xref: /openbmc/linux/drivers/crypto/bcm/cipher.c (revision 8cb5d748)
1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
33 
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/aes.h>
46 #include <crypto/sha3.h>
47 
48 #include "util.h"
49 #include "cipher.h"
50 #include "spu.h"
51 #include "spum.h"
52 #include "spu2.h"
53 
54 /* ================= Device Structure ================== */
55 
56 struct device_private iproc_priv;
57 
58 /* ==================== Parameters ===================== */
59 
60 int flow_debug_logging;
61 module_param(flow_debug_logging, int, 0644);
62 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
63 
64 int packet_debug_logging;
65 module_param(packet_debug_logging, int, 0644);
66 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
67 
68 int debug_logging_sleep;
69 module_param(debug_logging_sleep, int, 0644);
70 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
71 
72 /*
73  * The value of these module parameters is used to set the priority for each
74  * algo type when this driver registers algos with the kernel crypto API.
75  * To use a priority other than the default, set the priority in the insmod or
76  * modprobe. Changing the module priority after init time has no effect.
77  *
78  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
79  * algos, but more preferred than generic software algos.
80  */
81 static int cipher_pri = 150;
82 module_param(cipher_pri, int, 0644);
83 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
84 
85 static int hash_pri = 100;
86 module_param(hash_pri, int, 0644);
87 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
88 
89 static int aead_pri = 150;
90 module_param(aead_pri, int, 0644);
91 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
92 
93 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
94  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
95  * 0x60 - ring 0
96  * 0x68 - ring 1
97  * 0x70 - ring 2
98  * 0x78 - ring 3
99  */
100 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
101 /*
102  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
103  * is set dynamically after reading SPU type from device tree.
104  */
105 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
106 
107 /* min and max time to sleep before retrying when mbox queue is full. usec */
108 #define MBOX_SLEEP_MIN  800
109 #define MBOX_SLEEP_MAX 1000
110 
111 /**
112  * select_channel() - Select a SPU channel to handle a crypto request. Selects
113  * channel in round robin order.
114  *
115  * Return:  channel index
116  */
117 static u8 select_channel(void)
118 {
119 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
120 
121 	return chan_idx % iproc_priv.spu.num_chan;
122 }
123 
124 /**
125  * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
126  * receive a SPU response message for an ablkcipher request. Includes buffers to
127  * catch SPU message headers and the response data.
128  * @mssg:	mailbox message containing the receive sg
129  * @rctx:	crypto request context
130  * @rx_frag_num: number of scatterlist elements required to hold the
131  *		SPU response message
132  * @chunksize:	Number of bytes of response data expected
133  * @stat_pad_len: Number of bytes required to pad the STAT field to
134  *		a 4-byte boundary
135  *
136  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
137  * when the request completes, whether the request is handled successfully or
138  * there is an error.
139  *
140  * Returns:
141  *   0 if successful
142  *   < 0 if an error
143  */
144 static int
145 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
146 			    struct iproc_reqctx_s *rctx,
147 			    u8 rx_frag_num,
148 			    unsigned int chunksize, u32 stat_pad_len)
149 {
150 	struct spu_hw *spu = &iproc_priv.spu;
151 	struct scatterlist *sg;	/* used to build sgs in mbox message */
152 	struct iproc_ctx_s *ctx = rctx->ctx;
153 	u32 datalen;		/* Number of bytes of response data expected */
154 
155 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
156 				rctx->gfp);
157 	if (!mssg->spu.dst)
158 		return -ENOMEM;
159 
160 	sg = mssg->spu.dst;
161 	sg_init_table(sg, rx_frag_num);
162 	/* Space for SPU message header */
163 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
164 
165 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
166 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
167 	    spu->spu_xts_tweak_in_payload())
168 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
169 			   SPU_XTS_TWEAK_SIZE);
170 
171 	/* Copy in each dst sg entry from request, up to chunksize */
172 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
173 				 rctx->dst_nents, chunksize);
174 	if (datalen < chunksize) {
175 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
176 		       __func__, chunksize, datalen);
177 		return -EFAULT;
178 	}
179 
180 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
181 		/* Add buffer to catch 260-byte SUPDT field for RC4 */
182 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
183 
184 	if (stat_pad_len)
185 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
186 
187 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
188 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
189 
190 	return 0;
191 }
192 
193 /**
194  * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
195  * send a SPU request message for an ablkcipher request. Includes SPU message
196  * headers and the request data.
197  * @mssg:	mailbox message containing the transmit sg
198  * @rctx:	crypto request context
199  * @tx_frag_num: number of scatterlist elements required to construct the
200  *		SPU request message
201  * @chunksize:	Number of bytes of request data
202  * @pad_len:	Number of pad bytes
203  *
204  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
205  * when the request completes, whether the request is handled successfully or
206  * there is an error.
207  *
208  * Returns:
209  *   0 if successful
210  *   < 0 if an error
211  */
212 static int
213 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
214 			    struct iproc_reqctx_s *rctx,
215 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
216 {
217 	struct spu_hw *spu = &iproc_priv.spu;
218 	struct scatterlist *sg;	/* used to build sgs in mbox message */
219 	struct iproc_ctx_s *ctx = rctx->ctx;
220 	u32 datalen;		/* Number of bytes of response data expected */
221 	u32 stat_len;
222 
223 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
224 				rctx->gfp);
225 	if (unlikely(!mssg->spu.src))
226 		return -ENOMEM;
227 
228 	sg = mssg->spu.src;
229 	sg_init_table(sg, tx_frag_num);
230 
231 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
232 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
233 
234 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
235 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
236 	    spu->spu_xts_tweak_in_payload())
237 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
238 
239 	/* Copy in each src sg entry from request, up to chunksize */
240 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
241 				 rctx->src_nents, chunksize);
242 	if (unlikely(datalen < chunksize)) {
243 		pr_err("%s(): failed to copy src sg to mbox msg",
244 		       __func__);
245 		return -EFAULT;
246 	}
247 
248 	if (pad_len)
249 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
250 
251 	stat_len = spu->spu_tx_status_len();
252 	if (stat_len) {
253 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
254 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
255 	}
256 	return 0;
257 }
258 
259 /**
260  * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
261  * a single SPU request message, starting at the current position in the request
262  * data.
263  * @rctx:	Crypto request context
264  *
265  * This may be called on the crypto API thread, or, when a request is so large
266  * it must be broken into multiple SPU messages, on the thread used to invoke
267  * the response callback. When requests are broken into multiple SPU
268  * messages, we assume subsequent messages depend on previous results, and
269  * thus always wait for previous results before submitting the next message.
270  * Because requests are submitted in lock step like this, there is no need
271  * to synchronize access to request data structures.
272  *
273  * Return: -EINPROGRESS: request has been accepted and result will be returned
274  *			 asynchronously
275  *         Any other value indicates an error
276  */
277 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
278 {
279 	struct spu_hw *spu = &iproc_priv.spu;
280 	struct crypto_async_request *areq = rctx->parent;
281 	struct ablkcipher_request *req =
282 	    container_of(areq, struct ablkcipher_request, base);
283 	struct iproc_ctx_s *ctx = rctx->ctx;
284 	struct spu_cipher_parms cipher_parms;
285 	int err = 0;
286 	unsigned int chunksize = 0;	/* Num bytes of request to submit */
287 	int remaining = 0;	/* Bytes of request still to process */
288 	int chunk_start;	/* Beginning of data for current SPU msg */
289 
290 	/* IV or ctr value to use in this SPU msg */
291 	u8 local_iv_ctr[MAX_IV_SIZE];
292 	u32 stat_pad_len;	/* num bytes to align status field */
293 	u32 pad_len;		/* total length of all padding */
294 	bool update_key = false;
295 	struct brcm_message *mssg;	/* mailbox message */
296 	int retry_cnt = 0;
297 
298 	/* number of entries in src and dst sg in mailbox message. */
299 	u8 rx_frag_num = 2;	/* response header and STATUS */
300 	u8 tx_frag_num = 1;	/* request header */
301 
302 	flow_log("%s\n", __func__);
303 
304 	cipher_parms.alg = ctx->cipher.alg;
305 	cipher_parms.mode = ctx->cipher.mode;
306 	cipher_parms.type = ctx->cipher_type;
307 	cipher_parms.key_len = ctx->enckeylen;
308 	cipher_parms.key_buf = ctx->enckey;
309 	cipher_parms.iv_buf = local_iv_ctr;
310 	cipher_parms.iv_len = rctx->iv_ctr_len;
311 
312 	mssg = &rctx->mb_mssg;
313 	chunk_start = rctx->src_sent;
314 	remaining = rctx->total_todo - chunk_start;
315 
316 	/* determine the chunk we are breaking off and update the indexes */
317 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
318 	    (remaining > ctx->max_payload))
319 		chunksize = ctx->max_payload;
320 	else
321 		chunksize = remaining;
322 
323 	rctx->src_sent += chunksize;
324 	rctx->total_sent = rctx->src_sent;
325 
326 	/* Count number of sg entries to be included in this request */
327 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
328 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
329 
330 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
331 	    rctx->is_encrypt && chunk_start)
332 		/*
333 		 * Encrypting non-first first chunk. Copy last block of
334 		 * previous result to IV for this chunk.
335 		 */
336 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
337 				    rctx->iv_ctr_len,
338 				    chunk_start - rctx->iv_ctr_len);
339 
340 	if (rctx->iv_ctr_len) {
341 		/* get our local copy of the iv */
342 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
343 				 rctx->iv_ctr_len);
344 
345 		/* generate the next IV if possible */
346 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
347 		    !rctx->is_encrypt) {
348 			/*
349 			 * CBC Decrypt: next IV is the last ciphertext block in
350 			 * this chunk
351 			 */
352 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
353 					    rctx->iv_ctr_len,
354 					    rctx->src_sent - rctx->iv_ctr_len);
355 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
356 			/*
357 			 * The SPU hardware increments the counter once for
358 			 * each AES block of 16 bytes. So update the counter
359 			 * for the next chunk, if there is one. Note that for
360 			 * this chunk, the counter has already been copied to
361 			 * local_iv_ctr. We can assume a block size of 16,
362 			 * because we only support CTR mode for AES, not for
363 			 * any other cipher alg.
364 			 */
365 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
366 		}
367 	}
368 
369 	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
370 		rx_frag_num++;
371 		if (chunk_start) {
372 			/*
373 			 * for non-first RC4 chunks, use SUPDT from previous
374 			 * response as key for this chunk.
375 			 */
376 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
377 			update_key = true;
378 			cipher_parms.type = CIPHER_TYPE_UPDT;
379 		} else if (!rctx->is_encrypt) {
380 			/*
381 			 * First RC4 chunk. For decrypt, key in pre-built msg
382 			 * header may have been changed if encrypt required
383 			 * multiple chunks. So revert the key to the
384 			 * ctx->enckey value.
385 			 */
386 			update_key = true;
387 			cipher_parms.type = CIPHER_TYPE_INIT;
388 		}
389 	}
390 
391 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
392 		flow_log("max_payload infinite\n");
393 	else
394 		flow_log("max_payload %u\n", ctx->max_payload);
395 
396 	flow_log("sent:%u start:%u remains:%u size:%u\n",
397 		 rctx->src_sent, chunk_start, remaining, chunksize);
398 
399 	/* Copy SPU header template created at setkey time */
400 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
401 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
402 
403 	/*
404 	 * Pass SUPDT field as key. Key field in finish() call is only used
405 	 * when update_key has been set above for RC4. Will be ignored in
406 	 * all other cases.
407 	 */
408 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
409 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
410 				   &cipher_parms, update_key, chunksize);
411 
412 	atomic64_add(chunksize, &iproc_priv.bytes_out);
413 
414 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
415 	if (stat_pad_len)
416 		rx_frag_num++;
417 	pad_len = stat_pad_len;
418 	if (pad_len) {
419 		tx_frag_num++;
420 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
421 				     0, ctx->auth.alg, ctx->auth.mode,
422 				     rctx->total_sent, stat_pad_len);
423 	}
424 
425 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
426 			      ctx->spu_req_hdr_len);
427 	packet_log("payload:\n");
428 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
429 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
430 
431 	/*
432 	 * Build mailbox message containing SPU request msg and rx buffers
433 	 * to catch response message
434 	 */
435 	memset(mssg, 0, sizeof(*mssg));
436 	mssg->type = BRCM_MESSAGE_SPU;
437 	mssg->ctx = rctx;	/* Will be returned in response */
438 
439 	/* Create rx scatterlist to catch result */
440 	rx_frag_num += rctx->dst_nents;
441 
442 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
443 	    spu->spu_xts_tweak_in_payload())
444 		rx_frag_num++;	/* extra sg to insert tweak */
445 
446 	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
447 					  stat_pad_len);
448 	if (err)
449 		return err;
450 
451 	/* Create tx scatterlist containing SPU request message */
452 	tx_frag_num += rctx->src_nents;
453 	if (spu->spu_tx_status_len())
454 		tx_frag_num++;
455 
456 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
457 	    spu->spu_xts_tweak_in_payload())
458 		tx_frag_num++;	/* extra sg to insert tweak */
459 
460 	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
461 					  pad_len);
462 	if (err)
463 		return err;
464 
465 	err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
466 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
467 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
468 			/*
469 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
470 			 * not in atomic context and we can wait and try again.
471 			 */
472 			retry_cnt++;
473 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
474 			err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
475 						mssg);
476 			atomic_inc(&iproc_priv.mb_no_spc);
477 		}
478 	}
479 	if (unlikely(err < 0)) {
480 		atomic_inc(&iproc_priv.mb_send_fail);
481 		return err;
482 	}
483 
484 	return -EINPROGRESS;
485 }
486 
487 /**
488  * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
489  * total received count for the request and updates global stats.
490  * @rctx:	Crypto request context
491  */
492 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
493 {
494 	struct spu_hw *spu = &iproc_priv.spu;
495 #ifdef DEBUG
496 	struct crypto_async_request *areq = rctx->parent;
497 	struct ablkcipher_request *req = ablkcipher_request_cast(areq);
498 #endif
499 	struct iproc_ctx_s *ctx = rctx->ctx;
500 	u32 payload_len;
501 
502 	/* See how much data was returned */
503 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
504 
505 	/*
506 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
507 	 * encrypted tweak ("i") value; we don't count those.
508 	 */
509 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
510 	    spu->spu_xts_tweak_in_payload() &&
511 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
512 		payload_len -= SPU_XTS_TWEAK_SIZE;
513 
514 	atomic64_add(payload_len, &iproc_priv.bytes_in);
515 
516 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
517 		 __func__, rctx->total_received, payload_len);
518 
519 	dump_sg(req->dst, rctx->total_received, payload_len);
520 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
521 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
522 			    SPU_SUPDT_LEN);
523 
524 	rctx->total_received += payload_len;
525 	if (rctx->total_received == rctx->total_todo) {
526 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
527 		atomic_inc(
528 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
529 	}
530 }
531 
532 /**
533  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
534  * receive a SPU response message for an ahash request.
535  * @mssg:	mailbox message containing the receive sg
536  * @rctx:	crypto request context
537  * @rx_frag_num: number of scatterlist elements required to hold the
538  *		SPU response message
539  * @digestsize: length of hash digest, in bytes
540  * @stat_pad_len: Number of bytes required to pad the STAT field to
541  *		a 4-byte boundary
542  *
543  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
544  * when the request completes, whether the request is handled successfully or
545  * there is an error.
546  *
547  * Return:
548  *   0 if successful
549  *   < 0 if an error
550  */
551 static int
552 spu_ahash_rx_sg_create(struct brcm_message *mssg,
553 		       struct iproc_reqctx_s *rctx,
554 		       u8 rx_frag_num, unsigned int digestsize,
555 		       u32 stat_pad_len)
556 {
557 	struct spu_hw *spu = &iproc_priv.spu;
558 	struct scatterlist *sg;	/* used to build sgs in mbox message */
559 	struct iproc_ctx_s *ctx = rctx->ctx;
560 
561 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
562 				rctx->gfp);
563 	if (!mssg->spu.dst)
564 		return -ENOMEM;
565 
566 	sg = mssg->spu.dst;
567 	sg_init_table(sg, rx_frag_num);
568 	/* Space for SPU message header */
569 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
570 
571 	/* Space for digest */
572 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
573 
574 	if (stat_pad_len)
575 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
576 
577 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
578 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
579 	return 0;
580 }
581 
582 /**
583  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
584  * a SPU request message for an ahash request. Includes SPU message headers and
585  * the request data.
586  * @mssg:	mailbox message containing the transmit sg
587  * @rctx:	crypto request context
588  * @tx_frag_num: number of scatterlist elements required to construct the
589  *		SPU request message
590  * @spu_hdr_len: length in bytes of SPU message header
591  * @hash_carry_len: Number of bytes of data carried over from previous req
592  * @new_data_len: Number of bytes of new request data
593  * @pad_len:	Number of pad bytes
594  *
595  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
596  * when the request completes, whether the request is handled successfully or
597  * there is an error.
598  *
599  * Return:
600  *   0 if successful
601  *   < 0 if an error
602  */
603 static int
604 spu_ahash_tx_sg_create(struct brcm_message *mssg,
605 		       struct iproc_reqctx_s *rctx,
606 		       u8 tx_frag_num,
607 		       u32 spu_hdr_len,
608 		       unsigned int hash_carry_len,
609 		       unsigned int new_data_len, u32 pad_len)
610 {
611 	struct spu_hw *spu = &iproc_priv.spu;
612 	struct scatterlist *sg;	/* used to build sgs in mbox message */
613 	u32 datalen;		/* Number of bytes of response data expected */
614 	u32 stat_len;
615 
616 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
617 				rctx->gfp);
618 	if (!mssg->spu.src)
619 		return -ENOMEM;
620 
621 	sg = mssg->spu.src;
622 	sg_init_table(sg, tx_frag_num);
623 
624 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
625 		   BCM_HDR_LEN + spu_hdr_len);
626 
627 	if (hash_carry_len)
628 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
629 
630 	if (new_data_len) {
631 		/* Copy in each src sg entry from request, up to chunksize */
632 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
633 					 rctx->src_nents, new_data_len);
634 		if (datalen < new_data_len) {
635 			pr_err("%s(): failed to copy src sg to mbox msg",
636 			       __func__);
637 			return -EFAULT;
638 		}
639 	}
640 
641 	if (pad_len)
642 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
643 
644 	stat_len = spu->spu_tx_status_len();
645 	if (stat_len) {
646 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
647 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
648 	}
649 
650 	return 0;
651 }
652 
653 /**
654  * handle_ahash_req() - Process an asynchronous hash request from the crypto
655  * API.
656  * @rctx:  Crypto request context
657  *
658  * Builds a SPU request message embedded in a mailbox message and submits the
659  * mailbox message on a selected mailbox channel. The SPU request message is
660  * constructed as a scatterlist, including entries from the crypto API's
661  * src scatterlist to avoid copying the data to be hashed. This function is
662  * called either on the thread from the crypto API, or, in the case that the
663  * crypto API request is too large to fit in a single SPU request message,
664  * on the thread that invokes the receive callback with a response message.
