xref: /openbmc/linux/drivers/crypto/bcm/cipher.c (revision ae0be8de)
1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
33 
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/sha3.h>
46 
47 #include "util.h"
48 #include "cipher.h"
49 #include "spu.h"
50 #include "spum.h"
51 #include "spu2.h"
52 
53 /* ================= Device Structure ================== */
54 
55 struct device_private iproc_priv;
56 
57 /* ==================== Parameters ===================== */
58 
59 int flow_debug_logging;
60 module_param(flow_debug_logging, int, 0644);
61 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
62 
63 int packet_debug_logging;
64 module_param(packet_debug_logging, int, 0644);
65 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
66 
67 int debug_logging_sleep;
68 module_param(debug_logging_sleep, int, 0644);
69 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
70 
71 /*
72  * The value of these module parameters is used to set the priority for each
73  * algo type when this driver registers algos with the kernel crypto API.
74  * To use a priority other than the default, set the priority in the insmod or
75  * modprobe. Changing the module priority after init time has no effect.
76  *
77  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
78  * algos, but more preferred than generic software algos.
79  */
80 static int cipher_pri = 150;
81 module_param(cipher_pri, int, 0644);
82 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
83 
84 static int hash_pri = 100;
85 module_param(hash_pri, int, 0644);
86 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
87 
88 static int aead_pri = 150;
89 module_param(aead_pri, int, 0644);
90 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
91 
92 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
93  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
94  * 0x60 - ring 0
95  * 0x68 - ring 1
96  * 0x70 - ring 2
97  * 0x78 - ring 3
98  */
99 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
100 /*
101  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
102  * is set dynamically after reading SPU type from device tree.
103  */
104 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
105 
106 /* min and max time to sleep before retrying when mbox queue is full. usec */
107 #define MBOX_SLEEP_MIN  800
108 #define MBOX_SLEEP_MAX 1000
109 
110 /**
111  * select_channel() - Select a SPU channel to handle a crypto request. Selects
112  * channel in round robin order.
113  *
114  * Return:  channel index
115  */
116 static u8 select_channel(void)
117 {
118 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
119 
120 	return chan_idx % iproc_priv.spu.num_chan;
121 }
122 
123 /**
124  * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
125  * receive a SPU response message for an ablkcipher request. Includes buffers to
126  * catch SPU message headers and the response data.
127  * @mssg:	mailbox message containing the receive sg
128  * @rctx:	crypto request context
129  * @rx_frag_num: number of scatterlist elements required to hold the
130  *		SPU response message
131  * @chunksize:	Number of bytes of response data expected
132  * @stat_pad_len: Number of bytes required to pad the STAT field to
133  *		a 4-byte boundary
134  *
135  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
136  * when the request completes, whether the request is handled successfully or
137  * there is an error.
138  *
139  * Returns:
140  *   0 if successful
141  *   < 0 if an error
142  */
143 static int
144 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
145 			    struct iproc_reqctx_s *rctx,
146 			    u8 rx_frag_num,
147 			    unsigned int chunksize, u32 stat_pad_len)
148 {
149 	struct spu_hw *spu = &iproc_priv.spu;
150 	struct scatterlist *sg;	/* used to build sgs in mbox message */
151 	struct iproc_ctx_s *ctx = rctx->ctx;
152 	u32 datalen;		/* Number of bytes of response data expected */
153 
154 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
155 				rctx->gfp);
156 	if (!mssg->spu.dst)
157 		return -ENOMEM;
158 
159 	sg = mssg->spu.dst;
160 	sg_init_table(sg, rx_frag_num);
161 	/* Space for SPU message header */
162 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
163 
164 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
165 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
166 	    spu->spu_xts_tweak_in_payload())
167 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
168 			   SPU_XTS_TWEAK_SIZE);
169 
170 	/* Copy in each dst sg entry from request, up to chunksize */
171 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
172 				 rctx->dst_nents, chunksize);
173 	if (datalen < chunksize) {
174 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
175 		       __func__, chunksize, datalen);
176 		return -EFAULT;
177 	}
178 
179 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
180 		/* Add buffer to catch 260-byte SUPDT field for RC4 */
181 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
182 
183 	if (stat_pad_len)
184 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
185 
186 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
187 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
188 
189 	return 0;
190 }
191 
192 /**
193  * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
194  * send a SPU request message for an ablkcipher request. Includes SPU message
195  * headers and the request data.
196  * @mssg:	mailbox message containing the transmit sg
197  * @rctx:	crypto request context
198  * @tx_frag_num: number of scatterlist elements required to construct the
199  *		SPU request message
200  * @chunksize:	Number of bytes of request data
201  * @pad_len:	Number of pad bytes
202  *
203  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
204  * when the request completes, whether the request is handled successfully or
205  * there is an error.
206  *
207  * Returns:
208  *   0 if successful
209  *   < 0 if an error
210  */
211 static int
212 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
213 			    struct iproc_reqctx_s *rctx,
214 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
215 {
216 	struct spu_hw *spu = &iproc_priv.spu;
217 	struct scatterlist *sg;	/* used to build sgs in mbox message */
218 	struct iproc_ctx_s *ctx = rctx->ctx;
219 	u32 datalen;		/* Number of bytes of response data expected */
220 	u32 stat_len;
221 
222 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
223 				rctx->gfp);
224 	if (unlikely(!mssg->spu.src))
225 		return -ENOMEM;
226 
227 	sg = mssg->spu.src;
228 	sg_init_table(sg, tx_frag_num);
229 
230 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
231 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
232 
233 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
234 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
235 	    spu->spu_xts_tweak_in_payload())
236 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
237 
238 	/* Copy in each src sg entry from request, up to chunksize */
239 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
240 				 rctx->src_nents, chunksize);
241 	if (unlikely(datalen < chunksize)) {
242 		pr_err("%s(): failed to copy src sg to mbox msg",
243 		       __func__);
244 		return -EFAULT;
245 	}
246 
247 	if (pad_len)
248 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
249 
250 	stat_len = spu->spu_tx_status_len();
251 	if (stat_len) {
252 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
253 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
254 	}
255 	return 0;
256 }
257 
258 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
259 				u8 chan_idx)
260 {
261 	int err;
262 	int retry_cnt = 0;
263 	struct device *dev = &(iproc_priv.pdev->dev);
264 
265 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
266 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
267 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
268 			/*
269 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
270 			 * not in atomic context and we can wait and try again.
271 			 */
272 			retry_cnt++;
273 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
274 			err = mbox_send_message(iproc_priv.mbox[chan_idx],
275 						mssg);
276 			atomic_inc(&iproc_priv.mb_no_spc);
277 		}
278 	}
279 	if (err < 0) {
280 		atomic_inc(&iproc_priv.mb_send_fail);
281 		return err;
282 	}
283 
284 	/* Check error returned by mailbox controller */
285 	err = mssg->error;
286 	if (unlikely(err < 0)) {
287 		dev_err(dev, "message error %d", err);
288 		/* Signal txdone for mailbox channel */
289 	}
290 
291 	/* Signal txdone for mailbox channel */
292 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
293 	return err;
294 }
295 
296 /**
297  * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
298  * a single SPU request message, starting at the current position in the request
299  * data.
300  * @rctx:	Crypto request context
301  *
302  * This may be called on the crypto API thread, or, when a request is so large
303  * it must be broken into multiple SPU messages, on the thread used to invoke
304  * the response callback. When requests are broken into multiple SPU
305  * messages, we assume subsequent messages depend on previous results, and
306  * thus always wait for previous results before submitting the next message.
307  * Because requests are submitted in lock step like this, there is no need
308  * to synchronize access to request data structures.
309  *
310  * Return: -EINPROGRESS: request has been accepted and result will be returned
311  *			 asynchronously
312  *         Any other value indicates an error
313  */
314 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
315 {
316 	struct spu_hw *spu = &iproc_priv.spu;
317 	struct crypto_async_request *areq = rctx->parent;
318 	struct ablkcipher_request *req =
319 	    container_of(areq, struct ablkcipher_request, base);
320 	struct iproc_ctx_s *ctx = rctx->ctx;
321 	struct spu_cipher_parms cipher_parms;
322 	int err = 0;
323 	unsigned int chunksize = 0;	/* Num bytes of request to submit */
324 	int remaining = 0;	/* Bytes of request still to process */
325 	int chunk_start;	/* Beginning of data for current SPU msg */
326 
327 	/* IV or ctr value to use in this SPU msg */
328 	u8 local_iv_ctr[MAX_IV_SIZE];
329 	u32 stat_pad_len;	/* num bytes to align status field */
330 	u32 pad_len;		/* total length of all padding */
331 	bool update_key = false;
332 	struct brcm_message *mssg;	/* mailbox message */
333 
334 	/* number of entries in src and dst sg in mailbox message. */
335 	u8 rx_frag_num = 2;	/* response header and STATUS */
336 	u8 tx_frag_num = 1;	/* request header */
337 
338 	flow_log("%s\n", __func__);
339 
340 	cipher_parms.alg = ctx->cipher.alg;
341 	cipher_parms.mode = ctx->cipher.mode;
342 	cipher_parms.type = ctx->cipher_type;
343 	cipher_parms.key_len = ctx->enckeylen;
344 	cipher_parms.key_buf = ctx->enckey;
345 	cipher_parms.iv_buf = local_iv_ctr;
346 	cipher_parms.iv_len = rctx->iv_ctr_len;
347 
348 	mssg = &rctx->mb_mssg;
349 	chunk_start = rctx->src_sent;
350 	remaining = rctx->total_todo - chunk_start;
351 
352 	/* determine the chunk we are breaking off and update the indexes */
353 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
354 	    (remaining > ctx->max_payload))
355 		chunksize = ctx->max_payload;
356 	else
357 		chunksize = remaining;
358 
359 	rctx->src_sent += chunksize;
360 	rctx->total_sent = rctx->src_sent;
361 
362 	/* Count number of sg entries to be included in this request */
363 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
364 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
365 
366 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367 	    rctx->is_encrypt && chunk_start)
368 		/*
369 		 * Encrypting non-first first chunk. Copy last block of
370 		 * previous result to IV for this chunk.
371 		 */
372 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
373 				    rctx->iv_ctr_len,
374 				    chunk_start - rctx->iv_ctr_len);
375 
376 	if (rctx->iv_ctr_len) {
377 		/* get our local copy of the iv */
378 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
379 				 rctx->iv_ctr_len);
380 
381 		/* generate the next IV if possible */
382 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
383 		    !rctx->is_encrypt) {
384 			/*
385 			 * CBC Decrypt: next IV is the last ciphertext block in
386 			 * this chunk
387 			 */
388 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
389 					    rctx->iv_ctr_len,
390 					    rctx->src_sent - rctx->iv_ctr_len);
391 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
392 			/*
393 			 * The SPU hardware increments the counter once for
394 			 * each AES block of 16 bytes. So update the counter
395 			 * for the next chunk, if there is one. Note that for
396 			 * this chunk, the counter has already been copied to
397 			 * local_iv_ctr. We can assume a block size of 16,
398 			 * because we only support CTR mode for AES, not for
399 			 * any other cipher alg.
400 			 */
401 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
402 		}
403 	}
404 
405 	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
406 		rx_frag_num++;
407 		if (chunk_start) {
408 			/*
409 			 * for non-first RC4 chunks, use SUPDT from previous
410 			 * response as key for this chunk.
411 			 */
412 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
413 			update_key = true;
414 			cipher_parms.type = CIPHER_TYPE_UPDT;
415 		} else if (!rctx->is_encrypt) {
416 			/*
417 			 * First RC4 chunk. For decrypt, key in pre-built msg
418 			 * header may have been changed if encrypt required
419 			 * multiple chunks. So revert the key to the
420 			 * ctx->enckey value.
421 			 */
422 			update_key = true;
423 			cipher_parms.type = CIPHER_TYPE_INIT;
424 		}
425 	}
426 
427 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
428 		flow_log("max_payload infinite\n");
429 	else
430 		flow_log("max_payload %u\n", ctx->max_payload);
431 
432 	flow_log("sent:%u start:%u remains:%u size:%u\n",
433 		 rctx->src_sent, chunk_start, remaining, chunksize);
434 
435 	/* Copy SPU header template created at setkey time */
436 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
437 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
438 
439 	/*
440 	 * Pass SUPDT field as key. Key field in finish() call is only used
441 	 * when update_key has been set above for RC4. Will be ignored in
442 	 * all other cases.
443 	 */
444 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
445 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
446 				   &cipher_parms, update_key, chunksize);
447 
448 	atomic64_add(chunksize, &iproc_priv.bytes_out);
449 
450 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
451 	if (stat_pad_len)
452 		rx_frag_num++;
453 	pad_len = stat_pad_len;
454 	if (pad_len) {
455 		tx_frag_num++;
456 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
457 				     0, ctx->auth.alg, ctx->auth.mode,
458 				     rctx->total_sent, stat_pad_len);
459 	}
460 
461 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
462 			      ctx->spu_req_hdr_len);
463 	packet_log("payload:\n");
464 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
465 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
466 
467 	/*
468 	 * Build mailbox message containing SPU request msg and rx buffers
469 	 * to catch response message
470 	 */
471 	memset(mssg, 0, sizeof(*mssg));
472 	mssg->type = BRCM_MESSAGE_SPU;
473 	mssg->ctx = rctx;	/* Will be returned in response */
474 
475 	/* Create rx scatterlist to catch result */
476 	rx_frag_num += rctx->dst_nents;
477 
478 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
479 	    spu->spu_xts_tweak_in_payload())
480 		rx_frag_num++;	/* extra sg to insert tweak */
481 
482 	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
483 					  stat_pad_len);
484 	if (err)
485 		return err;
486 
487 	/* Create tx scatterlist containing SPU request message */
488 	tx_frag_num += rctx->src_nents;
489 	if (spu->spu_tx_status_len())
490 		tx_frag_num++;
491 
492 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
493 	    spu->spu_xts_tweak_in_payload())
494 		tx_frag_num++;	/* extra sg to insert tweak */
495 
496 	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
497 					  pad_len);
498 	if (err)
499 		return err;
500 
501 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
502 	if (unlikely(err < 0))
503 		return err;
504 
505 	return -EINPROGRESS;
506 }
507 
508 /**
509  * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
510  * total received count for the request and updates global stats.
511  * @rctx:	Crypto request context
512  */
513 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
514 {
515 	struct spu_hw *spu = &iproc_priv.spu;
516 #ifdef DEBUG
517 	struct crypto_async_request *areq = rctx->parent;
518 	struct ablkcipher_request *req = ablkcipher_request_cast(areq);
519 #endif
520 	struct iproc_ctx_s *ctx = rctx->ctx;
521 	u32 payload_len;
522 
523 	/* See how much data was returned */
524 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
525 
526 	/*
527 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
528 	 * encrypted tweak ("i") value; we don't count those.
529 	 */
530 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
531 	    spu->spu_xts_tweak_in_payload() &&
532 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
533 		payload_len -= SPU_XTS_TWEAK_SIZE;
534 
535 	atomic64_add(payload_len, &iproc_priv.bytes_in);
536 
537 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
538 		 __func__, rctx->total_received, payload_len);
539 
540 	dump_sg(req->dst, rctx->total_received, payload_len);
541 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
542 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
543 			    SPU_SUPDT_LEN);
544 
545 	rctx->total_received += payload_len;
546 	if (rctx->total_received == rctx->total_todo) {
547 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
548 		atomic_inc(
549 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
550 	}
551 }
552 
553 /**
554  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
555  * receive a SPU response message for an ahash request.
556  * @mssg:	mailbox message containing the receive sg
557  * @rctx:	crypto request context
558  * @rx_frag_num: number of scatterlist elements required to hold the
559  *		SPU response message
560  * @digestsize: length of hash digest, in bytes
561  * @stat_pad_len: Number of bytes required to pad the STAT field to
562  *		a 4-byte boundary
563  *
564  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
565  * when the request completes, whether the request is handled successfully or
566  * there is an error.
567  *
568  * Return:
569  *   0 if successful
570  *   < 0 if an error
571  */
572 static int
573 spu_ahash_rx_sg_create(struct brcm_message *mssg,
574 		       struct iproc_reqctx_s *rctx,
575 		       u8 rx_frag_num, unsigned int digestsize,
576 		       u32 stat_pad_len)
577 {
578 	struct spu_hw *spu = &iproc_priv.spu;
579 	struct scatterlist *sg;	/* used to build sgs in mbox message */
580 	struct iproc_ctx_s *ctx = rctx->ctx;
581 
582 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
583 				rctx->gfp);
584 	if (!mssg->spu.dst)
585 		return -ENOMEM;
586 
587 	sg = mssg->spu.dst;
588 	sg_init_table(sg, rx_frag_num);
589 	/* Space for SPU message header */
590 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
591 
592 	/* Space for digest */
593 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
594 
595 	if (stat_pad_len)
596 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
597 
598 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
599 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
600 	return 0;
601 }
602 
603 /**
604  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
605  * a SPU request message for an ahash request. Includes SPU message headers and
606  * the request data.
607  * @mssg:	mailbox message containing the transmit sg
608  * @rctx:	crypto request context
609  * @tx_frag_num: number of scatterlist elements required to construct the
610  *		SPU request message
611  * @spu_hdr_len: length in bytes of SPU message header
612  * @hash_carry_len: Number of bytes of data carried over from previous req
613  * @new_data_len: Number of bytes of new request data
614  * @pad_len:	Number of pad bytes
615  *
616  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
617  * when the request completes, whether the request is handled successfully or
618  * there is an error.
619  *
620  * Return:
621  *   0 if successful
622  *   < 0 if an error
623  */
624 static int
625 spu_ahash_tx_sg_create(struct brcm_message *mssg,
626 		       struct iproc_reqctx_s *rctx,
627 		       u8 tx_frag_num,
628 		       u32 spu_hdr_len,
629 		       unsigned int hash_carry_len,
630 		       unsigned int new_data_len, u32 pad_len)
631 {
632 	struct spu_hw *spu = &iproc_priv.spu;
633 	struct scatterlist *sg;	/* used to build sgs in mbox message */
634 	u32 datalen;		/* Number of bytes of response data expected */
635 	u32 stat_len;
636 
637 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
638 				rctx->gfp);
639 	if (!mssg->spu.src)
640 		return -ENOMEM;
641 
642 	sg = mssg->spu.src;
643 	sg_init_table(sg, tx_frag_num);
644 
645 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
646 		   BCM_HDR_LEN + spu_hdr_len);
647 
648 	if (hash_carry_len)
649 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
650 
651 	if (new_data_len) {
652 		/* Copy in each src sg entry from request, up to chunksize */
653 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
654 					 rctx->src_nents, new_data_len);
655 		if (datalen < new_data_len) {
656 			pr_err("%s(): failed to copy src sg to mbox msg",
657 			       __func__);
658 			return -EFAULT;
659 		}
660 	}
661 
662 	if (pad_len)
663 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
664 
665 	stat_len = spu->spu_tx_status_len();
666 	if (stat_len) {
667 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
668 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
669 	}
670 
671 	return 0;
672 }
673 
674 /**
675  * handle_ahash_req() - Process an asynchronous hash request from the crypto
676  * API.
677  * @rctx:  Crypto request context
678  *
679  * Builds a SPU request message embedded in a mailbox message and submits the
680  * mailbox message on a selected mailbox channel. The SPU request message is
681  * constructed as a scatterlist, including entries from the crypto API's
682  * src scatterlist to avoid copying the data to be hashed. This function is
683  * called either on the thread from the crypto API, or, in the case that the
684  * crypto API request is too large to fit in a single SPU request message,
685  * on the thread that invokes the receive callback with a response message.
