new_len = rem - rctx->hash_carry_len;
796 				sg_copy_part_to_buf(req->src, dest, new_len,
797 						    rctx->src_sent);
798 				rctx->hash_carry_len = rem;
799 				flow_log("Exiting with hash carry len: %u\n",
800 					 rctx->hash_carry_len);
801 				packet_dump("  buf: ",
802 					    rctx->hash_carry,
803 					    rctx->hash_carry_len);
804 				return -EAGAIN;
805 			}
806 		}
807 	}
808 
809 	/* if we have hash carry, then prefix it to the data in this request */
810 	local_nbuf = rctx->hash_carry_len;
811 	rctx->hash_carry_len = 0;
812 	if (local_nbuf)
813 		tx_frag_num++;
814 	new_data_len = chunksize - local_nbuf;
815 
816 	/* Count number of sg entries to be used in this request */
817 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
818 				       new_data_len);
819 
820 	/* AES hashing keeps key size in type field, so need to copy it here */
821 	if (hash_parms.alg == HASH_ALG_AES)
822 		hash_parms.type = cipher_parms.type;
823 	else
824 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
825 
826 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
827 					  hash_parms.type);
828 	hash_parms.digestsize =	digestsize;
829 
830 	/* update the indexes */
831 	rctx->total_sent += chunksize;
832 	/* if you sent a prebuf then that wasn't from this req->src */
833 	rctx->src_sent += new_data_len;
834 
835 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
836 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
837 							   hash_parms.mode,
838 							   chunksize,
839 							   blocksize);
840 
841 	/*
842 	 * If a non-first chunk, then include the digest returned from the
843 	 * previous chunk so that hw can add to it (except for AES types).
844 	 */
845 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
846 	    (hash_parms.alg != HASH_ALG_AES)) {
847 		hash_parms.key_buf = rctx->incr_hash;
848 		hash_parms.key_len = digestsize;
849 	}
850 
851 	atomic64_add(chunksize, &iproc_priv.bytes_out);
852 
853 	flow_log("%s() final: %u nbuf: %u ",
854 		 __func__, rctx->is_final, local_nbuf);
855 
856 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
857 		flow_log("max_payload infinite\n");
858 	else
859 		flow_log("max_payload %u\n", ctx->max_payload);
860 
861 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
862 
863 	/* Prepend SPU header with type 3 BCM header */
864 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
865 
866 	hash_parms.prebuf_len = local_nbuf;
867 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
868 					      BCM_HDR_LEN,
869 					      &req_opts, &cipher_parms,
870 					      &hash_parms, &aead_parms,
871 					      new_data_len);
872 
873 	if (spu_hdr_len == 0) {
874 		pr_err("Failed to create SPU request header\n");
875 		return -EFAULT;
876 	}
877 
878 	/*
879 	 * Determine total length of padding required. Put all padding in one
880 	 * buffer.
881 	 */
882 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
883 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
884 				   0, 0, hash_parms.pad_len);
885 	if (spu->spu_tx_status_len())
886 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
887 	if (stat_pad_len)
888 		rx_frag_num++;
889 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
890 	if (pad_len) {
891 		tx_frag_num++;
892 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
893 				     hash_parms.pad_len, ctx->auth.alg,
894 				     ctx->auth.mode, rctx->total_sent,
895 				     stat_pad_len);
896 	}
897 
898 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
899 			      spu_hdr_len);
900 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
901 	flow_log("Data:\n");
902 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
903 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
904 
905 	/*
906 	 * Build mailbox message containing SPU request msg and rx buffers
907 	 * to catch response message
908 	 */
909 	memset(mssg, 0, sizeof(*mssg));
910 	mssg->type = BRCM_MESSAGE_SPU;
911 	mssg->ctx = rctx;	/* Will be returned in response */
912 
913 	/* Create rx scatterlist to catch result */
914 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
915 				     stat_pad_len);
916 	if (err)
917 		return err;
918 
919 	/* Create tx scatterlist containing SPU request message */
920 	tx_frag_num += rctx->src_nents;
921 	if (spu->spu_tx_status_len())
922 		tx_frag_num++;
923 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
924 				     local_nbuf, new_data_len, pad_len);
925 	if (err)
926 		return err;
927 
928 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
929 	if (unlikely(err < 0))
930 		return err;
931 
932 	return -EINPROGRESS;
933 }
934 
935 /**
936  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
937  * for an HMAC request.
938  * @req:  The HMAC request from the crypto API
939  * @ctx:  The session context
940  *
941  * Return: 0 if synchronous hash operation successful
942  *         -EINVAL if the hash algo is unrecognized
943  *         any other value indicates an error
944  */
945 static int spu_hmac_outer_hash(struct ahash_request *req,
946 			       struct iproc_ctx_s *ctx)
947 {
948 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
949 	unsigned int blocksize =
950 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
951 	int rc;
952 
953 	switch (ctx->auth.alg) {
954 	case HASH_ALG_MD5:
955 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
956 			      req->result, ctx->digestsize, NULL, 0);
957 		break;
958 	case HASH_ALG_SHA1:
959 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
960 			      req->result, ctx->digestsize, NULL, 0);
961 		break;
962 	case HASH_ALG_SHA224:
963 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
964 			      req->result, ctx->digestsize, NULL, 0);
965 		break;
966 	case HASH_ALG_SHA256:
967 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
968 			      req->result, ctx->digestsize, NULL, 0);
969 		break;
970 	case HASH_ALG_SHA384:
971 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
972 			      req->result, ctx->digestsize, NULL, 0);
973 		break;
974 	case HASH_ALG_SHA512:
975 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
976 			      req->result, ctx->digestsize, NULL, 0);
977 		break;
978 	default:
979 		pr_err("%s() Error : unknown hmac type\n", __func__);
980 		rc = -EINVAL;
981 	}
982 	return rc;
983 }
984 
985 /**
986  * ahash_req_done() - Process a hash result from the SPU hardware.
987  * @rctx: Crypto request context
988  *
989  * Return: 0 if successful
990  *         < 0 if an error
991  */
992 static int ahash_req_done(struct iproc_reqctx_s *rctx)
993 {
994 	struct spu_hw *spu = &iproc_priv.spu;
995 	struct crypto_async_request *areq = rctx->parent;
996 	struct ahash_request *req = ahash_request_cast(areq);
997 	struct iproc_ctx_s *ctx = rctx->ctx;
998 	int err;
999 
1000 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1001 
1002 	if (spu->spu_type == SPU_TYPE_SPUM) {
1003 		/* byte swap the output from the UPDT function to network byte
1004 		 * order
1005 		 */
1006 		if (ctx->auth.alg == HASH_ALG_MD5) {
1007 			__swab32s((u32 *)req->result);
1008 			__swab32s(((u32 *)req->result) + 1);
1009 			__swab32s(((u32 *)req->result) + 2);
1010 			__swab32s(((u32 *)req->result) + 3);
1011 			__swab32s(((u32 *)req->result) + 4);
1012 		}
1013 	}
1014 
1015 	flow_dump("  digest ", req->result, ctx->digestsize);
1016 
1017 	/* if this an HMAC then do the outer hash */
1018 	if (rctx->is_sw_hmac) {
1019 		err = spu_hmac_outer_hash(req, ctx);
1020 		if (err < 0)
1021 			return err;
1022 		flow_dump("  hmac: ", req->result, ctx->digestsize);
1023 	}
1024 
1025 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1026 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1027 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1028 	} else {
1029 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1030 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 /**
1037  * handle_ahash_resp() - Process a SPU response message for a hash request.
1038  * Checks if the entire crypto API request has been processed, and if so,
1039  * invokes post processing on the result.
1040  * @rctx: Crypto request context
1041  */
1042 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1043 {
1044 	struct iproc_ctx_s *ctx = rctx->ctx;
1045 #ifdef DEBUG
1046 	struct crypto_async_request *areq = rctx->parent;
1047 	struct ahash_request *req = ahash_request_cast(areq);
1048 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1049 	unsigned int blocksize =
1050 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1051 #endif
1052 	/*
1053 	 * Save hash to use as input to next op if incremental. Might be copying
1054 	 * too much, but that's easier than figuring out actual digest size here
1055 	 */
1056 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1057 
1058 	flow_log("%s() blocksize:%u digestsize:%u\n",
1059 		 __func__, blocksize, ctx->digestsize);
1060 
1061 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1062 
1063 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1064 		ahash_req_done(rctx);
1065 }
1066 
1067 /**
1068  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1069  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1070  * message headers and the response data.
1071  * @mssg:	mailbox message containing the receive sg
1072  * @rctx:	crypto request context
1073  * @rx_frag_num: number of scatterlist elements required to hold the
1074  *		SPU response message
1075  * @assoc_len:	Length of associated data included in the crypto request
1076  * @ret_iv_len: Length of IV returned in response
1077  * @resp_len:	Number of bytes of response data expected to be written to
1078  *              dst buffer from crypto API
1079  * @digestsize: Length of hash digest, in bytes
1080  * @stat_pad_len: Number of bytes required to pad the STAT field to
1081  *		a 4-byte boundary
1082  *
1083  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1084  * when the request completes, whether the request is handled successfully or
1085  * there is an error.
1086  *
1087  * Returns:
1088  *   0 if successful
1089  *   < 0 if an error
1090  */
1091 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1092 				 struct aead_request *req,
1093 				 struct iproc_reqctx_s *rctx,
1094 				 u8 rx_frag_num,
1095 				 unsigned int assoc_len,
1096 				 u32 ret_iv_len, unsigned int resp_len,
1097 				 unsigned int digestsize, u32 stat_pad_len)
1098 {
1099 	struct spu_hw *spu = &iproc_priv.spu;
1100 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1101 	struct iproc_ctx_s *ctx = rctx->ctx;
1102 	u32 datalen;		/* Number of bytes of response data expected */
1103 	u32 assoc_buf_len;
1104 	u8 data_padlen = 0;
1105 
1106 	if (ctx->is_rfc4543) {
1107 		/* RFC4543: only pad after data, not after AAD */
1108 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1109 							  assoc_len + resp_len);
1110 		assoc_buf_len = assoc_len;
1111 	} else {
1112 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1113 							  resp_len);
1114 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1115 						assoc_len, ret_iv_len,
1116 						rctx->is_encrypt);
1117 	}
1118 
1119 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1120 		/* ICV (after data) must be in the next 32-bit word for CCM */
1121 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1122 							 resp_len +
1123 							 data_padlen);
1124 
1125 	if (data_padlen)
1126 		/* have to catch gcm pad in separate buffer */
1127 		rx_frag_num++;
1128 
1129 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1130 				rctx->gfp);
1131 	if (!mssg->spu.dst)
1132 		return -ENOMEM;
1133 
1134 	sg = mssg->spu.dst;
1135 	sg_init_table(sg, rx_frag_num);
1136 
1137 	/* Space for SPU message header */
1138 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1139 
1140 	if (assoc_buf_len) {
1141 		/*
1142 		 * Don't write directly to req->dst, because SPU may pad the
1143 		 * assoc data in the response
1144 		 */
1145 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1146 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1147 	}
1148 
1149 	if (resp_len) {
1150 		/*
1151 		 * Copy in each dst sg entry from request, up to chunksize.
1152 		 * dst sg catches just the data. digest caught in separate buf.
1153 		 */
1154 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1155 					 rctx->dst_nents, resp_len);
1156 		if (datalen < (resp_len)) {
1157 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1158 			       __func__, resp_len, datalen);
1159 			return -EFAULT;
1160 		}
1161 	}
1162 
1163 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1164 	if (data_padlen) {
1165 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1166 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1167 	}
1168 
1169 	/* Always catch ICV in separate buffer */
1170 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1171 
1172 	flow_log("stat_pad_len %u\n", stat_pad_len);
1173 	if (stat_pad_len) {
1174 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1175 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1176 	}
1177 
1178 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1179 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1186  * SPU request message for an AEAD request. Includes SPU message headers and the
1187  * request data.
1188  * @mssg:	mailbox message containing the transmit sg
1189  * @rctx:	crypto request context
1190  * @tx_frag_num: number of scatterlist elements required to construct the
1191  *		SPU request message
1192  * @spu_hdr_len: length of SPU message header in bytes
1193  * @assoc:	crypto API associated data scatterlist
1194  * @assoc_len:	length of associated data
1195  * @assoc_nents: number of scatterlist entries containing assoc data
1196  * @aead_iv_len: length of AEAD IV, if included
1197  * @chunksize:	Number of bytes of request data
1198  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1199  * @pad_len:	Number of pad bytes
1200  * @incl_icv:	If true, write separate ICV buffer after data and
1201  *              any padding
1202  *
1203  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1204  * when the request completes, whether the request is handled successfully or
1205  * there is an error.
1206  *
1207  * Return:
1208  *   0 if successful
1209  *   < 0 if an error
1210  */
1211 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1212 				 struct iproc_reqctx_s *rctx,
1213 				 u8 tx_frag_num,
1214 				 u32 spu_hdr_len,
1215 				 struct scatterlist *assoc,
1216 				 unsigned int assoc_len,
1217 				 int assoc_nents,
1218 				 unsigned int aead_iv_len,
1219 				 unsigned int chunksize,
1220 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1221 {
1222 	struct spu_hw *spu = &iproc_priv.spu;
1223 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1224 	struct scatterlist *assoc_sg = assoc;
1225 	struct iproc_ctx_s *ctx = rctx->ctx;
1226 	u32 datalen;		/* Number of bytes of data to write */
1227 	u32 written;		/* Number of bytes of data written */
1228 	u32 assoc_offset = 0;
1229 	u32 stat_len;
1230 
1231 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1232 				rctx->gfp);
1233 	if (!mssg->spu.src)
1234 		return -ENOMEM;
1235 
1236 	sg = mssg->spu.src;
1237 	sg_init_table(sg, tx_frag_num);
1238 
1239 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1240 		   BCM_HDR_LEN + spu_hdr_len);
1241 
1242 	if (assoc_len) {
1243 		/* Copy in each associated data sg entry from request */
1244 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1245 					 assoc_nents, assoc_len);
1246 		if (written < assoc_len) {
1247 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1248 			       __func__);
1249 			return -EFAULT;
1250 		}
1251 	}
1252 
1253 	if (aead_iv_len)
1254 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1255 
1256 	if (aad_pad_len) {
1257 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1258 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1259 	}
1260 
1261 	datalen = chunksize;
1262 	if ((chunksize > ctx->digestsize) && incl_icv)
1263 		datalen -= ctx->digestsize;
1264 	if (datalen) {
1265 		/* For aead, a single msg should consume the entire src sg */
1266 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1267 					 rctx->src_nents, datalen);
1268 		if (written < datalen) {
1269 			pr_err("%s(): failed to copy src sg to mbox msg",
1270 			       __func__);
1271 			return -EFAULT;
1272 		}
1273 	}
1274 
1275 	if (pad_len) {
1276 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1277 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1278 	}
1279 
1280 	if (incl_icv)
1281 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1282 
1283 	stat_len = spu->spu_tx_status_len();
1284 	if (stat_len) {
1285 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1286 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1287 	}
1288 	return 0;
1289 }
1290 
1291 /**
1292  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1293  * current AEAD request.
1294  * @rctx:  Crypto request context
1295  *
1296  * Unlike other operation types, we assume the length of the request fits in
1297  * a single SPU request message. aead_enqueue() makes sure this is true.
1298  * Comments for other op types regarding threads applies here as well.
1299  *
1300  * Unlike incremental hash ops, where the spu returns the entire hash for
1301  * truncated algs like sha-224, the SPU returns just the truncated hash in
1302  * response to aead requests. So digestsize is always ctx->digestsize here.
1303  *
1304  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1305  *			 returned asynchronously
1306  *         Any other value indicates an error
1307  */
1308 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1309 {
1310 	struct spu_hw *spu = &iproc_priv.spu;
1311 	struct crypto_async_request *areq = rctx->parent;
1312 	struct aead_request *req = container_of(areq,
1313 						struct aead_request, base);
1314 	struct iproc_ctx_s *ctx = rctx->ctx;
1315 	int err;
1316 	unsigned int chunksize;
1317 	unsigned int resp_len;
1318 	u32 spu_hdr_len;
1319 	u32 db_size;
1320 	u32 stat_pad_len;
1321 	u32 pad_len;
1322 	struct brcm_message *mssg;	/* mailbox message */
1323 	struct spu_request_opts req_opts;
1324 	struct spu_cipher_parms cipher_parms;
1325 	struct spu_hash_parms hash_parms;
1326 	struct spu_aead_parms aead_parms;
1327 	int assoc_nents = 0;
1328 	bool incl_icv = false;
1329 	unsigned int digestsize = ctx->digestsize;
1330 
1331 	/* number of entries in src and dst sg. Always includes SPU msg header.