665  * Because some operations require the response from one chunk before the next
666  * chunk can be submitted, we always wait for the response for the previous
667  * chunk before submitting the next chunk. Because requests are submitted in
668  * lock step like this, there is no need to synchronize access to request data
669  * structures.
670  *
671  * Return:
672  *   -EINPROGRESS: request has been submitted to SPU and response will be
673  *		   returned asynchronously
674  *   -EAGAIN:      non-final request included a small amount of data, which for
675  *		   efficiency we did not submit to the SPU, but instead stored
676  *		   to be submitted to the SPU with the next part of the request
677  *   other:        an error code
678  */
679 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
680 {
681 	struct spu_hw *spu = &iproc_priv.spu;
682 	struct crypto_async_request *areq = rctx->parent;
683 	struct ahash_request *req = ahash_request_cast(areq);
684 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
685 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
686 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
687 	struct iproc_ctx_s *ctx = rctx->ctx;
688 
689 	/* number of bytes still to be hashed in this req */
690 	unsigned int nbytes_to_hash = 0;
691 	int err = 0;
692 	unsigned int chunksize = 0;	/* length of hash carry + new data */
693 	/*
694 	 * length of new data, not from hash carry, to be submitted in
695 	 * this hw request
696 	 */
697 	unsigned int new_data_len;
698 
699 	unsigned int chunk_start = 0;
700 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
701 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
702 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
703 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
704 	struct brcm_message *mssg;	/* mailbox message */
705 	struct spu_request_opts req_opts;
706 	struct spu_cipher_parms cipher_parms;
707 	struct spu_hash_parms hash_parms;
708 	struct spu_aead_parms aead_parms;
709 	unsigned int local_nbuf;
710 	u32 spu_hdr_len;
711 	unsigned int digestsize;
712 	u16 rem = 0;
713 	int retry_cnt = 0;
714 
715 	/*
716 	 * number of entries in src and dst sg. Always includes SPU msg header.
717 	 * rx always includes a buffer to catch digest and STATUS.
718 	 */
719 	u8 rx_frag_num = 3;
720 	u8 tx_frag_num = 1;
721 
722 	flow_log("total_todo %u, total_sent %u\n",
723 		 rctx->total_todo, rctx->total_sent);
724 
725 	memset(&req_opts, 0, sizeof(req_opts));
726 	memset(&cipher_parms, 0, sizeof(cipher_parms));
727 	memset(&hash_parms, 0, sizeof(hash_parms));
728 	memset(&aead_parms, 0, sizeof(aead_parms));
729 
730 	req_opts.bd_suppress = true;
731 	hash_parms.alg = ctx->auth.alg;
732 	hash_parms.mode = ctx->auth.mode;
733 	hash_parms.type = HASH_TYPE_NONE;
734 	hash_parms.key_buf = (u8 *)ctx->authkey;
735 	hash_parms.key_len = ctx->authkeylen;
736 
737 	/*
738 	 * For hash algorithms below assignment looks bit odd but
739 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
740 	 * to differentiate between 128, 192, 256 bit key values.
741 	 * Based on the key values, hash algorithm is selected.
742 	 * For example for 128 bit key, hash algorithm is AES-128.
743 	 */
744 	cipher_parms.type = ctx->cipher_type;
745 
746 	mssg = &rctx->mb_mssg;
747 	chunk_start = rctx->src_sent;
748 
749 	/*
750 	 * Compute the amount remaining to hash. This may include data
751 	 * carried over from previous requests.
752 	 */
753 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
754 	chunksize = nbytes_to_hash;
755 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
756 	    (chunksize > ctx->max_payload))
757 		chunksize = ctx->max_payload;
758 
759 	/*
760 	 * If this is not a final request and the request data is not a multiple
761 	 * of a full block, then simply park the extra data and prefix it to the
762 	 * data for the next request.
763 	 */
764 	if (!rctx->is_final) {
765 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
766 		u16 new_len;  /* len of data to add to hash carry */
767 
768 		rem = chunksize % blocksize;   /* remainder */
769 		if (rem) {
770 			/* chunksize not a multiple of blocksize */
771 			chunksize -= rem;
772 			if (chunksize == 0) {
773 				/* Don't have a full block to submit to hw */
774 				new_len = rem - rctx->hash_carry_len;
775 				sg_copy_part_to_buf(req->src, dest, new_len,
776 						    rctx->src_sent);
777 				rctx->hash_carry_len = rem;
778 				flow_log("Exiting with hash carry len: %u\n",
779 					 rctx->hash_carry_len);
780 				packet_dump("  buf: ",
781 					    rctx->hash_carry,
782 					    rctx->hash_carry_len);
783 				return -EAGAIN;
784 			}
785 		}
786 	}
787 
788 	/* if we have hash carry, then prefix it to the data in this request */
789 	local_nbuf = rctx->hash_carry_len;
790 	rctx->hash_carry_len = 0;
791 	if (local_nbuf)
792 		tx_frag_num++;
793 	new_data_len = chunksize - local_nbuf;
794 
795 	/* Count number of sg entries to be used in this request */
796 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
797 				       new_data_len);
798 
799 	/* AES hashing keeps key size in type field, so need to copy it here */
800 	if (hash_parms.alg == HASH_ALG_AES)
801 		hash_parms.type = cipher_parms.type;
802 	else
803 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
804 
805 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
806 					  hash_parms.type);
807 	hash_parms.digestsize =	digestsize;
808 
809 	/* update the indexes */
810 	rctx->total_sent += chunksize;
811 	/* if you sent a prebuf then that wasn't from this req->src */
812 	rctx->src_sent += new_data_len;
813 
814 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
815 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
816 							   hash_parms.mode,
817 							   chunksize,
818 							   blocksize);
819 
820 	/*
821 	 * If a non-first chunk, then include the digest returned from the
822 	 * previous chunk so that hw can add to it (except for AES types).
823 	 */
824 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
825 	    (hash_parms.alg != HASH_ALG_AES)) {
826 		hash_parms.key_buf = rctx->incr_hash;
827 		hash_parms.key_len = digestsize;
828 	}
829 
830 	atomic64_add(chunksize, &iproc_priv.bytes_out);
831 
832 	flow_log("%s() final: %u nbuf: %u ",
833 		 __func__, rctx->is_final, local_nbuf);
834 
835 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
836 		flow_log("max_payload infinite\n");
837 	else
838 		flow_log("max_payload %u\n", ctx->max_payload);
839 
840 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
841 
842 	/* Prepend SPU header with type 3 BCM header */
843 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
844 
845 	hash_parms.prebuf_len = local_nbuf;
846 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
847 					      BCM_HDR_LEN,
848 					      &req_opts, &cipher_parms,
849 					      &hash_parms, &aead_parms,
850 					      new_data_len);
851 
852 	if (spu_hdr_len == 0) {
853 		pr_err("Failed to create SPU request header\n");
854 		return -EFAULT;
855 	}
856 
857 	/*
858 	 * Determine total length of padding required. Put all padding in one
859 	 * buffer.
860 	 */
861 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
862 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
863 				   0, 0, hash_parms.pad_len);
864 	if (spu->spu_tx_status_len())
865 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
866 	if (stat_pad_len)
867 		rx_frag_num++;
868 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
869 	if (pad_len) {
870 		tx_frag_num++;
871 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
872 				     hash_parms.pad_len, ctx->auth.alg,
873 				     ctx->auth.mode, rctx->total_sent,
874 				     stat_pad_len);
875 	}
876 
877 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
878 			      spu_hdr_len);
879 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
880 	flow_log("Data:\n");
881 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
882 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
883 
884 	/*
885 	 * Build mailbox message containing SPU request msg and rx buffers
886 	 * to catch response message
887 	 */
888 	memset(mssg, 0, sizeof(*mssg));
889 	mssg->type = BRCM_MESSAGE_SPU;
890 	mssg->ctx = rctx;	/* Will be returned in response */
891 
892 	/* Create rx scatterlist to catch result */
893 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
894 				     stat_pad_len);
895 	if (err)
896 		return err;
897 
898 	/* Create tx scatterlist containing SPU request message */
899 	tx_frag_num += rctx->src_nents;
900 	if (spu->spu_tx_status_len())
901 		tx_frag_num++;
902 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
903 				     local_nbuf, new_data_len, pad_len);
904 	if (err)
905 		return err;
906 
907 	err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
908 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
909 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
910 			/*
911 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
912 			 * not in atomic context and we can wait and try again.
913 			 */
914 			retry_cnt++;
915 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
916 			err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
917 						mssg);
918 			atomic_inc(&iproc_priv.mb_no_spc);
919 		}
920 	}
921 	if (err < 0) {
922 		atomic_inc(&iproc_priv.mb_send_fail);
923 		return err;
924 	}
925 	return -EINPROGRESS;
926 }
927 
928 /**
929  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
930  * for an HMAC request.
931  * @req:  The HMAC request from the crypto API
932  * @ctx:  The session context
933  *
934  * Return: 0 if synchronous hash operation successful
935  *         -EINVAL if the hash algo is unrecognized
936  *         any other value indicates an error
937  */
938 static int spu_hmac_outer_hash(struct ahash_request *req,
939 			       struct iproc_ctx_s *ctx)
940 {
941 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
942 	unsigned int blocksize =
943 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
944 	int rc;
945 
946 	switch (ctx->auth.alg) {
947 	case HASH_ALG_MD5:
948 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
949 			      req->result, ctx->digestsize, NULL, 0);
950 		break;
951 	case HASH_ALG_SHA1:
952 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
953 			      req->result, ctx->digestsize, NULL, 0);
954 		break;
955 	case HASH_ALG_SHA224:
956 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
957 			      req->result, ctx->digestsize, NULL, 0);
958 		break;
959 	case HASH_ALG_SHA256:
960 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
961 			      req->result, ctx->digestsize, NULL, 0);
962 		break;
963 	case HASH_ALG_SHA384:
964 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
965 			      req->result, ctx->digestsize, NULL, 0);
966 		break;
967 	case HASH_ALG_SHA512:
968 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
969 			      req->result, ctx->digestsize, NULL, 0);
970 		break;
971 	default:
972 		pr_err("%s() Error : unknown hmac type\n", __func__);
973 		rc = -EINVAL;
974 	}
975 	return rc;
976 }
977 
978 /**
979  * ahash_req_done() - Process a hash result from the SPU hardware.
980  * @rctx: Crypto request context
981  *
982  * Return: 0 if successful
983  *         < 0 if an error
984  */
985 static int ahash_req_done(struct iproc_reqctx_s *rctx)
986 {
987 	struct spu_hw *spu = &iproc_priv.spu;
988 	struct crypto_async_request *areq = rctx->parent;
989 	struct ahash_request *req = ahash_request_cast(areq);
990 	struct iproc_ctx_s *ctx = rctx->ctx;
991 	int err;
992 
993 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
994 
995 	if (spu->spu_type == SPU_TYPE_SPUM) {
996 		/* byte swap the output from the UPDT function to network byte
997 		 * order
998 		 */
999 		if (ctx->auth.alg == HASH_ALG_MD5) {
1000 			__swab32s((u32 *)req->result);
1001 			__swab32s(((u32 *)req->result) + 1);
1002 			__swab32s(((u32 *)req->result) + 2);
1003 			__swab32s(((u32 *)req->result) + 3);
1004 			__swab32s(((u32 *)req->result) + 4);
1005 		}
1006 	}
1007 
1008 	flow_dump("  digest ", req->result, ctx->digestsize);
1009 
1010 	/* if this an HMAC then do the outer hash */
1011 	if (rctx->is_sw_hmac) {
1012 		err = spu_hmac_outer_hash(req, ctx);
1013 		if (err < 0)
1014 			return err;
1015 		flow_dump("  hmac: ", req->result, ctx->digestsize);
1016 	}
1017 
1018 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1019 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1020 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1021 	} else {
1022 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1023 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 /**
1030  * handle_ahash_resp() - Process a SPU response message for a hash request.
1031  * Checks if the entire crypto API request has been processed, and if so,
1032  * invokes post processing on the result.
1033  * @rctx: Crypto request context
1034  */
1035 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1036 {
1037 	struct iproc_ctx_s *ctx = rctx->ctx;
1038 #ifdef DEBUG
1039 	struct crypto_async_request *areq = rctx->parent;
1040 	struct ahash_request *req = ahash_request_cast(areq);
1041 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1042 	unsigned int blocksize =
1043 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1044 #endif
1045 	/*
1046 	 * Save hash to use as input to next op if incremental. Might be copying
1047 	 * too much, but that's easier than figuring out actual digest size here
1048 	 */
1049 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1050 
1051 	flow_log("%s() blocksize:%u digestsize:%u\n",
1052 		 __func__, blocksize, ctx->digestsize);
1053 
1054 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1055 
1056 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1057 		ahash_req_done(rctx);
1058 }
1059 
1060 /**
1061  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1062  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1063  * message headers and the response data.
1064  * @mssg:	mailbox message containing the receive sg
1065  * @rctx:	crypto request context
1066  * @rx_frag_num: number of scatterlist elements required to hold the
1067  *		SPU response message
1068  * @assoc_len:	Length of associated data included in the crypto request
1069  * @ret_iv_len: Length of IV returned in response
1070  * @resp_len:	Number of bytes of response data expected to be written to
1071  *              dst buffer from crypto API
1072  * @digestsize: Length of hash digest, in bytes
1073  * @stat_pad_len: Number of bytes required to pad the STAT field to
1074  *		a 4-byte boundary
1075  *
1076  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1077  * when the request completes, whether the request is handled successfully or
1078  * there is an error.
1079  *
1080  * Returns:
1081  *   0 if successful
1082  *   < 0 if an error
1083  */
1084 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1085 				 struct aead_request *req,
1086 				 struct iproc_reqctx_s *rctx,
1087 				 u8 rx_frag_num,
1088 				 unsigned int assoc_len,
1089 				 u32 ret_iv_len, unsigned int resp_len,
1090 				 unsigned int digestsize, u32 stat_pad_len)
1091 {
1092 	struct spu_hw *spu = &iproc_priv.spu;
1093 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1094 	struct iproc_ctx_s *ctx = rctx->ctx;
1095 	u32 datalen;		/* Number of bytes of response data expected */
1096 	u32 assoc_buf_len;
1097 	u8 data_padlen = 0;
1098 
1099 	if (ctx->is_rfc4543) {
1100 		/* RFC4543: only pad after data, not after AAD */
1101 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1102 							  assoc_len + resp_len);
1103 		assoc_buf_len = assoc_len;
1104 	} else {
1105 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1106 							  resp_len);
1107 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1108 						assoc_len, ret_iv_len,
1109 						rctx->is_encrypt);
1110 	}
1111 
1112 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1113 		/* ICV (after data) must be in the next 32-bit word for CCM */
1114 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1115 							 resp_len +
1116 							 data_padlen);
1117 
1118 	if (data_padlen)
1119 		/* have to catch gcm pad in separate buffer */
1120 		rx_frag_num++;
1121 
1122 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1123 				rctx->gfp);
1124 	if (!mssg->spu.dst)
1125 		return -ENOMEM;
1126 
1127 	sg = mssg->spu.dst;
1128 	sg_init_table(sg, rx_frag_num);
1129 
1130 	/* Space for SPU message header */
1131 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1132 
1133 	if (assoc_buf_len) {
1134 		/*
1135 		 * Don't write directly to req->dst, because SPU may pad the
1136 		 * assoc data in the response
1137 		 */
1138 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1139 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1140 	}
1141 
1142 	if (resp_len) {
1143 		/*
1144 		 * Copy in each dst sg entry from request, up to chunksize.
1145 		 * dst sg catches just the data. digest caught in separate buf.
1146 		 */
1147 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1148 					 rctx->dst_nents, resp_len);
1149 		if (datalen < (resp_len)) {
1150 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1151 			       __func__, resp_len, datalen);
1152 			return -EFAULT;
1153 		}
1154 	}
1155 
1156 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1157 	if (data_padlen) {
1158 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1159 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1160 	}
1161 
1162 	/* Always catch ICV in separate buffer */
1163 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1164 
1165 	flow_log("stat_pad_len %u\n", stat_pad_len);
1166 	if (stat_pad_len) {
1167 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1168 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1169 	}
1170 
1171 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1172 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1179  * SPU request message for an AEAD request. Includes SPU message headers and the
1180  * request data.
1181  * @mssg:	mailbox message containing the transmit sg
1182  * @rctx:	crypto request context
1183  * @tx_frag_num: number of scatterlist elements required to construct the
1184  *		SPU request message
1185  * @spu_hdr_len: length of SPU message header in bytes
1186  * @assoc:	crypto API associated data scatterlist
1187  * @assoc_len:	length of associated data
1188  * @assoc_nents: number of scatterlist entries containing assoc data
1189  * @aead_iv_len: length of AEAD IV, if included
1190  * @chunksize:	Number of bytes of request data
1191  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1192  * @pad_len:	Number of pad bytes
1193  * @incl_icv:	If true, write separate ICV buffer after data and
1194  *              any padding
1195  *
1196  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1197  * when the request completes, whether the request is handled successfully or
1198  * there is an error.
1199  *
1200  * Return:
1201  *   0 if successful
1202  *   < 0 if an error
1203  */
1204 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1205 				 struct iproc_reqctx_s *rctx,
1206 				 u8 tx_frag_num,
1207 				 u32 spu_hdr_len,
1208 				 struct scatterlist *assoc,
1209 				 unsigned int assoc_len,
1210 				 int assoc_nents,
1211 				 unsigned int aead_iv_len,
1212 				 unsigned int chunksize,
1213 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1214 {
1215 	struct spu_hw *spu = &iproc_priv.spu;
1216 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1217 	struct scatterlist *assoc_sg = assoc;
1218 	struct iproc_ctx_s *ctx = rctx->ctx;
1219 	u32 datalen;		/* Number of bytes of data to write */
1220 	u32 written;		/* Number of bytes of data written */
1221 	u32 assoc_offset = 0;
1222 	u32 stat_len;
1223 
1224 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1225 				rctx->gfp);
1226 	if (!mssg->spu.src)
1227 		return -ENOMEM;
1228 
1229 	sg = mssg->spu.src;
1230 	sg_init_table(sg, tx_frag_num);
1231 
1232 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1233 		   BCM_HDR_LEN + spu_hdr_len);
1234 
1235 	if (assoc_len) {
1236 		/* Copy in each associated data sg entry from request */
1237 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1238 					 assoc_nents, assoc_len);
1239 		if (written < assoc_len) {
1240 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1241 			       __func__);
1242 			return -EFAULT;
1243 		}
1244 	}
1245 
1246 	if (aead_iv_len)
1247 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1248 
1249 	if (aad_pad_len) {
1250 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1251 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1252 	}
1253 
1254 	datalen = chunksize;
1255 	if ((chunksize > ctx->digestsize) && incl_icv)
1256 		datalen -= ctx->digestsize;
1257 	if (datalen) {
1258 		/* For aead, a single msg should consume the entire src sg */
1259 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1260 					 rctx->src_nents, datalen);
1261 		if (written < datalen) {
1262 			pr_err("%s(): failed to copy src sg to mbox msg",
1263 			       __func__);
1264 			return -EFAULT;
1265 		}
1266 	}
1267 
1268 	if (pad_len) {
1269 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1270 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1271 	}
1272 
1273 	if (incl_icv)
1274 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1275 
1276 	stat_len = spu->spu_tx_status_len();
1277 	if (stat_len) {
1278 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1279 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1280 	}
1281 	return 0;
1282 }
1283 
1284 /**
1285  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1286  * current AEAD request.