686  * Because some operations require the response from one chunk before the next
687  * chunk can be submitted, we always wait for the response for the previous
688  * chunk before submitting the next chunk. Because requests are submitted in
689  * lock step like this, there is no need to synchronize access to request data
690  * structures.
691  *
692  * Return:
693  *   -EINPROGRESS: request has been submitted to SPU and response will be
694  *		   returned asynchronously
695  *   -EAGAIN:      non-final request included a small amount of data, which for
696  *		   efficiency we did not submit to the SPU, but instead stored
697  *		   to be submitted to the SPU with the next part of the request
698  *   other:        an error code
699  */
700 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
701 {
702 	struct spu_hw *spu = &iproc_priv.spu;
703 	struct crypto_async_request *areq = rctx->parent;
704 	struct ahash_request *req = ahash_request_cast(areq);
705 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
706 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
707 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
708 	struct iproc_ctx_s *ctx = rctx->ctx;
709 
710 	/* number of bytes still to be hashed in this req */
711 	unsigned int nbytes_to_hash = 0;
712 	int err = 0;
713 	unsigned int chunksize = 0;	/* length of hash carry + new data */
714 	/*
715 	 * length of new data, not from hash carry, to be submitted in
716 	 * this hw request
717 	 */
718 	unsigned int new_data_len;
719 
720 	unsigned int __maybe_unused chunk_start = 0;
721 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
722 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
723 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
724 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
725 	struct brcm_message *mssg;	/* mailbox message */
726 	struct spu_request_opts req_opts;
727 	struct spu_cipher_parms cipher_parms;
728 	struct spu_hash_parms hash_parms;
729 	struct spu_aead_parms aead_parms;
730 	unsigned int local_nbuf;
731 	u32 spu_hdr_len;
732 	unsigned int digestsize;
733 	u16 rem = 0;
734 
735 	/*
736 	 * number of entries in src and dst sg. Always includes SPU msg header.
737 	 * rx always includes a buffer to catch digest and STATUS.
738 	 */
739 	u8 rx_frag_num = 3;
740 	u8 tx_frag_num = 1;
741 
742 	flow_log("total_todo %u, total_sent %u\n",
743 		 rctx->total_todo, rctx->total_sent);
744 
745 	memset(&req_opts, 0, sizeof(req_opts));
746 	memset(&cipher_parms, 0, sizeof(cipher_parms));
747 	memset(&hash_parms, 0, sizeof(hash_parms));
748 	memset(&aead_parms, 0, sizeof(aead_parms));
749 
750 	req_opts.bd_suppress = true;
751 	hash_parms.alg = ctx->auth.alg;
752 	hash_parms.mode = ctx->auth.mode;
753 	hash_parms.type = HASH_TYPE_NONE;
754 	hash_parms.key_buf = (u8 *)ctx->authkey;
755 	hash_parms.key_len = ctx->authkeylen;
756 
757 	/*
758 	 * For hash algorithms below assignment looks bit odd but
759 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
760 	 * to differentiate between 128, 192, 256 bit key values.
761 	 * Based on the key values, hash algorithm is selected.
762 	 * For example for 128 bit key, hash algorithm is AES-128.
763 	 */
764 	cipher_parms.type = ctx->cipher_type;
765 
766 	mssg = &rctx->mb_mssg;
767 	chunk_start = rctx->src_sent;
768 
769 	/*
770 	 * Compute the amount remaining to hash. This may include data
771 	 * carried over from previous requests.
772 	 */
773 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
774 	chunksize = nbytes_to_hash;
775 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
776 	    (chunksize > ctx->max_payload))
777 		chunksize = ctx->max_payload;
778 
779 	/*
780 	 * If this is not a final request and the request data is not a multiple
781 	 * of a full block, then simply park the extra data and prefix it to the
782 	 * data for the next request.
783 	 */
784 	if (!rctx->is_final) {
785 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
786 		u16 new_len;  /* len of data to add to hash carry */
787 
788 		rem = chunksize % blocksize;   /* remainder */
789 		if (rem) {
790 			/* chunksize not a multiple of blocksize */
791 			chunksize -= rem;
792 			if (chunksize == 0) {
793 				/* Don't have a full block to submit to hw */
794 				new_len = rem - rctx->hash_carry_len;
795 				sg_copy_part_to_buf(req->src, dest, new_len,
796 						    rctx->src_sent);
797 				rctx->hash_carry_len = rem;
798 				flow_log("Exiting with hash carry len: %u\n",
799 					 rctx->hash_carry_len);
800 				packet_dump("  buf: ",
801 					    rctx->hash_carry,
802 					    rctx->hash_carry_len);
803 				return -EAGAIN;
804 			}
805 		}
806 	}
807 
808 	/* if we have hash carry, then prefix it to the data in this request */
809 	local_nbuf = rctx->hash_carry_len;
810 	rctx->hash_carry_len = 0;
811 	if (local_nbuf)
812 		tx_frag_num++;
813 	new_data_len = chunksize - local_nbuf;
814 
815 	/* Count number of sg entries to be used in this request */
816 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
817 				       new_data_len);
818 
819 	/* AES hashing keeps key size in type field, so need to copy it here */
820 	if (hash_parms.alg == HASH_ALG_AES)
821 		hash_parms.type = (enum hash_type)cipher_parms.type;
822 	else
823 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
824 
825 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
826 					  hash_parms.type);
827 	hash_parms.digestsize =	digestsize;
828 
829 	/* update the indexes */
830 	rctx->total_sent += chunksize;
831 	/* if you sent a prebuf then that wasn't from this req->src */
832 	rctx->src_sent += new_data_len;
833 
834 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
835 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
836 							   hash_parms.mode,
837 							   chunksize,
838 							   blocksize);
839 
840 	/*
841 	 * If a non-first chunk, then include the digest returned from the
842 	 * previous chunk so that hw can add to it (except for AES types).
843 	 */
844 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
845 	    (hash_parms.alg != HASH_ALG_AES)) {
846 		hash_parms.key_buf = rctx->incr_hash;
847 		hash_parms.key_len = digestsize;
848 	}
849 
850 	atomic64_add(chunksize, &iproc_priv.bytes_out);
851 
852 	flow_log("%s() final: %u nbuf: %u ",
853 		 __func__, rctx->is_final, local_nbuf);
854 
855 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
856 		flow_log("max_payload infinite\n");
857 	else
858 		flow_log("max_payload %u\n", ctx->max_payload);
859 
860 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
861 
862 	/* Prepend SPU header with type 3 BCM header */
863 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
864 
865 	hash_parms.prebuf_len = local_nbuf;
866 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
867 					      BCM_HDR_LEN,
868 					      &req_opts, &cipher_parms,
869 					      &hash_parms, &aead_parms,
870 					      new_data_len);
871 
872 	if (spu_hdr_len == 0) {
873 		pr_err("Failed to create SPU request header\n");
874 		return -EFAULT;
875 	}
876 
877 	/*
878 	 * Determine total length of padding required. Put all padding in one
879 	 * buffer.
880 	 */
881 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
882 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
883 				   0, 0, hash_parms.pad_len);
884 	if (spu->spu_tx_status_len())
885 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
886 	if (stat_pad_len)
887 		rx_frag_num++;
888 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
889 	if (pad_len) {
890 		tx_frag_num++;
891 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
892 				     hash_parms.pad_len, ctx->auth.alg,
893 				     ctx->auth.mode, rctx->total_sent,
894 				     stat_pad_len);
895 	}
896 
897 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
898 			      spu_hdr_len);
899 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
900 	flow_log("Data:\n");
901 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
902 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
903 
904 	/*
905 	 * Build mailbox message containing SPU request msg and rx buffers
906 	 * to catch response message
907 	 */
908 	memset(mssg, 0, sizeof(*mssg));
909 	mssg->type = BRCM_MESSAGE_SPU;
910 	mssg->ctx = rctx;	/* Will be returned in response */
911 
912 	/* Create rx scatterlist to catch result */
913 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
914 				     stat_pad_len);
915 	if (err)
916 		return err;
917 
918 	/* Create tx scatterlist containing SPU request message */
919 	tx_frag_num += rctx->src_nents;
920 	if (spu->spu_tx_status_len())
921 		tx_frag_num++;
922 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
923 				     local_nbuf, new_data_len, pad_len);
924 	if (err)
925 		return err;
926 
927 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
928 	if (unlikely(err < 0))
929 		return err;
930 
931 	return -EINPROGRESS;
932 }
933 
934 /**
935  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
936  * for an HMAC request.
937  * @req:  The HMAC request from the crypto API
938  * @ctx:  The session context
939  *
940  * Return: 0 if synchronous hash operation successful
941  *         -EINVAL if the hash algo is unrecognized
942  *         any other value indicates an error
943  */
944 static int spu_hmac_outer_hash(struct ahash_request *req,
945 			       struct iproc_ctx_s *ctx)
946 {
947 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948 	unsigned int blocksize =
949 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
950 	int rc;
951 
952 	switch (ctx->auth.alg) {
953 	case HASH_ALG_MD5:
954 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
955 			      req->result, ctx->digestsize, NULL, 0);
956 		break;
957 	case HASH_ALG_SHA1:
958 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
959 			      req->result, ctx->digestsize, NULL, 0);
960 		break;
961 	case HASH_ALG_SHA224:
962 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
963 			      req->result, ctx->digestsize, NULL, 0);
964 		break;
965 	case HASH_ALG_SHA256:
966 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
967 			      req->result, ctx->digestsize, NULL, 0);
968 		break;
969 	case HASH_ALG_SHA384:
970 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
971 			      req->result, ctx->digestsize, NULL, 0);
972 		break;
973 	case HASH_ALG_SHA512:
974 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
975 			      req->result, ctx->digestsize, NULL, 0);
976 		break;
977 	default:
978 		pr_err("%s() Error : unknown hmac type\n", __func__);
979 		rc = -EINVAL;
980 	}
981 	return rc;
982 }
983 
984 /**
985  * ahash_req_done() - Process a hash result from the SPU hardware.
986  * @rctx: Crypto request context
987  *
988  * Return: 0 if successful
989  *         < 0 if an error
990  */
991 static int ahash_req_done(struct iproc_reqctx_s *rctx)
992 {
993 	struct spu_hw *spu = &iproc_priv.spu;
994 	struct crypto_async_request *areq = rctx->parent;
995 	struct ahash_request *req = ahash_request_cast(areq);
996 	struct iproc_ctx_s *ctx = rctx->ctx;
997 	int err;
998 
999 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1000 
1001 	if (spu->spu_type == SPU_TYPE_SPUM) {
1002 		/* byte swap the output from the UPDT function to network byte
1003 		 * order
1004 		 */
1005 		if (ctx->auth.alg == HASH_ALG_MD5) {
1006 			__swab32s((u32 *)req->result);
1007 			__swab32s(((u32 *)req->result) + 1);
1008 			__swab32s(((u32 *)req->result) + 2);
1009 			__swab32s(((u32 *)req->result) + 3);
1010 			__swab32s(((u32 *)req->result) + 4);
1011 		}
1012 	}
1013 
1014 	flow_dump("  digest ", req->result, ctx->digestsize);
1015 
1016 	/* if this an HMAC then do the outer hash */
1017 	if (rctx->is_sw_hmac) {
1018 		err = spu_hmac_outer_hash(req, ctx);
1019 		if (err < 0)
1020 			return err;
1021 		flow_dump("  hmac: ", req->result, ctx->digestsize);
1022 	}
1023 
1024 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1025 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1026 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1027 	} else {
1028 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1029 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * handle_ahash_resp() - Process a SPU response message for a hash request.
1037  * Checks if the entire crypto API request has been processed, and if so,
1038  * invokes post processing on the result.
1039  * @rctx: Crypto request context
1040  */
1041 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1042 {
1043 	struct iproc_ctx_s *ctx = rctx->ctx;
1044 #ifdef DEBUG
1045 	struct crypto_async_request *areq = rctx->parent;
1046 	struct ahash_request *req = ahash_request_cast(areq);
1047 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1048 	unsigned int blocksize =
1049 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1050 #endif
1051 	/*
1052 	 * Save hash to use as input to next op if incremental. Might be copying
1053 	 * too much, but that's easier than figuring out actual digest size here
1054 	 */
1055 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1056 
1057 	flow_log("%s() blocksize:%u digestsize:%u\n",
1058 		 __func__, blocksize, ctx->digestsize);
1059 
1060 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1061 
1062 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1063 		ahash_req_done(rctx);
1064 }
1065 
1066 /**
1067  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1068  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1069  * message headers and the response data.
1070  * @mssg:	mailbox message containing the receive sg
1071  * @rctx:	crypto request context
1072  * @rx_frag_num: number of scatterlist elements required to hold the
1073  *		SPU response message
1074  * @assoc_len:	Length of associated data included in the crypto request
1075  * @ret_iv_len: Length of IV returned in response
1076  * @resp_len:	Number of bytes of response data expected to be written to
1077  *              dst buffer from crypto API
1078  * @digestsize: Length of hash digest, in bytes
1079  * @stat_pad_len: Number of bytes required to pad the STAT field to
1080  *		a 4-byte boundary
1081  *
1082  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1083  * when the request completes, whether the request is handled successfully or
1084  * there is an error.
1085  *
1086  * Returns:
1087  *   0 if successful
1088  *   < 0 if an error
1089  */
1090 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1091 				 struct aead_request *req,
1092 				 struct iproc_reqctx_s *rctx,
1093 				 u8 rx_frag_num,
1094 				 unsigned int assoc_len,
1095 				 u32 ret_iv_len, unsigned int resp_len,
1096 				 unsigned int digestsize, u32 stat_pad_len)
1097 {
1098 	struct spu_hw *spu = &iproc_priv.spu;
1099 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1100 	struct iproc_ctx_s *ctx = rctx->ctx;
1101 	u32 datalen;		/* Number of bytes of response data expected */
1102 	u32 assoc_buf_len;
1103 	u8 data_padlen = 0;
1104 
1105 	if (ctx->is_rfc4543) {
1106 		/* RFC4543: only pad after data, not after AAD */
1107 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 							  assoc_len + resp_len);
1109 		assoc_buf_len = assoc_len;
1110 	} else {
1111 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1112 							  resp_len);
1113 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1114 						assoc_len, ret_iv_len,
1115 						rctx->is_encrypt);
1116 	}
1117 
1118 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1119 		/* ICV (after data) must be in the next 32-bit word for CCM */
1120 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1121 							 resp_len +
1122 							 data_padlen);
1123 
1124 	if (data_padlen)
1125 		/* have to catch gcm pad in separate buffer */
1126 		rx_frag_num++;
1127 
1128 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1129 				rctx->gfp);
1130 	if (!mssg->spu.dst)
1131 		return -ENOMEM;
1132 
1133 	sg = mssg->spu.dst;
1134 	sg_init_table(sg, rx_frag_num);
1135 
1136 	/* Space for SPU message header */
1137 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1138 
1139 	if (assoc_buf_len) {
1140 		/*
1141 		 * Don't write directly to req->dst, because SPU may pad the
1142 		 * assoc data in the response
1143 		 */
1144 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1145 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1146 	}
1147 
1148 	if (resp_len) {
1149 		/*
1150 		 * Copy in each dst sg entry from request, up to chunksize.
1151 		 * dst sg catches just the data. digest caught in separate buf.
1152 		 */
1153 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1154 					 rctx->dst_nents, resp_len);
1155 		if (datalen < (resp_len)) {
1156 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1157 			       __func__, resp_len, datalen);
1158 			return -EFAULT;
1159 		}
1160 	}
1161 
1162 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1163 	if (data_padlen) {
1164 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1165 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1166 	}
1167 
1168 	/* Always catch ICV in separate buffer */
1169 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1170 
1171 	flow_log("stat_pad_len %u\n", stat_pad_len);
1172 	if (stat_pad_len) {
1173 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1174 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1175 	}
1176 
1177 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1178 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1185  * SPU request message for an AEAD request. Includes SPU message headers and the
1186  * request data.
1187  * @mssg:	mailbox message containing the transmit sg
1188  * @rctx:	crypto request context
1189  * @tx_frag_num: number of scatterlist elements required to construct the
1190  *		SPU request message
1191  * @spu_hdr_len: length of SPU message header in bytes
1192  * @assoc:	crypto API associated data scatterlist
1193  * @assoc_len:	length of associated data
1194  * @assoc_nents: number of scatterlist entries containing assoc data
1195  * @aead_iv_len: length of AEAD IV, if included
1196  * @chunksize:	Number of bytes of request data
1197  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1198  * @pad_len:	Number of pad bytes
1199  * @incl_icv:	If true, write separate ICV buffer after data and
1200  *              any padding
1201  *
1202  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1203  * when the request completes, whether the request is handled successfully or
1204  * there is an error.
1205  *
1206  * Return:
1207  *   0 if successful
1208  *   < 0 if an error
1209  */
1210 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1211 				 struct iproc_reqctx_s *rctx,
1212 				 u8 tx_frag_num,
1213 				 u32 spu_hdr_len,
1214 				 struct scatterlist *assoc,
1215 				 unsigned int assoc_len,
1216 				 int assoc_nents,
1217 				 unsigned int aead_iv_len,
1218 				 unsigned int chunksize,
1219 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1220 {
1221 	struct spu_hw *spu = &iproc_priv.spu;
1222 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1223 	struct scatterlist *assoc_sg = assoc;
1224 	struct iproc_ctx_s *ctx = rctx->ctx;
1225 	u32 datalen;		/* Number of bytes of data to write */
1226 	u32 written;		/* Number of bytes of data written */
1227 	u32 assoc_offset = 0;
1228 	u32 stat_len;
1229 
1230 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1231 				rctx->gfp);
1232 	if (!mssg->spu.src)
1233 		return -ENOMEM;
1234 
1235 	sg = mssg->spu.src;
1236 	sg_init_table(sg, tx_frag_num);
1237 
1238 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1239 		   BCM_HDR_LEN + spu_hdr_len);
1240 
1241 	if (assoc_len) {
1242 		/* Copy in each associated data sg entry from request */
1243 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1244 					 assoc_nents, assoc_len);
1245 		if (written < assoc_len) {
1246 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1247 			       __func__);
1248 			return -EFAULT;
1249 		}
1250 	}
1251 
1252 	if (aead_iv_len)
1253 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1254 
1255 	if (aad_pad_len) {
1256 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1257 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1258 	}
1259 
1260 	datalen = chunksize;
1261 	if ((chunksize > ctx->digestsize) && incl_icv)
1262 		datalen -= ctx->digestsize;
1263 	if (datalen) {
1264 		/* For aead, a single msg should consume the entire src sg */
1265 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1266 					 rctx->src_nents, datalen);
1267 		if (written < datalen) {
1268 			pr_err("%s(): failed to copy src sg to mbox msg",
1269 			       __func__);
1270 			return -EFAULT;
1271 		}
1272 	}
1273 
1274 	if (pad_len) {
1275 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1276 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1277 	}
1278 
1279 	if (incl_icv)
1280 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1281 
1282 	stat_len = spu->spu_tx_status_len();
1283 	if (stat_len) {
1284 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1285 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1286 	}
1287 	return 0;
1288 }
1289 
1290 /**
1291  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1292  * current AEAD request.