1332 	 */
1333 	u8 rx_frag_num = 2;	/* and STATUS */
1334 	u8 tx_frag_num = 1;
1335 
1336 	/* doing the whole thing at once */
1337 	chunksize = rctx->total_todo;
1338 
1339 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1340 
1341 	memset(&req_opts, 0, sizeof(req_opts));
1342 	memset(&hash_parms, 0, sizeof(hash_parms));
1343 	memset(&aead_parms, 0, sizeof(aead_parms));
1344 
1345 	req_opts.is_inbound = !(rctx->is_encrypt);
1346 	req_opts.auth_first = ctx->auth_first;
1347 	req_opts.is_aead = true;
1348 	req_opts.is_esp = ctx->is_esp;
1349 
1350 	cipher_parms.alg = ctx->cipher.alg;
1351 	cipher_parms.mode = ctx->cipher.mode;
1352 	cipher_parms.type = ctx->cipher_type;
1353 	cipher_parms.key_buf = ctx->enckey;
1354 	cipher_parms.key_len = ctx->enckeylen;
1355 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1356 	cipher_parms.iv_len = rctx->iv_ctr_len;
1357 
1358 	hash_parms.alg = ctx->auth.alg;
1359 	hash_parms.mode = ctx->auth.mode;
1360 	hash_parms.type = HASH_TYPE_NONE;
1361 	hash_parms.key_buf = (u8 *)ctx->authkey;
1362 	hash_parms.key_len = ctx->authkeylen;
1363 	hash_parms.digestsize = digestsize;
1364 
1365 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1366 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1367 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1368 
1369 	aead_parms.assoc_size = req->assoclen;
1370 	if (ctx->is_esp && !ctx->is_rfc4543) {
1371 		/*
1372 		 * 8-byte IV is included assoc data in request. SPU2
1373 		 * expects AAD to include just SPI and seqno. So
1374 		 * subtract off the IV len.
1375 		 */
1376 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1377 
1378 		if (rctx->is_encrypt) {
1379 			aead_parms.return_iv = true;
1380 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1381 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1382 		}
1383 	} else {
1384 		aead_parms.ret_iv_len = 0;
1385 	}
1386 
1387 	/*
1388 	 * Count number of sg entries from the crypto API request that are to
1389 	 * be included in this mailbox message. For dst sg, don't count space
1390 	 * for digest. Digest gets caught in a separate buffer and copied back
1391 	 * to dst sg when processing response.
1392 	 */
1393 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1394 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1395 	if (aead_parms.assoc_size)
1396 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1397 					   aead_parms.assoc_size);
1398 
1399 	mssg = &rctx->mb_mssg;
1400 
1401 	rctx->total_sent = chunksize;
1402 	rctx->src_sent = chunksize;
1403 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1404 				    aead_parms.assoc_size,
1405 				    aead_parms.ret_iv_len,
1406 				    rctx->is_encrypt))
1407 		rx_frag_num++;
1408 
1409 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1410 						rctx->iv_ctr_len);
1411 
1412 	if (ctx->auth.alg == HASH_ALG_AES)
1413 		hash_parms.type = ctx->cipher_type;
1414 
1415 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1416 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1417 						 aead_parms.assoc_size);
1418 
1419 	/* General case data padding (CCM decrypt special case below) */
1420 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1421 							   chunksize);
1422 
1423 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1424 		/*
1425 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1426 		 * 128-bit aligned
1427 		 */
1428 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1429 					 ctx->cipher.mode,
1430 					 aead_parms.assoc_size + 2);
1431 
1432 		/*
1433 		 * And when decrypting CCM, need to pad without including
1434 		 * size of ICV which is tacked on to end of chunk
1435 		 */
1436 		if (!rctx->is_encrypt)
1437 			aead_parms.data_pad_len =
1438 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1439 							chunksize - digestsize);
1440 
1441 		/* CCM also requires software to rewrite portions of IV: */
1442 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1443 				       chunksize, rctx->is_encrypt,
1444 				       ctx->is_esp);
1445 	}
1446 
1447 	if (ctx->is_rfc4543) {
1448 		/*
1449 		 * RFC4543: data is included in AAD, so don't pad after AAD
1450 		 * and pad data based on both AAD + data size
1451 		 */
1452 		aead_parms.aad_pad_len = 0;
1453 		if (!rctx->is_encrypt)
1454 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1455 					ctx->cipher.mode,
1456 					aead_parms.assoc_size + chunksize -
1457 					digestsize);
1458 		else
1459 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1460 					ctx->cipher.mode,
1461 					aead_parms.assoc_size + chunksize);
1462 
1463 		req_opts.is_rfc4543 = true;
1464 	}
1465 
1466 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1467 		incl_icv = true;
1468 		tx_frag_num++;
1469 		/* Copy ICV from end of src scatterlist to digest buf */
1470 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1471 				    req->assoclen + rctx->total_sent -
1472 				    digestsize);
1473 	}
1474 
1475 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1476 
1477 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1478 
1479 	/* Prepend SPU header with type 3 BCM header */
1480 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1481 
1482 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1483 					      BCM_HDR_LEN, &req_opts,
1484 					      &cipher_parms, &hash_parms,
1485 					      &aead_parms, chunksize);
1486 
1487 	/* Determine total length of padding. Put all padding in one buffer. */
1488 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1489 				   chunksize, aead_parms.aad_pad_len,
1490 				   aead_parms.data_pad_len, 0);
1491 
1492 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1493 
1494 	if (stat_pad_len)
1495 		rx_frag_num++;
1496 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1497 	if (pad_len) {
1498 		tx_frag_num++;
1499 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1500 				     aead_parms.data_pad_len, 0,
1501 				     ctx->auth.alg, ctx->auth.mode,
1502 				     rctx->total_sent, stat_pad_len);
1503 	}
1504 
1505 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1506 			      spu_hdr_len);
1507 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1508 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1509 	packet_log("BD:\n");
1510 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1511 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1512 
1513 	/*
1514 	 * Build mailbox message containing SPU request msg and rx buffers
1515 	 * to catch response message
1516 	 */
1517 	memset(mssg, 0, sizeof(*mssg));
1518 	mssg->type = BRCM_MESSAGE_SPU;
1519 	mssg->ctx = rctx;	/* Will be returned in response */
1520 
1521 	/* Create rx scatterlist to catch result */
1522 	rx_frag_num += rctx->dst_nents;
1523 	resp_len = chunksize;
1524 
1525 	/*
1526 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1527 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1528 	 * sends entire digest back.
1529 	 */
1530 	rx_frag_num++;
1531 
1532 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1533 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1534 		/*
1535 		 * Input is ciphertxt plus ICV, but ICV not incl
1536 		 * in output.
1537 		 */
1538 		resp_len -= ctx->digestsize;
1539 		if (resp_len == 0)
1540 			/* no rx frags to catch output data */
1541 			rx_frag_num -= rctx->dst_nents;
1542 	}
1543 
1544 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1545 				    aead_parms.assoc_size,
1546 				    aead_parms.ret_iv_len, resp_len, digestsize,
1547 				    stat_pad_len);
1548 	if (err)
1549 		return err;
1550 
1551 	/* Create tx scatterlist containing SPU request message */
1552 	tx_frag_num += rctx->src_nents;
1553 	tx_frag_num += assoc_nents;
1554 	if (aead_parms.aad_pad_len)
1555 		tx_frag_num++;
1556 	if (aead_parms.iv_len)
1557 		tx_frag_num++;
1558 	if (spu->spu_tx_status_len())
1559 		tx_frag_num++;
1560 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1561 				    rctx->assoc, aead_parms.assoc_size,
1562 				    assoc_nents, aead_parms.iv_len, chunksize,
1563 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1564 	if (err)
1565 		return err;
1566 
1567 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1568 	if (unlikely(err < 0))
1569 		return err;
1570 
1571 	return -EINPROGRESS;
1572 }
1573 
1574 /**
1575  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1576  * @rctx:  Crypto request context
1577  */
1578 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1579 {
1580 	struct spu_hw *spu = &iproc_priv.spu;
1581 	struct crypto_async_request *areq = rctx->parent;
1582 	struct aead_request *req = container_of(areq,
1583 						struct aead_request, base);
1584 	struct iproc_ctx_s *ctx = rctx->ctx;
1585 	u32 payload_len;
1586 	unsigned int icv_offset;
1587 	u32 result_len;
1588 
1589 	/* See how much data was returned */
1590 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1591 	flow_log("payload_len %u\n", payload_len);
1592 
1593 	/* only count payload */
1594 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1595 
1596 	if (req->assoclen)
1597 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1598 			    req->assoclen);
1599 
1600 	/*
1601 	 * Copy the ICV back to the destination
1602 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1603 	 * API doesn't expect ICV in dst buffer.
1604 	 */
1605 	result_len = req->cryptlen;
1606 	if (rctx->is_encrypt) {
1607 		icv_offset = req->assoclen + rctx->total_sent;
1608 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1609 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1610 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1611 				      ctx->digestsize, icv_offset);
1612 		result_len += ctx->digestsize;
1613 	}
1614 
1615 	packet_log("response data:  ");
1616 	dump_sg(req->dst, req->assoclen, result_len);
1617 
1618 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1619 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1620 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1621 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1622 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1623 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1624 		else
1625 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1626 	} else {
1627 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1628 	}
1629 }
1630 
1631 /**
1632  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1633  * @rctx:  request context
1634  *
1635  * Mailbox scatterlists are allocated for each chunk. So free them after
1636  * processing each chunk.
1637  */
1638 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1639 {
1640 	/* mailbox message used to tx request */
1641 	struct brcm_message *mssg = &rctx->mb_mssg;
1642 
1643 	kfree(mssg->spu.src);
1644 	kfree(mssg->spu.dst);
1645 	memset(mssg, 0, sizeof(struct brcm_message));
1646 }
1647 
1648 /**
1649  * finish_req() - Used to invoke the complete callback from the requester when
1650  * a request has been handled asynchronously.
1651  * @rctx:  Request context
1652  * @err:   Indicates whether the request was successful or not
1653  *
1654  * Ensures that cleanup has been done for request
1655  */
1656 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1657 {
1658 	struct crypto_async_request *areq = rctx->parent;
1659 
1660 	flow_log("%s() err:%d\n\n", __func__, err);
1661 
1662 	/* No harm done if already called */
1663 	spu_chunk_cleanup(rctx);
1664 
1665 	if (areq)
1666 		areq->complete(areq, err);
1667 }
1668 
1669 /**
1670  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1671  * @cl:		mailbox client structure for SPU driver
1672  * @msg:	mailbox message containing SPU response
1673  */
1674 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1675 {
1676 	struct spu_hw *spu = &iproc_priv.spu;
1677 	struct brcm_message *mssg = msg;
1678 	struct iproc_reqctx_s *rctx;
1679 	struct iproc_ctx_s *ctx;
1680 	struct crypto_async_request *areq;
1681 	int err = 0;
1682 
1683 	rctx = mssg->ctx;
1684 	if (unlikely(!rctx)) {
1685 		/* This is fatal */
1686 		pr_err("%s(): no request context", __func__);
1687 		err = -EFAULT;
1688 		goto cb_finish;
1689 	}
1690 	areq = rctx->parent;
1691 	ctx = rctx->ctx;
1692 
1693 	/* process the SPU status */
1694 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1695 	if (err != 0) {
1696 		if (err == SPU_INVALID_ICV)
1697 			atomic_inc(&iproc_priv.bad_icv);
1698 		err = -EBADMSG;
1699 		goto cb_finish;
1700 	}
1701 
1702 	/* Process the SPU response message */
1703 	switch (rctx->ctx->alg->type) {
1704 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
1705 		handle_ablkcipher_resp(rctx);
1706 		break;
1707 	case CRYPTO_ALG_TYPE_AHASH:
1708 		handle_ahash_resp(rctx);
1709 		break;
1710 	case CRYPTO_ALG_TYPE_AEAD:
1711 		handle_aead_resp(rctx);
1712 		break;
1713 	default:
1714 		err = -EINVAL;
1715 		goto cb_finish;
1716 	}
1717 
1718 	/*
1719 	 * If this response does not complete the request, then send the next
1720 	 * request chunk.
1721 	 */
1722 	if (rctx->total_sent < rctx->total_todo) {
1723 		/* Deallocate anything specific to previous chunk */
1724 		spu_chunk_cleanup(rctx);
1725 
1726 		switch (rctx->ctx->alg->type) {
1727 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
1728 			err = handle_ablkcipher_req(rctx);
1729 			break;
1730 		case CRYPTO_ALG_TYPE_AHASH:
1731 			err = handle_ahash_req(rctx);
1732 			if (err == -EAGAIN)
1733 				/*
1734 				 * we saved data in hash carry, but tell crypto
1735 				 * API we successfully completed request.