1287  * @rctx:  Crypto request context
1288  *
1289  * Unlike other operation types, we assume the length of the request fits in
1290  * a single SPU request message. aead_enqueue() makes sure this is true.
1291  * Comments for other op types regarding threads applies here as well.
1292  *
1293  * Unlike incremental hash ops, where the spu returns the entire hash for
1294  * truncated algs like sha-224, the SPU returns just the truncated hash in
1295  * response to aead requests. So digestsize is always ctx->digestsize here.
1296  *
1297  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1298  *			 returned asynchronously
1299  *         Any other value indicates an error
1300  */
1301 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1302 {
1303 	struct spu_hw *spu = &iproc_priv.spu;
1304 	struct crypto_async_request *areq = rctx->parent;
1305 	struct aead_request *req = container_of(areq,
1306 						struct aead_request, base);
1307 	struct iproc_ctx_s *ctx = rctx->ctx;
1308 	int err;
1309 	unsigned int chunksize;
1310 	unsigned int resp_len;
1311 	u32 spu_hdr_len;
1312 	u32 db_size;
1313 	u32 stat_pad_len;
1314 	u32 pad_len;
1315 	struct brcm_message *mssg;	/* mailbox message */
1316 	struct spu_request_opts req_opts;
1317 	struct spu_cipher_parms cipher_parms;
1318 	struct spu_hash_parms hash_parms;
1319 	struct spu_aead_parms aead_parms;
1320 	int assoc_nents = 0;
1321 	bool incl_icv = false;
1322 	unsigned int digestsize = ctx->digestsize;
1323 	int retry_cnt = 0;
1324 
1325 	/* number of entries in src and dst sg. Always includes SPU msg header.
1326 	 */
1327 	u8 rx_frag_num = 2;	/* and STATUS */
1328 	u8 tx_frag_num = 1;
1329 
1330 	/* doing the whole thing at once */
1331 	chunksize = rctx->total_todo;
1332 
1333 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1334 
1335 	memset(&req_opts, 0, sizeof(req_opts));
1336 	memset(&hash_parms, 0, sizeof(hash_parms));
1337 	memset(&aead_parms, 0, sizeof(aead_parms));
1338 
1339 	req_opts.is_inbound = !(rctx->is_encrypt);
1340 	req_opts.auth_first = ctx->auth_first;
1341 	req_opts.is_aead = true;
1342 	req_opts.is_esp = ctx->is_esp;
1343 
1344 	cipher_parms.alg = ctx->cipher.alg;
1345 	cipher_parms.mode = ctx->cipher.mode;
1346 	cipher_parms.type = ctx->cipher_type;
1347 	cipher_parms.key_buf = ctx->enckey;
1348 	cipher_parms.key_len = ctx->enckeylen;
1349 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1350 	cipher_parms.iv_len = rctx->iv_ctr_len;
1351 
1352 	hash_parms.alg = ctx->auth.alg;
1353 	hash_parms.mode = ctx->auth.mode;
1354 	hash_parms.type = HASH_TYPE_NONE;
1355 	hash_parms.key_buf = (u8 *)ctx->authkey;
1356 	hash_parms.key_len = ctx->authkeylen;
1357 	hash_parms.digestsize = digestsize;
1358 
1359 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1360 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1361 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1362 
1363 	aead_parms.assoc_size = req->assoclen;
1364 	if (ctx->is_esp && !ctx->is_rfc4543) {
1365 		/*
1366 		 * 8-byte IV is included assoc data in request. SPU2
1367 		 * expects AAD to include just SPI and seqno. So
1368 		 * subtract off the IV len.
1369 		 */
1370 		aead_parms.assoc_size -= GCM_ESP_IV_SIZE;
1371 
1372 		if (rctx->is_encrypt) {
1373 			aead_parms.return_iv = true;
1374 			aead_parms.ret_iv_len = GCM_ESP_IV_SIZE;
1375 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1376 		}
1377 	} else {
1378 		aead_parms.ret_iv_len = 0;
1379 	}
1380 
1381 	/*
1382 	 * Count number of sg entries from the crypto API request that are to
1383 	 * be included in this mailbox message. For dst sg, don't count space
1384 	 * for digest. Digest gets caught in a separate buffer and copied back
1385 	 * to dst sg when processing response.
1386 	 */
1387 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1388 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1389 	if (aead_parms.assoc_size)
1390 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1391 					   aead_parms.assoc_size);
1392 
1393 	mssg = &rctx->mb_mssg;
1394 
1395 	rctx->total_sent = chunksize;
1396 	rctx->src_sent = chunksize;
1397 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1398 				    aead_parms.assoc_size,
1399 				    aead_parms.ret_iv_len,
1400 				    rctx->is_encrypt))
1401 		rx_frag_num++;
1402 
1403 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1404 						rctx->iv_ctr_len);
1405 
1406 	if (ctx->auth.alg == HASH_ALG_AES)
1407 		hash_parms.type = ctx->cipher_type;
1408 
1409 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1410 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1411 						 aead_parms.assoc_size);
1412 
1413 	/* General case data padding (CCM decrypt special case below) */
1414 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1415 							   chunksize);
1416 
1417 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1418 		/*
1419 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1420 		 * 128-bit aligned
1421 		 */
1422 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1423 					 ctx->cipher.mode,
1424 					 aead_parms.assoc_size + 2);
1425 
1426 		/*
1427 		 * And when decrypting CCM, need to pad without including
1428 		 * size of ICV which is tacked on to end of chunk
1429 		 */
1430 		if (!rctx->is_encrypt)
1431 			aead_parms.data_pad_len =
1432 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1433 							chunksize - digestsize);
1434 
1435 		/* CCM also requires software to rewrite portions of IV: */
1436 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1437 				       chunksize, rctx->is_encrypt,
1438 				       ctx->is_esp);
1439 	}
1440 
1441 	if (ctx->is_rfc4543) {
1442 		/*
1443 		 * RFC4543: data is included in AAD, so don't pad after AAD
1444 		 * and pad data based on both AAD + data size
1445 		 */
1446 		aead_parms.aad_pad_len = 0;
1447 		if (!rctx->is_encrypt)
1448 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1449 					ctx->cipher.mode,
1450 					aead_parms.assoc_size + chunksize -
1451 					digestsize);
1452 		else
1453 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 					ctx->cipher.mode,
1455 					aead_parms.assoc_size + chunksize);
1456 
1457 		req_opts.is_rfc4543 = true;
1458 	}
1459 
1460 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1461 		incl_icv = true;
1462 		tx_frag_num++;
1463 		/* Copy ICV from end of src scatterlist to digest buf */
1464 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1465 				    req->assoclen + rctx->total_sent -
1466 				    digestsize);
1467 	}
1468 
1469 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1470 
1471 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1472 
1473 	/* Prepend SPU header with type 3 BCM header */
1474 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1475 
1476 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1477 					      BCM_HDR_LEN, &req_opts,
1478 					      &cipher_parms, &hash_parms,
1479 					      &aead_parms, chunksize);
1480 
1481 	/* Determine total length of padding. Put all padding in one buffer. */
1482 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1483 				   chunksize, aead_parms.aad_pad_len,
1484 				   aead_parms.data_pad_len, 0);
1485 
1486 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1487 
1488 	if (stat_pad_len)
1489 		rx_frag_num++;
1490 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1491 	if (pad_len) {
1492 		tx_frag_num++;
1493 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1494 				     aead_parms.data_pad_len, 0,
1495 				     ctx->auth.alg, ctx->auth.mode,
1496 				     rctx->total_sent, stat_pad_len);
1497 	}
1498 
1499 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1500 			      spu_hdr_len);
1501 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1502 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1503 	packet_log("BD:\n");
1504 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1505 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1506 
1507 	/*
1508 	 * Build mailbox message containing SPU request msg and rx buffers
1509 	 * to catch response message
1510 	 */
1511 	memset(mssg, 0, sizeof(*mssg));
1512 	mssg->type = BRCM_MESSAGE_SPU;
1513 	mssg->ctx = rctx;	/* Will be returned in response */
1514 
1515 	/* Create rx scatterlist to catch result */
1516 	rx_frag_num += rctx->dst_nents;
1517 	resp_len = chunksize;
1518 
1519 	/*
1520 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1521 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1522 	 * sends entire digest back.
1523 	 */
1524 	rx_frag_num++;
1525 
1526 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1527 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1528 		/*
1529 		 * Input is ciphertxt plus ICV, but ICV not incl
1530 		 * in output.
1531 		 */
1532 		resp_len -= ctx->digestsize;
1533 		if (resp_len == 0)
1534 			/* no rx frags to catch output data */
1535 			rx_frag_num -= rctx->dst_nents;
1536 	}
1537 
1538 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1539 				    aead_parms.assoc_size,
1540 				    aead_parms.ret_iv_len, resp_len, digestsize,
1541 				    stat_pad_len);
1542 	if (err)
1543 		return err;
1544 
1545 	/* Create tx scatterlist containing SPU request message */
1546 	tx_frag_num += rctx->src_nents;
1547 	tx_frag_num += assoc_nents;
1548 	if (aead_parms.aad_pad_len)
1549 		tx_frag_num++;
1550 	if (aead_parms.iv_len)
1551 		tx_frag_num++;
1552 	if (spu->spu_tx_status_len())
1553 		tx_frag_num++;
1554 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1555 				    rctx->assoc, aead_parms.assoc_size,
1556 				    assoc_nents, aead_parms.iv_len, chunksize,
1557 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1558 	if (err)
1559 		return err;
1560 
1561 	err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx], mssg);
1562 	if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
1563 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
1564 			/*
1565 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
1566 			 * not in atomic context and we can wait and try again.
1567 			 */
1568 			retry_cnt++;
1569 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
1570 			err = mbox_send_message(iproc_priv.mbox[rctx->chan_idx],
1571 						mssg);
1572 			atomic_inc(&iproc_priv.mb_no_spc);
1573 		}
1574 	}
1575 	if (err < 0) {
1576 		atomic_inc(&iproc_priv.mb_send_fail);
1577 		return err;
1578 	}
1579 
1580 	return -EINPROGRESS;
1581 }
1582 
1583 /**
1584  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1585  * @rctx:  Crypto request context
1586  */
1587 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1588 {
1589 	struct spu_hw *spu = &iproc_priv.spu;
1590 	struct crypto_async_request *areq = rctx->parent;
1591 	struct aead_request *req = container_of(areq,
1592 						struct aead_request, base);
1593 	struct iproc_ctx_s *ctx = rctx->ctx;
1594 	u32 payload_len;
1595 	unsigned int icv_offset;
1596 	u32 result_len;
1597 
1598 	/* See how much data was returned */
1599 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1600 	flow_log("payload_len %u\n", payload_len);
1601 
1602 	/* only count payload */
1603 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1604 
1605 	if (req->assoclen)
1606 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1607 			    req->assoclen);
1608 
1609 	/*
1610 	 * Copy the ICV back to the destination
1611 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1612 	 * API doesn't expect ICV in dst buffer.
1613 	 */
1614 	result_len = req->cryptlen;
1615 	if (rctx->is_encrypt) {
1616 		icv_offset = req->assoclen + rctx->total_sent;
1617 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1618 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1619 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1620 				      ctx->digestsize, icv_offset);
1621 		result_len += ctx->digestsize;
1622 	}
1623 
1624 	packet_log("response data:  ");
1625 	dump_sg(req->dst, req->assoclen, result_len);
1626 
1627 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1628 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1629 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1630 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1631 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1632 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1633 		else
1634 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1635 	} else {
1636 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1637 	}
1638 }
1639 
1640 /**
1641  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1642  * @rctx:  request context
1643  *
1644  * Mailbox scatterlists are allocated for each chunk. So free them after
1645  * processing each chunk.
1646  */
1647 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1648 {
1649 	/* mailbox message used to tx request */
1650 	struct brcm_message *mssg = &rctx->mb_mssg;
1651 
1652 	kfree(mssg->spu.src);
1653 	kfree(mssg->spu.dst);
1654 	memset(mssg, 0, sizeof(struct brcm_message));
1655 }
1656 
1657 /**
1658  * finish_req() - Used to invoke the complete callback from the requester when
1659  * a request has been handled asynchronously.
1660  * @rctx:  Request context
1661  * @err:   Indicates whether the request was successful or not
1662  *
1663  * Ensures that cleanup has been done for request
1664  */
1665 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1666 {
1667 	struct crypto_async_request *areq = rctx->parent;
1668 
1669 	flow_log("%s() err:%d\n\n", __func__, err);
1670 
1671 	/* No harm done if already called */
1672 	spu_chunk_cleanup(rctx);
1673 
1674 	if (areq)
1675 		areq->complete(areq, err);
1676 }
1677 
1678 /**
1679  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1680  * @cl:		mailbox client structure for SPU driver
1681  * @msg:	mailbox message containing SPU response
1682  */
1683 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1684 {
1685 	struct spu_hw *spu = &iproc_priv.spu;
1686 	struct brcm_message *mssg = msg;
1687 	struct iproc_reqctx_s *rctx;
1688 	struct iproc_ctx_s *ctx;
1689 	struct crypto_async_request *areq;
1690 	int err = 0;
1691 
1692 	rctx = mssg->ctx;
1693 	if (unlikely(!rctx)) {
1694 		/* This is fatal */
1695 		pr_err("%s(): no request context", __func__);
1696 		err = -EFAULT;
1697 		goto cb_finish;
1698 	}
1699 	areq = rctx->parent;
1700 	ctx = rctx->ctx;
1701 
1702 	/* process the SPU status */
1703 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1704 	if (err != 0) {
1705 		if (err == SPU_INVALID_ICV)
1706 			atomic_inc(&iproc_priv.bad_icv);
1707 		err = -EBADMSG;
1708 		goto cb_finish;
1709 	}
1710 
1711 	/* Process the SPU response message */
1712 	switch (rctx->ctx->alg->type) {
1713 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
1714 		handle_ablkcipher_resp(rctx);
1715 		break;
1716 	case CRYPTO_ALG_TYPE_AHASH:
1717 		handle_ahash_resp(rctx);
1718 		break;
1719 	case CRYPTO_ALG_TYPE_AEAD:
1720 		handle_aead_resp(rctx);
1721 		break;
1722 	default:
1723 		err = -EINVAL;
1724 		goto cb_finish;
1725 	}
1726 
1727 	/*
1728 	 * If this response does not complete the request, then send the next
1729 	 * request chunk.
1730 	 */
1731 	if (rctx->total_sent < rctx->total_todo) {
1732 		/* Deallocate anything specific to previous chunk */
1733 		spu_chunk_cleanup(rctx);
1734 
1735 		switch (rctx->ctx->alg->type) {
1736 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
1737 			err = handle_ablkcipher_req(rctx);
1738 			break;
1739 		case CRYPTO_ALG_TYPE_AHASH:
1740 			err = handle_ahash_req(rctx);
1741 			if (err == -EAGAIN)
1742 				/*
1743 				 * we saved data in hash carry, but tell crypto
1744 				 * API we successfully completed request.