1293  * @rctx:  Crypto request context
1294  *
1295  * Unlike other operation types, we assume the length of the request fits in
1296  * a single SPU request message. aead_enqueue() makes sure this is true.
1297  * Comments for other op types regarding threads applies here as well.
1298  *
1299  * Unlike incremental hash ops, where the spu returns the entire hash for
1300  * truncated algs like sha-224, the SPU returns just the truncated hash in
1301  * response to aead requests. So digestsize is always ctx->digestsize here.
1302  *
1303  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1304  *			 returned asynchronously
1305  *         Any other value indicates an error
1306  */
1307 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1308 {
1309 	struct spu_hw *spu = &iproc_priv.spu;
1310 	struct crypto_async_request *areq = rctx->parent;
1311 	struct aead_request *req = container_of(areq,
1312 						struct aead_request, base);
1313 	struct iproc_ctx_s *ctx = rctx->ctx;
1314 	int err;
1315 	unsigned int chunksize;
1316 	unsigned int resp_len;
1317 	u32 spu_hdr_len;
1318 	u32 db_size;
1319 	u32 stat_pad_len;
1320 	u32 pad_len;
1321 	struct brcm_message *mssg;	/* mailbox message */
1322 	struct spu_request_opts req_opts;
1323 	struct spu_cipher_parms cipher_parms;
1324 	struct spu_hash_parms hash_parms;
1325 	struct spu_aead_parms aead_parms;
1326 	int assoc_nents = 0;
1327 	bool incl_icv = false;
1328 	unsigned int digestsize = ctx->digestsize;
1329 
1330 	/* number of entries in src and dst sg. Always includes SPU msg header.
1331 	 */
1332 	u8 rx_frag_num = 2;	/* and STATUS */
1333 	u8 tx_frag_num = 1;
1334 
1335 	/* doing the whole thing at once */
1336 	chunksize = rctx->total_todo;
1337 
1338 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1339 
1340 	memset(&req_opts, 0, sizeof(req_opts));
1341 	memset(&hash_parms, 0, sizeof(hash_parms));
1342 	memset(&aead_parms, 0, sizeof(aead_parms));
1343 
1344 	req_opts.is_inbound = !(rctx->is_encrypt);
1345 	req_opts.auth_first = ctx->auth_first;
1346 	req_opts.is_aead = true;
1347 	req_opts.is_esp = ctx->is_esp;
1348 
1349 	cipher_parms.alg = ctx->cipher.alg;
1350 	cipher_parms.mode = ctx->cipher.mode;
1351 	cipher_parms.type = ctx->cipher_type;
1352 	cipher_parms.key_buf = ctx->enckey;
1353 	cipher_parms.key_len = ctx->enckeylen;
1354 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1355 	cipher_parms.iv_len = rctx->iv_ctr_len;
1356 
1357 	hash_parms.alg = ctx->auth.alg;
1358 	hash_parms.mode = ctx->auth.mode;
1359 	hash_parms.type = HASH_TYPE_NONE;
1360 	hash_parms.key_buf = (u8 *)ctx->authkey;
1361 	hash_parms.key_len = ctx->authkeylen;
1362 	hash_parms.digestsize = digestsize;
1363 
1364 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1365 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1366 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1367 
1368 	aead_parms.assoc_size = req->assoclen;
1369 	if (ctx->is_esp && !ctx->is_rfc4543) {
1370 		/*
1371 		 * 8-byte IV is included assoc data in request. SPU2
1372 		 * expects AAD to include just SPI and seqno. So
1373 		 * subtract off the IV len.
1374 		 */
1375 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1376 
1377 		if (rctx->is_encrypt) {
1378 			aead_parms.return_iv = true;
1379 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1380 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1381 		}
1382 	} else {
1383 		aead_parms.ret_iv_len = 0;
1384 	}
1385 
1386 	/*
1387 	 * Count number of sg entries from the crypto API request that are to
1388 	 * be included in this mailbox message. For dst sg, don't count space
1389 	 * for digest. Digest gets caught in a separate buffer and copied back
1390 	 * to dst sg when processing response.
1391 	 */
1392 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1393 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1394 	if (aead_parms.assoc_size)
1395 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1396 					   aead_parms.assoc_size);
1397 
1398 	mssg = &rctx->mb_mssg;
1399 
1400 	rctx->total_sent = chunksize;
1401 	rctx->src_sent = chunksize;
1402 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1403 				    aead_parms.assoc_size,
1404 				    aead_parms.ret_iv_len,
1405 				    rctx->is_encrypt))
1406 		rx_frag_num++;
1407 
1408 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1409 						rctx->iv_ctr_len);
1410 
1411 	if (ctx->auth.alg == HASH_ALG_AES)
1412 		hash_parms.type = (enum hash_type)ctx->cipher_type;
1413 
1414 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1415 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1416 						 aead_parms.assoc_size);
1417 
1418 	/* General case data padding (CCM decrypt special case below) */
1419 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1420 							   chunksize);
1421 
1422 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1423 		/*
1424 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1425 		 * 128-bit aligned
1426 		 */
1427 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1428 					 ctx->cipher.mode,
1429 					 aead_parms.assoc_size + 2);
1430 
1431 		/*
1432 		 * And when decrypting CCM, need to pad without including
1433 		 * size of ICV which is tacked on to end of chunk
1434 		 */
1435 		if (!rctx->is_encrypt)
1436 			aead_parms.data_pad_len =
1437 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1438 							chunksize - digestsize);
1439 
1440 		/* CCM also requires software to rewrite portions of IV: */
1441 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1442 				       chunksize, rctx->is_encrypt,
1443 				       ctx->is_esp);
1444 	}
1445 
1446 	if (ctx->is_rfc4543) {
1447 		/*
1448 		 * RFC4543: data is included in AAD, so don't pad after AAD
1449 		 * and pad data based on both AAD + data size
1450 		 */
1451 		aead_parms.aad_pad_len = 0;
1452 		if (!rctx->is_encrypt)
1453 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 					ctx->cipher.mode,
1455 					aead_parms.assoc_size + chunksize -
1456 					digestsize);
1457 		else
1458 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1459 					ctx->cipher.mode,
1460 					aead_parms.assoc_size + chunksize);
1461 
1462 		req_opts.is_rfc4543 = true;
1463 	}
1464 
1465 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1466 		incl_icv = true;
1467 		tx_frag_num++;
1468 		/* Copy ICV from end of src scatterlist to digest buf */
1469 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1470 				    req->assoclen + rctx->total_sent -
1471 				    digestsize);
1472 	}
1473 
1474 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1475 
1476 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1477 
1478 	/* Prepend SPU header with type 3 BCM header */
1479 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1480 
1481 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1482 					      BCM_HDR_LEN, &req_opts,
1483 					      &cipher_parms, &hash_parms,
1484 					      &aead_parms, chunksize);
1485 
1486 	/* Determine total length of padding. Put all padding in one buffer. */
1487 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1488 				   chunksize, aead_parms.aad_pad_len,
1489 				   aead_parms.data_pad_len, 0);
1490 
1491 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1492 
1493 	if (stat_pad_len)
1494 		rx_frag_num++;
1495 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1496 	if (pad_len) {
1497 		tx_frag_num++;
1498 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1499 				     aead_parms.data_pad_len, 0,
1500 				     ctx->auth.alg, ctx->auth.mode,
1501 				     rctx->total_sent, stat_pad_len);
1502 	}
1503 
1504 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1505 			      spu_hdr_len);
1506 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1507 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1508 	packet_log("BD:\n");
1509 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1510 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1511 
1512 	/*
1513 	 * Build mailbox message containing SPU request msg and rx buffers
1514 	 * to catch response message
1515 	 */
1516 	memset(mssg, 0, sizeof(*mssg));
1517 	mssg->type = BRCM_MESSAGE_SPU;
1518 	mssg->ctx = rctx;	/* Will be returned in response */
1519 
1520 	/* Create rx scatterlist to catch result */
1521 	rx_frag_num += rctx->dst_nents;
1522 	resp_len = chunksize;
1523 
1524 	/*
1525 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1526 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1527 	 * sends entire digest back.
1528 	 */
1529 	rx_frag_num++;
1530 
1531 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1532 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1533 		/*
1534 		 * Input is ciphertxt plus ICV, but ICV not incl
1535 		 * in output.
1536 		 */
1537 		resp_len -= ctx->digestsize;
1538 		if (resp_len == 0)
1539 			/* no rx frags to catch output data */
1540 			rx_frag_num -= rctx->dst_nents;
1541 	}
1542 
1543 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1544 				    aead_parms.assoc_size,
1545 				    aead_parms.ret_iv_len, resp_len, digestsize,
1546 				    stat_pad_len);
1547 	if (err)
1548 		return err;
1549 
1550 	/* Create tx scatterlist containing SPU request message */
1551 	tx_frag_num += rctx->src_nents;
1552 	tx_frag_num += assoc_nents;
1553 	if (aead_parms.aad_pad_len)
1554 		tx_frag_num++;
1555 	if (aead_parms.iv_len)
1556 		tx_frag_num++;
1557 	if (spu->spu_tx_status_len())
1558 		tx_frag_num++;
1559 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1560 				    rctx->assoc, aead_parms.assoc_size,
1561 				    assoc_nents, aead_parms.iv_len, chunksize,
1562 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1563 	if (err)
1564 		return err;
1565 
1566 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1567 	if (unlikely(err < 0))
1568 		return err;
1569 
1570 	return -EINPROGRESS;
1571 }
1572 
1573 /**
1574  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1575  * @rctx:  Crypto request context
1576  */
1577 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1578 {
1579 	struct spu_hw *spu = &iproc_priv.spu;
1580 	struct crypto_async_request *areq = rctx->parent;
1581 	struct aead_request *req = container_of(areq,
1582 						struct aead_request, base);
1583 	struct iproc_ctx_s *ctx = rctx->ctx;
1584 	u32 payload_len;
1585 	unsigned int icv_offset;
1586 	u32 result_len;
1587 
1588 	/* See how much data was returned */
1589 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1590 	flow_log("payload_len %u\n", payload_len);
1591 
1592 	/* only count payload */
1593 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1594 
1595 	if (req->assoclen)
1596 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1597 			    req->assoclen);
1598 
1599 	/*
1600 	 * Copy the ICV back to the destination
1601 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1602 	 * API doesn't expect ICV in dst buffer.
1603 	 */
1604 	result_len = req->cryptlen;
1605 	if (rctx->is_encrypt) {
1606 		icv_offset = req->assoclen + rctx->total_sent;
1607 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1608 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1609 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1610 				      ctx->digestsize, icv_offset);
1611 		result_len += ctx->digestsize;
1612 	}
1613 
1614 	packet_log("response data:  ");
1615 	dump_sg(req->dst, req->assoclen, result_len);
1616 
1617 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1618 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1619 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1620 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1621 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1622 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1623 		else
1624 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1625 	} else {
1626 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1627 	}
1628 }
1629 
1630 /**
1631  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1632  * @rctx:  request context
1633  *
1634  * Mailbox scatterlists are allocated for each chunk. So free them after
1635  * processing each chunk.
1636  */
1637 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1638 {
1639 	/* mailbox message used to tx request */
1640 	struct brcm_message *mssg = &rctx->mb_mssg;
1641 
1642 	kfree(mssg->spu.src);
1643 	kfree(mssg->spu.dst);
1644 	memset(mssg, 0, sizeof(struct brcm_message));
1645 }
1646 
1647 /**
1648  * finish_req() - Used to invoke the complete callback from the requester when
1649  * a request has been handled asynchronously.
1650  * @rctx:  Request context
1651  * @err:   Indicates whether the request was successful or not
1652  *
1653  * Ensures that cleanup has been done for request
1654  */
1655 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1656 {
1657 	struct crypto_async_request *areq = rctx->parent;
1658 
1659 	flow_log("%s() err:%d\n\n", __func__, err);
1660 
1661 	/* No harm done if already called */
1662 	spu_chunk_cleanup(rctx);
1663 
1664 	if (areq)
1665 		areq->complete(areq, err);
1666 }
1667 
1668 /**
1669  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1670  * @cl:		mailbox client structure for SPU driver
1671  * @msg:	mailbox message containing SPU response
1672  */
1673 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1674 {
1675 	struct spu_hw *spu = &iproc_priv.spu;
1676 	struct brcm_message *mssg = msg;
1677 	struct iproc_reqctx_s *rctx;
1678 	int err = 0;
1679 
1680 	rctx = mssg->ctx;
1681 	if (unlikely(!rctx)) {
1682 		/* This is fatal */
1683 		pr_err("%s(): no request context", __func__);
1684 		err = -EFAULT;
1685 		goto cb_finish;
1686 	}
1687 
1688 	/* process the SPU status */
1689 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1690 	if (err != 0) {
1691 		if (err == SPU_INVALID_ICV)
1692 			atomic_inc(&iproc_priv.bad_icv);
1693 		err = -EBADMSG;
1694 		goto cb_finish;
1695 	}
1696 
1697 	/* Process the SPU response message */
1698 	switch (rctx->ctx->alg->type) {
1699 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
1700 		handle_ablkcipher_resp(rctx);
1701 		break;
1702 	case CRYPTO_ALG_TYPE_AHASH:
1703 		handle_ahash_resp(rctx);
1704 		break;
1705 	case CRYPTO_ALG_TYPE_AEAD:
1706 		handle_aead_resp(rctx);
1707 		break;
1708 	default:
1709 		err = -EINVAL;
1710 		goto cb_finish;
1711 	}
1712 
1713 	/*
1714 	 * If this response does not complete the request, then send the next
1715 	 * request chunk.
1716 	 */
1717 	if (rctx->total_sent < rctx->total_todo) {
1718 		/* Deallocate anything specific to previous chunk */
1719 		spu_chunk_cleanup(rctx);
1720 
1721 		switch (rctx->ctx->alg->type) {
1722 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
1723 			err = handle_ablkcipher_req(rctx);
1724 			break;
1725 		case CRYPTO_ALG_TYPE_AHASH:
1726 			err = handle_ahash_req(rctx);
1727 			if (err == -EAGAIN)
1728 				/*
1729 				 * we saved data in hash carry, but tell crypto
1730 				 * API we successfully completed request.
1731 				 */
1732 				err = 0;
1733 			break;
1734 		case CRYPTO_ALG_TYPE_AEAD:
1735 			err = handle_aead_req(rctx);
1736 			break;
1737 		default:
1738 			err = -EINVAL;
1739 		}
1740 
1741 		if (err == -EINPROGRESS)
1742 			/* Successfully submitted request for next chunk */
1743 			return;
1744 	}
1745 
1746 cb_finish:
1747 	finish_req(rctx, err);
1748 }
1749 
1750 /* ==================== Kernel Cryptographic API ==================== */
1751 
1752 /**
1753  * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1754  * @req:	Crypto API request
1755  * @encrypt:	true if encrypting; false if decrypting
1756  *
1757  * Return: -EINPROGRESS if request accepted and result will be returned
1758  *			asynchronously
1759  *	   < 0 if an error
1760  */
1761 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1762 {
1763 	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1764 	struct iproc_ctx_s *ctx =
1765 	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1766 	int err;
1767 
1768 	flow_log("%s() enc:%u\n", __func__, encrypt);
1769 
1770 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1771 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1772 	rctx->parent = &req->base;
1773 	rctx->is_encrypt = encrypt;
1774 	rctx->bd_suppress = false;
1775 	rctx->total_todo = req->nbytes;
1776 	rctx->src_sent = 0;
1777 	rctx->total_sent = 0;
1778 	rctx->total_received = 0;
1779 	rctx->ctx = ctx;
1780 
1781 	/* Initialize current position in src and dst scatterlists */
1782 	rctx->src_sg = req->src;
1783 	rctx->src_nents = 0;
1784 	rctx->src_skip = 0;
1785 	rctx->dst_sg = req->dst;
1786 	rctx->dst_nents = 0;
1787 	rctx->dst_skip = 0;
1788 
1789 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1790 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1791 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1792 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1793 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1794 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1795 		rctx->iv_ctr_len =
1796 		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1797 		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1798 	} else {
1799 		rctx->iv_ctr_len = 0;
1800 	}
1801 
1802 	/* Choose a SPU to process this request */
1803 	rctx->chan_idx = select_channel();
1804 	err = handle_ablkcipher_req(rctx);
1805 	if (err != -EINPROGRESS)
1806 		/* synchronous result */
1807 		spu_chunk_cleanup(rctx);
1808 
1809 	return err;
1810 }
1811 
1812 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1813 		      unsigned int keylen)
1814 {
1815 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1816 	u32 tmp[DES_EXPKEY_WORDS];
1817 
1818 	if (keylen == DES_KEY_SIZE) {
1819 		if (des_ekey(tmp, key) == 0) {
1820 			if (crypto_ablkcipher_get_flags(cipher) &
1821 			    CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1822 				u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1823 
1824 				crypto_ablkcipher_set_flags(cipher, flags);
1825 				return -EINVAL;
1826 			}
1827 		}
1828 
1829 		ctx->cipher_type = CIPHER_TYPE_DES;
1830 	} else {
1831 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1832 		return -EINVAL;
1833 	}
1834 	return 0;
1835 }
1836 
1837 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1838 			   unsigned int keylen)
1839 {
1840 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1841 
1842 	if (keylen == (DES_KEY_SIZE * 3)) {
1843 		const u32 *K = (const u32 *)key;
1844 		u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1845 
1846 		if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1847 		    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1848 			crypto_ablkcipher_set_flags(cipher, flags);
1849 			return -EINVAL;
1850 		}
1851 
1852 		ctx->cipher_type = CIPHER_TYPE_3DES;
1853 	} else {
1854 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1855 		return -EINVAL;
1856 	}
1857 	return 0;
1858 }
1859 
1860 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1861 		      unsigned int keylen)
1862 {
1863 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1864 
1865 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1866 		/* XTS includes two keys of equal length */
1867 		keylen = keylen / 2;
1868 
1869 	switch (keylen) {
1870 	case AES_KEYSIZE_128:
1871 		ctx->cipher_type = CIPHER_TYPE_AES128;
1872 		break;
1873 	case AES_KEYSIZE_192:
1874 		ctx->cipher_type = CIPHER_TYPE_AES192;
1875 		break;
1876 	case AES_KEYSIZE_256:
1877 		ctx->cipher_type = CIPHER_TYPE_AES256;
1878 		break;
1879 	default:
1880 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1881 		return -EINVAL;
1882 	}
1883 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1884 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1885 	return 0;
1886 }
1887 
1888 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1889 		      unsigned int keylen)
1890 {
1891 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1892 	int i;
1893 
1894 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1895 
1896 	ctx->enckey[0] = 0x00;	/* 0x00 */
1897 	ctx->enckey[1] = 0x00;	/* i    */
1898 	ctx->enckey[2] = 0x00;	/* 0x00 */
1899 	ctx->enckey[3] = 0x00;	/* j    */
1900 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1901 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1902 
1903 	ctx->cipher_type = CIPHER_TYPE_INIT;
1904 
1905 	return 0;
1906 }
1907 
1908 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1909 			     unsigned int keylen)
1910 {
1911 	struct spu_hw *spu = &iproc_priv.spu;
1912 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1913 	struct spu_cipher_parms cipher_parms;
1914 	u32 alloc_len = 0;
1915 	int err;
1916 
1917 	flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1918 	flow_dump("  key: ", key, keylen);
1919 
1920 	switch (ctx->cipher.alg) {
1921 	case CIPHER_ALG_DES:
1922 		err = des_setkey(cipher, key, keylen);
1923 		break;
1924 	case CIPHER_ALG_3DES:
1925 		err = threedes_setkey(cipher, key, keylen);
1926 		break;
1927 	case CIPHER_ALG_AES:
1928 		err = aes_setkey(cipher, key, keylen);
1929 		break;
1930 	case CIPHER_ALG_RC4:
1931 		err = rc4_setkey(cipher, key, keylen);
1932 		break;
1933 	default:
1934 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1935 		err = -EINVAL;
1936 	}
1937 	if (err)
1938 		return err;
1939 
1940 	/* RC4 already populated ctx->enkey */
1941 	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1942 		memcpy(ctx->enckey, key, keylen);
1943 		ctx->enckeylen = keylen;
1944 	}
1945 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1946 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1947 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1948 		unsigned int xts_keylen = keylen / 2;
1949 
1950 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1951 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1952 	}
1953 
1954 	if (spu->spu_type == SPU_TYPE_SPUM)
1955 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1956 	else if (spu->spu_type == SPU_TYPE_SPU2)
1957 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1958 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1959 	cipher_parms.iv_buf = NULL;
1960 	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1961 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1962 
1963 	cipher_parms.alg = ctx->cipher.alg;
1964 	cipher_parms.mode = ctx->cipher.mode;
1965 	cipher_parms.type = ctx->cipher_type;
1966 	cipher_parms.key_buf = ctx->enckey;
1967 	cipher_parms.key_len = ctx->enckeylen;
1968 
1969 	/* Prepend SPU request message with BCM header */
1970 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1971 	ctx->spu_req_hdr_len =
1972 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1973 				     &cipher_parms);
1974 
1975 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1976 							  ctx->enckeylen,
1977 							  false);
1978 
1979 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1980 
1981 	return 0;
1982 }
1983 
1984 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1985 {
1986 	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1987 
1988 	return ablkcipher_enqueue(req, true);
1989 }
1990 
1991 static int ablkcipher_decrypt(struct ablkcipher_request *req)
1992 {
1993 	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1994 	return ablkcipher_enqueue(req, false);
1995 }
1996 
1997 static int ahash_enqueue(struct ahash_request *req)
1998 {
1999 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2000 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2001 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2002 	int err = 0;
2003 	const char *alg_name;
2004 
2005 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2006 
2007 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2008 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2009 	rctx->parent = &req->base;
2010 	rctx->ctx = ctx;
2011 	rctx->bd_suppress = true;
2012 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2013 
2014 	/* Initialize position in src scatterlist */
2015 	rctx->src_sg = req->src;
2016 	rctx->src_skip = 0;
2017 	rctx->src_nents = 0;
2018 	rctx->dst_sg = NULL;
2019 	rctx->dst_skip = 0;
2020 	rctx->dst_nents = 0;
2021 
2022 	/* SPU2 hardware does not compute hash of zero length data */
2023 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2024 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2025 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2026 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
2027 			 rctx->is_final ? "" : "non-", alg_name);
2028 		err = do_shash((unsigned char *)alg_name, req->result,
2029 			       NULL, 0, NULL, 0, ctx->authkey,
2030 			       ctx->authkeylen);
2031 		if (err < 0)
2032 			flow_log("Hash request failed with error %d\n", err);
2033 		return err;
2034 	}
2035 	/* Choose a SPU to process this request */
2036 	rctx->chan_idx = select_channel();
2037 
2038 	err = handle_ahash_req(rctx);
2039 	if (err != -EINPROGRESS)
2040 		/* synchronous result */
2041 		spu_chunk_cleanup(rctx);
2042 
2043 	if (err == -EAGAIN)
2044 		/*
2045 		 * we saved data in hash carry, but tell crypto API
2046 		 * we successfully completed request.