1736 				 */
1737 				err = 0;
1738 			break;
1739 		case CRYPTO_ALG_TYPE_AEAD:
1740 			err = handle_aead_req(rctx);
1741 			break;
1742 		default:
1743 			err = -EINVAL;
1744 		}
1745 
1746 		if (err == -EINPROGRESS)
1747 			/* Successfully submitted request for next chunk */
1748 			return;
1749 	}
1750 
1751 cb_finish:
1752 	finish_req(rctx, err);
1753 }
1754 
1755 /* ==================== Kernel Cryptographic API ==================== */
1756 
1757 /**
1758  * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1759  * @req:	Crypto API request
1760  * @encrypt:	true if encrypting; false if decrypting
1761  *
1762  * Return: -EINPROGRESS if request accepted and result will be returned
1763  *			asynchronously
1764  *	   < 0 if an error
1765  */
1766 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1767 {
1768 	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1769 	struct iproc_ctx_s *ctx =
1770 	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1771 	int err;
1772 
1773 	flow_log("%s() enc:%u\n", __func__, encrypt);
1774 
1775 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1776 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1777 	rctx->parent = &req->base;
1778 	rctx->is_encrypt = encrypt;
1779 	rctx->bd_suppress = false;
1780 	rctx->total_todo = req->nbytes;
1781 	rctx->src_sent = 0;
1782 	rctx->total_sent = 0;
1783 	rctx->total_received = 0;
1784 	rctx->ctx = ctx;
1785 
1786 	/* Initialize current position in src and dst scatterlists */
1787 	rctx->src_sg = req->src;
1788 	rctx->src_nents = 0;
1789 	rctx->src_skip = 0;
1790 	rctx->dst_sg = req->dst;
1791 	rctx->dst_nents = 0;
1792 	rctx->dst_skip = 0;
1793 
1794 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1795 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1796 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1797 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1798 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1799 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1800 		rctx->iv_ctr_len =
1801 		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1802 		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1803 	} else {
1804 		rctx->iv_ctr_len = 0;
1805 	}
1806 
1807 	/* Choose a SPU to process this request */
1808 	rctx->chan_idx = select_channel();
1809 	err = handle_ablkcipher_req(rctx);
1810 	if (err != -EINPROGRESS)
1811 		/* synchronous result */
1812 		spu_chunk_cleanup(rctx);
1813 
1814 	return err;
1815 }
1816 
1817 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1818 		      unsigned int keylen)
1819 {
1820 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1821 	u32 tmp[DES_EXPKEY_WORDS];
1822 
1823 	if (keylen == DES_KEY_SIZE) {
1824 		if (des_ekey(tmp, key) == 0) {
1825 			if (crypto_ablkcipher_get_flags(cipher) &
1826 			    CRYPTO_TFM_REQ_WEAK_KEY) {
1827 				u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1828 
1829 				crypto_ablkcipher_set_flags(cipher, flags);
1830 				return -EINVAL;
1831 			}
1832 		}
1833 
1834 		ctx->cipher_type = CIPHER_TYPE_DES;
1835 	} else {
1836 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1837 		return -EINVAL;
1838 	}
1839 	return 0;
1840 }
1841 
1842 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1843 			   unsigned int keylen)
1844 {
1845 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1846 
1847 	if (keylen == (DES_KEY_SIZE * 3)) {
1848 		const u32 *K = (const u32 *)key;
1849 		u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1850 
1851 		if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1852 		    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1853 			crypto_ablkcipher_set_flags(cipher, flags);
1854 			return -EINVAL;
1855 		}
1856 
1857 		ctx->cipher_type = CIPHER_TYPE_3DES;
1858 	} else {
1859 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1860 		return -EINVAL;
1861 	}
1862 	return 0;
1863 }
1864 
1865 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1866 		      unsigned int keylen)
1867 {
1868 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1869 
1870 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1871 		/* XTS includes two keys of equal length */
1872 		keylen = keylen / 2;
1873 
1874 	switch (keylen) {
1875 	case AES_KEYSIZE_128:
1876 		ctx->cipher_type = CIPHER_TYPE_AES128;
1877 		break;
1878 	case AES_KEYSIZE_192:
1879 		ctx->cipher_type = CIPHER_TYPE_AES192;
1880 		break;
1881 	case AES_KEYSIZE_256:
1882 		ctx->cipher_type = CIPHER_TYPE_AES256;
1883 		break;
1884 	default:
1885 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1886 		return -EINVAL;
1887 	}
1888 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1889 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1890 	return 0;
1891 }
1892 
1893 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1894 		      unsigned int keylen)
1895 {
1896 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1897 	int i;
1898 
1899 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1900 
1901 	ctx->enckey[0] = 0x00;	/* 0x00 */
1902 	ctx->enckey[1] = 0x00;	/* i    */
1903 	ctx->enckey[2] = 0x00;	/* 0x00 */
1904 	ctx->enckey[3] = 0x00;	/* j    */
1905 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1906 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1907 
1908 	ctx->cipher_type = CIPHER_TYPE_INIT;
1909 
1910 	return 0;
1911 }
1912 
1913 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1914 			     unsigned int keylen)
1915 {
1916 	struct spu_hw *spu = &iproc_priv.spu;
1917 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1918 	struct spu_cipher_parms cipher_parms;
1919 	u32 alloc_len = 0;
1920 	int err;
1921 
1922 	flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1923 	flow_dump("  key: ", key, keylen);
1924 
1925 	switch (ctx->cipher.alg) {
1926 	case CIPHER_ALG_DES:
1927 		err = des_setkey(cipher, key, keylen);
1928 		break;
1929 	case CIPHER_ALG_3DES:
1930 		err = threedes_setkey(cipher, key, keylen);
1931 		break;
1932 	case CIPHER_ALG_AES:
1933 		err = aes_setkey(cipher, key, keylen);
1934 		break;
1935 	case CIPHER_ALG_RC4:
1936 		err = rc4_setkey(cipher, key, keylen);
1937 		break;
1938 	default:
1939 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1940 		err = -EINVAL;
1941 	}
1942 	if (err)
1943 		return err;
1944 
1945 	/* RC4 already populated ctx->enkey */
1946 	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1947 		memcpy(ctx->enckey, key, keylen);
1948 		ctx->enckeylen = keylen;
1949 	}
1950 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1951 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1952 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1953 		unsigned int xts_keylen = keylen / 2;
1954 
1955 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1956 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1957 	}
1958 
1959 	if (spu->spu_type == SPU_TYPE_SPUM)
1960 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1961 	else if (spu->spu_type == SPU_TYPE_SPU2)
1962 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1963 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1964 	cipher_parms.iv_buf = NULL;
1965 	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1966 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1967 
1968 	cipher_parms.alg = ctx->cipher.alg;
1969 	cipher_parms.mode = ctx->cipher.mode;
1970 	cipher_parms.type = ctx->cipher_type;
1971 	cipher_parms.key_buf = ctx->enckey;
1972 	cipher_parms.key_len = ctx->enckeylen;
1973 
1974 	/* Prepend SPU request message with BCM header */
1975 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1976 	ctx->spu_req_hdr_len =
1977 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1978 				     &cipher_parms);
1979 
1980 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1981 							  ctx->enckeylen,
1982 							  false);
1983 
1984 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1985 
1986 	return 0;
1987 }
1988 
1989 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1990 {
1991 	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1992 
1993 	return ablkcipher_enqueue(req, true);
1994 }
1995 
1996 static int ablkcipher_decrypt(struct ablkcipher_request *req)
1997 {
1998 	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1999 	return ablkcipher_enqueue(req, false);
2000 }
2001 
2002 static int ahash_enqueue(struct ahash_request *req)
2003 {
2004 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2005 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2006 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2007 	int err = 0;
2008 	const char *alg_name;
2009 
2010 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2011 
2012 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2013 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2014 	rctx->parent = &req->base;
2015 	rctx->ctx = ctx;
2016 	rctx->bd_suppress = true;
2017 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2018 
2019 	/* Initialize position in src scatterlist */
2020 	rctx->src_sg = req->src;
2021 	rctx->src_skip = 0;
2022 	rctx->src_nents = 0;
2023 	rctx->dst_sg = NULL;
2024 	rctx->dst_skip = 0;
2025 	rctx->dst_nents = 0;
2026 
2027 	/* SPU2 hardware does not compute hash of zero length data */
2028 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2029 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2030 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2031 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
2032 			 rctx->is_final ? "" : "non-", alg_name);
2033 		err = do_shash((unsigned char *)alg_name, req->result,
2034 			       NULL, 0, NULL, 0, ctx->authkey,
2035 			       ctx->authkeylen);
2036 		if (err < 0)
2037 			flow_log("Hash request failed with error %d\n", err);
2038 		return err;
2039 	}
2040 	/* Choose a SPU to process this request */
2041 	rctx->chan_idx = select_channel();
2042 
2043 	err = handle_ahash_req(rctx);
2044 	if (err != -EINPROGRESS)
2045 		/* synchronous result */
2046 		spu_chunk_cleanup(rctx);
2047 
2048 	if (err == -EAGAIN)
2049 		/*
2050 		 * we saved data in hash carry, but tell crypto API
2051 		 * we successfully completed request.
2052 		 */
2053 		err = 0;
2054 
2055 	return err;
2056 }
2057 
2058 static int __ahash_init(struct ahash_request *req)
2059 {
2060 	struct spu_hw *spu = &iproc_priv.spu;
2061 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2062 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2063 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2064 
2065 	flow_log("%s()\n", __func__);
2066 
2067 	/* Initialize the context */
2068 	rctx->hash_carry_len = 0;
2069 	rctx->is_final = 0;
2070 
2071 	rctx->total_todo = 0;
2072 	rctx->src_sent = 0;
2073 	rctx->total_sent = 0;
2074 	rctx->total_received = 0;
2075 
2076 	ctx->digestsize = crypto_ahash_digestsize(tfm);
2077 	/* If we add a hash whose digest is larger, catch it here. */
2078 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2079 
2080 	rctx->is_sw_hmac = false;
2081 
2082 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2083 							  true);
2084 
2085 	return 0;
2086 }
2087 
2088 /**
2089  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2090  * @ctx:  Crypto session context
2091  *
2092  * SPU-2 does not support incremental hashing (we'll have to revisit and
2093  * condition based on chip revision or device tree entry if future versions do
2094  * support incremental hash)
2095  *
2096  * SPU-M also doesn't support incremental hashing of AES-XCBC
2097  *
2098  * Return: true if incremental hashing is not supported
2099  *         false otherwise
2100  */
2101 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2102 {
2103 	struct spu_hw *spu = &iproc_priv.spu;
2104 
2105 	if (spu->spu_type == SPU_TYPE_SPU2)
2106 		return true;
2107 
2108 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2109 	    (ctx->auth.mode == HASH_MODE_XCBC))
2110 		return true;
2111 
2112 	/* Otherwise, incremental hashing is supported */
2113 	return false;
2114 }
2115 
2116 static int ahash_init(struct ahash_request *req)
2117 {
2118 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2119 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2120 	const char *alg_name;
2121 	struct crypto_shash *hash;
2122 	int ret;
2123 	gfp_t gfp;
2124 
2125 	if (spu_no_incr_hash(ctx)) {
2126 		/*
2127 		 * If we get an incremental hashing request and it's not
2128 		 * supported by the hardware, we need to handle it in software
2129 		 * by calling synchronous hash functions.
2130 		 */
2131 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2132 		hash = crypto_alloc_shash(alg_name, 0, 0);
2133 		if (IS_ERR(hash)) {
2134 			ret = PTR_ERR(hash);
2135 			goto err;
2136 		}
2137 
2138 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2139 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2140 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2141 				     crypto_shash_descsize(hash), gfp);
2142 		if (!ctx->shash) {
2143 			ret = -ENOMEM;
2144 			goto err_hash;
2145 		}
2146 		ctx->shash->tfm = hash;
2147 		ctx->shash->flags = 0;
2148 
2149 		/* Set the key using data we already have from setkey */
2150 		if (ctx->authkeylen > 0) {
2151 			ret = crypto_shash_setkey(hash, ctx->authkey,
2152 						  ctx->authkeylen);
2153 			if (ret)
2154 				goto err_shash;
2155 		}
2156 
2157 		/* Initialize hash w/ this key and other params */
2158 		ret = crypto_shash_init(ctx->shash);
2159 		if (ret)
2160 			goto err_shash;
2161 	} else {
2162 		/* Otherwise call the internal function which uses SPU hw */
2163 		ret = __ahash_init(req);
2164 	}
2165 
2166 	return ret;
2167 
2168 err_shash:
2169 	kfree(ctx->shash);
2170 err_hash:
2171 	crypto_free_shash(hash);
2172 err:
2173 	return ret;
2174 }
2175 
2176 static int __ahash_update(struct ahash_request *req)
2177 {
2178 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2179 
2180 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2181 
2182 	if (!req->nbytes)
2183 		return 0;
2184 	rctx->total_todo += req->nbytes;
2185 	rctx->src_sent = 0;
2186 
2187 	return ahash_enqueue(req);
2188 }
2189 
2190 static int ahash_update(struct ahash_request *req)
2191 {
2192 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2193 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2194 	u8 *tmpbuf;
2195 	int ret;
2196 	int nents;
2197 	gfp_t gfp;
2198 
2199 	if (spu_no_incr_hash(ctx)) {
2200 		/*
2201 		 * If we get an incremental hashing request and it's not
2202 		 * supported by the hardware, we need to handle it in software
2203 		 * by calling synchronous hash functions.
2204 		 */
2205 		if (req->src)
2206 			nents = sg_nents(req->src);
2207 		else
2208 			return -EINVAL;
2209 
2210 		/* Copy data from req scatterlist to tmp buffer */
2211 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2212 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2213 		tmpbuf = kmalloc(req->nbytes, gfp);
2214 		if (!tmpbuf)
2215 			return -ENOMEM;
2216 
2217 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2218 				req->nbytes) {
2219 			kfree(tmpbuf);
2220 			return -EINVAL;
2221 		}
2222 
2223 		/* Call synchronous update */
2224 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2225 		kfree(tmpbuf);
2226 	} else {
2227 		/* Otherwise call the internal function which uses SPU hw */
2228 		ret = __ahash_update(req);
2229 	}
2230 
2231 	return ret;
2232 }
2233 
2234 static int __ahash_final(struct ahash_request *req)
2235 {
2236 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2237 
2238 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2239 
2240 	rctx->is_final = 1;
2241 
2242 	return ahash_enqueue(req);
2243 }
2244 
2245 static int ahash_final(struct ahash_request *req)
2246 {
2247 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2248 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2249 	int ret;
2250 
2251 	if (spu_no_incr_hash(ctx)) {
2252 		/*
2253 		 * If we get an incremental hashing request and it's not
2254 		 * supported by the hardware, we need to handle it in software
2255 		 * by calling synchronous hash functions.
2256 		 */
2257 		ret = crypto_shash_final(ctx->shash, req->result);
2258 
2259 		/* Done with hash, can deallocate it now */
2260 		crypto_free_shash(ctx->shash->tfm);
2261 		kfree(ctx->shash);
2262 
2263 	} else {
2264 		/* Otherwise call the internal function which uses SPU hw */
2265 		ret = __ahash_final(req);
2266 	}
2267 
2268 	return ret;
2269 }
2270 
2271 static int __ahash_finup(struct ahash_request *req)
2272 {
2273 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2274 
2275 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2276 
2277 	rctx->total_todo += req->nbytes;
2278 	rctx->src_sent = 0;
2279 	rctx->is_final = 1;
2280 
2281 	return ahash_enqueue(req);
2282 }
2283 
2284 static int ahash_finup(struct ahash_request *req)
2285 {
2286 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2287 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2288 	u8 *tmpbuf;
2289 	int ret;
2290 	int nents;
2291 	gfp_t gfp;
2292 
2293 	if (spu_no_incr_hash(ctx)) {
2294 		/*
2295 		 * If we get an incremental hashing request and it's not
2296 		 * supported by the hardware, we need to handle it in software
2297 		 * by calling synchronous hash functions.
2298 		 */
2299 		if (req->src) {
2300 			nents = sg_nents(req->src);
2301 		} else {
2302 			ret = -EINVAL;
2303 			goto ahash_finup_exit;
2304 		}
2305 
2306 		/* Copy data from req scatterlist to tmp buffer */
2307 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2308 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2309 		tmpbuf = kmalloc(req->nbytes, gfp);
2310 		if (!tmpbuf) {
2311 			ret = -ENOMEM;
2312 			goto ahash_finup_exit;
2313 		}
2314 
2315 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2316 				req->nbytes) {
2317 			ret = -EINVAL;
2318 			goto ahash_finup_free;
2319 		}
2320 
2321 		/* Call synchronous update */
2322 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2323 					 req->result);
2324 	} else {
2325 		/* Otherwise call the internal function which uses SPU hw */
2326 		return __ahash_finup(req);
2327 	}
2328 ahash_finup_free:
2329 	kfree(tmpbuf);
2330 
2331 ahash_finup_exit:
2332 	/* Done with hash, can deallocate it now */
2333 	crypto_free_shash(ctx->shash->tfm);
2334 	kfree(ctx->shash);
2335 	return ret;
2336 }
2337 
2338 static int ahash_digest(struct ahash_request *req)
2339 {
2340 	int err = 0;
2341 
2342 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2343 
2344 	/* whole thing at once */
2345 	err = __ahash_init(req);
2346 	if (!err)
2347 		err = __ahash_finup(req);
2348 
2349 	return err;
2350 }
2351 
2352 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2353 			unsigned int keylen)
2354 {
2355 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2356 
2357 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2358 		 __func__, ahash, key, keylen);
2359 	flow_dump("  key: ", key, keylen);
2360 
2361 	if (ctx->auth.alg == HASH_ALG_AES) {
2362 		switch (keylen) {
2363 		case AES_KEYSIZE_128:
2364 			ctx->cipher_type = CIPHER_TYPE_AES128;
2365 			break;
2366 		case AES_KEYSIZE_192:
2367 			ctx->cipher_type = CIPHER_TYPE_AES192;
2368 			break;
2369 		case AES_KEYSIZE_256:
2370 			ctx->cipher_type = CIPHER_TYPE_AES256;
2371 			break;
2372 		default:
2373 			pr_err("%s() Error: Invalid key length\n", __func__);
2374 			return -EINVAL;
2375 		}
2376 	} else {
2377 		pr_err("%s() Error: unknown hash alg\n", __func__);
2378 		return -EINVAL;
2379 	}
2380 	memcpy(ctx->authkey, key, keylen);
2381 	ctx->authkeylen = keylen;
2382 
2383 	return 0;
2384 }
2385 
2386 static int ahash_export(struct ahash_request *req, void *out)
2387 {
2388 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2389 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2390 
2391 	spu_exp->total_todo = rctx->total_todo;
2392 	spu_exp->total_sent = rctx->total_sent;
2393 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2394 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2395 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2396 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2397 
2398 	return 0;
2399 }
2400 
2401 static int ahash_import(struct ahash_request *req, const void *in)
2402 {
2403 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2404 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2405 
2406 	rctx->total_todo = spu_exp->total_todo;
2407 	rctx->total_sent = spu_exp->total_sent;
2408 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2409 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2410 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2411 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2412 
2413 	return 0;
2414 }
2415 
2416 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2417 			     unsigned int keylen)
2418 {
2419 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2420 	unsigned int blocksize =
2421 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2422 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2423 	unsigned int index;
2424 	int rc;
2425 
2426 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2427 		 __func__, ahash, key, keylen, blocksize, digestsize);
2428 	flow_dump("  key: ", key, keylen);
2429 
2430 	if (keylen > blocksize) {
2431 		switch (ctx->auth.alg) {
2432 		case HASH_ALG_MD5:
2433 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2434 				      0, NULL, 0);
2435 			break;
2436 		case HASH_ALG_SHA1:
2437 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2438 				      0, NULL, 0);
2439 			break;
2440 		case HASH_ALG_SHA224:
2441 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2442 				      0, NULL, 0);
2443 			break;
2444 		case HASH_ALG_SHA256:
2445 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2446 				      0, NULL, 0);
2447 			break;
2448 		case HASH_ALG_SHA384:
2449 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2450 				      0, NULL, 0);
2451 			break;
2452 		case HASH_ALG_SHA512:
2453 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2454 				      0, NULL, 0);
2455 			break;
2456 		case HASH_ALG_SHA3_224:
2457 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2458 				      NULL, 0, NULL, 0);
2459 			break;
2460 		case HASH_ALG_SHA3_256:
2461 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2462 				      NULL, 0, NULL, 0);
2463 			break;
2464 		case HASH_ALG_SHA3_384:
2465 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2466 				      NULL, 0, NULL, 0);
2467 			break;
2468 		case HASH_ALG_SHA3_512:
2469 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2470 				      NULL, 0, NULL, 0);
2471 			break;
2472 		default:
2473 			pr_err("%s() Error: unknown hash alg\n", __func__);
2474 			return -EINVAL;
2475 		}
2476 		if (rc < 0) {
2477 			pr_err("%s() Error %d computing shash for %s\n",
2478 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2479 			return rc;
2480 		}
2481 		ctx->authkeylen = digestsize;
2482 
2483 		flow_log("  keylen > digestsize... hashed\n");
2484 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2485 	} else {
2486 		memcpy(ctx->authkey, key, keylen);
2487 		ctx->authkeylen = keylen;
2488 	}
2489 
2490 	/*
2491 	 * Full HMAC operation in SPUM is not verified,
2492 	 * So keeping the generation of IPAD, OPAD and
2493 	 * outer hashing in software.