1745 				 */
1746 				err = 0;
1747 			break;
1748 		case CRYPTO_ALG_TYPE_AEAD:
1749 			err = handle_aead_req(rctx);
1750 			break;
1751 		default:
1752 			err = -EINVAL;
1753 		}
1754 
1755 		if (err == -EINPROGRESS)
1756 			/* Successfully submitted request for next chunk */
1757 			return;
1758 	}
1759 
1760 cb_finish:
1761 	finish_req(rctx, err);
1762 }
1763 
1764 /* ==================== Kernel Cryptographic API ==================== */
1765 
1766 /**
1767  * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1768  * @req:	Crypto API request
1769  * @encrypt:	true if encrypting; false if decrypting
1770  *
1771  * Return: -EINPROGRESS if request accepted and result will be returned
1772  *			asynchronously
1773  *	   < 0 if an error
1774  */
1775 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1776 {
1777 	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1778 	struct iproc_ctx_s *ctx =
1779 	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1780 	int err;
1781 
1782 	flow_log("%s() enc:%u\n", __func__, encrypt);
1783 
1784 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1785 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1786 	rctx->parent = &req->base;
1787 	rctx->is_encrypt = encrypt;
1788 	rctx->bd_suppress = false;
1789 	rctx->total_todo = req->nbytes;
1790 	rctx->src_sent = 0;
1791 	rctx->total_sent = 0;
1792 	rctx->total_received = 0;
1793 	rctx->ctx = ctx;
1794 
1795 	/* Initialize current position in src and dst scatterlists */
1796 	rctx->src_sg = req->src;
1797 	rctx->src_nents = 0;
1798 	rctx->src_skip = 0;
1799 	rctx->dst_sg = req->dst;
1800 	rctx->dst_nents = 0;
1801 	rctx->dst_skip = 0;
1802 
1803 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1804 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1805 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1806 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1807 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1808 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1809 		rctx->iv_ctr_len =
1810 		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1811 		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1812 	} else {
1813 		rctx->iv_ctr_len = 0;
1814 	}
1815 
1816 	/* Choose a SPU to process this request */
1817 	rctx->chan_idx = select_channel();
1818 	err = handle_ablkcipher_req(rctx);
1819 	if (err != -EINPROGRESS)
1820 		/* synchronous result */
1821 		spu_chunk_cleanup(rctx);
1822 
1823 	return err;
1824 }
1825 
1826 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1827 		      unsigned int keylen)
1828 {
1829 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1830 	u32 tmp[DES_EXPKEY_WORDS];
1831 
1832 	if (keylen == DES_KEY_SIZE) {
1833 		if (des_ekey(tmp, key) == 0) {
1834 			if (crypto_ablkcipher_get_flags(cipher) &
1835 			    CRYPTO_TFM_REQ_WEAK_KEY) {
1836 				u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1837 
1838 				crypto_ablkcipher_set_flags(cipher, flags);
1839 				return -EINVAL;
1840 			}
1841 		}
1842 
1843 		ctx->cipher_type = CIPHER_TYPE_DES;
1844 	} else {
1845 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1846 		return -EINVAL;
1847 	}
1848 	return 0;
1849 }
1850 
1851 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1852 			   unsigned int keylen)
1853 {
1854 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1855 
1856 	if (keylen == (DES_KEY_SIZE * 3)) {
1857 		const u32 *K = (const u32 *)key;
1858 		u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1859 
1860 		if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1861 		    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1862 			crypto_ablkcipher_set_flags(cipher, flags);
1863 			return -EINVAL;
1864 		}
1865 
1866 		ctx->cipher_type = CIPHER_TYPE_3DES;
1867 	} else {
1868 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1869 		return -EINVAL;
1870 	}
1871 	return 0;
1872 }
1873 
1874 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1875 		      unsigned int keylen)
1876 {
1877 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1878 
1879 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1880 		/* XTS includes two keys of equal length */
1881 		keylen = keylen / 2;
1882 
1883 	switch (keylen) {
1884 	case AES_KEYSIZE_128:
1885 		ctx->cipher_type = CIPHER_TYPE_AES128;
1886 		break;
1887 	case AES_KEYSIZE_192:
1888 		ctx->cipher_type = CIPHER_TYPE_AES192;
1889 		break;
1890 	case AES_KEYSIZE_256:
1891 		ctx->cipher_type = CIPHER_TYPE_AES256;
1892 		break;
1893 	default:
1894 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1895 		return -EINVAL;
1896 	}
1897 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1898 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1899 	return 0;
1900 }
1901 
1902 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1903 		      unsigned int keylen)
1904 {
1905 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1906 	int i;
1907 
1908 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1909 
1910 	ctx->enckey[0] = 0x00;	/* 0x00 */
1911 	ctx->enckey[1] = 0x00;	/* i    */
1912 	ctx->enckey[2] = 0x00;	/* 0x00 */
1913 	ctx->enckey[3] = 0x00;	/* j    */
1914 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1915 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1916 
1917 	ctx->cipher_type = CIPHER_TYPE_INIT;
1918 
1919 	return 0;
1920 }
1921 
1922 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1923 			     unsigned int keylen)
1924 {
1925 	struct spu_hw *spu = &iproc_priv.spu;
1926 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1927 	struct spu_cipher_parms cipher_parms;
1928 	u32 alloc_len = 0;
1929 	int err;
1930 
1931 	flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1932 	flow_dump("  key: ", key, keylen);
1933 
1934 	switch (ctx->cipher.alg) {
1935 	case CIPHER_ALG_DES:
1936 		err = des_setkey(cipher, key, keylen);
1937 		break;
1938 	case CIPHER_ALG_3DES:
1939 		err = threedes_setkey(cipher, key, keylen);
1940 		break;
1941 	case CIPHER_ALG_AES:
1942 		err = aes_setkey(cipher, key, keylen);
1943 		break;
1944 	case CIPHER_ALG_RC4:
1945 		err = rc4_setkey(cipher, key, keylen);
1946 		break;
1947 	default:
1948 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1949 		err = -EINVAL;
1950 	}
1951 	if (err)
1952 		return err;
1953 
1954 	/* RC4 already populated ctx->enkey */
1955 	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1956 		memcpy(ctx->enckey, key, keylen);
1957 		ctx->enckeylen = keylen;
1958 	}
1959 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1960 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1961 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1962 		unsigned int xts_keylen = keylen / 2;
1963 
1964 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1965 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1966 	}
1967 
1968 	if (spu->spu_type == SPU_TYPE_SPUM)
1969 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1970 	else if (spu->spu_type == SPU_TYPE_SPU2)
1971 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1972 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1973 	cipher_parms.iv_buf = NULL;
1974 	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1975 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1976 
1977 	cipher_parms.alg = ctx->cipher.alg;
1978 	cipher_parms.mode = ctx->cipher.mode;
1979 	cipher_parms.type = ctx->cipher_type;
1980 	cipher_parms.key_buf = ctx->enckey;
1981 	cipher_parms.key_len = ctx->enckeylen;
1982 
1983 	/* Prepend SPU request message with BCM header */
1984 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1985 	ctx->spu_req_hdr_len =
1986 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1987 				     &cipher_parms);
1988 
1989 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1990 							  ctx->enckeylen,
1991 							  false);
1992 
1993 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1994 
1995 	return 0;
1996 }
1997 
1998 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1999 {
2000 	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
2001 
2002 	return ablkcipher_enqueue(req, true);
2003 }
2004 
2005 static int ablkcipher_decrypt(struct ablkcipher_request *req)
2006 {
2007 	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
2008 	return ablkcipher_enqueue(req, false);
2009 }
2010 
2011 static int ahash_enqueue(struct ahash_request *req)
2012 {
2013 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2014 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2015 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2016 	int err = 0;
2017 	const char *alg_name;
2018 
2019 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2020 
2021 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2022 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2023 	rctx->parent = &req->base;
2024 	rctx->ctx = ctx;
2025 	rctx->bd_suppress = true;
2026 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2027 
2028 	/* Initialize position in src scatterlist */
2029 	rctx->src_sg = req->src;
2030 	rctx->src_skip = 0;
2031 	rctx->src_nents = 0;
2032 	rctx->dst_sg = NULL;
2033 	rctx->dst_skip = 0;
2034 	rctx->dst_nents = 0;
2035 
2036 	/* SPU2 hardware does not compute hash of zero length data */
2037 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2038 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2039 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2040 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
2041 			 rctx->is_final ? "" : "non-", alg_name);
2042 		err = do_shash((unsigned char *)alg_name, req->result,
2043 			       NULL, 0, NULL, 0, ctx->authkey,
2044 			       ctx->authkeylen);
2045 		if (err < 0)
2046 			flow_log("Hash request failed with error %d\n", err);
2047 		return err;
2048 	}
2049 	/* Choose a SPU to process this request */
2050 	rctx->chan_idx = select_channel();
2051 
2052 	err = handle_ahash_req(rctx);
2053 	if (err != -EINPROGRESS)
2054 		/* synchronous result */
2055 		spu_chunk_cleanup(rctx);
2056 
2057 	if (err == -EAGAIN)
2058 		/*
2059 		 * we saved data in hash carry, but tell crypto API
2060 		 * we successfully completed request.
2061 		 */
2062 		err = 0;
2063 
2064 	return err;
2065 }
2066 
2067 static int __ahash_init(struct ahash_request *req)
2068 {
2069 	struct spu_hw *spu = &iproc_priv.spu;
2070 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2071 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2072 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2073 
2074 	flow_log("%s()\n", __func__);
2075 
2076 	/* Initialize the context */
2077 	rctx->hash_carry_len = 0;
2078 	rctx->is_final = 0;
2079 
2080 	rctx->total_todo = 0;
2081 	rctx->src_sent = 0;
2082 	rctx->total_sent = 0;
2083 	rctx->total_received = 0;
2084 
2085 	ctx->digestsize = crypto_ahash_digestsize(tfm);
2086 	/* If we add a hash whose digest is larger, catch it here. */
2087 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2088 
2089 	rctx->is_sw_hmac = false;
2090 
2091 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2092 							  true);
2093 
2094 	return 0;
2095 }
2096 
2097 /**
2098  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2099  * @ctx:  Crypto session context
2100  *
2101  * SPU-2 does not support incremental hashing (we'll have to revisit and
2102  * condition based on chip revision or device tree entry if future versions do
2103  * support incremental hash)
2104  *
2105  * SPU-M also doesn't support incremental hashing of AES-XCBC
2106  *
2107  * Return: true if incremental hashing is not supported
2108  *         false otherwise
2109  */
2110 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2111 {
2112 	struct spu_hw *spu = &iproc_priv.spu;
2113 
2114 	if (spu->spu_type == SPU_TYPE_SPU2)
2115 		return true;
2116 
2117 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2118 	    (ctx->auth.mode == HASH_MODE_XCBC))
2119 		return true;
2120 
2121 	/* Otherwise, incremental hashing is supported */
2122 	return false;
2123 }
2124 
2125 static int ahash_init(struct ahash_request *req)
2126 {
2127 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2128 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2129 	const char *alg_name;
2130 	struct crypto_shash *hash;
2131 	int ret;
2132 	gfp_t gfp;
2133 
2134 	if (spu_no_incr_hash(ctx)) {
2135 		/*
2136 		 * If we get an incremental hashing request and it's not
2137 		 * supported by the hardware, we need to handle it in software
2138 		 * by calling synchronous hash functions.
2139 		 */
2140 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2141 		hash = crypto_alloc_shash(alg_name, 0, 0);
2142 		if (IS_ERR(hash)) {
2143 			ret = PTR_ERR(hash);
2144 			goto err;
2145 		}
2146 
2147 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2148 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2149 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2150 				     crypto_shash_descsize(hash), gfp);
2151 		if (!ctx->shash) {
2152 			ret = -ENOMEM;
2153 			goto err_hash;
2154 		}
2155 		ctx->shash->tfm = hash;
2156 		ctx->shash->flags = 0;
2157 
2158 		/* Set the key using data we already have from setkey */
2159 		if (ctx->authkeylen > 0) {
2160 			ret = crypto_shash_setkey(hash, ctx->authkey,
2161 						  ctx->authkeylen);
2162 			if (ret)
2163 				goto err_shash;
2164 		}
2165 
2166 		/* Initialize hash w/ this key and other params */
2167 		ret = crypto_shash_init(ctx->shash);
2168 		if (ret)
2169 			goto err_shash;
2170 	} else {
2171 		/* Otherwise call the internal function which uses SPU hw */
2172 		ret = __ahash_init(req);
2173 	}
2174 
2175 	return ret;
2176 
2177 err_shash:
2178 	kfree(ctx->shash);
2179 err_hash:
2180 	crypto_free_shash(hash);
2181 err:
2182 	return ret;
2183 }
2184 
2185 static int __ahash_update(struct ahash_request *req)
2186 {
2187 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2188 
2189 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2190 
2191 	if (!req->nbytes)
2192 		return 0;
2193 	rctx->total_todo += req->nbytes;
2194 	rctx->src_sent = 0;
2195 
2196 	return ahash_enqueue(req);
2197 }
2198 
2199 static int ahash_update(struct ahash_request *req)
2200 {
2201 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2202 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2203 	u8 *tmpbuf;
2204 	int ret;
2205 	int nents;
2206 	gfp_t gfp;
2207 
2208 	if (spu_no_incr_hash(ctx)) {
2209 		/*
2210 		 * If we get an incremental hashing request and it's not
2211 		 * supported by the hardware, we need to handle it in software
2212 		 * by calling synchronous hash functions.
2213 		 */
2214 		if (req->src)
2215 			nents = sg_nents(req->src);
2216 		else
2217 			return -EINVAL;
2218 
2219 		/* Copy data from req scatterlist to tmp buffer */
2220 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2221 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2222 		tmpbuf = kmalloc(req->nbytes, gfp);
2223 		if (!tmpbuf)
2224 			return -ENOMEM;
2225 
2226 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2227 				req->nbytes) {
2228 			kfree(tmpbuf);
2229 			return -EINVAL;
2230 		}
2231 
2232 		/* Call synchronous update */
2233 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2234 		kfree(tmpbuf);
2235 	} else {
2236 		/* Otherwise call the internal function which uses SPU hw */
2237 		ret = __ahash_update(req);
2238 	}
2239 
2240 	return ret;
2241 }
2242 
2243 static int __ahash_final(struct ahash_request *req)
2244 {
2245 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2246 
2247 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2248 
2249 	rctx->is_final = 1;
2250 
2251 	return ahash_enqueue(req);
2252 }
2253 
2254 static int ahash_final(struct ahash_request *req)
2255 {
2256 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2257 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2258 	int ret;
2259 
2260 	if (spu_no_incr_hash(ctx)) {
2261 		/*
2262 		 * If we get an incremental hashing request and it's not
2263 		 * supported by the hardware, we need to handle it in software
2264 		 * by calling synchronous hash functions.
2265 		 */
2266 		ret = crypto_shash_final(ctx->shash, req->result);
2267 
2268 		/* Done with hash, can deallocate it now */
2269 		crypto_free_shash(ctx->shash->tfm);
2270 		kfree(ctx->shash);
2271 
2272 	} else {
2273 		/* Otherwise call the internal function which uses SPU hw */
2274 		ret = __ahash_final(req);
2275 	}
2276 
2277 	return ret;
2278 }
2279 
2280 static int __ahash_finup(struct ahash_request *req)
2281 {
2282 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2283 
2284 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2285 
2286 	rctx->total_todo += req->nbytes;
2287 	rctx->src_sent = 0;
2288 	rctx->is_final = 1;
2289 
2290 	return ahash_enqueue(req);
2291 }
2292 
2293 static int ahash_finup(struct ahash_request *req)
2294 {
2295 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2296 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2297 	u8 *tmpbuf;
2298 	int ret;
2299 	int nents;
2300 	gfp_t gfp;
2301 
2302 	if (spu_no_incr_hash(ctx)) {
2303 		/*
2304 		 * If we get an incremental hashing request and it's not
2305 		 * supported by the hardware, we need to handle it in software
2306 		 * by calling synchronous hash functions.
2307 		 */
2308 		if (req->src) {
2309 			nents = sg_nents(req->src);
2310 		} else {
2311 			ret = -EINVAL;
2312 			goto ahash_finup_exit;
2313 		}
2314 
2315 		/* Copy data from req scatterlist to tmp buffer */
2316 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2317 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2318 		tmpbuf = kmalloc(req->nbytes, gfp);
2319 		if (!tmpbuf) {
2320 			ret = -ENOMEM;
2321 			goto ahash_finup_exit;
2322 		}
2323 
2324 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2325 				req->nbytes) {
2326 			ret = -EINVAL;
2327 			goto ahash_finup_free;
2328 		}
2329 
2330 		/* Call synchronous update */
2331 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2332 					 req->result);
2333 	} else {
2334 		/* Otherwise call the internal function which uses SPU hw */
2335 		return __ahash_finup(req);
2336 	}
2337 ahash_finup_free:
2338 	kfree(tmpbuf);
2339 
2340 ahash_finup_exit:
2341 	/* Done with hash, can deallocate it now */
2342 	crypto_free_shash(ctx->shash->tfm);
2343 	kfree(ctx->shash);
2344 	return ret;
2345 }
2346 
2347 static int ahash_digest(struct ahash_request *req)
2348 {
2349 	int err = 0;
2350 
2351 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2352 
2353 	/* whole thing at once */
2354 	err = __ahash_init(req);
2355 	if (!err)
2356 		err = __ahash_finup(req);
2357 
2358 	return err;
2359 }
2360 
2361 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2362 			unsigned int keylen)
2363 {
2364 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2365 
2366 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2367 		 __func__, ahash, key, keylen);
2368 	flow_dump("  key: ", key, keylen);
2369 
2370 	if (ctx->auth.alg == HASH_ALG_AES) {
2371 		switch (keylen) {
2372 		case AES_KEYSIZE_128:
2373 			ctx->cipher_type = CIPHER_TYPE_AES128;
2374 			break;
2375 		case AES_KEYSIZE_192:
2376 			ctx->cipher_type = CIPHER_TYPE_AES192;
2377 			break;
2378 		case AES_KEYSIZE_256:
2379 			ctx->cipher_type = CIPHER_TYPE_AES256;
2380 			break;
2381 		default:
2382 			pr_err("%s() Error: Invalid key length\n", __func__);
2383 			return -EINVAL;
2384 		}
2385 	} else {
2386 		pr_err("%s() Error: unknown hash alg\n", __func__);
2387 		return -EINVAL;
2388 	}
2389 	memcpy(ctx->authkey, key, keylen);
2390 	ctx->authkeylen = keylen;
2391 
2392 	return 0;
2393 }
2394 
2395 static int ahash_export(struct ahash_request *req, void *out)
2396 {
2397 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2398 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2399 
2400 	spu_exp->total_todo = rctx->total_todo;
2401 	spu_exp->total_sent = rctx->total_sent;
2402 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2403 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2404 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2405 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2406 
2407 	return 0;
2408 }
2409 
2410 static int ahash_import(struct ahash_request *req, const void *in)
2411 {
2412 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2413 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2414 
2415 	rctx->total_todo = spu_exp->total_todo;
2416 	rctx->total_sent = spu_exp->total_sent;
2417 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2418 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2419 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2420 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2421 
2422 	return 0;
2423 }
2424 
2425 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2426 			     unsigned int keylen)
2427 {
2428 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2429 	unsigned int blocksize =
2430 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2431 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2432 	unsigned int index;
2433 	int rc;
2434 
2435 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2436 		 __func__, ahash, key, keylen, blocksize, digestsize);
2437 	flow_dump("  key: ", key, keylen);
2438 
2439 	if (keylen > blocksize) {
2440 		switch (ctx->auth.alg) {
2441 		case HASH_ALG_MD5:
2442 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2443 				      0, NULL, 0);
2444 			break;
2445 		case HASH_ALG_SHA1:
2446 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2447 				      0, NULL, 0);
2448 			break;
2449 		case HASH_ALG_SHA224:
2450 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2451 				      0, NULL, 0);
2452 			break;
2453 		case HASH_ALG_SHA256:
2454 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2455 				      0, NULL, 0);
2456 			break;
2457 		case HASH_ALG_SHA384:
2458 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2459 				      0, NULL, 0);
2460 			break;
2461 		case HASH_ALG_SHA512:
2462 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2463 				      0, NULL, 0);
2464 			break;
2465 		case HASH_ALG_SHA3_224:
2466 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2467 				      NULL, 0, NULL, 0);
2468 			break;
2469 		case HASH_ALG_SHA3_256:
2470 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2471 				      NULL, 0, NULL, 0);
2472 			break;
2473 		case HASH_ALG_SHA3_384:
2474 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2475 				      NULL, 0, NULL, 0);
2476 			break;
2477 		case HASH_ALG_SHA3_512:
2478 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2479 				      NULL, 0, NULL, 0);
2480 			break;
2481 		default:
2482 			pr_err("%s() Error: unknown hash alg\n", __func__);
2483 			return -EINVAL;
2484 		}
2485 		if (rc < 0) {
2486 			pr_err("%s() Error %d computing shash for %s\n",
2487 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2488 			return rc;
2489 		}
2490 		ctx->authkeylen = digestsize;
2491 
2492 		flow_log("  keylen > digestsize... hashed\n");
2493 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2494 	} else {
2495 		memcpy(ctx->authkey, key, keylen);
2496 		ctx->authkeylen = keylen;
2497 	}
2498 
2499 	/*
2500 	 * Full HMAC operation in SPUM is not verified,
2501 	 * So keeping the generation of IPAD, OPAD and
2502 	 * outer hashing in software.
2503 	 */
2504 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2505 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2506 		memset(ctx->ipad + ctx->authkeylen, 0,
2507 		       blocksize - ctx->authkeylen);
2508 		ctx->authkeylen = 0;
2509 		memcpy(ctx->opad, ctx->ipad, blocksize);
2510 
2511 		for (index = 0; index < blocksize; index++) {
2512 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2513 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2514 		}
2515 
2516 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2517 		flow_dump("  opad: ", ctx->opad, blocksize);
2518 	}
2519 	ctx->digestsize = digestsize;
2520 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2521 
2522 	return 0;
2523 }
2524 
2525 static int ahash_hmac_init(struct ahash_request *req)
2526 {
2527 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2528 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2529 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2530 	unsigned int blocksize =
2531 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2532 
2533 	flow_log("ahash_hmac_init()\n");
2534 
2535 	/* init the context as a hash */
2536 	ahash_init(req);
2537 
2538 	if (!spu_no_incr_hash(ctx)) {
2539 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2540 		rctx->is_sw_hmac = true;
2541 		ctx->auth.mode = HASH_MODE_HASH;
2542 		/* start with a prepended ipad */
2543 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2544 		rctx->hash_carry_len = blocksize;
2545 		rctx->total_todo += blocksize;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static int ahash_hmac_update(struct ahash_request *req)
2552 {
2553 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2554 
2555 	if (!req->nbytes)
2556 		return 0;
2557 
2558 	return ahash_update(req);
2559 }
2560 
2561 static int ahash_hmac_final(struct ahash_request *req)
2562 {
2563 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2564 
2565 	return ahash_final(req);
2566 }
2567 
2568 static int ahash_hmac_finup(struct ahash_request *req)
2569 {
2570 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2571 
2572 	return ahash_finup(req);
2573 }
2574 
2575 static int ahash_hmac_digest(struct ahash_request *req)
2576 {
2577 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2578 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2579 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2580 	unsigned int blocksize =
2581 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2582 
2583 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2584 
2585 	/* Perform initialization and then call finup */
2586 	__ahash_init(req);
2587 
2588 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2589 		/*
2590 		 * SPU2 supports full HMAC implementation in the
2591 		 * hardware, need not to generate IPAD, OPAD and
2592 		 * outer hash in software.