2047 		 */
2048 		err = 0;
2049 
2050 	return err;
2051 }
2052 
2053 static int __ahash_init(struct ahash_request *req)
2054 {
2055 	struct spu_hw *spu = &iproc_priv.spu;
2056 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2057 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2058 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2059 
2060 	flow_log("%s()\n", __func__);
2061 
2062 	/* Initialize the context */
2063 	rctx->hash_carry_len = 0;
2064 	rctx->is_final = 0;
2065 
2066 	rctx->total_todo = 0;
2067 	rctx->src_sent = 0;
2068 	rctx->total_sent = 0;
2069 	rctx->total_received = 0;
2070 
2071 	ctx->digestsize = crypto_ahash_digestsize(tfm);
2072 	/* If we add a hash whose digest is larger, catch it here. */
2073 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2074 
2075 	rctx->is_sw_hmac = false;
2076 
2077 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2078 							  true);
2079 
2080 	return 0;
2081 }
2082 
2083 /**
2084  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2085  * @ctx:  Crypto session context
2086  *
2087  * SPU-2 does not support incremental hashing (we'll have to revisit and
2088  * condition based on chip revision or device tree entry if future versions do
2089  * support incremental hash)
2090  *
2091  * SPU-M also doesn't support incremental hashing of AES-XCBC
2092  *
2093  * Return: true if incremental hashing is not supported
2094  *         false otherwise
2095  */
2096 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2097 {
2098 	struct spu_hw *spu = &iproc_priv.spu;
2099 
2100 	if (spu->spu_type == SPU_TYPE_SPU2)
2101 		return true;
2102 
2103 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2104 	    (ctx->auth.mode == HASH_MODE_XCBC))
2105 		return true;
2106 
2107 	/* Otherwise, incremental hashing is supported */
2108 	return false;
2109 }
2110 
2111 static int ahash_init(struct ahash_request *req)
2112 {
2113 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2114 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2115 	const char *alg_name;
2116 	struct crypto_shash *hash;
2117 	int ret;
2118 	gfp_t gfp;
2119 
2120 	if (spu_no_incr_hash(ctx)) {
2121 		/*
2122 		 * If we get an incremental hashing request and it's not
2123 		 * supported by the hardware, we need to handle it in software
2124 		 * by calling synchronous hash functions.
2125 		 */
2126 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2127 		hash = crypto_alloc_shash(alg_name, 0, 0);
2128 		if (IS_ERR(hash)) {
2129 			ret = PTR_ERR(hash);
2130 			goto err;
2131 		}
2132 
2133 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2134 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2135 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2136 				     crypto_shash_descsize(hash), gfp);
2137 		if (!ctx->shash) {
2138 			ret = -ENOMEM;
2139 			goto err_hash;
2140 		}
2141 		ctx->shash->tfm = hash;
2142 		ctx->shash->flags = 0;
2143 
2144 		/* Set the key using data we already have from setkey */
2145 		if (ctx->authkeylen > 0) {
2146 			ret = crypto_shash_setkey(hash, ctx->authkey,
2147 						  ctx->authkeylen);
2148 			if (ret)
2149 				goto err_shash;
2150 		}
2151 
2152 		/* Initialize hash w/ this key and other params */
2153 		ret = crypto_shash_init(ctx->shash);
2154 		if (ret)
2155 			goto err_shash;
2156 	} else {
2157 		/* Otherwise call the internal function which uses SPU hw */
2158 		ret = __ahash_init(req);
2159 	}
2160 
2161 	return ret;
2162 
2163 err_shash:
2164 	kfree(ctx->shash);
2165 err_hash:
2166 	crypto_free_shash(hash);
2167 err:
2168 	return ret;
2169 }
2170 
2171 static int __ahash_update(struct ahash_request *req)
2172 {
2173 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2174 
2175 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2176 
2177 	if (!req->nbytes)
2178 		return 0;
2179 	rctx->total_todo += req->nbytes;
2180 	rctx->src_sent = 0;
2181 
2182 	return ahash_enqueue(req);
2183 }
2184 
2185 static int ahash_update(struct ahash_request *req)
2186 {
2187 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2188 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2189 	u8 *tmpbuf;
2190 	int ret;
2191 	int nents;
2192 	gfp_t gfp;
2193 
2194 	if (spu_no_incr_hash(ctx)) {
2195 		/*
2196 		 * If we get an incremental hashing request and it's not
2197 		 * supported by the hardware, we need to handle it in software
2198 		 * by calling synchronous hash functions.
2199 		 */
2200 		if (req->src)
2201 			nents = sg_nents(req->src);
2202 		else
2203 			return -EINVAL;
2204 
2205 		/* Copy data from req scatterlist to tmp buffer */
2206 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2207 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2208 		tmpbuf = kmalloc(req->nbytes, gfp);
2209 		if (!tmpbuf)
2210 			return -ENOMEM;
2211 
2212 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2213 				req->nbytes) {
2214 			kfree(tmpbuf);
2215 			return -EINVAL;
2216 		}
2217 
2218 		/* Call synchronous update */
2219 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2220 		kfree(tmpbuf);
2221 	} else {
2222 		/* Otherwise call the internal function which uses SPU hw */
2223 		ret = __ahash_update(req);
2224 	}
2225 
2226 	return ret;
2227 }
2228 
2229 static int __ahash_final(struct ahash_request *req)
2230 {
2231 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2232 
2233 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2234 
2235 	rctx->is_final = 1;
2236 
2237 	return ahash_enqueue(req);
2238 }
2239 
2240 static int ahash_final(struct ahash_request *req)
2241 {
2242 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2243 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2244 	int ret;
2245 
2246 	if (spu_no_incr_hash(ctx)) {
2247 		/*
2248 		 * If we get an incremental hashing request and it's not
2249 		 * supported by the hardware, we need to handle it in software
2250 		 * by calling synchronous hash functions.
2251 		 */
2252 		ret = crypto_shash_final(ctx->shash, req->result);
2253 
2254 		/* Done with hash, can deallocate it now */
2255 		crypto_free_shash(ctx->shash->tfm);
2256 		kfree(ctx->shash);
2257 
2258 	} else {
2259 		/* Otherwise call the internal function which uses SPU hw */
2260 		ret = __ahash_final(req);
2261 	}
2262 
2263 	return ret;
2264 }
2265 
2266 static int __ahash_finup(struct ahash_request *req)
2267 {
2268 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2269 
2270 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2271 
2272 	rctx->total_todo += req->nbytes;
2273 	rctx->src_sent = 0;
2274 	rctx->is_final = 1;
2275 
2276 	return ahash_enqueue(req);
2277 }
2278 
2279 static int ahash_finup(struct ahash_request *req)
2280 {
2281 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2282 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2283 	u8 *tmpbuf;
2284 	int ret;
2285 	int nents;
2286 	gfp_t gfp;
2287 
2288 	if (spu_no_incr_hash(ctx)) {
2289 		/*
2290 		 * If we get an incremental hashing request and it's not
2291 		 * supported by the hardware, we need to handle it in software
2292 		 * by calling synchronous hash functions.
2293 		 */
2294 		if (req->src) {
2295 			nents = sg_nents(req->src);
2296 		} else {
2297 			ret = -EINVAL;
2298 			goto ahash_finup_exit;
2299 		}
2300 
2301 		/* Copy data from req scatterlist to tmp buffer */
2302 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2303 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2304 		tmpbuf = kmalloc(req->nbytes, gfp);
2305 		if (!tmpbuf) {
2306 			ret = -ENOMEM;
2307 			goto ahash_finup_exit;
2308 		}
2309 
2310 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2311 				req->nbytes) {
2312 			ret = -EINVAL;
2313 			goto ahash_finup_free;
2314 		}
2315 
2316 		/* Call synchronous update */
2317 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2318 					 req->result);
2319 	} else {
2320 		/* Otherwise call the internal function which uses SPU hw */
2321 		return __ahash_finup(req);
2322 	}
2323 ahash_finup_free:
2324 	kfree(tmpbuf);
2325 
2326 ahash_finup_exit:
2327 	/* Done with hash, can deallocate it now */
2328 	crypto_free_shash(ctx->shash->tfm);
2329 	kfree(ctx->shash);
2330 	return ret;
2331 }
2332 
2333 static int ahash_digest(struct ahash_request *req)
2334 {
2335 	int err = 0;
2336 
2337 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2338 
2339 	/* whole thing at once */
2340 	err = __ahash_init(req);
2341 	if (!err)
2342 		err = __ahash_finup(req);
2343 
2344 	return err;
2345 }
2346 
2347 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2348 			unsigned int keylen)
2349 {
2350 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2351 
2352 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2353 		 __func__, ahash, key, keylen);
2354 	flow_dump("  key: ", key, keylen);
2355 
2356 	if (ctx->auth.alg == HASH_ALG_AES) {
2357 		switch (keylen) {
2358 		case AES_KEYSIZE_128:
2359 			ctx->cipher_type = CIPHER_TYPE_AES128;
2360 			break;
2361 		case AES_KEYSIZE_192:
2362 			ctx->cipher_type = CIPHER_TYPE_AES192;
2363 			break;
2364 		case AES_KEYSIZE_256:
2365 			ctx->cipher_type = CIPHER_TYPE_AES256;
2366 			break;
2367 		default:
2368 			pr_err("%s() Error: Invalid key length\n", __func__);
2369 			return -EINVAL;
2370 		}
2371 	} else {
2372 		pr_err("%s() Error: unknown hash alg\n", __func__);
2373 		return -EINVAL;
2374 	}
2375 	memcpy(ctx->authkey, key, keylen);
2376 	ctx->authkeylen = keylen;
2377 
2378 	return 0;
2379 }
2380 
2381 static int ahash_export(struct ahash_request *req, void *out)
2382 {
2383 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2384 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2385 
2386 	spu_exp->total_todo = rctx->total_todo;
2387 	spu_exp->total_sent = rctx->total_sent;
2388 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2389 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2390 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2391 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2392 
2393 	return 0;
2394 }
2395 
2396 static int ahash_import(struct ahash_request *req, const void *in)
2397 {
2398 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2399 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2400 
2401 	rctx->total_todo = spu_exp->total_todo;
2402 	rctx->total_sent = spu_exp->total_sent;
2403 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2404 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2405 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2406 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2407 
2408 	return 0;
2409 }
2410 
2411 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2412 			     unsigned int keylen)
2413 {
2414 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2415 	unsigned int blocksize =
2416 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2417 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2418 	unsigned int index;
2419 	int rc;
2420 
2421 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2422 		 __func__, ahash, key, keylen, blocksize, digestsize);
2423 	flow_dump("  key: ", key, keylen);
2424 
2425 	if (keylen > blocksize) {
2426 		switch (ctx->auth.alg) {
2427 		case HASH_ALG_MD5:
2428 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2429 				      0, NULL, 0);
2430 			break;
2431 		case HASH_ALG_SHA1:
2432 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2433 				      0, NULL, 0);
2434 			break;
2435 		case HASH_ALG_SHA224:
2436 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2437 				      0, NULL, 0);
2438 			break;
2439 		case HASH_ALG_SHA256:
2440 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2441 				      0, NULL, 0);
2442 			break;
2443 		case HASH_ALG_SHA384:
2444 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2445 				      0, NULL, 0);
2446 			break;
2447 		case HASH_ALG_SHA512:
2448 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2449 				      0, NULL, 0);
2450 			break;
2451 		case HASH_ALG_SHA3_224:
2452 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2453 				      NULL, 0, NULL, 0);
2454 			break;
2455 		case HASH_ALG_SHA3_256:
2456 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2457 				      NULL, 0, NULL, 0);
2458 			break;
2459 		case HASH_ALG_SHA3_384:
2460 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2461 				      NULL, 0, NULL, 0);
2462 			break;
2463 		case HASH_ALG_SHA3_512:
2464 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2465 				      NULL, 0, NULL, 0);
2466 			break;
2467 		default:
2468 			pr_err("%s() Error: unknown hash alg\n", __func__);
2469 			return -EINVAL;
2470 		}
2471 		if (rc < 0) {
2472 			pr_err("%s() Error %d computing shash for %s\n",
2473 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2474 			return rc;
2475 		}
2476 		ctx->authkeylen = digestsize;
2477 
2478 		flow_log("  keylen > digestsize... hashed\n");
2479 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2480 	} else {
2481 		memcpy(ctx->authkey, key, keylen);
2482 		ctx->authkeylen = keylen;
2483 	}
2484 
2485 	/*
2486 	 * Full HMAC operation in SPUM is not verified,
2487 	 * So keeping the generation of IPAD, OPAD and
2488 	 * outer hashing in software.
2489 	 */
2490 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2491 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2492 		memset(ctx->ipad + ctx->authkeylen, 0,
2493 		       blocksize - ctx->authkeylen);
2494 		ctx->authkeylen = 0;
2495 		memcpy(ctx->opad, ctx->ipad, blocksize);
2496 
2497 		for (index = 0; index < blocksize; index++) {
2498 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2499 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2500 		}
2501 
2502 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2503 		flow_dump("  opad: ", ctx->opad, blocksize);
2504 	}
2505 	ctx->digestsize = digestsize;
2506 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2507 
2508 	return 0;
2509 }
2510 
2511 static int ahash_hmac_init(struct ahash_request *req)
2512 {
2513 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2514 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2515 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2516 	unsigned int blocksize =
2517 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2518 
2519 	flow_log("ahash_hmac_init()\n");
2520 
2521 	/* init the context as a hash */
2522 	ahash_init(req);
2523 
2524 	if (!spu_no_incr_hash(ctx)) {
2525 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2526 		rctx->is_sw_hmac = true;
2527 		ctx->auth.mode = HASH_MODE_HASH;
2528 		/* start with a prepended ipad */
2529 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2530 		rctx->hash_carry_len = blocksize;
2531 		rctx->total_todo += blocksize;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 static int ahash_hmac_update(struct ahash_request *req)
2538 {
2539 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2540 
2541 	if (!req->nbytes)
2542 		return 0;
2543 
2544 	return ahash_update(req);
2545 }
2546 
2547 static int ahash_hmac_final(struct ahash_request *req)
2548 {
2549 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2550 
2551 	return ahash_final(req);
2552 }
2553 
2554 static int ahash_hmac_finup(struct ahash_request *req)
2555 {
2556 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2557 
2558 	return ahash_finup(req);
2559 }
2560 
2561 static int ahash_hmac_digest(struct ahash_request *req)
2562 {
2563 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2564 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2565 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2566 	unsigned int blocksize =
2567 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2568 
2569 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2570 
2571 	/* Perform initialization and then call finup */
2572 	__ahash_init(req);
2573 
2574 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2575 		/*
2576 		 * SPU2 supports full HMAC implementation in the
2577 		 * hardware, need not to generate IPAD, OPAD and
2578 		 * outer hash in software.
2579 		 * Only for hash key len > hash block size, SPU2
2580 		 * expects to perform hashing on the key, shorten
2581 		 * it to digest size and feed it as hash key.
2582 		 */
2583 		rctx->is_sw_hmac = false;
2584 		ctx->auth.mode = HASH_MODE_HMAC;
2585 	} else {
2586 		rctx->is_sw_hmac = true;
2587 		ctx->auth.mode = HASH_MODE_HASH;
2588 		/* start with a prepended ipad */
2589 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2590 		rctx->hash_carry_len = blocksize;
2591 		rctx->total_todo += blocksize;
2592 	}
2593 
2594 	return __ahash_finup(req);
2595 }
2596 
2597 /* aead helpers */
2598 
2599 static int aead_need_fallback(struct aead_request *req)
2600 {
2601 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2602 	struct spu_hw *spu = &iproc_priv.spu;
2603 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2604 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2605 	u32 payload_len;
2606 
2607 	/*
2608 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2609 	 * and AAD are both 0 bytes long. So use fallback in this case.