2494 	 */
2495 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2496 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2497 		memset(ctx->ipad + ctx->authkeylen, 0,
2498 		       blocksize - ctx->authkeylen);
2499 		ctx->authkeylen = 0;
2500 		memcpy(ctx->opad, ctx->ipad, blocksize);
2501 
2502 		for (index = 0; index < blocksize; index++) {
2503 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2504 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2505 		}
2506 
2507 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2508 		flow_dump("  opad: ", ctx->opad, blocksize);
2509 	}
2510 	ctx->digestsize = digestsize;
2511 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2512 
2513 	return 0;
2514 }
2515 
2516 static int ahash_hmac_init(struct ahash_request *req)
2517 {
2518 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2519 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2520 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2521 	unsigned int blocksize =
2522 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2523 
2524 	flow_log("ahash_hmac_init()\n");
2525 
2526 	/* init the context as a hash */
2527 	ahash_init(req);
2528 
2529 	if (!spu_no_incr_hash(ctx)) {
2530 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2531 		rctx->is_sw_hmac = true;
2532 		ctx->auth.mode = HASH_MODE_HASH;
2533 		/* start with a prepended ipad */
2534 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2535 		rctx->hash_carry_len = blocksize;
2536 		rctx->total_todo += blocksize;
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static int ahash_hmac_update(struct ahash_request *req)
2543 {
2544 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2545 
2546 	if (!req->nbytes)
2547 		return 0;
2548 
2549 	return ahash_update(req);
2550 }
2551 
2552 static int ahash_hmac_final(struct ahash_request *req)
2553 {
2554 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2555 
2556 	return ahash_final(req);
2557 }
2558 
2559 static int ahash_hmac_finup(struct ahash_request *req)
2560 {
2561 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2562 
2563 	return ahash_finup(req);
2564 }
2565 
2566 static int ahash_hmac_digest(struct ahash_request *req)
2567 {
2568 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2569 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2570 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2571 	unsigned int blocksize =
2572 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2573 
2574 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2575 
2576 	/* Perform initialization and then call finup */
2577 	__ahash_init(req);
2578 
2579 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2580 		/*
2581 		 * SPU2 supports full HMAC implementation in the
2582 		 * hardware, need not to generate IPAD, OPAD and
2583 		 * outer hash in software.
2584 		 * Only for hash key len > hash block size, SPU2
2585 		 * expects to perform hashing on the key, shorten
2586 		 * it to digest size and feed it as hash key.
2587 		 */
2588 		rctx->is_sw_hmac = false;
2589 		ctx->auth.mode = HASH_MODE_HMAC;
2590 	} else {
2591 		rctx->is_sw_hmac = true;
2592 		ctx->auth.mode = HASH_MODE_HASH;
2593 		/* start with a prepended ipad */
2594 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2595 		rctx->hash_carry_len = blocksize;
2596 		rctx->total_todo += blocksize;
2597 	}
2598 
2599 	return __ahash_finup(req);
2600 }
2601 
2602 /* aead helpers */
2603 
2604 static int aead_need_fallback(struct aead_request *req)
2605 {
2606 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2607 	struct spu_hw *spu = &iproc_priv.spu;
2608 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2609 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2610 	u32 payload_len;
2611 
2612 	/*
2613 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2614 	 * and AAD are both 0 bytes long. So use fallback in this case.
2615 	 */
2616 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2617 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2618 	    (req->assoclen == 0)) {
2619 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2620 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2621 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2622 			return 1;
2623 		}
2624 	}
2625 
2626 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2627 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2628 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2629 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2630 	    (ctx->digestsize != 16)) {
2631 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2632 			 __func__, ctx->digestsize);
2633 		return 1;
2634 	}
2635 
2636 	/*
2637 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2638 	 * when AAD size is 0
2639 	 */
2640 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2641 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2642 	    (req->assoclen == 0)) {
2643 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2644 			 __func__);
2645 		return 1;
2646 	}
2647 
2648 	payload_len = req->cryptlen;
2649 	if (spu->spu_type == SPU_TYPE_SPUM)
2650 		payload_len += req->assoclen;
2651 
2652 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2653 
2654 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2655 		return 0;
2656 	else
2657 		return payload_len > ctx->max_payload;
2658 }
2659 
2660 static void aead_complete(struct crypto_async_request *areq, int err)
2661 {
2662 	struct aead_request *req =
2663 	    container_of(areq, struct aead_request, base);
2664 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2665 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2666 
2667 	flow_log("%s() err:%d\n", __func__, err);
2668 
2669 	areq->tfm = crypto_aead_tfm(aead);
2670 
2671 	areq->complete = rctx->old_complete;
2672 	areq->data = rctx->old_data;
2673 
2674 	areq->complete(areq, err);
2675 }
2676 
2677 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2678 {
2679 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2680 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2681 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2682 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2683 	int err;
2684 	u32 req_flags;
2685 
2686 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2687 
2688 	if (ctx->fallback_cipher) {
2689 		/* Store the cipher tfm and then use the fallback tfm */
2690 		rctx->old_tfm = tfm;
2691 		aead_request_set_tfm(req, ctx->fallback_cipher);
2692 		/*
2693 		 * Save the callback and chain ourselves in, so we can restore
2694 		 * the tfm
2695 		 */
2696 		rctx->old_complete = req->base.complete;
2697 		rctx->old_data = req->base.data;
2698 		req_flags = aead_request_flags(req);
2699 		aead_request_set_callback(req, req_flags, aead_complete, req);
2700 		err = is_encrypt ? crypto_aead_encrypt(req) :
2701 		    crypto_aead_decrypt(req);
2702 
2703 		if (err == 0) {
2704 			/*
2705 			 * fallback was synchronous (did not return
2706 			 * -EINPROGRESS). So restore request state here.
2707 			 */
2708 			aead_request_set_callback(req, req_flags,
2709 						  rctx->old_complete, req);
2710 			req->base.data = rctx->old_data;
2711 			aead_request_set_tfm(req, aead);
2712 			flow_log("%s() fallback completed successfully\n\n",
2713 				 __func__);
2714 		}
2715 	} else {
2716 		err = -EINVAL;
2717 	}
2718 
2719 	return err;
2720 }
2721 
2722 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2723 {
2724 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2725 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2726 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2727 	int err;
2728 
2729 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2730 
2731 	if (req->assoclen > MAX_ASSOC_SIZE) {
2732 		pr_err
2733 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2734 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2735 		return -EINVAL;
2736 	}
2737 
2738 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2739 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2740 	rctx->parent = &req->base;
2741 	rctx->is_encrypt = is_encrypt;
2742 	rctx->bd_suppress = false;
2743 	rctx->total_todo = req->cryptlen;
2744 	rctx->src_sent = 0;
2745 	rctx->total_sent = 0;
2746 	rctx->total_received = 0;
2747 	rctx->is_sw_hmac = false;
2748 	rctx->ctx = ctx;
2749 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2750 
2751 	/* assoc data is at start of src sg */
2752 	rctx->assoc = req->src;
2753 
2754 	/*
2755 	 * Init current position in src scatterlist to be after assoc data.
2756 	 * src_skip set to buffer offset where data begins. (Assoc data could
2757 	 * end in the middle of a buffer.)
2758 	 */
2759 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2760 			     &rctx->src_skip) < 0) {
2761 		pr_err("%s() Error: Unable to find start of src data\n",
2762 		       __func__);
2763 		return -EINVAL;
2764 	}
2765 
2766 	rctx->src_nents = 0;
2767 	rctx->dst_nents = 0;
2768 	if (req->dst == req->src) {
2769 		rctx->dst_sg = rctx->src_sg;
2770 		rctx->dst_skip = rctx->src_skip;
2771 	} else {
2772 		/*
2773 		 * Expect req->dst to have room for assoc data followed by
2774 		 * output data and ICV, if encrypt. So initialize dst_sg
2775 		 * to point beyond assoc len offset.
2776 		 */
2777 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2778 				     &rctx->dst_skip) < 0) {
2779 			pr_err("%s() Error: Unable to find start of dst data\n",
2780 			       __func__);
2781 			return -EINVAL;
2782 		}
2783 	}
2784 
2785 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2786 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2787 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2788 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2789 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2790 		rctx->iv_ctr_len =
2791 			ctx->salt_len +
2792 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2793 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2794 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2795 	} else {
2796 		rctx->iv_ctr_len = 0;
2797 	}
2798 
2799 	rctx->hash_carry_len = 0;
2800 
2801 	flow_log("  src sg: %p\n", req->src);
2802 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2803 		 rctx->src_sg, rctx->src_skip);
2804 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2805 	flow_log("  dst sg: %p\n", req->dst);
2806 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2807 		 rctx->dst_sg, rctx->dst_skip);
2808 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2809 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2810 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2811 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2812 
2813 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2814 		flow_log("  max_payload infinite");
2815 	else
2816 		flow_log("  max_payload: %u\n", ctx->max_payload);
2817 
2818 	if (unlikely(aead_need_fallback(req)))
2819 		return aead_do_fallback(req, is_encrypt);
2820 
2821 	/*
2822 	 * Do memory allocations for request after fallback check, because if we
2823 	 * do fallback, we won't call finish_req() to dealloc.
2824 	 */
2825 	if (rctx->iv_ctr_len) {
2826 		if (ctx->salt_len)
2827 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2828 			       ctx->salt, ctx->salt_len);
2829 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2830 		       req->iv,
2831 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2832 	}
2833 
2834 	rctx->chan_idx = select_channel();
2835 	err = handle_aead_req(rctx);
2836 	if (err != -EINPROGRESS)
2837 		/* synchronous result */
2838 		spu_chunk_cleanup(rctx);
2839 
2840 	return err;
2841 }
2842 
2843 static int aead_authenc_setkey(struct crypto_aead *cipher,
2844 			       const u8 *key, unsigned int keylen)
2845 {
2846 	struct spu_hw *spu = &iproc_priv.spu;
2847 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2848 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2849 	struct rtattr *rta = (void *)key;
2850 	struct crypto_authenc_key_param *param;
2851 	const u8 *origkey = key;
2852 	const unsigned int origkeylen = keylen;
2853 
2854 	int ret = 0;
2855 
2856 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2857 		 keylen);
2858 	flow_dump("  key: ", key, keylen);
2859 
2860 	if (!RTA_OK(rta, keylen))
2861 		goto badkey;
2862 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
2863 		goto badkey;
2864 	if (RTA_PAYLOAD(rta) < sizeof(*param))
2865 		goto badkey;
2866 
2867 	param = RTA_DATA(rta);
2868 	ctx->enckeylen = be32_to_cpu(param->enckeylen);
2869 
2870 	key += RTA_ALIGN(rta->rta_len);
2871 	keylen -= RTA_ALIGN(rta->rta_len);
2872 
2873 	if (keylen < ctx->enckeylen)
2874 		goto badkey;
2875 	if (ctx->enckeylen > MAX_KEY_SIZE)
2876 		goto badkey;
2877 
2878 	ctx->authkeylen = keylen - ctx->enckeylen;
2879 
2880 	if (ctx->authkeylen > MAX_KEY_SIZE)
2881 		goto badkey;
2882 
2883 	memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen);
2884 	/* May end up padding auth key. So make sure it's zeroed. */
2885 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2886 	memcpy(ctx->authkey, key, ctx->authkeylen);
2887 
2888 	switch (ctx->alg->cipher_info.alg) {
2889 	case CIPHER_ALG_DES:
2890 		if (ctx->enckeylen == DES_KEY_SIZE) {
2891 			u32 tmp[DES_EXPKEY_WORDS];
2892 			u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2893 
2894 			if (des_ekey(tmp, key) == 0) {
2895 				if (crypto_aead_get_flags(cipher) &
2896 				    CRYPTO_TFM_REQ_WEAK_KEY) {
2897 					crypto_aead_set_flags(cipher, flags);
2898 					return -EINVAL;
2899 				}
2900 			}
2901 
2902 			ctx->cipher_type = CIPHER_TYPE_DES;
2903 		} else {
2904 			goto badkey;
2905 		}
2906 		break;
2907 	case CIPHER_ALG_3DES:
2908 		if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2909 			const u32 *K = (const u32 *)key;
2910 			u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2911 
2912 			if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2913 			    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2914 				crypto_aead_set_flags(cipher, flags);
2915 				return -EINVAL;
2916 			}
2917 
2918 			ctx->cipher_type = CIPHER_TYPE_3DES;
2919 		} else {
2920 			crypto_aead_set_flags(cipher,
2921 					      CRYPTO_TFM_RES_BAD_KEY_LEN);
2922 			return -EINVAL;
2923 		}
2924 		break;
2925 	case CIPHER_ALG_AES:
2926 		switch (ctx->enckeylen) {
2927 		case AES_KEYSIZE_128:
2928 			ctx->cipher_type = CIPHER_TYPE_AES128;
2929 			break;
2930 		case AES_KEYSIZE_192:
2931 			ctx->cipher_type = CIPHER_TYPE_AES192;
2932 			break;
2933 		case AES_KEYSIZE_256:
2934 			ctx->cipher_type = CIPHER_TYPE_AES256;
2935 			break;
2936 		default:
2937 			goto badkey;
2938 		}
2939 		break;
2940 	case CIPHER_ALG_RC4:
2941 		ctx->cipher_type = CIPHER_TYPE_INIT;
2942 		break;
2943 	default:
2944 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2945 		return -EINVAL;
2946 	}
2947 
2948 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2949 		 ctx->authkeylen);
2950 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2951 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2952 
2953 	/* setkey the fallback just in case we needto use it */
2954 	if (ctx->fallback_cipher) {
2955 		flow_log("  running fallback setkey()\n");
2956 
2957 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2958 		ctx->fallback_cipher->base.crt_flags |=
2959 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2960 		ret =
2961 		    crypto_aead_setkey(ctx->fallback_cipher, origkey,
2962 				       origkeylen);
2963 		if (ret) {
2964 			flow_log("  fallback setkey() returned:%d\n", ret);
2965 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2966 			tfm->crt_flags |=
2967 			    (ctx->fallback_cipher->base.crt_flags &
2968 			     CRYPTO_TFM_RES_MASK);
2969 		}
2970 	}
2971 
2972 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2973 							  ctx->enckeylen,
2974 							  false);
2975 
2976 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2977 
2978 	return ret;
2979 
2980 badkey:
2981 	ctx->enckeylen = 0;
2982 	ctx->authkeylen = 0;
2983 	ctx->digestsize = 0;
2984 
2985 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2986 	return -EINVAL;
2987 }
2988 
2989 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2990 			       const u8 *key, unsigned int keylen)
2991 {
2992 	struct spu_hw *spu = &iproc_priv.spu;
2993 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2994 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2995 
2996 	int ret = 0;
2997 
2998 	flow_log("%s() keylen:%u\n", __func__, keylen);
2999 	flow_dump("  key: ", key, keylen);
3000 
3001 	if (!ctx->is_esp)
3002 		ctx->digestsize = keylen;
3003 
3004 	ctx->enckeylen = keylen;
3005 	ctx->authkeylen = 0;
3006 	memcpy(ctx->enckey, key, ctx->enckeylen);
3007 
3008 	switch (ctx->enckeylen) {
3009 	case AES_KEYSIZE_128:
3010 		ctx->cipher_type = CIPHER_TYPE_AES128;
3011 		break;
3012 	case AES_KEYSIZE_192:
3013 		ctx->cipher_type = CIPHER_TYPE_AES192;
3014 		break;
3015 	case AES_KEYSIZE_256:
3016 		ctx->cipher_type = CIPHER_TYPE_AES256;
3017 		break;
3018 	default:
3019 		goto badkey;
3020 	}
3021 
3022 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3023 		 ctx->authkeylen);
3024 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
3025 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
3026 
3027 	/* setkey the fallback just in case we need to use it */
3028 	if (ctx->fallback_cipher) {
3029 		flow_log("  running fallback setkey()\n");
3030 
3031 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3032 		ctx->fallback_cipher->base.crt_flags |=
3033 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3034 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3035 					 keylen + ctx->salt_len);
3036 		if (ret) {
3037 			flow_log("  fallback setkey() returned:%d\n", ret);
3038 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3039 			tfm->crt_flags |=
3040 			    (ctx->fallback_cipher->base.crt_flags &
3041 			     CRYPTO_TFM_RES_MASK);
3042 		}
3043 	}
3044 
3045 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3046 							  ctx->enckeylen,
3047 							  false);
3048 
3049 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3050 
3051 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3052 		 ctx->authkeylen);
3053 
3054 	return ret;
3055 
3056 badkey:
3057 	ctx->enckeylen = 0;
3058 	ctx->authkeylen = 0;
3059 	ctx->digestsize = 0;
3060 
3061 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3062 	return -EINVAL;
3063 }
3064 
3065 /**
3066  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3067  * @cipher: AEAD structure
3068  * @key:    Key followed by 4 bytes of salt
3069  * @keylen: Length of key plus salt, in bytes
3070  *
3071  * Extracts salt from key and stores it to be prepended to IV on each request.