2593 		 * Only for hash key len > hash block size, SPU2
2594 		 * expects to perform hashing on the key, shorten
2595 		 * it to digest size and feed it as hash key.
2596 		 */
2597 		rctx->is_sw_hmac = false;
2598 		ctx->auth.mode = HASH_MODE_HMAC;
2599 	} else {
2600 		rctx->is_sw_hmac = true;
2601 		ctx->auth.mode = HASH_MODE_HASH;
2602 		/* start with a prepended ipad */
2603 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2604 		rctx->hash_carry_len = blocksize;
2605 		rctx->total_todo += blocksize;
2606 	}
2607 
2608 	return __ahash_finup(req);
2609 }
2610 
2611 /* aead helpers */
2612 
2613 static int aead_need_fallback(struct aead_request *req)
2614 {
2615 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2616 	struct spu_hw *spu = &iproc_priv.spu;
2617 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2618 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2619 	u32 payload_len;
2620 
2621 	/*
2622 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2623 	 * and AAD are both 0 bytes long. So use fallback in this case.
2624 	 */
2625 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2626 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2627 	    (req->assoclen == 0)) {
2628 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2629 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2630 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2631 			return 1;
2632 		}
2633 	}
2634 
2635 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2636 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2637 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2638 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2639 	    (ctx->digestsize != 16)) {
2640 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2641 			 __func__, ctx->digestsize);
2642 		return 1;
2643 	}
2644 
2645 	/*
2646 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2647 	 * when AAD size is 0
2648 	 */
2649 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2650 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2651 	    (req->assoclen == 0)) {
2652 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2653 			 __func__);
2654 		return 1;
2655 	}
2656 
2657 	payload_len = req->cryptlen;
2658 	if (spu->spu_type == SPU_TYPE_SPUM)
2659 		payload_len += req->assoclen;
2660 
2661 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2662 
2663 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2664 		return 0;
2665 	else
2666 		return payload_len > ctx->max_payload;
2667 }
2668 
2669 static void aead_complete(struct crypto_async_request *areq, int err)
2670 {
2671 	struct aead_request *req =
2672 	    container_of(areq, struct aead_request, base);
2673 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2674 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2675 
2676 	flow_log("%s() err:%d\n", __func__, err);
2677 
2678 	areq->tfm = crypto_aead_tfm(aead);
2679 
2680 	areq->complete = rctx->old_complete;
2681 	areq->data = rctx->old_data;
2682 
2683 	areq->complete(areq, err);
2684 }
2685 
2686 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2687 {
2688 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2689 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2690 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2691 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2692 	int err;
2693 	u32 req_flags;
2694 
2695 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2696 
2697 	if (ctx->fallback_cipher) {
2698 		/* Store the cipher tfm and then use the fallback tfm */
2699 		rctx->old_tfm = tfm;
2700 		aead_request_set_tfm(req, ctx->fallback_cipher);
2701 		/*
2702 		 * Save the callback and chain ourselves in, so we can restore
2703 		 * the tfm
2704 		 */
2705 		rctx->old_complete = req->base.complete;
2706 		rctx->old_data = req->base.data;
2707 		req_flags = aead_request_flags(req);
2708 		aead_request_set_callback(req, req_flags, aead_complete, req);
2709 		err = is_encrypt ? crypto_aead_encrypt(req) :
2710 		    crypto_aead_decrypt(req);
2711 
2712 		if (err == 0) {
2713 			/*
2714 			 * fallback was synchronous (did not return
2715 			 * -EINPROGRESS). So restore request state here.
2716 			 */
2717 			aead_request_set_callback(req, req_flags,
2718 						  rctx->old_complete, req);
2719 			req->base.data = rctx->old_data;
2720 			aead_request_set_tfm(req, aead);
2721 			flow_log("%s() fallback completed successfully\n\n",
2722 				 __func__);
2723 		}
2724 	} else {
2725 		err = -EINVAL;
2726 	}
2727 
2728 	return err;
2729 }
2730 
2731 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2732 {
2733 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2734 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2735 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2736 	int err;
2737 
2738 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2739 
2740 	if (req->assoclen > MAX_ASSOC_SIZE) {
2741 		pr_err
2742 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2743 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2744 		return -EINVAL;
2745 	}
2746 
2747 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2748 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2749 	rctx->parent = &req->base;
2750 	rctx->is_encrypt = is_encrypt;
2751 	rctx->bd_suppress = false;
2752 	rctx->total_todo = req->cryptlen;
2753 	rctx->src_sent = 0;
2754 	rctx->total_sent = 0;
2755 	rctx->total_received = 0;
2756 	rctx->is_sw_hmac = false;
2757 	rctx->ctx = ctx;
2758 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2759 
2760 	/* assoc data is at start of src sg */
2761 	rctx->assoc = req->src;
2762 
2763 	/*
2764 	 * Init current position in src scatterlist to be after assoc data.
2765 	 * src_skip set to buffer offset where data begins. (Assoc data could
2766 	 * end in the middle of a buffer.)
2767 	 */
2768 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2769 			     &rctx->src_skip) < 0) {
2770 		pr_err("%s() Error: Unable to find start of src data\n",
2771 		       __func__);
2772 		return -EINVAL;
2773 	}
2774 
2775 	rctx->src_nents = 0;
2776 	rctx->dst_nents = 0;
2777 	if (req->dst == req->src) {
2778 		rctx->dst_sg = rctx->src_sg;
2779 		rctx->dst_skip = rctx->src_skip;
2780 	} else {
2781 		/*
2782 		 * Expect req->dst to have room for assoc data followed by
2783 		 * output data and ICV, if encrypt. So initialize dst_sg
2784 		 * to point beyond assoc len offset.
2785 		 */
2786 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2787 				     &rctx->dst_skip) < 0) {
2788 			pr_err("%s() Error: Unable to find start of dst data\n",
2789 			       __func__);
2790 			return -EINVAL;
2791 		}
2792 	}
2793 
2794 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2795 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2796 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2797 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2798 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2799 		rctx->iv_ctr_len =
2800 			ctx->salt_len +
2801 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2802 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2803 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2804 	} else {
2805 		rctx->iv_ctr_len = 0;
2806 	}
2807 
2808 	rctx->hash_carry_len = 0;
2809 
2810 	flow_log("  src sg: %p\n", req->src);
2811 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2812 		 rctx->src_sg, rctx->src_skip);
2813 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2814 	flow_log("  dst sg: %p\n", req->dst);
2815 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2816 		 rctx->dst_sg, rctx->dst_skip);
2817 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2818 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2819 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2820 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2821 
2822 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2823 		flow_log("  max_payload infinite");
2824 	else
2825 		flow_log("  max_payload: %u\n", ctx->max_payload);
2826 
2827 	if (unlikely(aead_need_fallback(req)))
2828 		return aead_do_fallback(req, is_encrypt);
2829 
2830 	/*
2831 	 * Do memory allocations for request after fallback check, because if we
2832 	 * do fallback, we won't call finish_req() to dealloc.
2833 	 */
2834 	if (rctx->iv_ctr_len) {
2835 		if (ctx->salt_len)
2836 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2837 			       ctx->salt, ctx->salt_len);
2838 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2839 		       req->iv,
2840 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2841 	}
2842 
2843 	rctx->chan_idx = select_channel();
2844 	err = handle_aead_req(rctx);
2845 	if (err != -EINPROGRESS)
2846 		/* synchronous result */
2847 		spu_chunk_cleanup(rctx);
2848 
2849 	return err;
2850 }
2851 
2852 static int aead_authenc_setkey(struct crypto_aead *cipher,
2853 			       const u8 *key, unsigned int keylen)
2854 {
2855 	struct spu_hw *spu = &iproc_priv.spu;
2856 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2857 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2858 	struct rtattr *rta = (void *)key;
2859 	struct crypto_authenc_key_param *param;
2860 	const u8 *origkey = key;
2861 	const unsigned int origkeylen = keylen;
2862 
2863 	int ret = 0;
2864 
2865 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2866 		 keylen);
2867 	flow_dump("  key: ", key, keylen);
2868 
2869 	if (!RTA_OK(rta, keylen))
2870 		goto badkey;
2871 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
2872 		goto badkey;
2873 	if (RTA_PAYLOAD(rta) < sizeof(*param))
2874 		goto badkey;
2875 
2876 	param = RTA_DATA(rta);
2877 	ctx->enckeylen = be32_to_cpu(param->enckeylen);
2878 
2879 	key += RTA_ALIGN(rta->rta_len);
2880 	keylen -= RTA_ALIGN(rta->rta_len);
2881 
2882 	if (keylen < ctx->enckeylen)
2883 		goto badkey;
2884 	if (ctx->enckeylen > MAX_KEY_SIZE)
2885 		goto badkey;
2886 
2887 	ctx->authkeylen = keylen - ctx->enckeylen;
2888 
2889 	if (ctx->authkeylen > MAX_KEY_SIZE)
2890 		goto badkey;
2891 
2892 	memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen);
2893 	/* May end up padding auth key. So make sure it's zeroed. */
2894 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2895 	memcpy(ctx->authkey, key, ctx->authkeylen);
2896 
2897 	switch (ctx->alg->cipher_info.alg) {
2898 	case CIPHER_ALG_DES:
2899 		if (ctx->enckeylen == DES_KEY_SIZE) {
2900 			u32 tmp[DES_EXPKEY_WORDS];
2901 			u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2902 
2903 			if (des_ekey(tmp, key) == 0) {
2904 				if (crypto_aead_get_flags(cipher) &
2905 				    CRYPTO_TFM_REQ_WEAK_KEY) {
2906 					crypto_aead_set_flags(cipher, flags);
2907 					return -EINVAL;
2908 				}
2909 			}
2910 
2911 			ctx->cipher_type = CIPHER_TYPE_DES;
2912 		} else {
2913 			goto badkey;
2914 		}
2915 		break;
2916 	case CIPHER_ALG_3DES:
2917 		if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2918 			const u32 *K = (const u32 *)key;
2919 			u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2920 
2921 			if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2922 			    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2923 				crypto_aead_set_flags(cipher, flags);
2924 				return -EINVAL;
2925 			}
2926 
2927 			ctx->cipher_type = CIPHER_TYPE_3DES;
2928 		} else {
2929 			crypto_aead_set_flags(cipher,
2930 					      CRYPTO_TFM_RES_BAD_KEY_LEN);
2931 			return -EINVAL;
2932 		}
2933 		break;
2934 	case CIPHER_ALG_AES:
2935 		switch (ctx->enckeylen) {
2936 		case AES_KEYSIZE_128:
2937 			ctx->cipher_type = CIPHER_TYPE_AES128;
2938 			break;
2939 		case AES_KEYSIZE_192:
2940 			ctx->cipher_type = CIPHER_TYPE_AES192;
2941 			break;
2942 		case AES_KEYSIZE_256:
2943 			ctx->cipher_type = CIPHER_TYPE_AES256;
2944 			break;
2945 		default:
2946 			goto badkey;
2947 		}
2948 		break;
2949 	case CIPHER_ALG_RC4:
2950 		ctx->cipher_type = CIPHER_TYPE_INIT;
2951 		break;
2952 	default:
2953 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2954 		return -EINVAL;
2955 	}
2956 
2957 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2958 		 ctx->authkeylen);
2959 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2960 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2961 
2962 	/* setkey the fallback just in case we needto use it */
2963 	if (ctx->fallback_cipher) {
2964 		flow_log("  running fallback setkey()\n");
2965 
2966 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2967 		ctx->fallback_cipher->base.crt_flags |=
2968 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2969 		ret =
2970 		    crypto_aead_setkey(ctx->fallback_cipher, origkey,
2971 				       origkeylen);
2972 		if (ret) {
2973 			flow_log("  fallback setkey() returned:%d\n", ret);
2974 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2975 			tfm->crt_flags |=
2976 			    (ctx->fallback_cipher->base.crt_flags &
2977 			     CRYPTO_TFM_RES_MASK);
2978 		}
2979 	}
2980 
2981 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2982 							  ctx->enckeylen,
2983 							  false);
2984 
2985 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2986 
2987 	return ret;
2988 
2989 badkey:
2990 	ctx->enckeylen = 0;
2991 	ctx->authkeylen = 0;
2992 	ctx->digestsize = 0;
2993 
2994 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2995 	return -EINVAL;
2996 }
2997 
2998 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2999 			       const u8 *key, unsigned int keylen)
3000 {
3001 	struct spu_hw *spu = &iproc_priv.spu;
3002 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3003 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
3004 
3005 	int ret = 0;
3006 
3007 	flow_log("%s() keylen:%u\n", __func__, keylen);
3008 	flow_dump("  key: ", key, keylen);
3009 
3010 	if (!ctx->is_esp)
3011 		ctx->digestsize = keylen;
3012 
3013 	ctx->enckeylen = keylen;
3014 	ctx->authkeylen = 0;
3015 	memcpy(ctx->enckey, key, ctx->enckeylen);
3016 
3017 	switch (ctx->enckeylen) {
3018 	case AES_KEYSIZE_128:
3019 		ctx->cipher_type = CIPHER_TYPE_AES128;
3020 		break;
3021 	case AES_KEYSIZE_192:
3022 		ctx->cipher_type = CIPHER_TYPE_AES192;
3023 		break;
3024 	case AES_KEYSIZE_256:
3025 		ctx->cipher_type = CIPHER_TYPE_AES256;
3026 		break;
3027 	default:
3028 		goto badkey;
3029 	}
3030 
3031 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3032 		 ctx->authkeylen);
3033 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
3034 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
3035 
3036 	/* setkey the fallback just in case we need to use it */
3037 	if (ctx->fallback_cipher) {
3038 		flow_log("  running fallback setkey()\n");
3039 
3040 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3041 		ctx->fallback_cipher->base.crt_flags |=
3042 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3043 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3044 					 keylen + ctx->salt_len);
3045 		if (ret) {
3046 			flow_log("  fallback setkey() returned:%d\n", ret);
3047 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3048 			tfm->crt_flags |=
3049 			    (ctx->fallback_cipher->base.crt_flags &
3050 			     CRYPTO_TFM_RES_MASK);
3051 		}
3052 	}
3053 
3054 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3055 							  ctx->enckeylen,
3056 							  false);
3057 
3058 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3059 
3060 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3061 		 ctx->authkeylen);
3062 
3063 	return ret;
3064 
3065 badkey:
3066 	ctx->enckeylen = 0;
3067 	ctx->authkeylen = 0;
3068 	ctx->digestsize = 0;
3069 
3070 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3071 	return -EINVAL;
3072 }
3073 
3074 /**
3075  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3076  * @cipher: AEAD structure
3077  * @key:    Key followed by 4 bytes of salt
3078  * @keylen: Length of key plus salt, in bytes
3079  *
3080  * Extracts salt from key and stores it to be prepended to IV on each request.
3081  * Digest is always 16 bytes
3082  *
3083  * Return: Value from generic gcm setkey.
3084  */
3085 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3086 			       const u8 *key, unsigned int keylen)
3087 {
3088 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3089 
3090 	flow_log("%s\n", __func__);
3091 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3092 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3093 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3094 	keylen -= GCM_ESP_SALT_SIZE;
3095 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3096 	ctx->is_esp = true;
3097 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3098 
3099 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3100 }
3101 
3102 /**
3103  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3104  * cipher: AEAD structure
3105  * key:    Key followed by 4 bytes of salt
3106  * keylen: Length of key plus salt, in bytes
3107  *
3108  * Extracts salt from key and stores it to be prepended to IV on each request.
3109  * Digest is always 16 bytes
3110  *
3111  * Return: Value from generic gcm setkey.
3112  */
3113 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3114 				  const u8 *key, unsigned int keylen)
3115 {
3116 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3117 
3118 	flow_log("%s\n", __func__);
3119 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3120 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3121 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3122 	keylen -= GCM_ESP_SALT_SIZE;
3123 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3124 	ctx->is_esp = true;
3125 	ctx->is_rfc4543 = true;
3126 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3127 
3128 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3129 }
3130 
3131 /**
3132  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3133  * @cipher: AEAD structure
3134  * @key:    Key followed by 4 bytes of salt
3135  * @keylen: Length of key plus salt, in bytes
3136  *
3137  * Extracts salt from key and stores it to be prepended to IV on each request.
3138  * Digest is always 16 bytes
3139  *
3140  * Return: Value from generic ccm setkey.