2610 	 */
2611 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2612 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2613 	    (req->assoclen == 0)) {
2614 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2615 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2616 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2617 			return 1;
2618 		}
2619 	}
2620 
2621 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2622 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2623 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2624 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2625 	    (ctx->digestsize != 16)) {
2626 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2627 			 __func__, ctx->digestsize);
2628 		return 1;
2629 	}
2630 
2631 	/*
2632 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2633 	 * when AAD size is 0
2634 	 */
2635 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2636 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2637 	    (req->assoclen == 0)) {
2638 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2639 			 __func__);
2640 		return 1;
2641 	}
2642 
2643 	payload_len = req->cryptlen;
2644 	if (spu->spu_type == SPU_TYPE_SPUM)
2645 		payload_len += req->assoclen;
2646 
2647 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2648 
2649 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2650 		return 0;
2651 	else
2652 		return payload_len > ctx->max_payload;
2653 }
2654 
2655 static void aead_complete(struct crypto_async_request *areq, int err)
2656 {
2657 	struct aead_request *req =
2658 	    container_of(areq, struct aead_request, base);
2659 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2660 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2661 
2662 	flow_log("%s() err:%d\n", __func__, err);
2663 
2664 	areq->tfm = crypto_aead_tfm(aead);
2665 
2666 	areq->complete = rctx->old_complete;
2667 	areq->data = rctx->old_data;
2668 
2669 	areq->complete(areq, err);
2670 }
2671 
2672 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2673 {
2674 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2675 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2676 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2677 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2678 	int err;
2679 	u32 req_flags;
2680 
2681 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2682 
2683 	if (ctx->fallback_cipher) {
2684 		/* Store the cipher tfm and then use the fallback tfm */
2685 		rctx->old_tfm = tfm;
2686 		aead_request_set_tfm(req, ctx->fallback_cipher);
2687 		/*
2688 		 * Save the callback and chain ourselves in, so we can restore
2689 		 * the tfm
2690 		 */
2691 		rctx->old_complete = req->base.complete;
2692 		rctx->old_data = req->base.data;
2693 		req_flags = aead_request_flags(req);
2694 		aead_request_set_callback(req, req_flags, aead_complete, req);
2695 		err = is_encrypt ? crypto_aead_encrypt(req) :
2696 		    crypto_aead_decrypt(req);
2697 
2698 		if (err == 0) {
2699 			/*
2700 			 * fallback was synchronous (did not return
2701 			 * -EINPROGRESS). So restore request state here.
2702 			 */
2703 			aead_request_set_callback(req, req_flags,
2704 						  rctx->old_complete, req);
2705 			req->base.data = rctx->old_data;
2706 			aead_request_set_tfm(req, aead);
2707 			flow_log("%s() fallback completed successfully\n\n",
2708 				 __func__);
2709 		}
2710 	} else {
2711 		err = -EINVAL;
2712 	}
2713 
2714 	return err;
2715 }
2716 
2717 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2718 {
2719 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2720 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2721 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2722 	int err;
2723 
2724 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2725 
2726 	if (req->assoclen > MAX_ASSOC_SIZE) {
2727 		pr_err
2728 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2729 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2730 		return -EINVAL;
2731 	}
2732 
2733 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2734 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2735 	rctx->parent = &req->base;
2736 	rctx->is_encrypt = is_encrypt;
2737 	rctx->bd_suppress = false;
2738 	rctx->total_todo = req->cryptlen;
2739 	rctx->src_sent = 0;
2740 	rctx->total_sent = 0;
2741 	rctx->total_received = 0;
2742 	rctx->is_sw_hmac = false;
2743 	rctx->ctx = ctx;
2744 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2745 
2746 	/* assoc data is at start of src sg */
2747 	rctx->assoc = req->src;
2748 
2749 	/*
2750 	 * Init current position in src scatterlist to be after assoc data.
2751 	 * src_skip set to buffer offset where data begins. (Assoc data could
2752 	 * end in the middle of a buffer.)
2753 	 */
2754 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2755 			     &rctx->src_skip) < 0) {
2756 		pr_err("%s() Error: Unable to find start of src data\n",
2757 		       __func__);
2758 		return -EINVAL;
2759 	}
2760 
2761 	rctx->src_nents = 0;
2762 	rctx->dst_nents = 0;
2763 	if (req->dst == req->src) {
2764 		rctx->dst_sg = rctx->src_sg;
2765 		rctx->dst_skip = rctx->src_skip;
2766 	} else {
2767 		/*
2768 		 * Expect req->dst to have room for assoc data followed by
2769 		 * output data and ICV, if encrypt. So initialize dst_sg
2770 		 * to point beyond assoc len offset.
2771 		 */
2772 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2773 				     &rctx->dst_skip) < 0) {
2774 			pr_err("%s() Error: Unable to find start of dst data\n",
2775 			       __func__);
2776 			return -EINVAL;
2777 		}
2778 	}
2779 
2780 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2781 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2782 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2783 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2784 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2785 		rctx->iv_ctr_len =
2786 			ctx->salt_len +
2787 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2788 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2789 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2790 	} else {
2791 		rctx->iv_ctr_len = 0;
2792 	}
2793 
2794 	rctx->hash_carry_len = 0;
2795 
2796 	flow_log("  src sg: %p\n", req->src);
2797 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2798 		 rctx->src_sg, rctx->src_skip);
2799 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2800 	flow_log("  dst sg: %p\n", req->dst);
2801 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2802 		 rctx->dst_sg, rctx->dst_skip);
2803 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2804 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2805 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2806 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2807 
2808 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2809 		flow_log("  max_payload infinite");
2810 	else
2811 		flow_log("  max_payload: %u\n", ctx->max_payload);
2812 
2813 	if (unlikely(aead_need_fallback(req)))
2814 		return aead_do_fallback(req, is_encrypt);
2815 
2816 	/*
2817 	 * Do memory allocations for request after fallback check, because if we
2818 	 * do fallback, we won't call finish_req() to dealloc.
2819 	 */
2820 	if (rctx->iv_ctr_len) {
2821 		if (ctx->salt_len)
2822 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2823 			       ctx->salt, ctx->salt_len);
2824 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2825 		       req->iv,
2826 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2827 	}
2828 
2829 	rctx->chan_idx = select_channel();
2830 	err = handle_aead_req(rctx);
2831 	if (err != -EINPROGRESS)
2832 		/* synchronous result */
2833 		spu_chunk_cleanup(rctx);
2834 
2835 	return err;
2836 }
2837 
2838 static int aead_authenc_setkey(struct crypto_aead *cipher,
2839 			       const u8 *key, unsigned int keylen)
2840 {
2841 	struct spu_hw *spu = &iproc_priv.spu;
2842 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2843 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2844 	struct crypto_authenc_keys keys;
2845 	int ret;
2846 
2847 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2848 		 keylen);
2849 	flow_dump("  key: ", key, keylen);
2850 
2851 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2852 	if (ret)
2853 		goto badkey;
2854 
2855 	if (keys.enckeylen > MAX_KEY_SIZE ||
2856 	    keys.authkeylen > MAX_KEY_SIZE)
2857 		goto badkey;
2858 
2859 	ctx->enckeylen = keys.enckeylen;
2860 	ctx->authkeylen = keys.authkeylen;
2861 
2862 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2863 	/* May end up padding auth key. So make sure it's zeroed. */
2864 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2865 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2866 
2867 	switch (ctx->alg->cipher_info.alg) {
2868 	case CIPHER_ALG_DES:
2869 		if (ctx->enckeylen == DES_KEY_SIZE) {
2870 			u32 tmp[DES_EXPKEY_WORDS];
2871 			u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2872 
2873 			if (des_ekey(tmp, keys.enckey) == 0) {
2874 				if (crypto_aead_get_flags(cipher) &
2875 				    CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
2876 					crypto_aead_set_flags(cipher, flags);
2877 					return -EINVAL;
2878 				}
2879 			}
2880 
2881 			ctx->cipher_type = CIPHER_TYPE_DES;
2882 		} else {
2883 			goto badkey;
2884 		}
2885 		break;
2886 	case CIPHER_ALG_3DES:
2887 		if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2888 			const u32 *K = (const u32 *)keys.enckey;
2889 			u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2890 
2891 			if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2892 			    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2893 				crypto_aead_set_flags(cipher, flags);
2894 				return -EINVAL;
2895 			}
2896 
2897 			ctx->cipher_type = CIPHER_TYPE_3DES;
2898 		} else {
2899 			crypto_aead_set_flags(cipher,
2900 					      CRYPTO_TFM_RES_BAD_KEY_LEN);
2901 			return -EINVAL;
2902 		}
2903 		break;
2904 	case CIPHER_ALG_AES:
2905 		switch (ctx->enckeylen) {
2906 		case AES_KEYSIZE_128:
2907 			ctx->cipher_type = CIPHER_TYPE_AES128;
2908 			break;
2909 		case AES_KEYSIZE_192:
2910 			ctx->cipher_type = CIPHER_TYPE_AES192;
2911 			break;
2912 		case AES_KEYSIZE_256:
2913 			ctx->cipher_type = CIPHER_TYPE_AES256;
2914 			break;
2915 		default:
2916 			goto badkey;
2917 		}
2918 		break;
2919 	case CIPHER_ALG_RC4:
2920 		ctx->cipher_type = CIPHER_TYPE_INIT;
2921 		break;
2922 	default:
2923 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2924 		return -EINVAL;
2925 	}
2926 
2927 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2928 		 ctx->authkeylen);
2929 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2930 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2931 
2932 	/* setkey the fallback just in case we needto use it */
2933 	if (ctx->fallback_cipher) {
2934 		flow_log("  running fallback setkey()\n");
2935 
2936 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2937 		ctx->fallback_cipher->base.crt_flags |=
2938 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2939 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2940 		if (ret) {
2941 			flow_log("  fallback setkey() returned:%d\n", ret);
2942 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2943 			tfm->crt_flags |=
2944 			    (ctx->fallback_cipher->base.crt_flags &
2945 			     CRYPTO_TFM_RES_MASK);
2946 		}
2947 	}
2948 
2949 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2950 							  ctx->enckeylen,
2951 							  false);
2952 
2953 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2954 
2955 	return ret;
2956 
2957 badkey:
2958 	ctx->enckeylen = 0;
2959 	ctx->authkeylen = 0;
2960 	ctx->digestsize = 0;
2961 
2962 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2963 	return -EINVAL;
2964 }
2965 
2966 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2967 			       const u8 *key, unsigned int keylen)
2968 {
2969 	struct spu_hw *spu = &iproc_priv.spu;
2970 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2971 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2972 
2973 	int ret = 0;
2974 
2975 	flow_log("%s() keylen:%u\n", __func__, keylen);
2976 	flow_dump("  key: ", key, keylen);
2977 
2978 	if (!ctx->is_esp)
2979 		ctx->digestsize = keylen;
2980 
2981 	ctx->enckeylen = keylen;
2982 	ctx->authkeylen = 0;
2983 	memcpy(ctx->enckey, key, ctx->enckeylen);
2984 
2985 	switch (ctx->enckeylen) {
2986 	case AES_KEYSIZE_128:
2987 		ctx->cipher_type = CIPHER_TYPE_AES128;
2988 		break;
2989 	case AES_KEYSIZE_192:
2990 		ctx->cipher_type = CIPHER_TYPE_AES192;
2991 		break;
2992 	case AES_KEYSIZE_256:
2993 		ctx->cipher_type = CIPHER_TYPE_AES256;
2994 		break;
2995 	default:
2996 		goto badkey;
2997 	}
2998 
2999 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3000 		 ctx->authkeylen);
3001 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
3002 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
3003 
3004 	/* setkey the fallback just in case we need to use it */
3005 	if (ctx->fallback_cipher) {
3006 		flow_log("  running fallback setkey()\n");
3007 
3008 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3009 		ctx->fallback_cipher->base.crt_flags |=
3010 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3011 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3012 					 keylen + ctx->salt_len);
3013 		if (ret) {
3014 			flow_log("  fallback setkey() returned:%d\n", ret);
3015 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3016 			tfm->crt_flags |=
3017 			    (ctx->fallback_cipher->base.crt_flags &
3018 			     CRYPTO_TFM_RES_MASK);
3019 		}
3020 	}
3021 
3022 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3023 							  ctx->enckeylen,
3024 							  false);
3025 
3026 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3027 
3028 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3029 		 ctx->authkeylen);
3030 
3031 	return ret;
3032 
3033 badkey:
3034 	ctx->enckeylen = 0;
3035 	ctx->authkeylen = 0;
3036 	ctx->digestsize = 0;
3037 
3038 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3039 	return -EINVAL;
3040 }
3041 
3042 /**
3043  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3044  * @cipher: AEAD structure
3045  * @key:    Key followed by 4 bytes of salt
3046  * @keylen: Length of key plus salt, in bytes
3047  *
3048  * Extracts salt from key and stores it to be prepended to IV on each request.
3049  * Digest is always 16 bytes
3050  *
3051  * Return: Value from generic gcm setkey.
3052  */
3053 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3054 			       const u8 *key, unsigned int keylen)
3055 {
3056 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3057 
3058 	flow_log("%s\n", __func__);
3059 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3060 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3061 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3062 	keylen -= GCM_ESP_SALT_SIZE;
3063 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3064 	ctx->is_esp = true;
3065 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3066 
3067 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3068 }
3069 
3070 /**
3071  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3072  * cipher: AEAD structure
3073  * key:    Key followed by 4 bytes of salt
3074  * keylen: Length of key plus salt, in bytes
3075  *
3076  * Extracts salt from key and stores it to be prepended to IV on each request.
3077  * Digest is always 16 bytes
3078  *
3079  * Return: Value from generic gcm setkey.
3080  */
3081 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3082 				  const u8 *key, unsigned int keylen)
3083 {
3084 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3085 
3086 	flow_log("%s\n", __func__);
3087 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3088 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3089 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3090 	keylen -= GCM_ESP_SALT_SIZE;
3091 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3092 	ctx->is_esp = true;
3093 	ctx->is_rfc4543 = true;
3094 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3095 
3096 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3097 }
3098 
3099 /**
3100  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3101  * @cipher: AEAD structure
3102  * @key:    Key followed by 4 bytes of salt
3103  * @keylen: Length of key plus salt, in bytes
3104  *
3105  * Extracts salt from key and stores it to be prepended to IV on each request.
3106  * Digest is always 16 bytes
3107  *
3108  * Return: Value from generic ccm setkey.