3072  * Digest is always 16 bytes
3073  *
3074  * Return: Value from generic gcm setkey.
3075  */
3076 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3077 			       const u8 *key, unsigned int keylen)
3078 {
3079 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3080 
3081 	flow_log("%s\n", __func__);
3082 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3083 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3084 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3085 	keylen -= GCM_ESP_SALT_SIZE;
3086 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3087 	ctx->is_esp = true;
3088 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3089 
3090 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3091 }
3092 
3093 /**
3094  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3095  * cipher: AEAD structure
3096  * key:    Key followed by 4 bytes of salt
3097  * keylen: Length of key plus salt, in bytes
3098  *
3099  * Extracts salt from key and stores it to be prepended to IV on each request.
3100  * Digest is always 16 bytes
3101  *
3102  * Return: Value from generic gcm setkey.
3103  */
3104 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3105 				  const u8 *key, unsigned int keylen)
3106 {
3107 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3108 
3109 	flow_log("%s\n", __func__);
3110 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3111 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3112 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3113 	keylen -= GCM_ESP_SALT_SIZE;
3114 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3115 	ctx->is_esp = true;
3116 	ctx->is_rfc4543 = true;
3117 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3118 
3119 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3120 }
3121 
3122 /**
3123  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3124  * @cipher: AEAD structure
3125  * @key:    Key followed by 4 bytes of salt
3126  * @keylen: Length of key plus salt, in bytes
3127  *
3128  * Extracts salt from key and stores it to be prepended to IV on each request.
3129  * Digest is always 16 bytes
3130  *
3131  * Return: Value from generic ccm setkey.
3132  */
3133 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3134 			       const u8 *key, unsigned int keylen)
3135 {
3136 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3137 
3138 	flow_log("%s\n", __func__);
3139 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3140 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3141 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3142 	keylen -= CCM_ESP_SALT_SIZE;
3143 	ctx->is_esp = true;
3144 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3145 
3146 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3147 }
3148 
3149 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3150 {
3151 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3152 	int ret = 0;
3153 
3154 	flow_log("%s() authkeylen:%u authsize:%u\n",
3155 		 __func__, ctx->authkeylen, authsize);
3156 
3157 	ctx->digestsize = authsize;
3158 
3159 	/* setkey the fallback just in case we needto use it */
3160 	if (ctx->fallback_cipher) {
3161 		flow_log("  running fallback setauth()\n");
3162 
3163 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3164 		if (ret)
3165 			flow_log("  fallback setauth() returned:%d\n", ret);
3166 	}
3167 
3168 	return ret;
3169 }
3170 
3171 static int aead_encrypt(struct aead_request *req)
3172 {
3173 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3174 		 req->cryptlen);
3175 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3176 	flow_log("  assoc_len:%u\n", req->assoclen);
3177 
3178 	return aead_enqueue(req, true);
3179 }
3180 
3181 static int aead_decrypt(struct aead_request *req)
3182 {
3183 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3184 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3185 	flow_log("  assoc_len:%u\n", req->assoclen);
3186 
3187 	return aead_enqueue(req, false);
3188 }
3189 
3190 /* ==================== Supported Cipher Algorithms ==================== */
3191 
3192 static struct iproc_alg_s driver_algs[] = {
3193 	{
3194 	 .type = CRYPTO_ALG_TYPE_AEAD,
3195 	 .alg.aead = {
3196 		 .base = {
3197 			.cra_name = "gcm(aes)",
3198 			.cra_driver_name = "gcm-aes-iproc",
3199 			.cra_blocksize = AES_BLOCK_SIZE,
3200 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3201 		 },
3202 		 .setkey = aead_gcm_ccm_setkey,
3203 		 .ivsize = GCM_AES_IV_SIZE,
3204 		.maxauthsize = AES_BLOCK_SIZE,
3205 	 },
3206 	 .cipher_info = {
3207 			 .alg = CIPHER_ALG_AES,
3208 			 .mode = CIPHER_MODE_GCM,
3209 			 },
3210 	 .auth_info = {
3211 		       .alg = HASH_ALG_AES,
3212 		       .mode = HASH_MODE_GCM,
3213 		       },
3214 	 .auth_first = 0,
3215 	 },
3216 	{
3217 	 .type = CRYPTO_ALG_TYPE_AEAD,
3218 	 .alg.aead = {
3219 		 .base = {
3220 			.cra_name = "ccm(aes)",
3221 			.cra_driver_name = "ccm-aes-iproc",
3222 			.cra_blocksize = AES_BLOCK_SIZE,
3223 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3224 		 },
3225 		 .setkey = aead_gcm_ccm_setkey,
3226 		 .ivsize = CCM_AES_IV_SIZE,
3227 		.maxauthsize = AES_BLOCK_SIZE,
3228 	 },
3229 	 .cipher_info = {
3230 			 .alg = CIPHER_ALG_AES,
3231 			 .mode = CIPHER_MODE_CCM,
3232 			 },
3233 	 .auth_info = {
3234 		       .alg = HASH_ALG_AES,
3235 		       .mode = HASH_MODE_CCM,
3236 		       },
3237 	 .auth_first = 0,
3238 	 },
3239 	{
3240 	 .type = CRYPTO_ALG_TYPE_AEAD,
3241 	 .alg.aead = {
3242 		 .base = {
3243 			.cra_name = "rfc4106(gcm(aes))",
3244 			.cra_driver_name = "gcm-aes-esp-iproc",
3245 			.cra_blocksize = AES_BLOCK_SIZE,
3246 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3247 		 },
3248 		 .setkey = aead_gcm_esp_setkey,
3249 		 .ivsize = GCM_RFC4106_IV_SIZE,
3250 		 .maxauthsize = AES_BLOCK_SIZE,
3251 	 },
3252 	 .cipher_info = {
3253 			 .alg = CIPHER_ALG_AES,
3254 			 .mode = CIPHER_MODE_GCM,
3255 			 },
3256 	 .auth_info = {
3257 		       .alg = HASH_ALG_AES,
3258 		       .mode = HASH_MODE_GCM,
3259 		       },
3260 	 .auth_first = 0,
3261 	 },
3262 	{
3263 	 .type = CRYPTO_ALG_TYPE_AEAD,
3264 	 .alg.aead = {
3265 		 .base = {
3266 			.cra_name = "rfc4309(ccm(aes))",
3267 			.cra_driver_name = "ccm-aes-esp-iproc",
3268 			.cra_blocksize = AES_BLOCK_SIZE,
3269 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3270 		 },
3271 		 .setkey = aead_ccm_esp_setkey,
3272 		 .ivsize = CCM_AES_IV_SIZE,
3273 		 .maxauthsize = AES_BLOCK_SIZE,
3274 	 },
3275 	 .cipher_info = {
3276 			 .alg = CIPHER_ALG_AES,
3277 			 .mode = CIPHER_MODE_CCM,
3278 			 },
3279 	 .auth_info = {
3280 		       .alg = HASH_ALG_AES,
3281 		       .mode = HASH_MODE_CCM,
3282 		       },
3283 	 .auth_first = 0,
3284 	 },
3285 	{
3286 	 .type = CRYPTO_ALG_TYPE_AEAD,
3287 	 .alg.aead = {
3288 		 .base = {
3289 			.cra_name = "rfc4543(gcm(aes))",
3290 			.cra_driver_name = "gmac-aes-esp-iproc",
3291 			.cra_blocksize = AES_BLOCK_SIZE,
3292 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3293 		 },
3294 		 .setkey = rfc4543_gcm_esp_setkey,
3295 		 .ivsize = GCM_RFC4106_IV_SIZE,
3296 		 .maxauthsize = AES_BLOCK_SIZE,
3297 	 },
3298 	 .cipher_info = {
3299 			 .alg = CIPHER_ALG_AES,
3300 			 .mode = CIPHER_MODE_GCM,
3301 			 },
3302 	 .auth_info = {
3303 		       .alg = HASH_ALG_AES,
3304 		       .mode = HASH_MODE_GCM,
3305 		       },
3306 	 .auth_first = 0,
3307 	 },
3308 	{
3309 	 .type = CRYPTO_ALG_TYPE_AEAD,
3310 	 .alg.aead = {
3311 		 .base = {
3312 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3313 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3314 			.cra_blocksize = AES_BLOCK_SIZE,
3315 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3316 		 },
3317 		 .setkey = aead_authenc_setkey,
3318 		.ivsize = AES_BLOCK_SIZE,
3319 		.maxauthsize = MD5_DIGEST_SIZE,
3320 	 },
3321 	 .cipher_info = {
3322 			 .alg = CIPHER_ALG_AES,
3323 			 .mode = CIPHER_MODE_CBC,
3324 			 },
3325 	 .auth_info = {
3326 		       .alg = HASH_ALG_MD5,
3327 		       .mode = HASH_MODE_HMAC,
3328 		       },
3329 	 .auth_first = 0,
3330 	 },
3331 	{
3332 	 .type = CRYPTO_ALG_TYPE_AEAD,
3333 	 .alg.aead = {
3334 		 .base = {
3335 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3336 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3337 			.cra_blocksize = AES_BLOCK_SIZE,
3338 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3339 		 },
3340 		 .setkey = aead_authenc_setkey,
3341 		 .ivsize = AES_BLOCK_SIZE,
3342 		 .maxauthsize = SHA1_DIGEST_SIZE,
3343 	 },
3344 	 .cipher_info = {
3345 			 .alg = CIPHER_ALG_AES,
3346 			 .mode = CIPHER_MODE_CBC,
3347 			 },
3348 	 .auth_info = {
3349 		       .alg = HASH_ALG_SHA1,
3350 		       .mode = HASH_MODE_HMAC,
3351 		       },
3352 	 .auth_first = 0,
3353 	 },
3354 	{
3355 	 .type = CRYPTO_ALG_TYPE_AEAD,
3356 	 .alg.aead = {
3357 		 .base = {
3358 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3359 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3360 			.cra_blocksize = AES_BLOCK_SIZE,
3361 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3362 		 },
3363 		 .setkey = aead_authenc_setkey,
3364 		 .ivsize = AES_BLOCK_SIZE,
3365 		 .maxauthsize = SHA256_DIGEST_SIZE,
3366 	 },
3367 	 .cipher_info = {
3368 			 .alg = CIPHER_ALG_AES,
3369 			 .mode = CIPHER_MODE_CBC,
3370 			 },
3371 	 .auth_info = {
3372 		       .alg = HASH_ALG_SHA256,
3373 		       .mode = HASH_MODE_HMAC,
3374 		       },
3375 	 .auth_first = 0,
3376 	 },
3377 	{
3378 	 .type = CRYPTO_ALG_TYPE_AEAD,
3379 	 .alg.aead = {
3380 		 .base = {
3381 			.cra_name = "authenc(hmac(md5),cbc(des))",
3382 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3383 			.cra_blocksize = DES_BLOCK_SIZE,
3384 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3385 		 },
3386 		 .setkey = aead_authenc_setkey,
3387 		 .ivsize = DES_BLOCK_SIZE,
3388 		 .maxauthsize = MD5_DIGEST_SIZE,
3389 	 },
3390 	 .cipher_info = {
3391 			 .alg = CIPHER_ALG_DES,
3392 			 .mode = CIPHER_MODE_CBC,
3393 			 },
3394 	 .auth_info = {
3395 		       .alg = HASH_ALG_MD5,
3396 		       .mode = HASH_MODE_HMAC,
3397 		       },
3398 	 .auth_first = 0,
3399 	 },
3400 	{
3401 	 .type = CRYPTO_ALG_TYPE_AEAD,
3402 	 .alg.aead = {
3403 		 .base = {
3404 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3405 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3406 			.cra_blocksize = DES_BLOCK_SIZE,
3407 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3408 		 },
3409 		 .setkey = aead_authenc_setkey,
3410 		 .ivsize = DES_BLOCK_SIZE,
3411 		 .maxauthsize = SHA1_DIGEST_SIZE,
3412 	 },
3413 	 .cipher_info = {
3414 			 .alg = CIPHER_ALG_DES,
3415 			 .mode = CIPHER_MODE_CBC,
3416 			 },
3417 	 .auth_info = {
3418 		       .alg = HASH_ALG_SHA1,
3419 		       .mode = HASH_MODE_HMAC,
3420 		       },
3421 	 .auth_first = 0,
3422 	 },
3423 	{
3424 	 .type = CRYPTO_ALG_TYPE_AEAD,
3425 	 .alg.aead = {
3426 		 .base = {
3427 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3428 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3429 			.cra_blocksize = DES_BLOCK_SIZE,
3430 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3431 		 },
3432 		 .setkey = aead_authenc_setkey,
3433 		 .ivsize = DES_BLOCK_SIZE,
3434 		 .maxauthsize = SHA224_DIGEST_SIZE,
3435 	 },
3436 	 .cipher_info = {
3437 			 .alg = CIPHER_ALG_DES,
3438 			 .mode = CIPHER_MODE_CBC,
3439 			 },
3440 	 .auth_info = {
3441 		       .alg = HASH_ALG_SHA224,
3442 		       .mode = HASH_MODE_HMAC,
3443 		       },
3444 	 .auth_first = 0,
3445 	 },
3446 	{
3447 	 .type = CRYPTO_ALG_TYPE_AEAD,
3448 	 .alg.aead = {
3449 		 .base = {
3450 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3451 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3452 			.cra_blocksize = DES_BLOCK_SIZE,
3453 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3454 		 },
3455 		 .setkey = aead_authenc_setkey,
3456 		 .ivsize = DES_BLOCK_SIZE,
3457 		 .maxauthsize = SHA256_DIGEST_SIZE,
3458 	 },
3459 	 .cipher_info = {
3460 			 .alg = CIPHER_ALG_DES,
3461 			 .mode = CIPHER_MODE_CBC,
3462 			 },
3463 	 .auth_info = {
3464 		       .alg = HASH_ALG_SHA256,
3465 		       .mode = HASH_MODE_HMAC,
3466 		       },
3467 	 .auth_first = 0,
3468 	 },
3469 	{
3470 	 .type = CRYPTO_ALG_TYPE_AEAD,
3471 	 .alg.aead = {
3472 		 .base = {
3473 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3474 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3475 			.cra_blocksize = DES_BLOCK_SIZE,
3476 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3477 		 },
3478 		 .setkey = aead_authenc_setkey,
3479 		 .ivsize = DES_BLOCK_SIZE,
3480 		 .maxauthsize = SHA384_DIGEST_SIZE,
3481 	 },
3482 	 .cipher_info = {
3483 			 .alg = CIPHER_ALG_DES,
3484 			 .mode = CIPHER_MODE_CBC,
3485 			 },
3486 	 .auth_info = {
3487 		       .alg = HASH_ALG_SHA384,
3488 		       .mode = HASH_MODE_HMAC,
3489 		       },
3490 	 .auth_first = 0,
3491 	 },
3492 	{
3493 	 .type = CRYPTO_ALG_TYPE_AEAD,
3494 	 .alg.aead = {
3495 		 .base = {
3496 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3497 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3498 			.cra_blocksize = DES_BLOCK_SIZE,
3499 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3500 		 },
3501 		 .setkey = aead_authenc_setkey,
3502 		 .ivsize = DES_BLOCK_SIZE,
3503 		 .maxauthsize = SHA512_DIGEST_SIZE,
3504 	 },
3505 	 .cipher_info = {
3506 			 .alg = CIPHER_ALG_DES,
3507 			 .mode = CIPHER_MODE_CBC,
3508 			 },
3509 	 .auth_info = {
3510 		       .alg = HASH_ALG_SHA512,
3511 		       .mode = HASH_MODE_HMAC,
3512 		       },
3513 	 .auth_first = 0,
3514 	 },
3515 	{
3516 	 .type = CRYPTO_ALG_TYPE_AEAD,
3517 	 .alg.aead = {
3518 		 .base = {
3519 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3520 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3521 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3522 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3523 		 },