3141  */
3142 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3143 			       const u8 *key, unsigned int keylen)
3144 {
3145 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3146 
3147 	flow_log("%s\n", __func__);
3148 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3149 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3150 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3151 	keylen -= CCM_ESP_SALT_SIZE;
3152 	ctx->is_esp = true;
3153 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3154 
3155 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3156 }
3157 
3158 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3159 {
3160 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3161 	int ret = 0;
3162 
3163 	flow_log("%s() authkeylen:%u authsize:%u\n",
3164 		 __func__, ctx->authkeylen, authsize);
3165 
3166 	ctx->digestsize = authsize;
3167 
3168 	/* setkey the fallback just in case we needto use it */
3169 	if (ctx->fallback_cipher) {
3170 		flow_log("  running fallback setauth()\n");
3171 
3172 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3173 		if (ret)
3174 			flow_log("  fallback setauth() returned:%d\n", ret);
3175 	}
3176 
3177 	return ret;
3178 }
3179 
3180 static int aead_encrypt(struct aead_request *req)
3181 {
3182 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3183 		 req->cryptlen);
3184 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3185 	flow_log("  assoc_len:%u\n", req->assoclen);
3186 
3187 	return aead_enqueue(req, true);
3188 }
3189 
3190 static int aead_decrypt(struct aead_request *req)
3191 {
3192 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3193 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3194 	flow_log("  assoc_len:%u\n", req->assoclen);
3195 
3196 	return aead_enqueue(req, false);
3197 }
3198 
3199 /* ==================== Supported Cipher Algorithms ==================== */
3200 
3201 static struct iproc_alg_s driver_algs[] = {
3202 	{
3203 	 .type = CRYPTO_ALG_TYPE_AEAD,
3204 	 .alg.aead = {
3205 		 .base = {
3206 			.cra_name = "gcm(aes)",
3207 			.cra_driver_name = "gcm-aes-iproc",
3208 			.cra_blocksize = AES_BLOCK_SIZE,
3209 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3210 		 },
3211 		 .setkey = aead_gcm_ccm_setkey,
3212 		 .ivsize = GCM_AES_IV_SIZE,
3213 		.maxauthsize = AES_BLOCK_SIZE,
3214 	 },
3215 	 .cipher_info = {
3216 			 .alg = CIPHER_ALG_AES,
3217 			 .mode = CIPHER_MODE_GCM,
3218 			 },
3219 	 .auth_info = {
3220 		       .alg = HASH_ALG_AES,
3221 		       .mode = HASH_MODE_GCM,
3222 		       },
3223 	 .auth_first = 0,
3224 	 },
3225 	{
3226 	 .type = CRYPTO_ALG_TYPE_AEAD,
3227 	 .alg.aead = {
3228 		 .base = {
3229 			.cra_name = "ccm(aes)",
3230 			.cra_driver_name = "ccm-aes-iproc",
3231 			.cra_blocksize = AES_BLOCK_SIZE,
3232 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3233 		 },
3234 		 .setkey = aead_gcm_ccm_setkey,
3235 		 .ivsize = CCM_AES_IV_SIZE,
3236 		.maxauthsize = AES_BLOCK_SIZE,
3237 	 },
3238 	 .cipher_info = {
3239 			 .alg = CIPHER_ALG_AES,
3240 			 .mode = CIPHER_MODE_CCM,
3241 			 },
3242 	 .auth_info = {
3243 		       .alg = HASH_ALG_AES,
3244 		       .mode = HASH_MODE_CCM,
3245 		       },
3246 	 .auth_first = 0,
3247 	 },
3248 	{
3249 	 .type = CRYPTO_ALG_TYPE_AEAD,
3250 	 .alg.aead = {
3251 		 .base = {
3252 			.cra_name = "rfc4106(gcm(aes))",
3253 			.cra_driver_name = "gcm-aes-esp-iproc",
3254 			.cra_blocksize = AES_BLOCK_SIZE,
3255 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3256 		 },
3257 		 .setkey = aead_gcm_esp_setkey,
3258 		 .ivsize = GCM_ESP_IV_SIZE,
3259 		 .maxauthsize = AES_BLOCK_SIZE,
3260 	 },
3261 	 .cipher_info = {
3262 			 .alg = CIPHER_ALG_AES,
3263 			 .mode = CIPHER_MODE_GCM,
3264 			 },
3265 	 .auth_info = {
3266 		       .alg = HASH_ALG_AES,
3267 		       .mode = HASH_MODE_GCM,
3268 		       },
3269 	 .auth_first = 0,
3270 	 },
3271 	{
3272 	 .type = CRYPTO_ALG_TYPE_AEAD,
3273 	 .alg.aead = {
3274 		 .base = {
3275 			.cra_name = "rfc4309(ccm(aes))",
3276 			.cra_driver_name = "ccm-aes-esp-iproc",
3277 			.cra_blocksize = AES_BLOCK_SIZE,
3278 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3279 		 },
3280 		 .setkey = aead_ccm_esp_setkey,
3281 		 .ivsize = CCM_AES_IV_SIZE,
3282 		 .maxauthsize = AES_BLOCK_SIZE,
3283 	 },
3284 	 .cipher_info = {
3285 			 .alg = CIPHER_ALG_AES,
3286 			 .mode = CIPHER_MODE_CCM,
3287 			 },
3288 	 .auth_info = {
3289 		       .alg = HASH_ALG_AES,
3290 		       .mode = HASH_MODE_CCM,
3291 		       },
3292 	 .auth_first = 0,
3293 	 },
3294 	{
3295 	 .type = CRYPTO_ALG_TYPE_AEAD,
3296 	 .alg.aead = {
3297 		 .base = {
3298 			.cra_name = "rfc4543(gcm(aes))",
3299 			.cra_driver_name = "gmac-aes-esp-iproc",
3300 			.cra_blocksize = AES_BLOCK_SIZE,
3301 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3302 		 },
3303 		 .setkey = rfc4543_gcm_esp_setkey,
3304 		 .ivsize = GCM_ESP_IV_SIZE,
3305 		 .maxauthsize = AES_BLOCK_SIZE,
3306 	 },
3307 	 .cipher_info = {
3308 			 .alg = CIPHER_ALG_AES,
3309 			 .mode = CIPHER_MODE_GCM,
3310 			 },
3311 	 .auth_info = {
3312 		       .alg = HASH_ALG_AES,
3313 		       .mode = HASH_MODE_GCM,
3314 		       },
3315 	 .auth_first = 0,
3316 	 },
3317 	{
3318 	 .type = CRYPTO_ALG_TYPE_AEAD,
3319 	 .alg.aead = {
3320 		 .base = {
3321 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3322 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3323 			.cra_blocksize = AES_BLOCK_SIZE,
3324 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3325 		 },
3326 		 .setkey = aead_authenc_setkey,
3327 		.ivsize = AES_BLOCK_SIZE,
3328 		.maxauthsize = MD5_DIGEST_SIZE,
3329 	 },
3330 	 .cipher_info = {
3331 			 .alg = CIPHER_ALG_AES,
3332 			 .mode = CIPHER_MODE_CBC,
3333 			 },
3334 	 .auth_info = {
3335 		       .alg = HASH_ALG_MD5,
3336 		       .mode = HASH_MODE_HMAC,
3337 		       },
3338 	 .auth_first = 0,
3339 	 },
3340 	{
3341 	 .type = CRYPTO_ALG_TYPE_AEAD,
3342 	 .alg.aead = {
3343 		 .base = {
3344 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3345 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3346 			.cra_blocksize = AES_BLOCK_SIZE,
3347 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3348 		 },
3349 		 .setkey = aead_authenc_setkey,
3350 		 .ivsize = AES_BLOCK_SIZE,
3351 		 .maxauthsize = SHA1_DIGEST_SIZE,
3352 	 },
3353 	 .cipher_info = {
3354 			 .alg = CIPHER_ALG_AES,
3355 			 .mode = CIPHER_MODE_CBC,
3356 			 },
3357 	 .auth_info = {
3358 		       .alg = HASH_ALG_SHA1,
3359 		       .mode = HASH_MODE_HMAC,
3360 		       },
3361 	 .auth_first = 0,
3362 	 },
3363 	{
3364 	 .type = CRYPTO_ALG_TYPE_AEAD,
3365 	 .alg.aead = {
3366 		 .base = {
3367 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3368 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3369 			.cra_blocksize = AES_BLOCK_SIZE,
3370 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3371 		 },
3372 		 .setkey = aead_authenc_setkey,
3373 		 .ivsize = AES_BLOCK_SIZE,
3374 		 .maxauthsize = SHA256_DIGEST_SIZE,
3375 	 },
3376 	 .cipher_info = {
3377 			 .alg = CIPHER_ALG_AES,
3378 			 .mode = CIPHER_MODE_CBC,
3379 			 },
3380 	 .auth_info = {
3381 		       .alg = HASH_ALG_SHA256,
3382 		       .mode = HASH_MODE_HMAC,
3383 		       },
3384 	 .auth_first = 0,
3385 	 },
3386 	{
3387 	 .type = CRYPTO_ALG_TYPE_AEAD,
3388 	 .alg.aead = {
3389 		 .base = {
3390 			.cra_name = "authenc(hmac(md5),cbc(des))",
3391 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3392 			.cra_blocksize = DES_BLOCK_SIZE,
3393 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3394 		 },
3395 		 .setkey = aead_authenc_setkey,
3396 		 .ivsize = DES_BLOCK_SIZE,
3397 		 .maxauthsize = MD5_DIGEST_SIZE,
3398 	 },
3399 	 .cipher_info = {
3400 			 .alg = CIPHER_ALG_DES,
3401 			 .mode = CIPHER_MODE_CBC,
3402 			 },
3403 	 .auth_info = {
3404 		       .alg = HASH_ALG_MD5,
3405 		       .mode = HASH_MODE_HMAC,
3406 		       },
3407 	 .auth_first = 0,
3408 	 },
3409 	{
3410 	 .type = CRYPTO_ALG_TYPE_AEAD,
3411 	 .alg.aead = {
3412 		 .base = {
3413 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3414 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3415 			.cra_blocksize = DES_BLOCK_SIZE,
3416 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3417 		 },
3418 		 .setkey = aead_authenc_setkey,
3419 		 .ivsize = DES_BLOCK_SIZE,
3420 		 .maxauthsize = SHA1_DIGEST_SIZE,
3421 	 },
3422 	 .cipher_info = {
3423 			 .alg = CIPHER_ALG_DES,
3424 			 .mode = CIPHER_MODE_CBC,
3425 			 },
3426 	 .auth_info = {
3427 		       .alg = HASH_ALG_SHA1,
3428 		       .mode = HASH_MODE_HMAC,
3429 		       },
3430 	 .auth_first = 0,
3431 	 },
3432 	{
3433 	 .type = CRYPTO_ALG_TYPE_AEAD,
3434 	 .alg.aead = {
3435 		 .base = {
3436 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3437 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3438 			.cra_blocksize = DES_BLOCK_SIZE,
3439 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3440 		 },
3441 		 .setkey = aead_authenc_setkey,
3442 		 .ivsize = DES_BLOCK_SIZE,
3443 		 .maxauthsize = SHA224_DIGEST_SIZE,
3444 	 },
3445 	 .cipher_info = {
3446 			 .alg = CIPHER_ALG_DES,
3447 			 .mode = CIPHER_MODE_CBC,
3448 			 },
3449 	 .auth_info = {
3450 		       .alg = HASH_ALG_SHA224,
3451 		       .mode = HASH_MODE_HMAC,
3452 		       },
3453 	 .auth_first = 0,
3454 	 },
3455 	{
3456 	 .type = CRYPTO_ALG_TYPE_AEAD,
3457 	 .alg.aead = {
3458 		 .base = {
3459 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3460 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3461 			.cra_blocksize = DES_BLOCK_SIZE,
3462 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3463 		 },
3464 		 .setkey = aead_authenc_setkey,
3465 		 .ivsize = DES_BLOCK_SIZE,
3466 		 .maxauthsize = SHA256_DIGEST_SIZE,
3467 	 },
3468 	 .cipher_info = {
3469 			 .alg = CIPHER_ALG_DES,
3470 			 .mode = CIPHER_MODE_CBC,
3471 			 },
3472 	 .auth_info = {
3473 		       .alg = HASH_ALG_SHA256,
3474 		       .mode = HASH_MODE_HMAC,
3475 		       },
3476 	 .auth_first = 0,
3477 	 },
3478 	{
3479 	 .type = CRYPTO_ALG_TYPE_AEAD,
3480 	 .alg.aead = {
3481 		 .base = {
3482 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3483 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3484 			.cra_blocksize = DES_BLOCK_SIZE,
3485 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3486 		 },
3487 		 .setkey = aead_authenc_setkey,
3488 		 .ivsize = DES_BLOCK_SIZE,
3489 		 .maxauthsize = SHA384_DIGEST_SIZE,
3490 	 },
3491 	 .cipher_info = {
3492 			 .alg = CIPHER_ALG_DES,
3493 			 .mode = CIPHER_MODE_CBC,
3494 			 },
3495 	 .auth_info = {
3496 		       .alg = HASH_ALG_SHA384,
3497 		       .mode = HASH_MODE_HMAC,
3498 		       },
3499 	 .auth_first = 0,
3500 	 },
3501 	{
3502 	 .type = CRYPTO_ALG_TYPE_AEAD,
3503 	 .alg.aead = {
3504 		 .base = {
3505 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3506 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3507 			.cra_blocksize = DES_BLOCK_SIZE,
3508 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3509 		 },
3510 		 .setkey = aead_authenc_setkey,
3511 		 .ivsize = DES_BLOCK_SIZE,
3512 		 .maxauthsize = SHA512_DIGEST_SIZE,
3513 	 },
3514 	 .cipher_info = {
3515 			 .alg = CIPHER_ALG_DES,
3516 			 .mode = CIPHER_MODE_CBC,
3517 			 },
3518 	 .auth_info = {
3519 		       .alg = HASH_ALG_SHA512,
3520 		       .mode = HASH_MODE_HMAC,
3521 		       },
3522 	 .auth_first = 0,
3523 	 },
3524 	{
3525 	 .type = CRYPTO_ALG_TYPE_AEAD,
3526 	 .alg.aead = {
3527 		 .base = {
3528 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3529 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3530 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3531 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3532 		 },
3533 		 .setkey = aead_authenc_setkey,
3534 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3535 		 .maxauthsize = MD5_DIGEST_SIZE,
3536 	 },
3537 	 .cipher_info = {
3538 			 .alg = CIPHER_ALG_3DES,
3539 			 .mode = CIPHER_MODE_CBC,
3540 			 },
3541 	 .auth_info = {
3542 		       .alg = HASH_ALG_MD5,
3543 		       .mode = HASH_MODE_HMAC,
3544 		       },
3545 	 .auth_first = 0,
3546 	 },
3547 	{
3548 	 .type = CRYPTO_ALG_TYPE_AEAD,
3549 	 .alg.aead = {
3550 		 .base = {
3551 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3552 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3553 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3554 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3555 		 },
3556 		 .setkey = aead_authenc_setkey,
3557 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3558 		 .maxauthsize = SHA1_DIGEST_SIZE,
3559 	 },
3560 	 .cipher_info = {
3561 			 .alg = CIPHER_ALG_3DES,
3562 			 .mode = CIPHER_MODE_CBC,
3563 			 },
3564 	 .auth_info = {
3565 		       .alg = HASH_ALG_SHA1,
3566 		       .mode = HASH_MODE_HMAC,
3567 		       },
3568 	 .auth_first = 0,
3569 	 },
3570 	{
3571 	 .type = CRYPTO_ALG_TYPE_AEAD,
3572 	 .alg.aead = {
3573 		 .base = {
3574 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3575 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3576 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3577 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3578 		 },
3579 		 .setkey = aead_authenc_setkey,
3580 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3581 		 .maxauthsize = SHA224_DIGEST_SIZE,
3582 	 },
3583 	 .cipher_info = {
3584 			 .alg = CIPHER_ALG_3DES,
3585 			 .mode = CIPHER_MODE_CBC,
3586 			 },
3587 	 .auth_info = {
3588 		       .alg = HASH_ALG_SHA224,
3589 		       .mode = HASH_MODE_HMAC,
3590 		       },
3591 	 .auth_first = 0,
3592 	 },
3593 	{
3594 	 .type = CRYPTO_ALG_TYPE_AEAD,
3595 	 .alg.aead = {
3596 		 .base = {
3597 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3598 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3599 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3600 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3601 		 },
3602 		 .setkey = aead_authenc_setkey,
3603 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3604 		 .maxauthsize = SHA256_DIGEST_SIZE,
3605 	 },
3606 	 .cipher_info = {
3607 			 .alg = CIPHER_ALG_3DES,
3608 			 .mode = CIPHER_MODE_CBC,
3609 			 },
3610 	 .auth_info = {
3611 		       .alg = HASH_ALG_SHA256,
3612 		       .mode = HASH_MODE_HMAC,
3613 		       },
3614 	 .auth_first = 0,
3615 	 },
3616 	{
3617 	 .type = CRYPTO_ALG_TYPE_AEAD,
3618 	 .alg.aead = {
3619 		 .base = {
3620 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3621 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3622 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3623 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3624 		 },
3625 		 .setkey = aead_authenc_setkey,
3626 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3627 		 .maxauthsize = SHA384_DIGEST_SIZE,
3628 	 },
3629 	 .cipher_info = {
3630 			 .alg = CIPHER_ALG_3DES,
3631 			 .mode = CIPHER_MODE_CBC,
3632 			 },
3633 	 .auth_info = {
3634 		       .alg = HASH_ALG_SHA384,
3635 		       .mode = HASH_MODE_HMAC,
3636 		       },
3637 	 .auth_first = 0,
3638 	 },
3639 	{
3640 	 .type = CRYPTO_ALG_TYPE_AEAD,
3641 	 .alg.aead = {
3642 		 .base = {
3643 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3644 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3645 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3646 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3647 		 },
3648 		 .setkey = aead_authenc_setkey,
3649 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3650 		 .maxauthsize = SHA512_DIGEST_SIZE,
3651 	 },
3652 	 .cipher_info = {
3653 			 .alg = CIPHER_ALG_3DES,
3654 			 .mode = CIPHER_MODE_CBC,
3655 			 },
3656 	 .auth_info = {
3657 		       .alg = HASH_ALG_SHA512,
3658 		       .mode = HASH_MODE_HMAC,
3659 		       },
3660 	 .auth_first = 0,
3661 	 },
3662 
3663 /* ABLKCIPHER algorithms. */
3664 	{
3665 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3666 	 .alg.crypto = {
3667 			.cra_name = "ecb(arc4)",
3668 			.cra_driver_name = "ecb-arc4-iproc",
3669 			.cra_blocksize = ARC4_BLOCK_SIZE,
3670 			.cra_ablkcipher = {
3671 					   .min_keysize = ARC4_MIN_KEY_SIZE,
3672 					   .max_keysize = ARC4_MAX_KEY_SIZE,
3673 					   .ivsize = 0,
3674 					}
3675 			},
3676 	 .cipher_info = {
3677 			 .alg = CIPHER_ALG_RC4,
3678 			 .mode = CIPHER_MODE_NONE,
3679 			 },
3680 	 .auth_info = {
3681 		       .alg = HASH_ALG_NONE,
3682 		       .mode = HASH_MODE_NONE,
3683 		       },
3684 	 },
3685 	{
3686 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3687 	 .alg.crypto = {
3688 			.cra_name = "ofb(des)",
3689 			.cra_driver_name = "ofb-des-iproc",
3690 			.cra_blocksize = DES_BLOCK_SIZE,
3691 			.cra_ablkcipher = {
3692 					   .min_keysize = DES_KEY_SIZE,
3693 					   .max_keysize = DES_KEY_SIZE,
3694 					   .ivsize = DES_BLOCK_SIZE,
3695 					}
3696 			},
3697 	 .cipher_info = {
3698 			 .alg = CIPHER_ALG_DES,
3699 			 .mode = CIPHER_MODE_OFB,
3700 			 },
3701 	 .auth_info = {
3702 		       .alg = HASH_ALG_NONE,
3703 		       .mode = HASH_MODE_NONE,
3704 		       },
3705 	 },
3706 	{
3707 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3708 	 .alg.crypto = {
3709 			.cra_name = "cbc(des)",
3710 			.cra_driver_name = "cbc-des-iproc",
3711 			.cra_blocksize = DES_BLOCK_SIZE,
3712 			.cra_ablkcipher = {
3713 					   .min_keysize = DES_KEY_SIZE,
3714 					   .max_keysize = DES_KEY_SIZE,
3715 					   .ivsize = DES_BLOCK_SIZE,
3716 					}
3717 			},
3718 	 .cipher_info = {
3719 			 .alg = CIPHER_ALG_DES,
3720 			 .mode = CIPHER_MODE_CBC,
3721 			 },
3722 	 .auth_info = {
3723 		       .alg = HASH_ALG_NONE,
3724 		       .mode = HASH_MODE_NONE,
3725 		       },
3726 	 },
3727 	{
3728 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3729 	 .alg.crypto = {
3730 			.cra_name = "ecb(des)",
3731 			.cra_driver_name = "ecb-des-iproc",
3732 			.cra_blocksize = DES_BLOCK_SIZE,
3733 			.cra_ablkcipher = {
3734 					   .min_keysize = DES_KEY_SIZE,
3735 					   .max_keysize = DES_KEY_SIZE,
3736 					   .ivsize = 0,
3737 					}
3738 			},
3739 	 .cipher_info = {
3740 			 .alg = CIPHER_ALG_DES,
3741 			 .mode = CIPHER_MODE_ECB,
3742 			 },
3743 	 .auth_info = {
3744 		       .alg = HASH_ALG_NONE,
3745 		       .mode = HASH_MODE_NONE,
3746 		       },
3747 	 },
3748 	{
3749 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3750 	 .alg.crypto = {
3751 			.cra_name = "ofb(des3_ede)",
3752 			.cra_driver_name = "ofb-des3-iproc",
3753 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3754 			.cra_ablkcipher = {
3755 					   .min_keysize = DES3_EDE_KEY_SIZE,
3756 					   .max_keysize = DES3_EDE_KEY_SIZE,