3109  */
3110 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3111 			       const u8 *key, unsigned int keylen)
3112 {
3113 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3114 
3115 	flow_log("%s\n", __func__);
3116 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3117 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3118 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3119 	keylen -= CCM_ESP_SALT_SIZE;
3120 	ctx->is_esp = true;
3121 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3122 
3123 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3124 }
3125 
3126 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3127 {
3128 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3129 	int ret = 0;
3130 
3131 	flow_log("%s() authkeylen:%u authsize:%u\n",
3132 		 __func__, ctx->authkeylen, authsize);
3133 
3134 	ctx->digestsize = authsize;
3135 
3136 	/* setkey the fallback just in case we needto use it */
3137 	if (ctx->fallback_cipher) {
3138 		flow_log("  running fallback setauth()\n");
3139 
3140 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3141 		if (ret)
3142 			flow_log("  fallback setauth() returned:%d\n", ret);
3143 	}
3144 
3145 	return ret;
3146 }
3147 
3148 static int aead_encrypt(struct aead_request *req)
3149 {
3150 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3151 		 req->cryptlen);
3152 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3153 	flow_log("  assoc_len:%u\n", req->assoclen);
3154 
3155 	return aead_enqueue(req, true);
3156 }
3157 
3158 static int aead_decrypt(struct aead_request *req)
3159 {
3160 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3161 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3162 	flow_log("  assoc_len:%u\n", req->assoclen);
3163 
3164 	return aead_enqueue(req, false);
3165 }
3166 
3167 /* ==================== Supported Cipher Algorithms ==================== */
3168 
3169 static struct iproc_alg_s driver_algs[] = {
3170 	{
3171 	 .type = CRYPTO_ALG_TYPE_AEAD,
3172 	 .alg.aead = {
3173 		 .base = {
3174 			.cra_name = "gcm(aes)",
3175 			.cra_driver_name = "gcm-aes-iproc",
3176 			.cra_blocksize = AES_BLOCK_SIZE,
3177 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3178 		 },
3179 		 .setkey = aead_gcm_ccm_setkey,
3180 		 .ivsize = GCM_AES_IV_SIZE,
3181 		.maxauthsize = AES_BLOCK_SIZE,
3182 	 },
3183 	 .cipher_info = {
3184 			 .alg = CIPHER_ALG_AES,
3185 			 .mode = CIPHER_MODE_GCM,
3186 			 },
3187 	 .auth_info = {
3188 		       .alg = HASH_ALG_AES,
3189 		       .mode = HASH_MODE_GCM,
3190 		       },
3191 	 .auth_first = 0,
3192 	 },
3193 	{
3194 	 .type = CRYPTO_ALG_TYPE_AEAD,
3195 	 .alg.aead = {
3196 		 .base = {
3197 			.cra_name = "ccm(aes)",
3198 			.cra_driver_name = "ccm-aes-iproc",
3199 			.cra_blocksize = AES_BLOCK_SIZE,
3200 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3201 		 },
3202 		 .setkey = aead_gcm_ccm_setkey,
3203 		 .ivsize = CCM_AES_IV_SIZE,
3204 		.maxauthsize = AES_BLOCK_SIZE,
3205 	 },
3206 	 .cipher_info = {
3207 			 .alg = CIPHER_ALG_AES,
3208 			 .mode = CIPHER_MODE_CCM,
3209 			 },
3210 	 .auth_info = {
3211 		       .alg = HASH_ALG_AES,
3212 		       .mode = HASH_MODE_CCM,
3213 		       },
3214 	 .auth_first = 0,
3215 	 },
3216 	{
3217 	 .type = CRYPTO_ALG_TYPE_AEAD,
3218 	 .alg.aead = {
3219 		 .base = {
3220 			.cra_name = "rfc4106(gcm(aes))",
3221 			.cra_driver_name = "gcm-aes-esp-iproc",
3222 			.cra_blocksize = AES_BLOCK_SIZE,
3223 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3224 		 },
3225 		 .setkey = aead_gcm_esp_setkey,
3226 		 .ivsize = GCM_RFC4106_IV_SIZE,
3227 		 .maxauthsize = AES_BLOCK_SIZE,
3228 	 },
3229 	 .cipher_info = {
3230 			 .alg = CIPHER_ALG_AES,
3231 			 .mode = CIPHER_MODE_GCM,
3232 			 },
3233 	 .auth_info = {
3234 		       .alg = HASH_ALG_AES,
3235 		       .mode = HASH_MODE_GCM,
3236 		       },
3237 	 .auth_first = 0,
3238 	 },
3239 	{
3240 	 .type = CRYPTO_ALG_TYPE_AEAD,
3241 	 .alg.aead = {
3242 		 .base = {
3243 			.cra_name = "rfc4309(ccm(aes))",
3244 			.cra_driver_name = "ccm-aes-esp-iproc",
3245 			.cra_blocksize = AES_BLOCK_SIZE,
3246 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3247 		 },
3248 		 .setkey = aead_ccm_esp_setkey,
3249 		 .ivsize = CCM_AES_IV_SIZE,
3250 		 .maxauthsize = AES_BLOCK_SIZE,
3251 	 },
3252 	 .cipher_info = {
3253 			 .alg = CIPHER_ALG_AES,
3254 			 .mode = CIPHER_MODE_CCM,
3255 			 },
3256 	 .auth_info = {
3257 		       .alg = HASH_ALG_AES,
3258 		       .mode = HASH_MODE_CCM,
3259 		       },
3260 	 .auth_first = 0,
3261 	 },
3262 	{
3263 	 .type = CRYPTO_ALG_TYPE_AEAD,
3264 	 .alg.aead = {
3265 		 .base = {
3266 			.cra_name = "rfc4543(gcm(aes))",
3267 			.cra_driver_name = "gmac-aes-esp-iproc",
3268 			.cra_blocksize = AES_BLOCK_SIZE,
3269 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3270 		 },
3271 		 .setkey = rfc4543_gcm_esp_setkey,
3272 		 .ivsize = GCM_RFC4106_IV_SIZE,
3273 		 .maxauthsize = AES_BLOCK_SIZE,
3274 	 },
3275 	 .cipher_info = {
3276 			 .alg = CIPHER_ALG_AES,
3277 			 .mode = CIPHER_MODE_GCM,
3278 			 },
3279 	 .auth_info = {
3280 		       .alg = HASH_ALG_AES,
3281 		       .mode = HASH_MODE_GCM,
3282 		       },
3283 	 .auth_first = 0,
3284 	 },
3285 	{
3286 	 .type = CRYPTO_ALG_TYPE_AEAD,
3287 	 .alg.aead = {
3288 		 .base = {
3289 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3290 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3291 			.cra_blocksize = AES_BLOCK_SIZE,
3292 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3293 		 },
3294 		 .setkey = aead_authenc_setkey,
3295 		.ivsize = AES_BLOCK_SIZE,
3296 		.maxauthsize = MD5_DIGEST_SIZE,
3297 	 },
3298 	 .cipher_info = {
3299 			 .alg = CIPHER_ALG_AES,
3300 			 .mode = CIPHER_MODE_CBC,
3301 			 },
3302 	 .auth_info = {
3303 		       .alg = HASH_ALG_MD5,
3304 		       .mode = HASH_MODE_HMAC,
3305 		       },
3306 	 .auth_first = 0,
3307 	 },
3308 	{
3309 	 .type = CRYPTO_ALG_TYPE_AEAD,
3310 	 .alg.aead = {
3311 		 .base = {
3312 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3313 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3314 			.cra_blocksize = AES_BLOCK_SIZE,
3315 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3316 		 },
3317 		 .setkey = aead_authenc_setkey,
3318 		 .ivsize = AES_BLOCK_SIZE,
3319 		 .maxauthsize = SHA1_DIGEST_SIZE,
3320 	 },
3321 	 .cipher_info = {
3322 			 .alg = CIPHER_ALG_AES,
3323 			 .mode = CIPHER_MODE_CBC,
3324 			 },
3325 	 .auth_info = {
3326 		       .alg = HASH_ALG_SHA1,
3327 		       .mode = HASH_MODE_HMAC,
3328 		       },
3329 	 .auth_first = 0,
3330 	 },
3331 	{
3332 	 .type = CRYPTO_ALG_TYPE_AEAD,
3333 	 .alg.aead = {
3334 		 .base = {
3335 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3336 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3337 			.cra_blocksize = AES_BLOCK_SIZE,
3338 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3339 		 },
3340 		 .setkey = aead_authenc_setkey,
3341 		 .ivsize = AES_BLOCK_SIZE,
3342 		 .maxauthsize = SHA256_DIGEST_SIZE,
3343 	 },
3344 	 .cipher_info = {
3345 			 .alg = CIPHER_ALG_AES,
3346 			 .mode = CIPHER_MODE_CBC,
3347 			 },
3348 	 .auth_info = {
3349 		       .alg = HASH_ALG_SHA256,
3350 		       .mode = HASH_MODE_HMAC,
3351 		       },
3352 	 .auth_first = 0,
3353 	 },
3354 	{
3355 	 .type = CRYPTO_ALG_TYPE_AEAD,
3356 	 .alg.aead = {
3357 		 .base = {
3358 			.cra_name = "authenc(hmac(md5),cbc(des))",
3359 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3360 			.cra_blocksize = DES_BLOCK_SIZE,
3361 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3362 		 },
3363 		 .setkey = aead_authenc_setkey,
3364 		 .ivsize = DES_BLOCK_SIZE,
3365 		 .maxauthsize = MD5_DIGEST_SIZE,
3366 	 },
3367 	 .cipher_info = {
3368 			 .alg = CIPHER_ALG_DES,
3369 			 .mode = CIPHER_MODE_CBC,
3370 			 },
3371 	 .auth_info = {
3372 		       .alg = HASH_ALG_MD5,
3373 		       .mode = HASH_MODE_HMAC,
3374 		       },
3375 	 .auth_first = 0,
3376 	 },
3377 	{
3378 	 .type = CRYPTO_ALG_TYPE_AEAD,
3379 	 .alg.aead = {
3380 		 .base = {
3381 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3382 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3383 			.cra_blocksize = DES_BLOCK_SIZE,
3384 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3385 		 },
3386 		 .setkey = aead_authenc_setkey,
3387 		 .ivsize = DES_BLOCK_SIZE,
3388 		 .maxauthsize = SHA1_DIGEST_SIZE,
3389 	 },
3390 	 .cipher_info = {
3391 			 .alg = CIPHER_ALG_DES,
3392 			 .mode = CIPHER_MODE_CBC,
3393 			 },
3394 	 .auth_info = {
3395 		       .alg = HASH_ALG_SHA1,
3396 		       .mode = HASH_MODE_HMAC,
3397 		       },
3398 	 .auth_first = 0,
3399 	 },
3400 	{
3401 	 .type = CRYPTO_ALG_TYPE_AEAD,
3402 	 .alg.aead = {
3403 		 .base = {
3404 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3405 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3406 			.cra_blocksize = DES_BLOCK_SIZE,
3407 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3408 		 },
3409 		 .setkey = aead_authenc_setkey,
3410 		 .ivsize = DES_BLOCK_SIZE,
3411 		 .maxauthsize = SHA224_DIGEST_SIZE,
3412 	 },
3413 	 .cipher_info = {
3414 			 .alg = CIPHER_ALG_DES,
3415 			 .mode = CIPHER_MODE_CBC,
3416 			 },
3417 	 .auth_info = {
3418 		       .alg = HASH_ALG_SHA224,
3419 		       .mode = HASH_MODE_HMAC,
3420 		       },
3421 	 .auth_first = 0,
3422 	 },
3423 	{
3424 	 .type = CRYPTO_ALG_TYPE_AEAD,
3425 	 .alg.aead = {
3426 		 .base = {
3427 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3428 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3429 			.cra_blocksize = DES_BLOCK_SIZE,
3430 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3431 		 },
3432 		 .setkey = aead_authenc_setkey,
3433 		 .ivsize = DES_BLOCK_SIZE,
3434 		 .maxauthsize = SHA256_DIGEST_SIZE,
3435 	 },
3436 	 .cipher_info = {
3437 			 .alg = CIPHER_ALG_DES,
3438 			 .mode = CIPHER_MODE_CBC,
3439 			 },
3440 	 .auth_info = {
3441 		       .alg = HASH_ALG_SHA256,
3442 		       .mode = HASH_MODE_HMAC,
3443 		       },
3444 	 .auth_first = 0,
3445 	 },
3446 	{
3447 	 .type = CRYPTO_ALG_TYPE_AEAD,
3448 	 .alg.aead = {
3449 		 .base = {
3450 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3451 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3452 			.cra_blocksize = DES_BLOCK_SIZE,
3453 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3454 		 },
3455 		 .setkey = aead_authenc_setkey,
3456 		 .ivsize = DES_BLOCK_SIZE,
3457 		 .maxauthsize = SHA384_DIGEST_SIZE,
3458 	 },
3459 	 .cipher_info = {
3460 			 .alg = CIPHER_ALG_DES,
3461 			 .mode = CIPHER_MODE_CBC,
3462 			 },
3463 	 .auth_info = {
3464 		       .alg = HASH_ALG_SHA384,
3465 		       .mode = HASH_MODE_HMAC,
3466 		       },
3467 	 .auth_first = 0,
3468 	 },
3469 	{
3470 	 .type = CRYPTO_ALG_TYPE_AEAD,
3471 	 .alg.aead = {
3472 		 .base = {
3473 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3474 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3475 			.cra_blocksize = DES_BLOCK_SIZE,
3476 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3477 		 },
3478 		 .setkey = aead_authenc_setkey,
3479 		 .ivsize = DES_BLOCK_SIZE,
3480 		 .maxauthsize = SHA512_DIGEST_SIZE,
3481 	 },
3482 	 .cipher_info = {
3483 			 .alg = CIPHER_ALG_DES,
3484 			 .mode = CIPHER_MODE_CBC,
3485 			 },
3486 	 .auth_info = {
3487 		       .alg = HASH_ALG_SHA512,
3488 		       .mode = HASH_MODE_HMAC,
3489 		       },
3490 	 .auth_first = 0,
3491 	 },
3492 	{
3493 	 .type = CRYPTO_ALG_TYPE_AEAD,
3494 	 .alg.aead = {
3495 		 .base = {
3496 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3497 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3498 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3499 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3500 		 },
3501 		 .setkey = aead_authenc_setkey,
3502 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3503 		 .maxauthsize = MD5_DIGEST_SIZE,
3504 	 },
3505 	 .cipher_info = {
3506 			 .alg = CIPHER_ALG_3DES,
3507 			 .mode = CIPHER_MODE_CBC,
3508 			 },
3509 	 .auth_info = {
3510 		       .alg = HASH_ALG_MD5,
3511 		       .mode = HASH_MODE_HMAC,
3512 		       },
3513 	 .auth_first = 0,
3514 	 },
3515 	{
3516 	 .type = CRYPTO_ALG_TYPE_AEAD,
3517 	 .alg.aead = {
3518 		 .base = {
3519 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3520 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3521 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3522 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3523 		 },
3524 		 .setkey = aead_authenc_setkey,
3525 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3526 		 .maxauthsize = SHA1_DIGEST_SIZE,
3527 	 },
3528 	 .cipher_info = {
3529 			 .alg = CIPHER_ALG_3DES,
3530 			 .mode = CIPHER_MODE_CBC,
3531 			 },
3532 	 .auth_info = {
3533 		       .alg = HASH_ALG_SHA1,
3534 		       .mode = HASH_MODE_HMAC,
3535 		       },
3536 	 .auth_first = 0,
3537 	 },
3538 	{
3539 	 .type = CRYPTO_ALG_TYPE_AEAD,
3540 	 .alg.aead = {
3541 		 .base = {
3542 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3543 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3544 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3545 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3546 		 },
3547 		 .setkey = aead_authenc_setkey,
3548 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3549 		 .maxauthsize = SHA224_DIGEST_SIZE,
3550 	 },
3551 	 .cipher_info = {
3552 			 .alg = CIPHER_ALG_3DES,
3553 			 .mode = CIPHER_MODE_CBC,
3554 			 },
3555 	 .auth_info = {
3556 		       .alg = HASH_ALG_SHA224,
3557 		       .mode = HASH_MODE_HMAC,
3558 		       },
3559 	 .auth_first = 0,
3560 	 },
3561 	{
3562 	 .type = CRYPTO_ALG_TYPE_AEAD,
3563 	 .alg.aead = {
3564 		 .base = {
3565 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3566 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3567 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3568 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3569 		 },
3570 		 .setkey = aead_authenc_setkey,
3571 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3572 		 .maxauthsize = SHA256_DIGEST_SIZE,
3573 	 },
3574 	 .cipher_info = {
3575 			 .alg = CIPHER_ALG_3DES,
3576 			 .mode = CIPHER_MODE_CBC,
3577 			 },
3578 	 .auth_info = {
3579 		       .alg = HASH_ALG_SHA256,
3580 		       .mode = HASH_MODE_HMAC,
3581 		       },
3582 	 .auth_first = 0,
3583 	 },
3584 	{
3585 	 .type = CRYPTO_ALG_TYPE_AEAD,
3586 	 .alg.aead = {
3587 		 .base = {
3588 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3589 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3590 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3591 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3592 		 },
3593 		 .setkey = aead_authenc_setkey,
3594 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3595 		 .maxauthsize = SHA384_DIGEST_SIZE,
3596 	 },
3597 	 .cipher_info = {
3598 			 .alg = CIPHER_ALG_3DES,
3599 			 .mode = CIPHER_MODE_CBC,
3600 			 },
3601 	 .auth_info = {
3602 		       .alg = HASH_ALG_SHA384,
3603 		       .mode = HASH_MODE_HMAC,
3604 		       },
3605 	 .auth_first = 0,
3606 	 },
3607 	{
3608 	 .type = CRYPTO_ALG_TYPE_AEAD,
3609 	 .alg.aead = {
3610 		 .base = {
3611 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3612 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3613 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3614 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3615 		 },
3616 		 .setkey = aead_authenc_setkey,
3617 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3618 		 .maxauthsize = SHA512_DIGEST_SIZE,
3619 	 },
3620 	 .cipher_info = {
3621 			 .alg = CIPHER_ALG_3DES,
3622 			 .mode = CIPHER_MODE_CBC,
3623 			 },
3624 	 .auth_info = {
3625 		       .alg = HASH_ALG_SHA512,
3626 		       .mode = HASH_MODE_HMAC,
3627 		       },
3628 	 .auth_first = 0,
3629 	 },
3630 
3631 /* ABLKCIPHER algorithms. */
3632 	{
3633 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3634 	 .alg.crypto = {
3635 			.cra_name = "ecb(arc4)",
3636 			.cra_driver_name = "ecb-arc4-iproc",
3637 			.cra_blocksize = ARC4_BLOCK_SIZE,
3638 			.cra_ablkcipher = {
3639 					   .min_keysize = ARC4_MIN_KEY_SIZE,
3640 					   .max_keysize = ARC4_MAX_KEY_SIZE,
3641 					   .ivsize = 0,
3642 					}
3643 			},
3644 	 .cipher_info = {
3645 			 .alg = CIPHER_ALG_RC4,
3646 			 .mode = CIPHER_MODE_NONE,
3647 			 },
3648 	 .auth_info = {
3649 		       .alg = HASH_ALG_NONE,
3650 		       .mode = HASH_MODE_NONE,
3651 		       },
3652 	 },
3653 	{
3654 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3655 	 .alg.crypto = {
3656 			.cra_name = "ofb(des)",
3657 			.cra_driver_name = "ofb-des-iproc",
3658 			.cra_blocksize = DES_BLOCK_SIZE,
3659 			.cra_ablkcipher = {
3660 					   .min_keysize = DES_KEY_SIZE,
3661 					   .max_keysize = DES_KEY_SIZE,
3662 					   .ivsize = DES_BLOCK_SIZE,
3663 					}
3664 			},
3665 	 .cipher_info = {
3666 			 .alg = CIPHER_ALG_DES,
3667 			 .mode = CIPHER_MODE_OFB,
3668 			 },
3669 	 .auth_info = {
3670 		       .alg = HASH_ALG_NONE,
3671 		       .mode = HASH_MODE_NONE,
3672 		       },
3673 	 },
3674 	{
3675 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3676 	 .alg.crypto = {
3677 			.cra_name = "cbc(des)",
3678 			.cra_driver_name = "cbc-des-iproc",
3679 			.cra_blocksize = DES_BLOCK_SIZE,
3680 			.cra_ablkcipher = {
3681 					   .min_keysize = DES_KEY_SIZE,
3682 					   .max_keysize = DES_KEY_SIZE,
3683 					   .ivsize = DES_BLOCK_SIZE,
3684 					}
3685 			},
3686 	 .cipher_info = {
3687 			 .alg = CIPHER_ALG_DES,
3688 			 .mode = CIPHER_MODE_CBC,
3689 			 },
3690 	 .auth_info = {
3691 		       .alg = HASH_ALG_NONE,
3692 		       .mode = HASH_MODE_NONE,
3693 		       },
3694 	 },
3695 	{
3696 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3697 	 .alg.crypto = {
3698 			.cra_name = "ecb(des)",
3699 			.cra_driver_name = "ecb-des-iproc",
3700 			.cra_blocksize = DES_BLOCK_SIZE,
3701 			.cra_ablkcipher = {
3702 					   .min_keysize = DES_KEY_SIZE,
3703 					   .max_keysize = DES_KEY_SIZE,
3704 					   .ivsize = 0,
3705 					}
3706 			},
3707 	 .cipher_info = {
3708 			 .alg = CIPHER_ALG_DES,
3709 			 .mode = CIPHER_MODE_ECB,
3710 			 },
3711 	 .auth_info = {
3712 		       .alg = HASH_ALG_NONE,
3713 		       .mode = HASH_MODE_NONE,
3714 		       },
3715 	 },
3716 	{
3717 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3718 	 .alg.crypto = {
3719 			.cra_name = "ofb(des3_ede)",
3720 			.cra_driver_name = "ofb-des3-iproc",
3721 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3722 			.cra_ablkcipher = {
3723 					   .min_keysize = DES3_EDE_KEY_SIZE,
3724 					   .max_keysize = DES3_EDE_KEY_SIZE,