3524 		 .setkey = aead_authenc_setkey,
3525 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3526 		 .maxauthsize = MD5_DIGEST_SIZE,
3527 	 },
3528 	 .cipher_info = {
3529 			 .alg = CIPHER_ALG_3DES,
3530 			 .mode = CIPHER_MODE_CBC,
3531 			 },
3532 	 .auth_info = {
3533 		       .alg = HASH_ALG_MD5,
3534 		       .mode = HASH_MODE_HMAC,
3535 		       },
3536 	 .auth_first = 0,
3537 	 },
3538 	{
3539 	 .type = CRYPTO_ALG_TYPE_AEAD,
3540 	 .alg.aead = {
3541 		 .base = {
3542 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3543 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3544 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3545 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3546 		 },
3547 		 .setkey = aead_authenc_setkey,
3548 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3549 		 .maxauthsize = SHA1_DIGEST_SIZE,
3550 	 },
3551 	 .cipher_info = {
3552 			 .alg = CIPHER_ALG_3DES,
3553 			 .mode = CIPHER_MODE_CBC,
3554 			 },
3555 	 .auth_info = {
3556 		       .alg = HASH_ALG_SHA1,
3557 		       .mode = HASH_MODE_HMAC,
3558 		       },
3559 	 .auth_first = 0,
3560 	 },
3561 	{
3562 	 .type = CRYPTO_ALG_TYPE_AEAD,
3563 	 .alg.aead = {
3564 		 .base = {
3565 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3566 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3567 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3568 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3569 		 },
3570 		 .setkey = aead_authenc_setkey,
3571 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3572 		 .maxauthsize = SHA224_DIGEST_SIZE,
3573 	 },
3574 	 .cipher_info = {
3575 			 .alg = CIPHER_ALG_3DES,
3576 			 .mode = CIPHER_MODE_CBC,
3577 			 },
3578 	 .auth_info = {
3579 		       .alg = HASH_ALG_SHA224,
3580 		       .mode = HASH_MODE_HMAC,
3581 		       },
3582 	 .auth_first = 0,
3583 	 },
3584 	{
3585 	 .type = CRYPTO_ALG_TYPE_AEAD,
3586 	 .alg.aead = {
3587 		 .base = {
3588 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3589 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3590 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3591 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3592 		 },
3593 		 .setkey = aead_authenc_setkey,
3594 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3595 		 .maxauthsize = SHA256_DIGEST_SIZE,
3596 	 },
3597 	 .cipher_info = {
3598 			 .alg = CIPHER_ALG_3DES,
3599 			 .mode = CIPHER_MODE_CBC,
3600 			 },
3601 	 .auth_info = {
3602 		       .alg = HASH_ALG_SHA256,
3603 		       .mode = HASH_MODE_HMAC,
3604 		       },
3605 	 .auth_first = 0,
3606 	 },
3607 	{
3608 	 .type = CRYPTO_ALG_TYPE_AEAD,
3609 	 .alg.aead = {
3610 		 .base = {
3611 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3612 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3613 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3614 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3615 		 },
3616 		 .setkey = aead_authenc_setkey,
3617 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3618 		 .maxauthsize = SHA384_DIGEST_SIZE,
3619 	 },
3620 	 .cipher_info = {
3621 			 .alg = CIPHER_ALG_3DES,
3622 			 .mode = CIPHER_MODE_CBC,
3623 			 },
3624 	 .auth_info = {
3625 		       .alg = HASH_ALG_SHA384,
3626 		       .mode = HASH_MODE_HMAC,
3627 		       },
3628 	 .auth_first = 0,
3629 	 },
3630 	{
3631 	 .type = CRYPTO_ALG_TYPE_AEAD,
3632 	 .alg.aead = {
3633 		 .base = {
3634 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3635 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3636 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3637 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3638 		 },
3639 		 .setkey = aead_authenc_setkey,
3640 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3641 		 .maxauthsize = SHA512_DIGEST_SIZE,
3642 	 },
3643 	 .cipher_info = {
3644 			 .alg = CIPHER_ALG_3DES,
3645 			 .mode = CIPHER_MODE_CBC,
3646 			 },
3647 	 .auth_info = {
3648 		       .alg = HASH_ALG_SHA512,
3649 		       .mode = HASH_MODE_HMAC,
3650 		       },
3651 	 .auth_first = 0,
3652 	 },
3653 
3654 /* ABLKCIPHER algorithms. */
3655 	{
3656 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3657 	 .alg.crypto = {
3658 			.cra_name = "ecb(arc4)",
3659 			.cra_driver_name = "ecb-arc4-iproc",
3660 			.cra_blocksize = ARC4_BLOCK_SIZE,
3661 			.cra_ablkcipher = {
3662 					   .min_keysize = ARC4_MIN_KEY_SIZE,
3663 					   .max_keysize = ARC4_MAX_KEY_SIZE,
3664 					   .ivsize = 0,
3665 					}
3666 			},
3667 	 .cipher_info = {
3668 			 .alg = CIPHER_ALG_RC4,
3669 			 .mode = CIPHER_MODE_NONE,
3670 			 },
3671 	 .auth_info = {
3672 		       .alg = HASH_ALG_NONE,
3673 		       .mode = HASH_MODE_NONE,
3674 		       },
3675 	 },
3676 	{
3677 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3678 	 .alg.crypto = {
3679 			.cra_name = "ofb(des)",
3680 			.cra_driver_name = "ofb-des-iproc",
3681 			.cra_blocksize = DES_BLOCK_SIZE,
3682 			.cra_ablkcipher = {
3683 					   .min_keysize = DES_KEY_SIZE,
3684 					   .max_keysize = DES_KEY_SIZE,
3685 					   .ivsize = DES_BLOCK_SIZE,
3686 					}
3687 			},
3688 	 .cipher_info = {
3689 			 .alg = CIPHER_ALG_DES,
3690 			 .mode = CIPHER_MODE_OFB,
3691 			 },
3692 	 .auth_info = {
3693 		       .alg = HASH_ALG_NONE,
3694 		       .mode = HASH_MODE_NONE,
3695 		       },
3696 	 },
3697 	{
3698 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3699 	 .alg.crypto = {
3700 			.cra_name = "cbc(des)",
3701 			.cra_driver_name = "cbc-des-iproc",
3702 			.cra_blocksize = DES_BLOCK_SIZE,
3703 			.cra_ablkcipher = {
3704 					   .min_keysize = DES_KEY_SIZE,
3705 					   .max_keysize = DES_KEY_SIZE,
3706 					   .ivsize = DES_BLOCK_SIZE,
3707 					}
3708 			},
3709 	 .cipher_info = {
3710 			 .alg = CIPHER_ALG_DES,
3711 			 .mode = CIPHER_MODE_CBC,
3712 			 },
3713 	 .auth_info = {
3714 		       .alg = HASH_ALG_NONE,
3715 		       .mode = HASH_MODE_NONE,
3716 		       },
3717 	 },
3718 	{
3719 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3720 	 .alg.crypto = {
3721 			.cra_name = "ecb(des)",
3722 			.cra_driver_name = "ecb-des-iproc",
3723 			.cra_blocksize = DES_BLOCK_SIZE,
3724 			.cra_ablkcipher = {
3725 					   .min_keysize = DES_KEY_SIZE,
3726 					   .max_keysize = DES_KEY_SIZE,
3727 					   .ivsize = 0,
3728 					}
3729 			},
3730 	 .cipher_info = {
3731 			 .alg = CIPHER_ALG_DES,
3732 			 .mode = CIPHER_MODE_ECB,
3733 			 },
3734 	 .auth_info = {
3735 		       .alg = HASH_ALG_NONE,
3736 		       .mode = HASH_MODE_NONE,
3737 		       },
3738 	 },
3739 	{
3740 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3741 	 .alg.crypto = {
3742 			.cra_name = "ofb(des3_ede)",
3743 			.cra_driver_name = "ofb-des3-iproc",
3744 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3745 			.cra_ablkcipher = {
3746 					   .min_keysize = DES3_EDE_KEY_SIZE,
3747 					   .max_keysize = DES3_EDE_KEY_SIZE,
3748 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3749 					}
3750 			},
3751 	 .cipher_info = {
3752 			 .alg = CIPHER_ALG_3DES,
3753 			 .mode = CIPHER_MODE_OFB,
3754 			 },
3755 	 .auth_info = {
3756 		       .alg = HASH_ALG_NONE,
3757 		       .mode = HASH_MODE_NONE,
3758 		       },
3759 	 },
3760 	{
3761 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3762 	 .alg.crypto = {
3763 			.cra_name = "cbc(des3_ede)",
3764 			.cra_driver_name = "cbc-des3-iproc",
3765 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3766 			.cra_ablkcipher = {
3767 					   .min_keysize = DES3_EDE_KEY_SIZE,
3768 					   .max_keysize = DES3_EDE_KEY_SIZE,
3769 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3770 					}
3771 			},
3772 	 .cipher_info = {
3773 			 .alg = CIPHER_ALG_3DES,
3774 			 .mode = CIPHER_MODE_CBC,
3775 			 },
3776 	 .auth_info = {
3777 		       .alg = HASH_ALG_NONE,
3778 		       .mode = HASH_MODE_NONE,
3779 		       },
3780 	 },
3781 	{
3782 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3783 	 .alg.crypto = {
3784 			.cra_name = "ecb(des3_ede)",
3785 			.cra_driver_name = "ecb-des3-iproc",
3786 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3787 			.cra_ablkcipher = {
3788 					   .min_keysize = DES3_EDE_KEY_SIZE,
3789 					   .max_keysize = DES3_EDE_KEY_SIZE,
3790 					   .ivsize = 0,
3791 					}
3792 			},
3793 	 .cipher_info = {
3794 			 .alg = CIPHER_ALG_3DES,
3795 			 .mode = CIPHER_MODE_ECB,
3796 			 },
3797 	 .auth_info = {
3798 		       .alg = HASH_ALG_NONE,
3799 		       .mode = HASH_MODE_NONE,
3800 		       },
3801 	 },
3802 	{
3803 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3804 	 .alg.crypto = {
3805 			.cra_name = "ofb(aes)",
3806 			.cra_driver_name = "ofb-aes-iproc",
3807 			.cra_blocksize = AES_BLOCK_SIZE,
3808 			.cra_ablkcipher = {
3809 					   .min_keysize = AES_MIN_KEY_SIZE,
3810 					   .max_keysize = AES_MAX_KEY_SIZE,
3811 					   .ivsize = AES_BLOCK_SIZE,
3812 					}
3813 			},
3814 	 .cipher_info = {
3815 			 .alg = CIPHER_ALG_AES,
3816 			 .mode = CIPHER_MODE_OFB,
3817 			 },
3818 	 .auth_info = {
3819 		       .alg = HASH_ALG_NONE,
3820 		       .mode = HASH_MODE_NONE,
3821 		       },
3822 	 },
3823 	{
3824 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3825 	 .alg.crypto = {
3826 			.cra_name = "cbc(aes)",
3827 			.cra_driver_name = "cbc-aes-iproc",
3828 			.cra_blocksize = AES_BLOCK_SIZE,
3829 			.cra_ablkcipher = {
3830 					   .min_keysize = AES_MIN_KEY_SIZE,
3831 					   .max_keysize = AES_MAX_KEY_SIZE,
3832 					   .ivsize = AES_BLOCK_SIZE,
3833 					}
3834 			},
3835 	 .cipher_info = {
3836 			 .alg = CIPHER_ALG_AES,
3837 			 .mode = CIPHER_MODE_CBC,
3838 			 },
3839 	 .auth_info = {
3840 		       .alg = HASH_ALG_NONE,
3841 		       .mode = HASH_MODE_NONE,
3842 		       },
3843 	 },
3844 	{
3845 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3846 	 .alg.crypto = {
3847 			.cra_name = "ecb(aes)",
3848 			.cra_driver_name = "ecb-aes-iproc",
3849 			.cra_blocksize = AES_BLOCK_SIZE,
3850 			.cra_ablkcipher = {
3851 					   .min_keysize = AES_MIN_KEY_SIZE,
3852 					   .max_keysize = AES_MAX_KEY_SIZE,
3853 					   .ivsize = 0,
3854 					}
3855 			},
3856 	 .cipher_info = {
3857 			 .alg = CIPHER_ALG_AES,
3858 			 .mode = CIPHER_MODE_ECB,
3859 			 },
3860 	 .auth_info = {
3861 		       .alg = HASH_ALG_NONE,
3862 		       .mode = HASH_MODE_NONE,
3863 		       },
3864 	 },
3865 	{
3866 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3867 	 .alg.crypto = {
3868 			.cra_name = "ctr(aes)",
3869 			.cra_driver_name = "ctr-aes-iproc",
3870 			.cra_blocksize = AES_BLOCK_SIZE,
3871 			.cra_ablkcipher = {
3872 					   /* .geniv = "chainiv", */
3873 					   .min_keysize = AES_MIN_KEY_SIZE,
3874 					   .max_keysize = AES_MAX_KEY_SIZE,
3875 					   .ivsize = AES_BLOCK_SIZE,
3876 					}
3877 			},
3878 	 .cipher_info = {
3879 			 .alg = CIPHER_ALG_AES,
3880 			 .mode = CIPHER_MODE_CTR,
3881 			 },
3882 	 .auth_info = {
3883 		       .alg = HASH_ALG_NONE,
3884 		       .mode = HASH_MODE_NONE,
3885 		       },
3886 	 },
3887 {
3888 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3889 	 .alg.crypto = {
3890 			.cra_name = "xts(aes)",
3891 			.cra_driver_name = "xts-aes-iproc",
3892 			.cra_blocksize = AES_BLOCK_SIZE,
3893 			.cra_ablkcipher = {
3894 				.min_keysize = 2 * AES_MIN_KEY_SIZE,
3895 				.max_keysize = 2 * AES_MAX_KEY_SIZE,
3896 				.ivsize = AES_BLOCK_SIZE,
3897 				}
3898 			},
3899 	 .cipher_info = {
3900 			 .alg = CIPHER_ALG_AES,
3901 			 .mode = CIPHER_MODE_XTS,
3902 			 },
3903 	 .auth_info = {
3904 		       .alg = HASH_ALG_NONE,
3905 		       .mode = HASH_MODE_NONE,
3906 		       },
3907 	 },
3908 
3909 /* AHASH algorithms. */
3910 	{
3911 	 .type = CRYPTO_ALG_TYPE_AHASH,
3912 	 .alg.hash = {
3913 		      .halg.digestsize = MD5_DIGEST_SIZE,
3914 		      .halg.base = {
3915 				    .cra_name = "md5",
3916 				    .cra_driver_name = "md5-iproc",
3917 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3918 				    .cra_flags = CRYPTO_ALG_TYPE_AHASH |
3919 					     CRYPTO_ALG_ASYNC,
3920 				}
3921 		      },
3922 	 .cipher_info = {
3923 			 .alg = CIPHER_ALG_NONE,
3924 			 .mode = CIPHER_MODE_NONE,
3925 			 },
3926 	 .auth_info = {
3927 		       .alg = HASH_ALG_MD5,
3928 		       .mode = HASH_MODE_HASH,
3929 		       },
3930 	 },
3931 	{
3932 	 .type = CRYPTO_ALG_TYPE_AHASH,
3933 	 .alg.hash = {
3934 		      .halg.digestsize = MD5_DIGEST_SIZE,
3935 		      .halg.base = {
3936 				    .cra_name = "hmac(md5)",
3937 				    .cra_driver_name = "hmac-md5-iproc",
3938 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3939 				}
3940 		      },
3941 	 .cipher_info = {
3942 			 .alg = CIPHER_ALG_NONE,
3943 			 .mode = CIPHER_MODE_NONE,
3944 			 },
3945 	 .auth_info = {
3946 		       .alg = HASH_ALG_MD5,
3947 		       .mode = HASH_MODE_HMAC,
3948 		       },
3949 	 },
3950 	{.type = CRYPTO_ALG_TYPE_AHASH,
3951 	 .alg.hash = {
3952 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3953 		      .halg.base = {
3954 				    .cra_name = "sha1",
3955 				    .cra_driver_name = "sha1-iproc",
3956 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3957 				}
3958 		      },
3959 	 .cipher_info = {
3960 			 .alg = CIPHER_ALG_NONE,
3961 			 .mode = CIPHER_MODE_NONE,
3962 			 },
3963 	 .auth_info = {
3964 		       .alg = HASH_ALG_SHA1,
3965 		       .mode = HASH_MODE_HASH,
3966 		       },
3967 	 },
3968 	{.type = CRYPTO_ALG_TYPE_AHASH,
3969 	 .alg.hash = {
3970 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3971 		      .halg.base = {
3972 				    .cra_name = "hmac(sha1)",
3973 				    .cra_driver_name = "hmac-sha1-iproc",
3974 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3975 				}
3976 		      },
3977 	 .cipher_info = {
3978 			 .alg = CIPHER_ALG_NONE,
3979 			 .mode = CIPHER_MODE_NONE,
3980 			 },
3981 	 .auth_info = {