3757 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3758 					}
3759 			},
3760 	 .cipher_info = {
3761 			 .alg = CIPHER_ALG_3DES,
3762 			 .mode = CIPHER_MODE_OFB,
3763 			 },
3764 	 .auth_info = {
3765 		       .alg = HASH_ALG_NONE,
3766 		       .mode = HASH_MODE_NONE,
3767 		       },
3768 	 },
3769 	{
3770 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3771 	 .alg.crypto = {
3772 			.cra_name = "cbc(des3_ede)",
3773 			.cra_driver_name = "cbc-des3-iproc",
3774 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3775 			.cra_ablkcipher = {
3776 					   .min_keysize = DES3_EDE_KEY_SIZE,
3777 					   .max_keysize = DES3_EDE_KEY_SIZE,
3778 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3779 					}
3780 			},
3781 	 .cipher_info = {
3782 			 .alg = CIPHER_ALG_3DES,
3783 			 .mode = CIPHER_MODE_CBC,
3784 			 },
3785 	 .auth_info = {
3786 		       .alg = HASH_ALG_NONE,
3787 		       .mode = HASH_MODE_NONE,
3788 		       },
3789 	 },
3790 	{
3791 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3792 	 .alg.crypto = {
3793 			.cra_name = "ecb(des3_ede)",
3794 			.cra_driver_name = "ecb-des3-iproc",
3795 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3796 			.cra_ablkcipher = {
3797 					   .min_keysize = DES3_EDE_KEY_SIZE,
3798 					   .max_keysize = DES3_EDE_KEY_SIZE,
3799 					   .ivsize = 0,
3800 					}
3801 			},
3802 	 .cipher_info = {
3803 			 .alg = CIPHER_ALG_3DES,
3804 			 .mode = CIPHER_MODE_ECB,
3805 			 },
3806 	 .auth_info = {
3807 		       .alg = HASH_ALG_NONE,
3808 		       .mode = HASH_MODE_NONE,
3809 		       },
3810 	 },
3811 	{
3812 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3813 	 .alg.crypto = {
3814 			.cra_name = "ofb(aes)",
3815 			.cra_driver_name = "ofb-aes-iproc",
3816 			.cra_blocksize = AES_BLOCK_SIZE,
3817 			.cra_ablkcipher = {
3818 					   .min_keysize = AES_MIN_KEY_SIZE,
3819 					   .max_keysize = AES_MAX_KEY_SIZE,
3820 					   .ivsize = AES_BLOCK_SIZE,
3821 					}
3822 			},
3823 	 .cipher_info = {
3824 			 .alg = CIPHER_ALG_AES,
3825 			 .mode = CIPHER_MODE_OFB,
3826 			 },
3827 	 .auth_info = {
3828 		       .alg = HASH_ALG_NONE,
3829 		       .mode = HASH_MODE_NONE,
3830 		       },
3831 	 },
3832 	{
3833 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3834 	 .alg.crypto = {
3835 			.cra_name = "cbc(aes)",
3836 			.cra_driver_name = "cbc-aes-iproc",
3837 			.cra_blocksize = AES_BLOCK_SIZE,
3838 			.cra_ablkcipher = {
3839 					   .min_keysize = AES_MIN_KEY_SIZE,
3840 					   .max_keysize = AES_MAX_KEY_SIZE,
3841 					   .ivsize = AES_BLOCK_SIZE,
3842 					}
3843 			},
3844 	 .cipher_info = {
3845 			 .alg = CIPHER_ALG_AES,
3846 			 .mode = CIPHER_MODE_CBC,
3847 			 },
3848 	 .auth_info = {
3849 		       .alg = HASH_ALG_NONE,
3850 		       .mode = HASH_MODE_NONE,
3851 		       },
3852 	 },
3853 	{
3854 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3855 	 .alg.crypto = {
3856 			.cra_name = "ecb(aes)",
3857 			.cra_driver_name = "ecb-aes-iproc",
3858 			.cra_blocksize = AES_BLOCK_SIZE,
3859 			.cra_ablkcipher = {
3860 					   .min_keysize = AES_MIN_KEY_SIZE,
3861 					   .max_keysize = AES_MAX_KEY_SIZE,
3862 					   .ivsize = 0,
3863 					}
3864 			},
3865 	 .cipher_info = {
3866 			 .alg = CIPHER_ALG_AES,
3867 			 .mode = CIPHER_MODE_ECB,
3868 			 },
3869 	 .auth_info = {
3870 		       .alg = HASH_ALG_NONE,
3871 		       .mode = HASH_MODE_NONE,
3872 		       },
3873 	 },
3874 	{
3875 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3876 	 .alg.crypto = {
3877 			.cra_name = "ctr(aes)",
3878 			.cra_driver_name = "ctr-aes-iproc",
3879 			.cra_blocksize = AES_BLOCK_SIZE,
3880 			.cra_ablkcipher = {
3881 					   /* .geniv = "chainiv", */
3882 					   .min_keysize = AES_MIN_KEY_SIZE,
3883 					   .max_keysize = AES_MAX_KEY_SIZE,
3884 					   .ivsize = AES_BLOCK_SIZE,
3885 					}
3886 			},
3887 	 .cipher_info = {
3888 			 .alg = CIPHER_ALG_AES,
3889 			 .mode = CIPHER_MODE_CTR,
3890 			 },
3891 	 .auth_info = {
3892 		       .alg = HASH_ALG_NONE,
3893 		       .mode = HASH_MODE_NONE,
3894 		       },
3895 	 },
3896 {
3897 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3898 	 .alg.crypto = {
3899 			.cra_name = "xts(aes)",
3900 			.cra_driver_name = "xts-aes-iproc",
3901 			.cra_blocksize = AES_BLOCK_SIZE,
3902 			.cra_ablkcipher = {
3903 				.min_keysize = 2 * AES_MIN_KEY_SIZE,
3904 				.max_keysize = 2 * AES_MAX_KEY_SIZE,
3905 				.ivsize = AES_BLOCK_SIZE,
3906 				}
3907 			},
3908 	 .cipher_info = {
3909 			 .alg = CIPHER_ALG_AES,
3910 			 .mode = CIPHER_MODE_XTS,
3911 			 },
3912 	 .auth_info = {
3913 		       .alg = HASH_ALG_NONE,
3914 		       .mode = HASH_MODE_NONE,
3915 		       },
3916 	 },
3917 
3918 /* AHASH algorithms. */
3919 	{
3920 	 .type = CRYPTO_ALG_TYPE_AHASH,
3921 	 .alg.hash = {
3922 		      .halg.digestsize = MD5_DIGEST_SIZE,
3923 		      .halg.base = {
3924 				    .cra_name = "md5",
3925 				    .cra_driver_name = "md5-iproc",
3926 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3927 				    .cra_flags = CRYPTO_ALG_TYPE_AHASH |
3928 					     CRYPTO_ALG_ASYNC,
3929 				}
3930 		      },
3931 	 .cipher_info = {
3932 			 .alg = CIPHER_ALG_NONE,
3933 			 .mode = CIPHER_MODE_NONE,
3934 			 },
3935 	 .auth_info = {
3936 		       .alg = HASH_ALG_MD5,
3937 		       .mode = HASH_MODE_HASH,
3938 		       },
3939 	 },
3940 	{
3941 	 .type = CRYPTO_ALG_TYPE_AHASH,
3942 	 .alg.hash = {
3943 		      .halg.digestsize = MD5_DIGEST_SIZE,
3944 		      .halg.base = {
3945 				    .cra_name = "hmac(md5)",
3946 				    .cra_driver_name = "hmac-md5-iproc",
3947 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3948 				}
3949 		      },
3950 	 .cipher_info = {
3951 			 .alg = CIPHER_ALG_NONE,
3952 			 .mode = CIPHER_MODE_NONE,
3953 			 },
3954 	 .auth_info = {
3955 		       .alg = HASH_ALG_MD5,
3956 		       .mode = HASH_MODE_HMAC,
3957 		       },
3958 	 },
3959 	{.type = CRYPTO_ALG_TYPE_AHASH,
3960 	 .alg.hash = {
3961 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3962 		      .halg.base = {
3963 				    .cra_name = "sha1",
3964 				    .cra_driver_name = "sha1-iproc",
3965 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3966 				}
3967 		      },
3968 	 .cipher_info = {
3969 			 .alg = CIPHER_ALG_NONE,
3970 			 .mode = CIPHER_MODE_NONE,
3971 			 },
3972 	 .auth_info = {
3973 		       .alg = HASH_ALG_SHA1,
3974 		       .mode = HASH_MODE_HASH,
3975 		       },
3976 	 },
3977 	{.type = CRYPTO_ALG_TYPE_AHASH,
3978 	 .alg.hash = {
3979 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3980 		      .halg.base = {
3981 				    .cra_name = "hmac(sha1)",
3982 				    .cra_driver_name = "hmac-sha1-iproc",
3983 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3984 				}
3985 		      },
3986 	 .cipher_info = {
3987 			 .alg = CIPHER_ALG_NONE,
3988 			 .mode = CIPHER_MODE_NONE,
3989 			 },
3990 	 .auth_info = {
3991 		       .alg = HASH_ALG_SHA1,
3992 		       .mode = HASH_MODE_HMAC,
3993 		       },
3994 	 },
3995 	{.type = CRYPTO_ALG_TYPE_AHASH,
3996 	 .alg.hash = {
3997 			.halg.digestsize = SHA224_DIGEST_SIZE,
3998 			.halg.base = {
3999 				    .cra_name = "sha224",
4000 				    .cra_driver_name = "sha224-iproc",
4001 				    .cra_blocksize = SHA224_BLOCK_SIZE,
4002 			}
4003 		      },
4004 	 .cipher_info = {
4005 			 .alg = CIPHER_ALG_NONE,
4006 			 .mode = CIPHER_MODE_NONE,
4007 			 },
4008 	 .auth_info = {
4009 		       .alg = HASH_ALG_SHA224,
4010 		       .mode = HASH_MODE_HASH,
4011 		       },
4012 	 },
4013 	{.type = CRYPTO_ALG_TYPE_AHASH,
4014 	 .alg.hash = {
4015 		      .halg.digestsize = SHA224_DIGEST_SIZE,
4016 		      .halg.base = {
4017 				    .cra_name = "hmac(sha224)",
4018 				    .cra_driver_name = "hmac-sha224-iproc",
4019 				    .cra_blocksize = SHA224_BLOCK_SIZE,
4020 				}
4021 		      },
4022 	 .cipher_info = {
4023 			 .alg = CIPHER_ALG_NONE,
4024 			 .mode = CIPHER_MODE_NONE,
4025 			 },
4026 	 .auth_info = {
4027 		       .alg = HASH_ALG_SHA224,
4028 		       .mode = HASH_MODE_HMAC,
4029 		       },
4030 	 },
4031 	{.type = CRYPTO_ALG_TYPE_AHASH,
4032 	 .alg.hash = {
4033 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4034 		      .halg.base = {
4035 				    .cra_name = "sha256",
4036 				    .cra_driver_name = "sha256-iproc",
4037 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4038 				}
4039 		      },
4040 	 .cipher_info = {
4041 			 .alg = CIPHER_ALG_NONE,
4042 			 .mode = CIPHER_MODE_NONE,
4043 			 },
4044 	 .auth_info = {
4045 		       .alg = HASH_ALG_SHA256,
4046 		       .mode = HASH_MODE_HASH,
4047 		       },
4048 	 },
4049 	{.type = CRYPTO_ALG_TYPE_AHASH,
4050 	 .alg.hash = {
4051 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4052 		      .halg.base = {
4053 				    .cra_name = "hmac(sha256)",
4054 				    .cra_driver_name = "hmac-sha256-iproc",
4055 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4056 				}
4057 		      },
4058 	 .cipher_info = {
4059 			 .alg = CIPHER_ALG_NONE,
4060 			 .mode = CIPHER_MODE_NONE,
4061 			 },
4062 	 .auth_info = {
4063 		       .alg = HASH_ALG_SHA256,
4064 		       .mode = HASH_MODE_HMAC,
4065 		       },
4066 	 },
4067 	{
4068 	.type = CRYPTO_ALG_TYPE_AHASH,
4069 	 .alg.hash = {
4070 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4071 		      .halg.base = {
4072 				    .cra_name = "sha384",
4073 				    .cra_driver_name = "sha384-iproc",
4074 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4075 				}
4076 		      },
4077 	 .cipher_info = {
4078 			 .alg = CIPHER_ALG_NONE,
4079 			 .mode = CIPHER_MODE_NONE,
4080 			 },
4081 	 .auth_info = {
4082 		       .alg = HASH_ALG_SHA384,
4083 		       .mode = HASH_MODE_HASH,
4084 		       },
4085 	 },
4086 	{
4087 	 .type = CRYPTO_ALG_TYPE_AHASH,
4088 	 .alg.hash = {
4089 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4090 		      .halg.base = {
4091 				    .cra_name = "hmac(sha384)",
4092 				    .cra_driver_name = "hmac-sha384-iproc",
4093 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4094 				}
4095 		      },
4096 	 .cipher_info = {
4097 			 .alg = CIPHER_ALG_NONE,
4098 			 .mode = CIPHER_MODE_NONE,
4099 			 },
4100 	 .auth_info = {
4101 		       .alg = HASH_ALG_SHA384,
4102 		       .mode = HASH_MODE_HMAC,
4103 		       },
4104 	 },
4105 	{
4106 	 .type = CRYPTO_ALG_TYPE_AHASH,
4107 	 .alg.hash = {
4108 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4109 		      .halg.base = {
4110 				    .cra_name = "sha512",
4111 				    .cra_driver_name = "sha512-iproc",
4112 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4113 				}
4114 		      },
4115 	 .cipher_info = {
4116 			 .alg = CIPHER_ALG_NONE,
4117 			 .mode = CIPHER_MODE_NONE,
4118 			 },
4119 	 .auth_info = {
4120 		       .alg = HASH_ALG_SHA512,
4121 		       .mode = HASH_MODE_HASH,
4122 		       },
4123 	 },
4124 	{
4125 	 .type = CRYPTO_ALG_TYPE_AHASH,
4126 	 .alg.hash = {
4127 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4128 		      .halg.base = {
4129 				    .cra_name = "hmac(sha512)",
4130 				    .cra_driver_name = "hmac-sha512-iproc",
4131 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4132 				}
4133 		      },
4134 	 .cipher_info = {
4135 			 .alg = CIPHER_ALG_NONE,
4136 			 .mode = CIPHER_MODE_NONE,
4137 			 },
4138 	 .auth_info = {
4139 		       .alg = HASH_ALG_SHA512,
4140 		       .mode = HASH_MODE_HMAC,
4141 		       },
4142 	 },
4143 	{
4144 	 .type = CRYPTO_ALG_TYPE_AHASH,
4145 	 .alg.hash = {
4146 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4147 		      .halg.base = {
4148 				    .cra_name = "sha3-224",
4149 				    .cra_driver_name = "sha3-224-iproc",
4150 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4151 				}
4152 		      },
4153 	 .cipher_info = {
4154 			 .alg = CIPHER_ALG_NONE,
4155 			 .mode = CIPHER_MODE_NONE,
4156 			 },
4157 	 .auth_info = {
4158 		       .alg = HASH_ALG_SHA3_224,
4159 		       .mode = HASH_MODE_HASH,
4160 		       },
4161 	 },
4162 	{
4163 	 .type = CRYPTO_ALG_TYPE_AHASH,
4164 	 .alg.hash = {
4165 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4166 		      .halg.base = {
4167 				    .cra_name = "hmac(sha3-224)",
4168 				    .cra_driver_name = "hmac-sha3-224-iproc",
4169 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4170 				}
4171 		      },
4172 	 .cipher_info = {
4173 			 .alg = CIPHER_ALG_NONE,
4174 			 .mode = CIPHER_MODE_NONE,
4175 			 },
4176 	 .auth_info = {
4177 		       .alg = HASH_ALG_SHA3_224,
4178 		       .mode = HASH_MODE_HMAC
4179 		       },
4180 	 },
4181 	{
4182 	 .type = CRYPTO_ALG_TYPE_AHASH,
4183 	 .alg.hash = {
4184 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4185 		      .halg.base = {
4186 				    .cra_name = "sha3-256",
4187 				    .cra_driver_name = "sha3-256-iproc",
4188 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4189 				}
4190 		      },
4191 	 .cipher_info = {
4192 			 .alg = CIPHER_ALG_NONE,
4193 			 .mode = CIPHER_MODE_NONE,
4194 			 },
4195 	 .auth_info = {
4196 		       .alg = HASH_ALG_SHA3_256,
4197 		       .mode = HASH_MODE_HASH,
4198 		       },
4199 	 },
4200 	{
4201 	 .type = CRYPTO_ALG_TYPE_AHASH,
4202 	 .alg.hash = {
4203 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4204 		      .halg.base = {
4205 				    .cra_name = "hmac(sha3-256)",
4206 				    .cra_driver_name = "hmac-sha3-256-iproc",
4207 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4208 				}
4209 		      },
4210 	 .cipher_info = {
4211 			 .alg = CIPHER_ALG_NONE,
4212 			 .mode = CIPHER_MODE_NONE,
4213 			 },
4214 	 .auth_info = {
4215 		       .alg = HASH_ALG_SHA3_256,
4216 		       .mode = HASH_MODE_HMAC,
4217 		       },
4218 	 },
4219 	{
4220 	 .type = CRYPTO_ALG_TYPE_AHASH,
4221 	 .alg.hash = {
4222 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4223 		      .halg.base = {
4224 				    .cra_name = "sha3-384",
4225 				    .cra_driver_name = "sha3-384-iproc",
4226 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4227 				}
4228 		      },
4229 	 .cipher_info = {
4230 			 .alg = CIPHER_ALG_NONE,
4231 			 .mode = CIPHER_MODE_NONE,
4232 			 },
4233 	 .auth_info = {
4234 		       .alg = HASH_ALG_SHA3_384,
4235 		       .mode = HASH_MODE_HASH,
4236 		       },
4237 	 },
4238 	{
4239 	 .type = CRYPTO_ALG_TYPE_AHASH,
4240 	 .alg.hash = {
4241 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4242 		      .halg.base = {
4243 				    .cra_name = "hmac(sha3-384)",
4244 				    .cra_driver_name = "hmac-sha3-384-iproc",
4245 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4246 				}
4247 		      },
4248 	 .cipher_info = {
4249 			 .alg = CIPHER_ALG_NONE,
4250 			 .mode = CIPHER_MODE_NONE,
4251 			 },
4252 	 .auth_info = {
4253 		       .alg = HASH_ALG_SHA3_384,
4254 		       .mode = HASH_MODE_HMAC,
4255 		       },
4256 	 },
4257 	{
4258 	 .type = CRYPTO_ALG_TYPE_AHASH,
4259 	 .alg.hash = {
4260 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4261 		      .halg.base = {
4262 				    .cra_name = "sha3-512",
4263 				    .cra_driver_name = "sha3-512-iproc",
4264 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4265 				}
4266 		      },
4267 	 .cipher_info = {
4268 			 .alg = CIPHER_ALG_NONE,
4269 			 .mode = CIPHER_MODE_NONE,
4270 			 },
4271 	 .auth_info = {
4272 		       .alg = HASH_ALG_SHA3_512,
4273 		       .mode = HASH_MODE_HASH,
4274 		       },
4275 	 },
4276 	{
4277 	 .type = CRYPTO_ALG_TYPE_AHASH,
4278 	 .alg.hash = {
4279 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4280 		      .halg.base = {
4281 				    .cra_name = "hmac(sha3-512)",
4282 				    .cra_driver_name = "hmac-sha3-512-iproc",
4283 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4284 				}
4285 		      },
4286 	 .cipher_info = {
4287 			 .alg = CIPHER_ALG_NONE,
4288 			 .mode = CIPHER_MODE_NONE,
4289 			 },
4290 	 .auth_info = {
4291 		       .alg = HASH_ALG_SHA3_512,
4292 		       .mode = HASH_MODE_HMAC,
4293 		       },
4294 	 },
4295 	{
4296 	 .type = CRYPTO_ALG_TYPE_AHASH,
4297 	 .alg.hash = {
4298 		      .halg.digestsize = AES_BLOCK_SIZE,
4299 		      .halg.base = {
4300 				    .cra_name = "xcbc(aes)",
4301 				    .cra_driver_name = "xcbc-aes-iproc",
4302 				    .cra_blocksize = AES_BLOCK_SIZE,
4303 				}
4304 		      },
4305 	 .cipher_info = {
4306 			 .alg = CIPHER_ALG_NONE,
4307 			 .mode = CIPHER_MODE_NONE,
4308 			 },
4309 	 .auth_info = {
4310 		       .alg = HASH_ALG_AES,
4311 		       .mode = HASH_MODE_XCBC,
4312 		       },
4313 	 },
4314 	{
4315 	 .type = CRYPTO_ALG_TYPE_AHASH,
4316 	 .alg.hash = {
4317 		      .halg.digestsize = AES_BLOCK_SIZE,
4318 		      .halg.base = {
4319 				    .cra_name = "cmac(aes)",
4320 				    .cra_driver_name = "cmac-aes-iproc",
4321 				    .cra_blocksize = AES_BLOCK_SIZE,
4322 				}
4323 		      },
4324 	 .cipher_info = {
4325 			 .alg = CIPHER_ALG_NONE,
4326 			 .mode = CIPHER_MODE_NONE,
4327 			 },
4328 	 .auth_info = {
4329 		       .alg = HASH_ALG_AES,
4330 		       .mode = HASH_MODE_CMAC,
4331 		       },
4332 	 },
4333 };
4334 
4335 static int generic_cra_init(struct crypto_tfm *tfm,
4336 			    struct iproc_alg_s *cipher_alg)
4337 {
4338 	struct spu_hw *spu = &iproc_priv.spu;
4339 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4340 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4341 
4342 	flow_log("%s()\n", __func__);
4343 
4344 	ctx->alg = cipher_alg;
4345 	ctx->cipher = cipher_alg->cipher_info;
4346 	ctx->auth = cipher_alg->auth_info;
4347 	ctx->auth_first = cipher_alg->auth_first;
4348 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4349 						    ctx->cipher.mode,
4350 						    blocksize);
4351 	ctx->fallback_cipher = NULL;
4352 
4353 	ctx->enckeylen = 0;
4354 	ctx->authkeylen = 0;
4355 
4356 	atomic_inc(&iproc_priv.stream_count);
4357 	atomic_inc(&iproc_priv.session_count);
4358 
4359 	return 0;
4360 }
4361 
4362 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4363 {
4364 	struct crypto_alg *alg = tfm->__crt_alg;
4365 	struct iproc_alg_s *cipher_alg;
4366 
4367 	flow_log("%s()\n", __func__);
4368 
4369 	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4370 
4371 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4372 	return generic_cra_init(tfm, cipher_alg);
4373 }
4374 
4375 static int ahash_cra_init(struct crypto_tfm *tfm)
4376 {
4377 	int err;
4378 	struct crypto_alg *alg = tfm->__crt_alg;
4379 	struct iproc_alg_s *cipher_alg;
4380 
4381 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4382 				  alg.hash);
4383 
4384 	err = generic_cra_init(tfm, cipher_alg);
4385 	flow_log("%s()\n", __func__);
4386 
4387 	/*
4388 	 * export state size has to be < 512 bytes. So don't include msg bufs
4389 	 * in state size.