3725 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3726 					}
3727 			},
3728 	 .cipher_info = {
3729 			 .alg = CIPHER_ALG_3DES,
3730 			 .mode = CIPHER_MODE_OFB,
3731 			 },
3732 	 .auth_info = {
3733 		       .alg = HASH_ALG_NONE,
3734 		       .mode = HASH_MODE_NONE,
3735 		       },
3736 	 },
3737 	{
3738 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3739 	 .alg.crypto = {
3740 			.cra_name = "cbc(des3_ede)",
3741 			.cra_driver_name = "cbc-des3-iproc",
3742 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3743 			.cra_ablkcipher = {
3744 					   .min_keysize = DES3_EDE_KEY_SIZE,
3745 					   .max_keysize = DES3_EDE_KEY_SIZE,
3746 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3747 					}
3748 			},
3749 	 .cipher_info = {
3750 			 .alg = CIPHER_ALG_3DES,
3751 			 .mode = CIPHER_MODE_CBC,
3752 			 },
3753 	 .auth_info = {
3754 		       .alg = HASH_ALG_NONE,
3755 		       .mode = HASH_MODE_NONE,
3756 		       },
3757 	 },
3758 	{
3759 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3760 	 .alg.crypto = {
3761 			.cra_name = "ecb(des3_ede)",
3762 			.cra_driver_name = "ecb-des3-iproc",
3763 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3764 			.cra_ablkcipher = {
3765 					   .min_keysize = DES3_EDE_KEY_SIZE,
3766 					   .max_keysize = DES3_EDE_KEY_SIZE,
3767 					   .ivsize = 0,
3768 					}
3769 			},
3770 	 .cipher_info = {
3771 			 .alg = CIPHER_ALG_3DES,
3772 			 .mode = CIPHER_MODE_ECB,
3773 			 },
3774 	 .auth_info = {
3775 		       .alg = HASH_ALG_NONE,
3776 		       .mode = HASH_MODE_NONE,
3777 		       },
3778 	 },
3779 	{
3780 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3781 	 .alg.crypto = {
3782 			.cra_name = "ofb(aes)",
3783 			.cra_driver_name = "ofb-aes-iproc",
3784 			.cra_blocksize = AES_BLOCK_SIZE,
3785 			.cra_ablkcipher = {
3786 					   .min_keysize = AES_MIN_KEY_SIZE,
3787 					   .max_keysize = AES_MAX_KEY_SIZE,
3788 					   .ivsize = AES_BLOCK_SIZE,
3789 					}
3790 			},
3791 	 .cipher_info = {
3792 			 .alg = CIPHER_ALG_AES,
3793 			 .mode = CIPHER_MODE_OFB,
3794 			 },
3795 	 .auth_info = {
3796 		       .alg = HASH_ALG_NONE,
3797 		       .mode = HASH_MODE_NONE,
3798 		       },
3799 	 },
3800 	{
3801 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3802 	 .alg.crypto = {
3803 			.cra_name = "cbc(aes)",
3804 			.cra_driver_name = "cbc-aes-iproc",
3805 			.cra_blocksize = AES_BLOCK_SIZE,
3806 			.cra_ablkcipher = {
3807 					   .min_keysize = AES_MIN_KEY_SIZE,
3808 					   .max_keysize = AES_MAX_KEY_SIZE,
3809 					   .ivsize = AES_BLOCK_SIZE,
3810 					}
3811 			},
3812 	 .cipher_info = {
3813 			 .alg = CIPHER_ALG_AES,
3814 			 .mode = CIPHER_MODE_CBC,
3815 			 },
3816 	 .auth_info = {
3817 		       .alg = HASH_ALG_NONE,
3818 		       .mode = HASH_MODE_NONE,
3819 		       },
3820 	 },
3821 	{
3822 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3823 	 .alg.crypto = {
3824 			.cra_name = "ecb(aes)",
3825 			.cra_driver_name = "ecb-aes-iproc",
3826 			.cra_blocksize = AES_BLOCK_SIZE,
3827 			.cra_ablkcipher = {
3828 					   .min_keysize = AES_MIN_KEY_SIZE,
3829 					   .max_keysize = AES_MAX_KEY_SIZE,
3830 					   .ivsize = 0,
3831 					}
3832 			},
3833 	 .cipher_info = {
3834 			 .alg = CIPHER_ALG_AES,
3835 			 .mode = CIPHER_MODE_ECB,
3836 			 },
3837 	 .auth_info = {
3838 		       .alg = HASH_ALG_NONE,
3839 		       .mode = HASH_MODE_NONE,
3840 		       },
3841 	 },
3842 	{
3843 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3844 	 .alg.crypto = {
3845 			.cra_name = "ctr(aes)",
3846 			.cra_driver_name = "ctr-aes-iproc",
3847 			.cra_blocksize = AES_BLOCK_SIZE,
3848 			.cra_ablkcipher = {
3849 					   .min_keysize = AES_MIN_KEY_SIZE,
3850 					   .max_keysize = AES_MAX_KEY_SIZE,
3851 					   .ivsize = AES_BLOCK_SIZE,
3852 					}
3853 			},
3854 	 .cipher_info = {
3855 			 .alg = CIPHER_ALG_AES,
3856 			 .mode = CIPHER_MODE_CTR,
3857 			 },
3858 	 .auth_info = {
3859 		       .alg = HASH_ALG_NONE,
3860 		       .mode = HASH_MODE_NONE,
3861 		       },
3862 	 },
3863 {
3864 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3865 	 .alg.crypto = {
3866 			.cra_name = "xts(aes)",
3867 			.cra_driver_name = "xts-aes-iproc",
3868 			.cra_blocksize = AES_BLOCK_SIZE,
3869 			.cra_ablkcipher = {
3870 				.min_keysize = 2 * AES_MIN_KEY_SIZE,
3871 				.max_keysize = 2 * AES_MAX_KEY_SIZE,
3872 				.ivsize = AES_BLOCK_SIZE,
3873 				}
3874 			},
3875 	 .cipher_info = {
3876 			 .alg = CIPHER_ALG_AES,
3877 			 .mode = CIPHER_MODE_XTS,
3878 			 },
3879 	 .auth_info = {
3880 		       .alg = HASH_ALG_NONE,
3881 		       .mode = HASH_MODE_NONE,
3882 		       },
3883 	 },
3884 
3885 /* AHASH algorithms. */
3886 	{
3887 	 .type = CRYPTO_ALG_TYPE_AHASH,
3888 	 .alg.hash = {
3889 		      .halg.digestsize = MD5_DIGEST_SIZE,
3890 		      .halg.base = {
3891 				    .cra_name = "md5",
3892 				    .cra_driver_name = "md5-iproc",
3893 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3894 				    .cra_flags = CRYPTO_ALG_ASYNC,
3895 				}
3896 		      },
3897 	 .cipher_info = {
3898 			 .alg = CIPHER_ALG_NONE,
3899 			 .mode = CIPHER_MODE_NONE,
3900 			 },
3901 	 .auth_info = {
3902 		       .alg = HASH_ALG_MD5,
3903 		       .mode = HASH_MODE_HASH,
3904 		       },
3905 	 },
3906 	{
3907 	 .type = CRYPTO_ALG_TYPE_AHASH,
3908 	 .alg.hash = {
3909 		      .halg.digestsize = MD5_DIGEST_SIZE,
3910 		      .halg.base = {
3911 				    .cra_name = "hmac(md5)",
3912 				    .cra_driver_name = "hmac-md5-iproc",
3913 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3914 				}
3915 		      },
3916 	 .cipher_info = {
3917 			 .alg = CIPHER_ALG_NONE,
3918 			 .mode = CIPHER_MODE_NONE,
3919 			 },
3920 	 .auth_info = {
3921 		       .alg = HASH_ALG_MD5,
3922 		       .mode = HASH_MODE_HMAC,
3923 		       },
3924 	 },
3925 	{.type = CRYPTO_ALG_TYPE_AHASH,
3926 	 .alg.hash = {
3927 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3928 		      .halg.base = {
3929 				    .cra_name = "sha1",
3930 				    .cra_driver_name = "sha1-iproc",
3931 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3932 				}
3933 		      },
3934 	 .cipher_info = {
3935 			 .alg = CIPHER_ALG_NONE,
3936 			 .mode = CIPHER_MODE_NONE,
3937 			 },
3938 	 .auth_info = {
3939 		       .alg = HASH_ALG_SHA1,
3940 		       .mode = HASH_MODE_HASH,
3941 		       },
3942 	 },
3943 	{.type = CRYPTO_ALG_TYPE_AHASH,
3944 	 .alg.hash = {
3945 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3946 		      .halg.base = {
3947 				    .cra_name = "hmac(sha1)",
3948 				    .cra_driver_name = "hmac-sha1-iproc",
3949 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3950 				}
3951 		      },
3952 	 .cipher_info = {
3953 			 .alg = CIPHER_ALG_NONE,
3954 			 .mode = CIPHER_MODE_NONE,
3955 			 },
3956 	 .auth_info = {
3957 		       .alg = HASH_ALG_SHA1,
3958 		       .mode = HASH_MODE_HMAC,
3959 		       },
3960 	 },
3961 	{.type = CRYPTO_ALG_TYPE_AHASH,
3962 	 .alg.hash = {
3963 			.halg.digestsize = SHA224_DIGEST_SIZE,
3964 			.halg.base = {
3965 				    .cra_name = "sha224",
3966 				    .cra_driver_name = "sha224-iproc",
3967 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3968 			}
3969 		      },
3970 	 .cipher_info = {
3971 			 .alg = CIPHER_ALG_NONE,
3972 			 .mode = CIPHER_MODE_NONE,
3973 			 },
3974 	 .auth_info = {
3975 		       .alg = HASH_ALG_SHA224,
3976 		       .mode = HASH_MODE_HASH,
3977 		       },
3978 	 },
3979 	{.type = CRYPTO_ALG_TYPE_AHASH,
3980 	 .alg.hash = {
3981 		      .halg.digestsize = SHA224_DIGEST_SIZE,
3982 		      .halg.base = {
3983 				    .cra_name = "hmac(sha224)",
3984 				    .cra_driver_name = "hmac-sha224-iproc",
3985 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3986 				}
3987 		      },
3988 	 .cipher_info = {
3989 			 .alg = CIPHER_ALG_NONE,
3990 			 .mode = CIPHER_MODE_NONE,
3991 			 },
3992 	 .auth_info = {
3993 		       .alg = HASH_ALG_SHA224,
3994 		       .mode = HASH_MODE_HMAC,
3995 		       },
3996 	 },
3997 	{.type = CRYPTO_ALG_TYPE_AHASH,
3998 	 .alg.hash = {
3999 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4000 		      .halg.base = {
4001 				    .cra_name = "sha256",
4002 				    .cra_driver_name = "sha256-iproc",
4003 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4004 				}
4005 		      },
4006 	 .cipher_info = {
4007 			 .alg = CIPHER_ALG_NONE,
4008 			 .mode = CIPHER_MODE_NONE,
4009 			 },
4010 	 .auth_info = {
4011 		       .alg = HASH_ALG_SHA256,
4012 		       .mode = HASH_MODE_HASH,
4013 		       },
4014 	 },
4015 	{.type = CRYPTO_ALG_TYPE_AHASH,
4016 	 .alg.hash = {
4017 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4018 		      .halg.base = {
4019 				    .cra_name = "hmac(sha256)",
4020 				    .cra_driver_name = "hmac-sha256-iproc",
4021 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4022 				}
4023 		      },
4024 	 .cipher_info = {
4025 			 .alg = CIPHER_ALG_NONE,
4026 			 .mode = CIPHER_MODE_NONE,
4027 			 },
4028 	 .auth_info = {
4029 		       .alg = HASH_ALG_SHA256,
4030 		       .mode = HASH_MODE_HMAC,
4031 		       },
4032 	 },
4033 	{
4034 	.type = CRYPTO_ALG_TYPE_AHASH,
4035 	 .alg.hash = {
4036 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4037 		      .halg.base = {
4038 				    .cra_name = "sha384",
4039 				    .cra_driver_name = "sha384-iproc",
4040 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4041 				}
4042 		      },
4043 	 .cipher_info = {
4044 			 .alg = CIPHER_ALG_NONE,
4045 			 .mode = CIPHER_MODE_NONE,
4046 			 },
4047 	 .auth_info = {
4048 		       .alg = HASH_ALG_SHA384,
4049 		       .mode = HASH_MODE_HASH,
4050 		       },
4051 	 },
4052 	{
4053 	 .type = CRYPTO_ALG_TYPE_AHASH,
4054 	 .alg.hash = {
4055 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4056 		      .halg.base = {
4057 				    .cra_name = "hmac(sha384)",
4058 				    .cra_driver_name = "hmac-sha384-iproc",
4059 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4060 				}
4061 		      },
4062 	 .cipher_info = {
4063 			 .alg = CIPHER_ALG_NONE,
4064 			 .mode = CIPHER_MODE_NONE,
4065 			 },
4066 	 .auth_info = {
4067 		       .alg = HASH_ALG_SHA384,
4068 		       .mode = HASH_MODE_HMAC,
4069 		       },
4070 	 },
4071 	{
4072 	 .type = CRYPTO_ALG_TYPE_AHASH,
4073 	 .alg.hash = {
4074 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4075 		      .halg.base = {
4076 				    .cra_name = "sha512",
4077 				    .cra_driver_name = "sha512-iproc",
4078 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4079 				}
4080 		      },
4081 	 .cipher_info = {
4082 			 .alg = CIPHER_ALG_NONE,
4083 			 .mode = CIPHER_MODE_NONE,
4084 			 },
4085 	 .auth_info = {
4086 		       .alg = HASH_ALG_SHA512,
4087 		       .mode = HASH_MODE_HASH,
4088 		       },
4089 	 },
4090 	{
4091 	 .type = CRYPTO_ALG_TYPE_AHASH,
4092 	 .alg.hash = {
4093 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4094 		      .halg.base = {
4095 				    .cra_name = "hmac(sha512)",
4096 				    .cra_driver_name = "hmac-sha512-iproc",
4097 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4098 				}
4099 		      },
4100 	 .cipher_info = {
4101 			 .alg = CIPHER_ALG_NONE,
4102 			 .mode = CIPHER_MODE_NONE,
4103 			 },
4104 	 .auth_info = {
4105 		       .alg = HASH_ALG_SHA512,
4106 		       .mode = HASH_MODE_HMAC,
4107 		       },
4108 	 },
4109 	{
4110 	 .type = CRYPTO_ALG_TYPE_AHASH,
4111 	 .alg.hash = {
4112 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4113 		      .halg.base = {
4114 				    .cra_name = "sha3-224",
4115 				    .cra_driver_name = "sha3-224-iproc",
4116 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4117 				}
4118 		      },
4119 	 .cipher_info = {
4120 			 .alg = CIPHER_ALG_NONE,
4121 			 .mode = CIPHER_MODE_NONE,
4122 			 },
4123 	 .auth_info = {
4124 		       .alg = HASH_ALG_SHA3_224,
4125 		       .mode = HASH_MODE_HASH,
4126 		       },
4127 	 },
4128 	{
4129 	 .type = CRYPTO_ALG_TYPE_AHASH,
4130 	 .alg.hash = {
4131 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4132 		      .halg.base = {
4133 				    .cra_name = "hmac(sha3-224)",
4134 				    .cra_driver_name = "hmac-sha3-224-iproc",
4135 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4136 				}
4137 		      },
4138 	 .cipher_info = {
4139 			 .alg = CIPHER_ALG_NONE,
4140 			 .mode = CIPHER_MODE_NONE,
4141 			 },
4142 	 .auth_info = {
4143 		       .alg = HASH_ALG_SHA3_224,
4144 		       .mode = HASH_MODE_HMAC
4145 		       },
4146 	 },
4147 	{
4148 	 .type = CRYPTO_ALG_TYPE_AHASH,
4149 	 .alg.hash = {
4150 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4151 		      .halg.base = {
4152 				    .cra_name = "sha3-256",
4153 				    .cra_driver_name = "sha3-256-iproc",
4154 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4155 				}
4156 		      },
4157 	 .cipher_info = {
4158 			 .alg = CIPHER_ALG_NONE,
4159 			 .mode = CIPHER_MODE_NONE,
4160 			 },
4161 	 .auth_info = {
4162 		       .alg = HASH_ALG_SHA3_256,
4163 		       .mode = HASH_MODE_HASH,
4164 		       },
4165 	 },
4166 	{
4167 	 .type = CRYPTO_ALG_TYPE_AHASH,
4168 	 .alg.hash = {
4169 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4170 		      .halg.base = {
4171 				    .cra_name = "hmac(sha3-256)",
4172 				    .cra_driver_name = "hmac-sha3-256-iproc",
4173 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4174 				}
4175 		      },
4176 	 .cipher_info = {
4177 			 .alg = CIPHER_ALG_NONE,
4178 			 .mode = CIPHER_MODE_NONE,
4179 			 },
4180 	 .auth_info = {
4181 		       .alg = HASH_ALG_SHA3_256,
4182 		       .mode = HASH_MODE_HMAC,
4183 		       },
4184 	 },
4185 	{
4186 	 .type = CRYPTO_ALG_TYPE_AHASH,
4187 	 .alg.hash = {
4188 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4189 		      .halg.base = {
4190 				    .cra_name = "sha3-384",
4191 				    .cra_driver_name = "sha3-384-iproc",
4192 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4193 				}
4194 		      },
4195 	 .cipher_info = {
4196 			 .alg = CIPHER_ALG_NONE,
4197 			 .mode = CIPHER_MODE_NONE,
4198 			 },
4199 	 .auth_info = {
4200 		       .alg = HASH_ALG_SHA3_384,
4201 		       .mode = HASH_MODE_HASH,
4202 		       },
4203 	 },
4204 	{
4205 	 .type = CRYPTO_ALG_TYPE_AHASH,
4206 	 .alg.hash = {
4207 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4208 		      .halg.base = {
4209 				    .cra_name = "hmac(sha3-384)",
4210 				    .cra_driver_name = "hmac-sha3-384-iproc",
4211 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4212 				}
4213 		      },
4214 	 .cipher_info = {
4215 			 .alg = CIPHER_ALG_NONE,
4216 			 .mode = CIPHER_MODE_NONE,
4217 			 },
4218 	 .auth_info = {
4219 		       .alg = HASH_ALG_SHA3_384,
4220 		       .mode = HASH_MODE_HMAC,
4221 		       },
4222 	 },
4223 	{
4224 	 .type = CRYPTO_ALG_TYPE_AHASH,
4225 	 .alg.hash = {
4226 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4227 		      .halg.base = {
4228 				    .cra_name = "sha3-512",
4229 				    .cra_driver_name = "sha3-512-iproc",
4230 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4231 				}
4232 		      },
4233 	 .cipher_info = {
4234 			 .alg = CIPHER_ALG_NONE,
4235 			 .mode = CIPHER_MODE_NONE,
4236 			 },
4237 	 .auth_info = {
4238 		       .alg = HASH_ALG_SHA3_512,
4239 		       .mode = HASH_MODE_HASH,
4240 		       },
4241 	 },
4242 	{
4243 	 .type = CRYPTO_ALG_TYPE_AHASH,
4244 	 .alg.hash = {
4245 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4246 		      .halg.base = {
4247 				    .cra_name = "hmac(sha3-512)",
4248 				    .cra_driver_name = "hmac-sha3-512-iproc",
4249 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4250 				}
4251 		      },
4252 	 .cipher_info = {
4253 			 .alg = CIPHER_ALG_NONE,
4254 			 .mode = CIPHER_MODE_NONE,
4255 			 },
4256 	 .auth_info = {
4257 		       .alg = HASH_ALG_SHA3_512,
4258 		       .mode = HASH_MODE_HMAC,
4259 		       },
4260 	 },
4261 	{
4262 	 .type = CRYPTO_ALG_TYPE_AHASH,
4263 	 .alg.hash = {
4264 		      .halg.digestsize = AES_BLOCK_SIZE,
4265 		      .halg.base = {
4266 				    .cra_name = "xcbc(aes)",
4267 				    .cra_driver_name = "xcbc-aes-iproc",
4268 				    .cra_blocksize = AES_BLOCK_SIZE,
4269 				}
4270 		      },
4271 	 .cipher_info = {
4272 			 .alg = CIPHER_ALG_NONE,
4273 			 .mode = CIPHER_MODE_NONE,
4274 			 },
4275 	 .auth_info = {
4276 		       .alg = HASH_ALG_AES,
4277 		       .mode = HASH_MODE_XCBC,
4278 		       },
4279 	 },
4280 	{
4281 	 .type = CRYPTO_ALG_TYPE_AHASH,
4282 	 .alg.hash = {
4283 		      .halg.digestsize = AES_BLOCK_SIZE,
4284 		      .halg.base = {
4285 				    .cra_name = "cmac(aes)",
4286 				    .cra_driver_name = "cmac-aes-iproc",
4287 				    .cra_blocksize = AES_BLOCK_SIZE,
4288 				}
4289 		      },
4290 	 .cipher_info = {
4291 			 .alg = CIPHER_ALG_NONE,
4292 			 .mode = CIPHER_MODE_NONE,
4293 			 },
4294 	 .auth_info = {
4295 		       .alg = HASH_ALG_AES,
4296 		       .mode = HASH_MODE_CMAC,
4297 		       },
4298 	 },
4299 };
4300 
4301 static int generic_cra_init(struct crypto_tfm *tfm,
4302 			    struct iproc_alg_s *cipher_alg)
4303 {
4304 	struct spu_hw *spu = &iproc_priv.spu;
4305 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4306 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4307 
4308 	flow_log("%s()\n", __func__);
4309 
4310 	ctx->alg = cipher_alg;
4311 	ctx->cipher = cipher_alg->cipher_info;
4312 	ctx->auth = cipher_alg->auth_info;
4313 	ctx->auth_first = cipher_alg->auth_first;
4314 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4315 						    ctx->cipher.mode,
4316 						    blocksize);
4317 	ctx->fallback_cipher = NULL;
4318 
4319 	ctx->enckeylen = 0;
4320 	ctx->authkeylen = 0;
4321 
4322 	atomic_inc(&iproc_priv.stream_count);
4323 	atomic_inc(&iproc_priv.session_count);
4324 
4325 	return 0;
4326 }
4327 
4328 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4329 {
4330 	struct crypto_alg *alg = tfm->__crt_alg;
4331 	struct iproc_alg_s *cipher_alg;
4332 
4333 	flow_log("%s()\n", __func__);
4334 
4335 	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4336 
4337 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4338 	return generic_cra_init(tfm, cipher_alg);
4339 }
4340 
4341 static int ahash_cra_init(struct crypto_tfm *tfm)
4342 {
4343 	int err;
4344 	struct crypto_alg *alg = tfm->__crt_alg;
4345 	struct iproc_alg_s *cipher_alg;
4346 
4347 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4348 				  alg.hash);
4349 
4350 	err = generic_cra_init(tfm, cipher_alg);
4351 	flow_log("%s()\n", __func__);
4352 
4353 	/*
4354 	 * export state size has to be < 512 bytes. So don't include msg bufs
4355 	 * in state size.