3982 		       .alg = HASH_ALG_SHA1,
3983 		       .mode = HASH_MODE_HMAC,
3984 		       },
3985 	 },
3986 	{.type = CRYPTO_ALG_TYPE_AHASH,
3987 	 .alg.hash = {
3988 			.halg.digestsize = SHA224_DIGEST_SIZE,
3989 			.halg.base = {
3990 				    .cra_name = "sha224",
3991 				    .cra_driver_name = "sha224-iproc",
3992 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3993 			}
3994 		      },
3995 	 .cipher_info = {
3996 			 .alg = CIPHER_ALG_NONE,
3997 			 .mode = CIPHER_MODE_NONE,
3998 			 },
3999 	 .auth_info = {
4000 		       .alg = HASH_ALG_SHA224,
4001 		       .mode = HASH_MODE_HASH,
4002 		       },
4003 	 },
4004 	{.type = CRYPTO_ALG_TYPE_AHASH,
4005 	 .alg.hash = {
4006 		      .halg.digestsize = SHA224_DIGEST_SIZE,
4007 		      .halg.base = {
4008 				    .cra_name = "hmac(sha224)",
4009 				    .cra_driver_name = "hmac-sha224-iproc",
4010 				    .cra_blocksize = SHA224_BLOCK_SIZE,
4011 				}
4012 		      },
4013 	 .cipher_info = {
4014 			 .alg = CIPHER_ALG_NONE,
4015 			 .mode = CIPHER_MODE_NONE,
4016 			 },
4017 	 .auth_info = {
4018 		       .alg = HASH_ALG_SHA224,
4019 		       .mode = HASH_MODE_HMAC,
4020 		       },
4021 	 },
4022 	{.type = CRYPTO_ALG_TYPE_AHASH,
4023 	 .alg.hash = {
4024 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4025 		      .halg.base = {
4026 				    .cra_name = "sha256",
4027 				    .cra_driver_name = "sha256-iproc",
4028 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4029 				}
4030 		      },
4031 	 .cipher_info = {
4032 			 .alg = CIPHER_ALG_NONE,
4033 			 .mode = CIPHER_MODE_NONE,
4034 			 },
4035 	 .auth_info = {
4036 		       .alg = HASH_ALG_SHA256,
4037 		       .mode = HASH_MODE_HASH,
4038 		       },
4039 	 },
4040 	{.type = CRYPTO_ALG_TYPE_AHASH,
4041 	 .alg.hash = {
4042 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4043 		      .halg.base = {
4044 				    .cra_name = "hmac(sha256)",
4045 				    .cra_driver_name = "hmac-sha256-iproc",
4046 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4047 				}
4048 		      },
4049 	 .cipher_info = {
4050 			 .alg = CIPHER_ALG_NONE,
4051 			 .mode = CIPHER_MODE_NONE,
4052 			 },
4053 	 .auth_info = {
4054 		       .alg = HASH_ALG_SHA256,
4055 		       .mode = HASH_MODE_HMAC,
4056 		       },
4057 	 },
4058 	{
4059 	.type = CRYPTO_ALG_TYPE_AHASH,
4060 	 .alg.hash = {
4061 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4062 		      .halg.base = {
4063 				    .cra_name = "sha384",
4064 				    .cra_driver_name = "sha384-iproc",
4065 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4066 				}
4067 		      },
4068 	 .cipher_info = {
4069 			 .alg = CIPHER_ALG_NONE,
4070 			 .mode = CIPHER_MODE_NONE,
4071 			 },
4072 	 .auth_info = {
4073 		       .alg = HASH_ALG_SHA384,
4074 		       .mode = HASH_MODE_HASH,
4075 		       },
4076 	 },
4077 	{
4078 	 .type = CRYPTO_ALG_TYPE_AHASH,
4079 	 .alg.hash = {
4080 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4081 		      .halg.base = {
4082 				    .cra_name = "hmac(sha384)",
4083 				    .cra_driver_name = "hmac-sha384-iproc",
4084 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4085 				}
4086 		      },
4087 	 .cipher_info = {
4088 			 .alg = CIPHER_ALG_NONE,
4089 			 .mode = CIPHER_MODE_NONE,
4090 			 },
4091 	 .auth_info = {
4092 		       .alg = HASH_ALG_SHA384,
4093 		       .mode = HASH_MODE_HMAC,
4094 		       },
4095 	 },
4096 	{
4097 	 .type = CRYPTO_ALG_TYPE_AHASH,
4098 	 .alg.hash = {
4099 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4100 		      .halg.base = {
4101 				    .cra_name = "sha512",
4102 				    .cra_driver_name = "sha512-iproc",
4103 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4104 				}
4105 		      },
4106 	 .cipher_info = {
4107 			 .alg = CIPHER_ALG_NONE,
4108 			 .mode = CIPHER_MODE_NONE,
4109 			 },
4110 	 .auth_info = {
4111 		       .alg = HASH_ALG_SHA512,
4112 		       .mode = HASH_MODE_HASH,
4113 		       },
4114 	 },
4115 	{
4116 	 .type = CRYPTO_ALG_TYPE_AHASH,
4117 	 .alg.hash = {
4118 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4119 		      .halg.base = {
4120 				    .cra_name = "hmac(sha512)",
4121 				    .cra_driver_name = "hmac-sha512-iproc",
4122 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4123 				}
4124 		      },
4125 	 .cipher_info = {
4126 			 .alg = CIPHER_ALG_NONE,
4127 			 .mode = CIPHER_MODE_NONE,
4128 			 },
4129 	 .auth_info = {
4130 		       .alg = HASH_ALG_SHA512,
4131 		       .mode = HASH_MODE_HMAC,
4132 		       },
4133 	 },
4134 	{
4135 	 .type = CRYPTO_ALG_TYPE_AHASH,
4136 	 .alg.hash = {
4137 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4138 		      .halg.base = {
4139 				    .cra_name = "sha3-224",
4140 				    .cra_driver_name = "sha3-224-iproc",
4141 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4142 				}
4143 		      },
4144 	 .cipher_info = {
4145 			 .alg = CIPHER_ALG_NONE,
4146 			 .mode = CIPHER_MODE_NONE,
4147 			 },
4148 	 .auth_info = {
4149 		       .alg = HASH_ALG_SHA3_224,
4150 		       .mode = HASH_MODE_HASH,
4151 		       },
4152 	 },
4153 	{
4154 	 .type = CRYPTO_ALG_TYPE_AHASH,
4155 	 .alg.hash = {
4156 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4157 		      .halg.base = {
4158 				    .cra_name = "hmac(sha3-224)",
4159 				    .cra_driver_name = "hmac-sha3-224-iproc",
4160 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4161 				}
4162 		      },
4163 	 .cipher_info = {
4164 			 .alg = CIPHER_ALG_NONE,
4165 			 .mode = CIPHER_MODE_NONE,
4166 			 },
4167 	 .auth_info = {
4168 		       .alg = HASH_ALG_SHA3_224,
4169 		       .mode = HASH_MODE_HMAC
4170 		       },
4171 	 },
4172 	{
4173 	 .type = CRYPTO_ALG_TYPE_AHASH,
4174 	 .alg.hash = {
4175 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4176 		      .halg.base = {
4177 				    .cra_name = "sha3-256",
4178 				    .cra_driver_name = "sha3-256-iproc",
4179 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4180 				}
4181 		      },
4182 	 .cipher_info = {
4183 			 .alg = CIPHER_ALG_NONE,
4184 			 .mode = CIPHER_MODE_NONE,
4185 			 },
4186 	 .auth_info = {
4187 		       .alg = HASH_ALG_SHA3_256,
4188 		       .mode = HASH_MODE_HASH,
4189 		       },
4190 	 },
4191 	{
4192 	 .type = CRYPTO_ALG_TYPE_AHASH,
4193 	 .alg.hash = {
4194 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4195 		      .halg.base = {
4196 				    .cra_name = "hmac(sha3-256)",
4197 				    .cra_driver_name = "hmac-sha3-256-iproc",
4198 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4199 				}
4200 		      },
4201 	 .cipher_info = {
4202 			 .alg = CIPHER_ALG_NONE,
4203 			 .mode = CIPHER_MODE_NONE,
4204 			 },
4205 	 .auth_info = {
4206 		       .alg = HASH_ALG_SHA3_256,
4207 		       .mode = HASH_MODE_HMAC,
4208 		       },
4209 	 },
4210 	{
4211 	 .type = CRYPTO_ALG_TYPE_AHASH,
4212 	 .alg.hash = {
4213 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4214 		      .halg.base = {
4215 				    .cra_name = "sha3-384",
4216 				    .cra_driver_name = "sha3-384-iproc",
4217 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4218 				}
4219 		      },
4220 	 .cipher_info = {
4221 			 .alg = CIPHER_ALG_NONE,
4222 			 .mode = CIPHER_MODE_NONE,
4223 			 },
4224 	 .auth_info = {
4225 		       .alg = HASH_ALG_SHA3_384,
4226 		       .mode = HASH_MODE_HASH,
4227 		       },
4228 	 },
4229 	{
4230 	 .type = CRYPTO_ALG_TYPE_AHASH,
4231 	 .alg.hash = {
4232 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4233 		      .halg.base = {
4234 				    .cra_name = "hmac(sha3-384)",
4235 				    .cra_driver_name = "hmac-sha3-384-iproc",
4236 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4237 				}
4238 		      },
4239 	 .cipher_info = {
4240 			 .alg = CIPHER_ALG_NONE,
4241 			 .mode = CIPHER_MODE_NONE,
4242 			 },
4243 	 .auth_info = {
4244 		       .alg = HASH_ALG_SHA3_384,
4245 		       .mode = HASH_MODE_HMAC,
4246 		       },
4247 	 },
4248 	{
4249 	 .type = CRYPTO_ALG_TYPE_AHASH,
4250 	 .alg.hash = {
4251 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4252 		      .halg.base = {
4253 				    .cra_name = "sha3-512",
4254 				    .cra_driver_name = "sha3-512-iproc",
4255 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4256 				}
4257 		      },
4258 	 .cipher_info = {
4259 			 .alg = CIPHER_ALG_NONE,
4260 			 .mode = CIPHER_MODE_NONE,
4261 			 },
4262 	 .auth_info = {
4263 		       .alg = HASH_ALG_SHA3_512,
4264 		       .mode = HASH_MODE_HASH,
4265 		       },
4266 	 },
4267 	{
4268 	 .type = CRYPTO_ALG_TYPE_AHASH,
4269 	 .alg.hash = {
4270 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4271 		      .halg.base = {
4272 				    .cra_name = "hmac(sha3-512)",
4273 				    .cra_driver_name = "hmac-sha3-512-iproc",
4274 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4275 				}
4276 		      },
4277 	 .cipher_info = {
4278 			 .alg = CIPHER_ALG_NONE,
4279 			 .mode = CIPHER_MODE_NONE,
4280 			 },
4281 	 .auth_info = {
4282 		       .alg = HASH_ALG_SHA3_512,
4283 		       .mode = HASH_MODE_HMAC,
4284 		       },
4285 	 },
4286 	{
4287 	 .type = CRYPTO_ALG_TYPE_AHASH,
4288 	 .alg.hash = {
4289 		      .halg.digestsize = AES_BLOCK_SIZE,
4290 		      .halg.base = {
4291 				    .cra_name = "xcbc(aes)",
4292 				    .cra_driver_name = "xcbc-aes-iproc",
4293 				    .cra_blocksize = AES_BLOCK_SIZE,
4294 				}
4295 		      },
4296 	 .cipher_info = {
4297 			 .alg = CIPHER_ALG_NONE,
4298 			 .mode = CIPHER_MODE_NONE,
4299 			 },
4300 	 .auth_info = {
4301 		       .alg = HASH_ALG_AES,
4302 		       .mode = HASH_MODE_XCBC,
4303 		       },
4304 	 },
4305 	{
4306 	 .type = CRYPTO_ALG_TYPE_AHASH,
4307 	 .alg.hash = {
4308 		      .halg.digestsize = AES_BLOCK_SIZE,
4309 		      .halg.base = {
4310 				    .cra_name = "cmac(aes)",
4311 				    .cra_driver_name = "cmac-aes-iproc",
4312 				    .cra_blocksize = AES_BLOCK_SIZE,
4313 				}
4314 		      },
4315 	 .cipher_info = {
4316 			 .alg = CIPHER_ALG_NONE,
4317 			 .mode = CIPHER_MODE_NONE,
4318 			 },
4319 	 .auth_info = {
4320 		       .alg = HASH_ALG_AES,
4321 		       .mode = HASH_MODE_CMAC,
4322 		       },
4323 	 },
4324 };
4325 
4326 static int generic_cra_init(struct crypto_tfm *tfm,
4327 			    struct iproc_alg_s *cipher_alg)
4328 {
4329 	struct spu_hw *spu = &iproc_priv.spu;
4330 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4331 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4332 
4333 	flow_log("%s()\n", __func__);
4334 
4335 	ctx->alg = cipher_alg;
4336 	ctx->cipher = cipher_alg->cipher_info;
4337 	ctx->auth = cipher_alg->auth_info;
4338 	ctx->auth_first = cipher_alg->auth_first;
4339 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4340 						    ctx->cipher.mode,
4341 						    blocksize);
4342 	ctx->fallback_cipher = NULL;
4343 
4344 	ctx->enckeylen = 0;
4345 	ctx->authkeylen = 0;
4346 
4347 	atomic_inc(&iproc_priv.stream_count);
4348 	atomic_inc(&iproc_priv.session_count);
4349 
4350 	return 0;
4351 }
4352 
4353 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4354 {
4355 	struct crypto_alg *alg = tfm->__crt_alg;
4356 	struct iproc_alg_s *cipher_alg;
4357 
4358 	flow_log("%s()\n", __func__);
4359 
4360 	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4361 
4362 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4363 	return generic_cra_init(tfm, cipher_alg);
4364 }
4365 
4366 static int ahash_cra_init(struct crypto_tfm *tfm)
4367 {
4368 	int err;
4369 	struct crypto_alg *alg = tfm->__crt_alg;
4370 	struct iproc_alg_s *cipher_alg;
4371 
4372 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4373 				  alg.hash);
4374 
4375 	err = generic_cra_init(tfm, cipher_alg);
4376 	flow_log("%s()\n", __func__);
4377 
4378 	/*
4379 	 * export state size has to be < 512 bytes. So don't include msg bufs
4380 	 * in state size.
4381 	 */
4382 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4383 				 sizeof(struct iproc_reqctx_s));
4384 
4385 	return err;
4386 }
4387 
4388 static int aead_cra_init(struct crypto_aead *aead)
4389 {
4390 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4391 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4392 	struct crypto_alg *alg = tfm->__crt_alg;
4393 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4394 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4395 						      alg.aead);
4396 
4397 	int err = generic_cra_init(tfm, cipher_alg);
4398 
4399 	flow_log("%s()\n", __func__);
4400 
4401 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4402 	ctx->is_esp = false;
4403 	ctx->salt_len = 0;
4404 	ctx->salt_offset = 0;
4405 
4406 	/* random first IV */
4407 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4408 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4409 
4410 	if (!err) {
4411 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4412 			flow_log("%s() creating fallback cipher\n", __func__);
4413 
4414 			ctx->fallback_cipher =
4415 			    crypto_alloc_aead(alg->cra_name, 0,
4416 					      CRYPTO_ALG_ASYNC |
4417 					      CRYPTO_ALG_NEED_FALLBACK);
4418 			if (IS_ERR(ctx->fallback_cipher)) {
4419 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4420 				       __func__, alg->cra_name);
4421 				return PTR_ERR(ctx->fallback_cipher);
4422 			}
4423 		}
4424 	}
4425 
4426 	return err;
4427 }
4428 
4429 static void generic_cra_exit(struct crypto_tfm *tfm)
4430 {
4431 	atomic_dec(&iproc_priv.session_count);
4432 }
4433 
4434 static void aead_cra_exit(struct crypto_aead *aead)
4435 {
4436 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4437 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4438 
4439 	generic_cra_exit(tfm);
4440 
4441 	if (ctx->fallback_cipher) {
4442 		crypto_free_aead(ctx->fallback_cipher);
4443 		ctx->fallback_cipher = NULL;
4444 	}
4445 }
4446 
4447 /**
4448  * spu_functions_register() - Specify hardware-specific SPU functions based on
4449  * SPU type read from device tree.
4450  * @dev:	device structure
4451  * @spu_type:	SPU hardware generation
4452  * @spu_subtype: SPU hardware version
4453  */
4454 static void spu_functions_register(struct device *dev,
4455 				   enum spu_spu_type spu_type,
4456 				   enum spu_spu_subtype spu_subtype)
4457 {
4458 	struct spu_hw *spu = &iproc_priv.spu;
4459 
4460 	if (spu_type == SPU_TYPE_SPUM) {
4461 		dev_dbg(dev, "Registering SPUM functions");
4462 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4463 		spu->spu_payload_length = spum_payload_length;
4464 		spu->spu_response_hdr_len = spum_response_hdr_len;
4465 		spu->spu_hash_pad_len = spum_hash_pad_len;
4466 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4467 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4468 		spu->spu_aead_ivlen = spum_aead_ivlen;
4469 		spu->spu_hash_type = spum_hash_type;
4470 		spu->spu_digest_size = spum_digest_size;
4471 		spu->spu_create_request = spum_create_request;
4472 		spu->spu_cipher_req_init = spum_cipher_req_init;
4473 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4474 		spu->spu_request_pad = spum_request_pad;
4475 		spu->spu_tx_status_len = spum_tx_status_len;
4476 		spu->spu_rx_status_len = spum_rx_status_len;
4477 		spu->spu_status_process = spum_status_process;
4478 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4479 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4480 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4481 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4482 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4483 		else
4484 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4485 	} else {
4486 		dev_dbg(dev, "Registering SPU2 functions");
4487 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4488 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4489 		spu->spu_payload_length = spu2_payload_length;
4490 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4491 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4492 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4493 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4494 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4495 		spu->spu_hash_type = spu2_hash_type;
4496 		spu->spu_digest_size = spu2_digest_size;
4497 		spu->spu_create_request = spu2_create_request;
4498 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4499 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4500 		spu->spu_request_pad = spu2_request_pad;
4501 		spu->spu_tx_status_len = spu2_tx_status_len;
4502 		spu->spu_rx_status_len = spu2_rx_status_len;
4503 		spu->spu_status_process = spu2_status_process;
4504 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4505 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4506 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4507 	}
4508 }
4509 
4510 /**
4511  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4512  * channel for the SPU being probed.
4513  * @dev:  SPU driver device structure
4514  *
4515  * Return: 0 if successful
4516  *	   < 0 otherwise
4517  */
4518 static int spu_mb_init(struct device *dev)
4519 {
4520 	struct mbox_client *mcl = &iproc_priv.mcl;
4521 	int err, i;
4522 
4523 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4524 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4525 	if (!iproc_priv.mbox)
4526 		return -ENOMEM;
4527 
4528 	mcl->dev = dev;
4529 	mcl->tx_block = false;
4530 	mcl->tx_tout = 0;
4531 	mcl->knows_txdone = true;
4532 	mcl->rx_callback = spu_rx_callback;
4533 	mcl->tx_done = NULL;
4534 
4535 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4536 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4537 		if (IS_ERR(iproc_priv.mbox[i])) {
4538 			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4539 			dev_err(dev,
4540 				"Mbox channel %d request failed with err %d",
4541 				i, err);
4542 			iproc_priv.mbox[i] = NULL;
4543 			goto free_channels;
4544 		}
4545 	}
4546 
4547 	return 0;
4548 free_channels:
4549 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4550 		if (iproc_priv.mbox[i])
4551 			mbox_free_channel(iproc_priv.mbox[i]);
4552 	}
4553 
4554 	return err;
4555 }
4556 
4557 static void spu_mb_release(struct platform_device *pdev)
4558 {
4559 	int i;
4560 
4561 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4562 		mbox_free_channel(iproc_priv.mbox[i]);
4563 }
4564 
4565 static void spu_counters_init(void)
4566 {
4567 	int i;
4568 	int j;
4569 
4570 	atomic_set(&iproc_priv.session_count, 0);
4571 	atomic_set(&iproc_priv.stream_count, 0);
4572 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4573 	atomic64_set(&iproc_priv.bytes_in, 0);
4574 	atomic64_set(&iproc_priv.bytes_out, 0);
4575 	for (i = 0; i < SPU_OP_NUM; i++) {
4576 		atomic_set(&iproc_priv.op_counts[i], 0);
4577 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4578 	}
4579 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4580 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4581 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4582 
4583 	for (i = 0; i < HASH_ALG_LAST; i++) {
4584 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4585 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4586 	}
4587 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4588 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4589 
4590 	atomic_set(&iproc_priv.mb_no_spc, 0);
4591 	atomic_set(&iproc_priv.mb_send_fail, 0);
4592 	atomic_set(&iproc_priv.bad_icv, 0);
4593 }
4594 
4595 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4596 {
4597 	struct spu_hw *spu = &iproc_priv.spu;
4598 	struct crypto_alg *crypto = &driver_alg->alg.crypto;
4599 	int err;
4600 
4601 	/* SPU2 does not support RC4 */
4602 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4603 	    (spu->spu_type == SPU_TYPE_SPU2))
4604 		return 0;
4605 
4606 	crypto->cra_module = THIS_MODULE;
4607 	crypto->cra_priority = cipher_pri;
4608 	crypto->cra_alignmask = 0;
4609 	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4610 	INIT_LIST_HEAD(&crypto->cra_list);
4611 
4612 	crypto->cra_init = ablkcipher_cra_init;
4613 	crypto->cra_exit = generic_cra_exit;
4614 	crypto->cra_type = &crypto_ablkcipher_type;
4615 	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4616 				CRYPTO_ALG_KERN_DRIVER_ONLY;
4617 
4618 	crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4619 	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4620 	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4621 
4622 	err = crypto_register_alg(crypto);
4623 	/* Mark alg as having been registered, if successful */
4624 	if (err == 0)
4625 		driver_alg->registered = true;
4626 	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name);
4627 	return err;
4628 }
4629 
4630 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4631 {
4632 	struct spu_hw *spu = &iproc_priv.spu;
4633 	struct ahash_alg *hash = &driver_alg->alg.hash;
4634 	int err;
4635 
4636 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4637 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4638 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4639 	    (spu->spu_type == SPU_TYPE_SPUM))
4640 		return 0;
4641 
4642 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4643 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4644 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4645 		return 0;
4646 
4647 	hash->halg.base.cra_module = THIS_MODULE;
4648 	hash->halg.base.cra_priority = hash_pri;
4649 	hash->halg.base.cra_alignmask = 0;
4650 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4651 	hash->halg.base.cra_init = ahash_cra_init;
4652 	hash->halg.base.cra_exit = generic_cra_exit;
4653 	hash->halg.base.cra_type = &crypto_ahash_type;
4654 	hash->halg.base.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
4655 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4656 
4657 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4658 		hash->setkey = ahash_setkey;
4659 		hash->init = ahash_init;
4660 		hash->update = ahash_update;
4661 		hash->final = ahash_final;
4662 		hash->finup = ahash_finup;
4663 		hash->digest = ahash_digest;
4664 	} else {
4665 		hash->setkey = ahash_hmac_setkey;
4666 		hash->init = ahash_hmac_init;
4667 		hash->update = ahash_hmac_update;
4668 		hash->final = ahash_hmac_final;
4669 		hash->finup = ahash_hmac_finup;
4670 		hash->digest = ahash_hmac_digest;
4671 	}
4672 	hash->export = ahash_export;
4673 	hash->import = ahash_import;
4674 
4675 	err = crypto_register_ahash(hash);
4676 	/* Mark alg as having been registered, if successful */
4677 	if (err == 0)
4678 		driver_alg->registered = true;
4679 	pr_debug("  registered ahash %s\n",
4680 		 hash->halg.base.cra_driver_name);
4681 	return err;
4682 }
4683 
4684 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4685 {
4686 	struct aead_alg *aead = &driver_alg->alg.aead;
4687 	int err;
4688 
4689 	aead->base.cra_module = THIS_MODULE;
4690 	aead->base.cra_priority = aead_pri;
4691 	aead->base.cra_alignmask = 0;
4692 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4693 	INIT_LIST_HEAD(&aead->base.cra_list);
4694 
4695 	aead->base.cra_flags |= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
4696 	/* setkey set in alg initialization */
4697 	aead->setauthsize = aead_setauthsize;
4698 	aead->encrypt = aead_encrypt;
4699 	aead->decrypt = aead_decrypt;
4700 	aead->init = aead_cra_init;
4701 	aead->exit = aead_cra_exit;
4702 
4703 	err = crypto_register_aead(aead);
4704 	/* Mark alg as having been registered, if successful */
4705 	if (err == 0)
4706 		driver_alg->registered = true;
4707 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4708 	return err;
4709 }
4710 
4711 /* register crypto algorithms the device supports */
4712 static int spu_algs_register(struct device *dev)
4713 {
4714 	int i, j;
4715 	int err;
4716 
4717 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4718 		switch (driver_algs[i].type) {
4719 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4720 			err = spu_register_ablkcipher(&driver_algs[i]);
4721 			break;
4722 		case CRYPTO_ALG_TYPE_AHASH:
4723 			err = spu_register_ahash(&driver_algs[i]);
4724 			break;
4725 		case CRYPTO_ALG_TYPE_AEAD:
4726 			err = spu_register_aead(&driver_algs[i]);
4727 			break;
4728 		default:
4729 			dev_err(dev,
4730 				"iproc-crypto: unknown alg type: %d",
4731 				driver_algs[i].type);
4732 			err = -EINVAL;
4733 		}
4734 
4735 		if (err) {
4736 			dev_err(dev, "alg registration failed with error %d\n",
4737 				err);
4738 			goto err_algs;
4739 		}
4740 	}
4741 
4742 	return 0;
4743 
4744 err_algs:
4745 	for (j = 0; j < i; j++) {
4746 		/* Skip any algorithm not registered */
4747 		if (!driver_algs[j].registered)
4748 			continue;
4749 		switch (driver_algs[j].type) {
4750 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4751 			crypto_unregister_alg(&driver_algs[j].alg.crypto);
4752 			driver_algs[j].registered = false;
4753 			break;
4754 		case CRYPTO_ALG_TYPE_AHASH:
4755 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4756 			driver_algs[j].registered = false;
4757 			break;
4758 		case CRYPTO_ALG_TYPE_AEAD:
4759 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4760 			driver_algs[j].registered = false;
4761 			break;
4762 		}
4763 	}
4764 	return err;
4765 }
4766 
4767 /* ==================== Kernel Platform API ==================== */
4768 
4769 static struct spu_type_subtype spum_ns2_types = {
4770 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4771 };
4772 
4773 static struct spu_type_subtype spum_nsp_types = {
4774 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4775 };
4776 
4777 static struct spu_type_subtype spu2_types = {
4778 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4779 };
4780 
4781 static struct spu_type_subtype spu2_v2_types = {
4782 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4783 };
4784 
4785 static const struct of_device_id bcm_spu_dt_ids[] = {
4786 	{
4787 		.compatible = "brcm,spum-crypto",
4788 		.data = &spum_ns2_types,
4789 	},
4790 	{
4791 		.compatible = "brcm,spum-nsp-crypto",
4792 		.data = &spum_nsp_types,
4793 	},
4794 	{
4795 		.compatible = "brcm,spu2-crypto",
4796 		.data = &spu2_types,
4797 	},
4798 	{
4799 		.compatible = "brcm,spu2-v2-crypto",
4800 		.data = &spu2_v2_types,
4801 	},
4802 	{ /* sentinel */ }
4803 };
4804 
4805 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4806 
4807 static int spu_dt_read(struct platform_device *pdev)
4808 {
4809 	struct device *dev = &pdev->dev;
4810 	struct spu_hw *spu = &iproc_priv.spu;
4811 	struct resource *spu_ctrl_regs;
4812 	const struct spu_type_subtype *matched_spu_type;
4813 	struct device_node *dn = pdev->dev.of_node;
4814 	int err, i;
4815 
4816 	/* Count number of mailbox channels */
4817 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4818 
4819 	matched_spu_type = of_device_get_match_data(dev);
4820 	if (!matched_spu_type) {
4821 		dev_err(&pdev->dev, "Failed to match device\n");
4822 		return -ENODEV;
4823 	}
4824 
4825 	spu->spu_type = matched_spu_type->type;
4826 	spu->spu_subtype = matched_spu_type->subtype;
4827 
4828 	i = 0;
4829 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4830 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4831 
4832 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4833 		if (IS_ERR(spu->reg_vbase[i])) {
4834 			err = PTR_ERR(spu->reg_vbase[i]);
4835 			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4836 				err);
4837 			spu->reg_vbase[i] = NULL;
4838 			return err;
4839 		}
4840 	}
4841 	spu->num_spu = i;
4842 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4843 
4844 	return 0;
4845 }
4846 
4847 int bcm_spu_probe(struct platform_device *pdev)
4848 {
4849 	struct device *dev = &pdev->dev;
4850 	struct spu_hw *spu = &iproc_priv.spu;
4851 	int err = 0;
4852 
4853 	iproc_priv.pdev  = pdev;
4854 	platform_set_drvdata(iproc_priv.pdev,
4855 			     &iproc_priv);
4856 
4857 	err = spu_dt_read(pdev);
4858 	if (err < 0)
4859 		goto failure;
4860 
4861 	err = spu_mb_init(&pdev->dev);
4862 	if (err < 0)
4863 		goto failure;
4864 
4865 	if (spu->spu_type == SPU_TYPE_SPUM)
4866 		iproc_priv.bcm_hdr_len = 8;
4867 	else if (spu->spu_type == SPU_TYPE_SPU2)
4868 		iproc_priv.bcm_hdr_len = 0;
4869 
4870 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4871 
4872 	spu_counters_init();
4873 
4874 	spu_setup_debugfs();
4875 
4876 	err = spu_algs_register(dev);
4877 	if (err < 0)
4878 		goto fail_reg;
4879 
4880 	return 0;
4881 
4882 fail_reg:
4883 	spu_free_debugfs();
4884 failure:
4885 	spu_mb_release(pdev);
4886 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4887 
4888 	return err;
4889 }
4890 
4891 int bcm_spu_remove(struct platform_device *pdev)
4892 {
4893 	int i;
4894 	struct device *dev = &pdev->dev;
4895 	char *cdn;
4896 
4897 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4898 		/*
4899 		 * Not all algorithms were registered, depending on whether
4900 		 * hardware is SPU or SPU2.  So here we make sure to skip
4901 		 * those algorithms that were not previously registered.
4902 		 */
4903 		if (!driver_algs[i].registered)
4904 			continue;
4905 
4906 		switch (driver_algs[i].type) {
4907 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4908 			crypto_unregister_alg(&driver_algs[i].alg.crypto);
4909 			dev_dbg(dev, "  unregistered cipher %s\n",
4910 				driver_algs[i].alg.crypto.cra_driver_name);
4911 			driver_algs[i].registered = false;
4912 			break;
4913 		case CRYPTO_ALG_TYPE_AHASH:
4914 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4915 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4916 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4917 			driver_algs[i].registered = false;
4918 			break;
4919 		case CRYPTO_ALG_TYPE_AEAD:
4920 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4921 			dev_dbg(dev, "  unregistered aead %s\n",
4922 				driver_algs[i].alg.aead.base.cra_driver_name);
4923 			driver_algs[i].registered = false;
4924 			break;
4925 		}
4926 	}
4927 	spu_free_debugfs();
4928 	spu_mb_release(pdev);
4929 	return 0;
4930 }
4931 
4932 /* ===== Kernel Module API ===== */
4933 
4934 static struct platform_driver bcm_spu_pdriver = {
4935 	.driver = {
4936 		   .name = "brcm-spu-crypto",
4937 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4938 		   },
4939 	.probe = bcm_spu_probe,
4940 	.remove = bcm_spu_remove,
4941 };
4942 module_platform_driver(bcm_spu_pdriver);
4943 
4944 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4945 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4946 MODULE_LICENSE("GPL v2");
4947