4356 	 */
4357 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4358 				 sizeof(struct iproc_reqctx_s));
4359 
4360 	return err;
4361 }
4362 
4363 static int aead_cra_init(struct crypto_aead *aead)
4364 {
4365 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4366 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4367 	struct crypto_alg *alg = tfm->__crt_alg;
4368 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4369 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4370 						      alg.aead);
4371 
4372 	int err = generic_cra_init(tfm, cipher_alg);
4373 
4374 	flow_log("%s()\n", __func__);
4375 
4376 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4377 	ctx->is_esp = false;
4378 	ctx->salt_len = 0;
4379 	ctx->salt_offset = 0;
4380 
4381 	/* random first IV */
4382 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4383 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4384 
4385 	if (!err) {
4386 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4387 			flow_log("%s() creating fallback cipher\n", __func__);
4388 
4389 			ctx->fallback_cipher =
4390 			    crypto_alloc_aead(alg->cra_name, 0,
4391 					      CRYPTO_ALG_ASYNC |
4392 					      CRYPTO_ALG_NEED_FALLBACK);
4393 			if (IS_ERR(ctx->fallback_cipher)) {
4394 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4395 				       __func__, alg->cra_name);
4396 				return PTR_ERR(ctx->fallback_cipher);
4397 			}
4398 		}
4399 	}
4400 
4401 	return err;
4402 }
4403 
4404 static void generic_cra_exit(struct crypto_tfm *tfm)
4405 {
4406 	atomic_dec(&iproc_priv.session_count);
4407 }
4408 
4409 static void aead_cra_exit(struct crypto_aead *aead)
4410 {
4411 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4412 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4413 
4414 	generic_cra_exit(tfm);
4415 
4416 	if (ctx->fallback_cipher) {
4417 		crypto_free_aead(ctx->fallback_cipher);
4418 		ctx->fallback_cipher = NULL;
4419 	}
4420 }
4421 
4422 /**
4423  * spu_functions_register() - Specify hardware-specific SPU functions based on
4424  * SPU type read from device tree.
4425  * @dev:	device structure
4426  * @spu_type:	SPU hardware generation
4427  * @spu_subtype: SPU hardware version
4428  */
4429 static void spu_functions_register(struct device *dev,
4430 				   enum spu_spu_type spu_type,
4431 				   enum spu_spu_subtype spu_subtype)
4432 {
4433 	struct spu_hw *spu = &iproc_priv.spu;
4434 
4435 	if (spu_type == SPU_TYPE_SPUM) {
4436 		dev_dbg(dev, "Registering SPUM functions");
4437 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4438 		spu->spu_payload_length = spum_payload_length;
4439 		spu->spu_response_hdr_len = spum_response_hdr_len;
4440 		spu->spu_hash_pad_len = spum_hash_pad_len;
4441 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4442 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4443 		spu->spu_aead_ivlen = spum_aead_ivlen;
4444 		spu->spu_hash_type = spum_hash_type;
4445 		spu->spu_digest_size = spum_digest_size;
4446 		spu->spu_create_request = spum_create_request;
4447 		spu->spu_cipher_req_init = spum_cipher_req_init;
4448 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4449 		spu->spu_request_pad = spum_request_pad;
4450 		spu->spu_tx_status_len = spum_tx_status_len;
4451 		spu->spu_rx_status_len = spum_rx_status_len;
4452 		spu->spu_status_process = spum_status_process;
4453 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4454 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4455 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4456 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4457 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4458 		else
4459 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4460 	} else {
4461 		dev_dbg(dev, "Registering SPU2 functions");
4462 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4463 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4464 		spu->spu_payload_length = spu2_payload_length;
4465 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4466 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4467 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4468 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4469 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4470 		spu->spu_hash_type = spu2_hash_type;
4471 		spu->spu_digest_size = spu2_digest_size;
4472 		spu->spu_create_request = spu2_create_request;
4473 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4474 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4475 		spu->spu_request_pad = spu2_request_pad;
4476 		spu->spu_tx_status_len = spu2_tx_status_len;
4477 		spu->spu_rx_status_len = spu2_rx_status_len;
4478 		spu->spu_status_process = spu2_status_process;
4479 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4480 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4481 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4482 	}
4483 }
4484 
4485 /**
4486  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4487  * channel for the SPU being probed.
4488  * @dev:  SPU driver device structure
4489  *
4490  * Return: 0 if successful
4491  *	   < 0 otherwise
4492  */
4493 static int spu_mb_init(struct device *dev)
4494 {
4495 	struct mbox_client *mcl = &iproc_priv.mcl;
4496 	int err, i;
4497 
4498 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4499 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4500 	if (!iproc_priv.mbox)
4501 		return -ENOMEM;
4502 
4503 	mcl->dev = dev;
4504 	mcl->tx_block = false;
4505 	mcl->tx_tout = 0;
4506 	mcl->knows_txdone = true;
4507 	mcl->rx_callback = spu_rx_callback;
4508 	mcl->tx_done = NULL;
4509 
4510 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4511 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4512 		if (IS_ERR(iproc_priv.mbox[i])) {
4513 			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4514 			dev_err(dev,
4515 				"Mbox channel %d request failed with err %d",
4516 				i, err);
4517 			iproc_priv.mbox[i] = NULL;
4518 			goto free_channels;
4519 		}
4520 	}
4521 
4522 	return 0;
4523 free_channels:
4524 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4525 		if (iproc_priv.mbox[i])
4526 			mbox_free_channel(iproc_priv.mbox[i]);
4527 	}
4528 
4529 	return err;
4530 }
4531 
4532 static void spu_mb_release(struct platform_device *pdev)
4533 {
4534 	int i;
4535 
4536 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4537 		mbox_free_channel(iproc_priv.mbox[i]);
4538 }
4539 
4540 static void spu_counters_init(void)
4541 {
4542 	int i;
4543 	int j;
4544 
4545 	atomic_set(&iproc_priv.session_count, 0);
4546 	atomic_set(&iproc_priv.stream_count, 0);
4547 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4548 	atomic64_set(&iproc_priv.bytes_in, 0);
4549 	atomic64_set(&iproc_priv.bytes_out, 0);
4550 	for (i = 0; i < SPU_OP_NUM; i++) {
4551 		atomic_set(&iproc_priv.op_counts[i], 0);
4552 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4553 	}
4554 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4555 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4556 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4557 
4558 	for (i = 0; i < HASH_ALG_LAST; i++) {
4559 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4560 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4561 	}
4562 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4563 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4564 
4565 	atomic_set(&iproc_priv.mb_no_spc, 0);
4566 	atomic_set(&iproc_priv.mb_send_fail, 0);
4567 	atomic_set(&iproc_priv.bad_icv, 0);
4568 }
4569 
4570 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4571 {
4572 	struct spu_hw *spu = &iproc_priv.spu;
4573 	struct crypto_alg *crypto = &driver_alg->alg.crypto;
4574 	int err;
4575 
4576 	/* SPU2 does not support RC4 */
4577 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4578 	    (spu->spu_type == SPU_TYPE_SPU2))
4579 		return 0;
4580 
4581 	crypto->cra_module = THIS_MODULE;
4582 	crypto->cra_priority = cipher_pri;
4583 	crypto->cra_alignmask = 0;
4584 	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4585 
4586 	crypto->cra_init = ablkcipher_cra_init;
4587 	crypto->cra_exit = generic_cra_exit;
4588 	crypto->cra_type = &crypto_ablkcipher_type;
4589 	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4590 				CRYPTO_ALG_KERN_DRIVER_ONLY;
4591 
4592 	crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4593 	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4594 	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4595 
4596 	err = crypto_register_alg(crypto);
4597 	/* Mark alg as having been registered, if successful */
4598 	if (err == 0)
4599 		driver_alg->registered = true;
4600 	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name);
4601 	return err;
4602 }
4603 
4604 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4605 {
4606 	struct spu_hw *spu = &iproc_priv.spu;
4607 	struct ahash_alg *hash = &driver_alg->alg.hash;
4608 	int err;
4609 
4610 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4611 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4612 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4613 	    (spu->spu_type == SPU_TYPE_SPUM))
4614 		return 0;
4615 
4616 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4617 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4618 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4619 		return 0;
4620 
4621 	hash->halg.base.cra_module = THIS_MODULE;
4622 	hash->halg.base.cra_priority = hash_pri;
4623 	hash->halg.base.cra_alignmask = 0;
4624 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4625 	hash->halg.base.cra_init = ahash_cra_init;
4626 	hash->halg.base.cra_exit = generic_cra_exit;
4627 	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
4628 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4629 
4630 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4631 		hash->init = ahash_init;
4632 		hash->update = ahash_update;
4633 		hash->final = ahash_final;
4634 		hash->finup = ahash_finup;
4635 		hash->digest = ahash_digest;
4636 		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4637 		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4638 		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4639 			hash->setkey = ahash_setkey;
4640 		}
4641 	} else {
4642 		hash->setkey = ahash_hmac_setkey;
4643 		hash->init = ahash_hmac_init;
4644 		hash->update = ahash_hmac_update;
4645 		hash->final = ahash_hmac_final;
4646 		hash->finup = ahash_hmac_finup;
4647 		hash->digest = ahash_hmac_digest;
4648 	}
4649 	hash->export = ahash_export;
4650 	hash->import = ahash_import;
4651 
4652 	err = crypto_register_ahash(hash);
4653 	/* Mark alg as having been registered, if successful */
4654 	if (err == 0)
4655 		driver_alg->registered = true;
4656 	pr_debug("  registered ahash %s\n",
4657 		 hash->halg.base.cra_driver_name);
4658 	return err;
4659 }
4660 
4661 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4662 {
4663 	struct aead_alg *aead = &driver_alg->alg.aead;
4664 	int err;
4665 
4666 	aead->base.cra_module = THIS_MODULE;
4667 	aead->base.cra_priority = aead_pri;
4668 	aead->base.cra_alignmask = 0;
4669 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4670 
4671 	aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4672 	/* setkey set in alg initialization */
4673 	aead->setauthsize = aead_setauthsize;
4674 	aead->encrypt = aead_encrypt;
4675 	aead->decrypt = aead_decrypt;
4676 	aead->init = aead_cra_init;
4677 	aead->exit = aead_cra_exit;
4678 
4679 	err = crypto_register_aead(aead);
4680 	/* Mark alg as having been registered, if successful */
4681 	if (err == 0)
4682 		driver_alg->registered = true;
4683 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4684 	return err;
4685 }
4686 
4687 /* register crypto algorithms the device supports */
4688 static int spu_algs_register(struct device *dev)
4689 {
4690 	int i, j;
4691 	int err;
4692 
4693 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4694 		switch (driver_algs[i].type) {
4695 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4696 			err = spu_register_ablkcipher(&driver_algs[i]);
4697 			break;
4698 		case CRYPTO_ALG_TYPE_AHASH:
4699 			err = spu_register_ahash(&driver_algs[i]);
4700 			break;
4701 		case CRYPTO_ALG_TYPE_AEAD:
4702 			err = spu_register_aead(&driver_algs[i]);
4703 			break;
4704 		default:
4705 			dev_err(dev,
4706 				"iproc-crypto: unknown alg type: %d",
4707 				driver_algs[i].type);
4708 			err = -EINVAL;
4709 		}
4710 
4711 		if (err) {
4712 			dev_err(dev, "alg registration failed with error %d\n",
4713 				err);
4714 			goto err_algs;
4715 		}
4716 	}
4717 
4718 	return 0;
4719 
4720 err_algs:
4721 	for (j = 0; j < i; j++) {
4722 		/* Skip any algorithm not registered */
4723 		if (!driver_algs[j].registered)
4724 			continue;
4725 		switch (driver_algs[j].type) {
4726 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4727 			crypto_unregister_alg(&driver_algs[j].alg.crypto);
4728 			driver_algs[j].registered = false;
4729 			break;
4730 		case CRYPTO_ALG_TYPE_AHASH:
4731 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4732 			driver_algs[j].registered = false;
4733 			break;
4734 		case CRYPTO_ALG_TYPE_AEAD:
4735 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4736 			driver_algs[j].registered = false;
4737 			break;
4738 		}
4739 	}
4740 	return err;
4741 }
4742 
4743 /* ==================== Kernel Platform API ==================== */
4744 
4745 static struct spu_type_subtype spum_ns2_types = {
4746 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4747 };
4748 
4749 static struct spu_type_subtype spum_nsp_types = {
4750 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4751 };
4752 
4753 static struct spu_type_subtype spu2_types = {
4754 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4755 };
4756 
4757 static struct spu_type_subtype spu2_v2_types = {
4758 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4759 };
4760 
4761 static const struct of_device_id bcm_spu_dt_ids[] = {
4762 	{
4763 		.compatible = "brcm,spum-crypto",
4764 		.data = &spum_ns2_types,
4765 	},
4766 	{
4767 		.compatible = "brcm,spum-nsp-crypto",
4768 		.data = &spum_nsp_types,
4769 	},
4770 	{
4771 		.compatible = "brcm,spu2-crypto",
4772 		.data = &spu2_types,
4773 	},
4774 	{
4775 		.compatible = "brcm,spu2-v2-crypto",
4776 		.data = &spu2_v2_types,
4777 	},
4778 	{ /* sentinel */ }
4779 };
4780 
4781 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4782 
4783 static int spu_dt_read(struct platform_device *pdev)
4784 {
4785 	struct device *dev = &pdev->dev;
4786 	struct spu_hw *spu = &iproc_priv.spu;
4787 	struct resource *spu_ctrl_regs;
4788 	const struct spu_type_subtype *matched_spu_type;
4789 	struct device_node *dn = pdev->dev.of_node;
4790 	int err, i;
4791 
4792 	/* Count number of mailbox channels */
4793 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4794 
4795 	matched_spu_type = of_device_get_match_data(dev);
4796 	if (!matched_spu_type) {
4797 		dev_err(&pdev->dev, "Failed to match device\n");
4798 		return -ENODEV;
4799 	}
4800 
4801 	spu->spu_type = matched_spu_type->type;
4802 	spu->spu_subtype = matched_spu_type->subtype;
4803 
4804 	i = 0;
4805 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4806 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4807 
4808 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4809 		if (IS_ERR(spu->reg_vbase[i])) {
4810 			err = PTR_ERR(spu->reg_vbase[i]);
4811 			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4812 				err);
4813 			spu->reg_vbase[i] = NULL;
4814 			return err;
4815 		}
4816 	}
4817 	spu->num_spu = i;
4818 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4819 
4820 	return 0;
4821 }
4822 
4823 int bcm_spu_probe(struct platform_device *pdev)
4824 {
4825 	struct device *dev = &pdev->dev;
4826 	struct spu_hw *spu = &iproc_priv.spu;
4827 	int err = 0;
4828 
4829 	iproc_priv.pdev  = pdev;
4830 	platform_set_drvdata(iproc_priv.pdev,
4831 			     &iproc_priv);
4832 
4833 	err = spu_dt_read(pdev);
4834 	if (err < 0)
4835 		goto failure;
4836 
4837 	err = spu_mb_init(&pdev->dev);
4838 	if (err < 0)
4839 		goto failure;
4840 
4841 	if (spu->spu_type == SPU_TYPE_SPUM)
4842 		iproc_priv.bcm_hdr_len = 8;
4843 	else if (spu->spu_type == SPU_TYPE_SPU2)
4844 		iproc_priv.bcm_hdr_len = 0;
4845 
4846 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4847 
4848 	spu_counters_init();
4849 
4850 	spu_setup_debugfs();
4851 
4852 	err = spu_algs_register(dev);
4853 	if (err < 0)
4854 		goto fail_reg;
4855 
4856 	return 0;
4857 
4858 fail_reg:
4859 	spu_free_debugfs();
4860 failure:
4861 	spu_mb_release(pdev);
4862 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4863 
4864 	return err;
4865 }
4866 
4867 int bcm_spu_remove(struct platform_device *pdev)
4868 {
4869 	int i;
4870 	struct device *dev = &pdev->dev;
4871 	char *cdn;
4872 
4873 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4874 		/*
4875 		 * Not all algorithms were registered, depending on whether
4876 		 * hardware is SPU or SPU2.  So here we make sure to skip
4877 		 * those algorithms that were not previously registered.
4878 		 */
4879 		if (!driver_algs[i].registered)
4880 			continue;
4881 
4882 		switch (driver_algs[i].type) {
4883 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4884 			crypto_unregister_alg(&driver_algs[i].alg.crypto);
4885 			dev_dbg(dev, "  unregistered cipher %s\n",
4886 				driver_algs[i].alg.crypto.cra_driver_name);
4887 			driver_algs[i].registered = false;
4888 			break;
4889 		case CRYPTO_ALG_TYPE_AHASH:
4890 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4891 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4892 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4893 			driver_algs[i].registered = false;
4894 			break;
4895 		case CRYPTO_ALG_TYPE_AEAD:
4896 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4897 			dev_dbg(dev, "  unregistered aead %s\n",
4898 				driver_algs[i].alg.aead.base.cra_driver_name);
4899 			driver_algs[i].registered = false;
4900 			break;
4901 		}
4902 	}
4903 	spu_free_debugfs();
4904 	spu_mb_release(pdev);
4905 	return 0;
4906 }
4907 
4908 /* ===== Kernel Module API ===== */
4909 
4910 static struct platform_driver bcm_spu_pdriver = {
4911 	.driver = {
4912 		   .name = "brcm-spu-crypto",
4913 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4914 		   },
4915 	.probe = bcm_spu_probe,
4916 	.remove = bcm_spu_remove,
4917 };
4918 module_platform_driver(bcm_spu_pdriver);
4919 
4920 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4921 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4922 MODULE_LICENSE("GPL v2");
4923