4390 	 */
4391 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4392 				 sizeof(struct iproc_reqctx_s));
4393 
4394 	return err;
4395 }
4396 
4397 static int aead_cra_init(struct crypto_aead *aead)
4398 {
4399 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4400 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4401 	struct crypto_alg *alg = tfm->__crt_alg;
4402 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4403 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4404 						      alg.aead);
4405 
4406 	int err = generic_cra_init(tfm, cipher_alg);
4407 
4408 	flow_log("%s()\n", __func__);
4409 
4410 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4411 	ctx->is_esp = false;
4412 	ctx->salt_len = 0;
4413 	ctx->salt_offset = 0;
4414 
4415 	/* random first IV */
4416 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4417 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4418 
4419 	if (!err) {
4420 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4421 			flow_log("%s() creating fallback cipher\n", __func__);
4422 
4423 			ctx->fallback_cipher =
4424 			    crypto_alloc_aead(alg->cra_name, 0,
4425 					      CRYPTO_ALG_ASYNC |
4426 					      CRYPTO_ALG_NEED_FALLBACK);
4427 			if (IS_ERR(ctx->fallback_cipher)) {
4428 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4429 				       __func__, alg->cra_name);
4430 				return PTR_ERR(ctx->fallback_cipher);
4431 			}
4432 		}
4433 	}
4434 
4435 	return err;
4436 }
4437 
4438 static void generic_cra_exit(struct crypto_tfm *tfm)
4439 {
4440 	atomic_dec(&iproc_priv.session_count);
4441 }
4442 
4443 static void aead_cra_exit(struct crypto_aead *aead)
4444 {
4445 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4446 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4447 
4448 	generic_cra_exit(tfm);
4449 
4450 	if (ctx->fallback_cipher) {
4451 		crypto_free_aead(ctx->fallback_cipher);
4452 		ctx->fallback_cipher = NULL;
4453 	}
4454 }
4455 
4456 /**
4457  * spu_functions_register() - Specify hardware-specific SPU functions based on
4458  * SPU type read from device tree.
4459  * @dev:	device structure
4460  * @spu_type:	SPU hardware generation
4461  * @spu_subtype: SPU hardware version
4462  */
4463 static void spu_functions_register(struct device *dev,
4464 				   enum spu_spu_type spu_type,
4465 				   enum spu_spu_subtype spu_subtype)
4466 {
4467 	struct spu_hw *spu = &iproc_priv.spu;
4468 
4469 	if (spu_type == SPU_TYPE_SPUM) {
4470 		dev_dbg(dev, "Registering SPUM functions");
4471 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4472 		spu->spu_payload_length = spum_payload_length;
4473 		spu->spu_response_hdr_len = spum_response_hdr_len;
4474 		spu->spu_hash_pad_len = spum_hash_pad_len;
4475 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4476 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4477 		spu->spu_aead_ivlen = spum_aead_ivlen;
4478 		spu->spu_hash_type = spum_hash_type;
4479 		spu->spu_digest_size = spum_digest_size;
4480 		spu->spu_create_request = spum_create_request;
4481 		spu->spu_cipher_req_init = spum_cipher_req_init;
4482 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4483 		spu->spu_request_pad = spum_request_pad;
4484 		spu->spu_tx_status_len = spum_tx_status_len;
4485 		spu->spu_rx_status_len = spum_rx_status_len;
4486 		spu->spu_status_process = spum_status_process;
4487 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4488 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4489 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4490 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4491 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4492 		else
4493 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4494 	} else {
4495 		dev_dbg(dev, "Registering SPU2 functions");
4496 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4497 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4498 		spu->spu_payload_length = spu2_payload_length;
4499 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4500 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4501 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4502 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4503 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4504 		spu->spu_hash_type = spu2_hash_type;
4505 		spu->spu_digest_size = spu2_digest_size;
4506 		spu->spu_create_request = spu2_create_request;
4507 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4508 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4509 		spu->spu_request_pad = spu2_request_pad;
4510 		spu->spu_tx_status_len = spu2_tx_status_len;
4511 		spu->spu_rx_status_len = spu2_rx_status_len;
4512 		spu->spu_status_process = spu2_status_process;
4513 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4514 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4515 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4516 	}
4517 }
4518 
4519 /**
4520  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4521  * channel for the SPU being probed.
4522  * @dev:  SPU driver device structure
4523  *
4524  * Return: 0 if successful
4525  *	   < 0 otherwise
4526  */
4527 static int spu_mb_init(struct device *dev)
4528 {
4529 	struct mbox_client *mcl = &iproc_priv.mcl;
4530 	int err, i;
4531 
4532 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4533 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4534 	if (!iproc_priv.mbox)
4535 		return -ENOMEM;
4536 
4537 	mcl->dev = dev;
4538 	mcl->tx_block = false;
4539 	mcl->tx_tout = 0;
4540 	mcl->knows_txdone = false;
4541 	mcl->rx_callback = spu_rx_callback;
4542 	mcl->tx_done = NULL;
4543 
4544 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4545 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4546 		if (IS_ERR(iproc_priv.mbox[i])) {
4547 			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4548 			dev_err(dev,
4549 				"Mbox channel %d request failed with err %d",
4550 				i, err);
4551 			iproc_priv.mbox[i] = NULL;
4552 			goto free_channels;
4553 		}
4554 	}
4555 
4556 	return 0;
4557 free_channels:
4558 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4559 		if (iproc_priv.mbox[i])
4560 			mbox_free_channel(iproc_priv.mbox[i]);
4561 	}
4562 
4563 	return err;
4564 }
4565 
4566 static void spu_mb_release(struct platform_device *pdev)
4567 {
4568 	int i;
4569 
4570 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4571 		mbox_free_channel(iproc_priv.mbox[i]);
4572 }
4573 
4574 static void spu_counters_init(void)
4575 {
4576 	int i;
4577 	int j;
4578 
4579 	atomic_set(&iproc_priv.session_count, 0);
4580 	atomic_set(&iproc_priv.stream_count, 0);
4581 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4582 	atomic64_set(&iproc_priv.bytes_in, 0);
4583 	atomic64_set(&iproc_priv.bytes_out, 0);
4584 	for (i = 0; i < SPU_OP_NUM; i++) {
4585 		atomic_set(&iproc_priv.op_counts[i], 0);
4586 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4587 	}
4588 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4589 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4590 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4591 
4592 	for (i = 0; i < HASH_ALG_LAST; i++) {
4593 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4594 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4595 	}
4596 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4597 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4598 
4599 	atomic_set(&iproc_priv.mb_no_spc, 0);
4600 	atomic_set(&iproc_priv.mb_send_fail, 0);
4601 	atomic_set(&iproc_priv.bad_icv, 0);
4602 }
4603 
4604 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4605 {
4606 	struct spu_hw *spu = &iproc_priv.spu;
4607 	struct crypto_alg *crypto = &driver_alg->alg.crypto;
4608 	int err;
4609 
4610 	/* SPU2 does not support RC4 */
4611 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4612 	    (spu->spu_type == SPU_TYPE_SPU2))
4613 		return 0;
4614 
4615 	crypto->cra_module = THIS_MODULE;
4616 	crypto->cra_priority = cipher_pri;
4617 	crypto->cra_alignmask = 0;
4618 	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4619 	INIT_LIST_HEAD(&crypto->cra_list);
4620 
4621 	crypto->cra_init = ablkcipher_cra_init;
4622 	crypto->cra_exit = generic_cra_exit;
4623 	crypto->cra_type = &crypto_ablkcipher_type;
4624 	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4625 				CRYPTO_ALG_KERN_DRIVER_ONLY;
4626 
4627 	crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4628 	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4629 	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4630 
4631 	err = crypto_register_alg(crypto);
4632 	/* Mark alg as having been registered, if successful */
4633 	if (err == 0)
4634 		driver_alg->registered = true;
4635 	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name);
4636 	return err;
4637 }
4638 
4639 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4640 {
4641 	struct spu_hw *spu = &iproc_priv.spu;
4642 	struct ahash_alg *hash = &driver_alg->alg.hash;
4643 	int err;
4644 
4645 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4646 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4647 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4648 	    (spu->spu_type == SPU_TYPE_SPUM))
4649 		return 0;
4650 
4651 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4652 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4653 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4654 		return 0;
4655 
4656 	hash->halg.base.cra_module = THIS_MODULE;
4657 	hash->halg.base.cra_priority = hash_pri;
4658 	hash->halg.base.cra_alignmask = 0;
4659 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4660 	hash->halg.base.cra_init = ahash_cra_init;
4661 	hash->halg.base.cra_exit = generic_cra_exit;
4662 	hash->halg.base.cra_type = &crypto_ahash_type;
4663 	hash->halg.base.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
4664 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4665 
4666 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4667 		hash->setkey = ahash_setkey;
4668 		hash->init = ahash_init;
4669 		hash->update = ahash_update;
4670 		hash->final = ahash_final;
4671 		hash->finup = ahash_finup;
4672 		hash->digest = ahash_digest;
4673 	} else {
4674 		hash->setkey = ahash_hmac_setkey;
4675 		hash->init = ahash_hmac_init;
4676 		hash->update = ahash_hmac_update;
4677 		hash->final = ahash_hmac_final;
4678 		hash->finup = ahash_hmac_finup;
4679 		hash->digest = ahash_hmac_digest;
4680 	}
4681 	hash->export = ahash_export;
4682 	hash->import = ahash_import;
4683 
4684 	err = crypto_register_ahash(hash);
4685 	/* Mark alg as having been registered, if successful */
4686 	if (err == 0)
4687 		driver_alg->registered = true;
4688 	pr_debug("  registered ahash %s\n",
4689 		 hash->halg.base.cra_driver_name);
4690 	return err;
4691 }
4692 
4693 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4694 {
4695 	struct aead_alg *aead = &driver_alg->alg.aead;
4696 	int err;
4697 
4698 	aead->base.cra_module = THIS_MODULE;
4699 	aead->base.cra_priority = aead_pri;
4700 	aead->base.cra_alignmask = 0;
4701 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4702 	INIT_LIST_HEAD(&aead->base.cra_list);
4703 
4704 	aead->base.cra_flags |= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
4705 	/* setkey set in alg initialization */
4706 	aead->setauthsize = aead_setauthsize;
4707 	aead->encrypt = aead_encrypt;
4708 	aead->decrypt = aead_decrypt;
4709 	aead->init = aead_cra_init;
4710 	aead->exit = aead_cra_exit;
4711 
4712 	err = crypto_register_aead(aead);
4713 	/* Mark alg as having been registered, if successful */
4714 	if (err == 0)
4715 		driver_alg->registered = true;
4716 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4717 	return err;
4718 }
4719 
4720 /* register crypto algorithms the device supports */
4721 static int spu_algs_register(struct device *dev)
4722 {
4723 	int i, j;
4724 	int err;
4725 
4726 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4727 		switch (driver_algs[i].type) {
4728 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4729 			err = spu_register_ablkcipher(&driver_algs[i]);
4730 			break;
4731 		case CRYPTO_ALG_TYPE_AHASH:
4732 			err = spu_register_ahash(&driver_algs[i]);
4733 			break;
4734 		case CRYPTO_ALG_TYPE_AEAD:
4735 			err = spu_register_aead(&driver_algs[i]);
4736 			break;
4737 		default:
4738 			dev_err(dev,
4739 				"iproc-crypto: unknown alg type: %d",
4740 				driver_algs[i].type);
4741 			err = -EINVAL;
4742 		}
4743 
4744 		if (err) {
4745 			dev_err(dev, "alg registration failed with error %d\n",
4746 				err);
4747 			goto err_algs;
4748 		}
4749 	}
4750 
4751 	return 0;
4752 
4753 err_algs:
4754 	for (j = 0; j < i; j++) {
4755 		/* Skip any algorithm not registered */
4756 		if (!driver_algs[j].registered)
4757 			continue;
4758 		switch (driver_algs[j].type) {
4759 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4760 			crypto_unregister_alg(&driver_algs[j].alg.crypto);
4761 			driver_algs[j].registered = false;
4762 			break;
4763 		case CRYPTO_ALG_TYPE_AHASH:
4764 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4765 			driver_algs[j].registered = false;
4766 			break;
4767 		case CRYPTO_ALG_TYPE_AEAD:
4768 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4769 			driver_algs[j].registered = false;
4770 			break;
4771 		}
4772 	}
4773 	return err;
4774 }
4775 
4776 /* ==================== Kernel Platform API ==================== */
4777 
4778 static struct spu_type_subtype spum_ns2_types = {
4779 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4780 };
4781 
4782 static struct spu_type_subtype spum_nsp_types = {
4783 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4784 };
4785 
4786 static struct spu_type_subtype spu2_types = {
4787 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4788 };
4789 
4790 static struct spu_type_subtype spu2_v2_types = {
4791 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4792 };
4793 
4794 static const struct of_device_id bcm_spu_dt_ids[] = {
4795 	{
4796 		.compatible = "brcm,spum-crypto",
4797 		.data = &spum_ns2_types,
4798 	},
4799 	{
4800 		.compatible = "brcm,spum-nsp-crypto",
4801 		.data = &spum_nsp_types,
4802 	},
4803 	{
4804 		.compatible = "brcm,spu2-crypto",
4805 		.data = &spu2_types,
4806 	},
4807 	{
4808 		.compatible = "brcm,spu2-v2-crypto",
4809 		.data = &spu2_v2_types,
4810 	},
4811 	{ /* sentinel */ }
4812 };
4813 
4814 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4815 
4816 static int spu_dt_read(struct platform_device *pdev)
4817 {
4818 	struct device *dev = &pdev->dev;
4819 	struct spu_hw *spu = &iproc_priv.spu;
4820 	struct resource *spu_ctrl_regs;
4821 	const struct of_device_id *match;
4822 	const struct spu_type_subtype *matched_spu_type;
4823 	struct device_node *dn = pdev->dev.of_node;
4824 	int err, i;
4825 
4826 	/* Count number of mailbox channels */
4827 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4828 
4829 	match = of_match_device(of_match_ptr(bcm_spu_dt_ids), dev);
4830 	if (!match) {
4831 		dev_err(&pdev->dev, "Failed to match device\n");
4832 		return -ENODEV;
4833 	}
4834 
4835 	matched_spu_type = match->data;
4836 
4837 	spu->spu_type = matched_spu_type->type;
4838 	spu->spu_subtype = matched_spu_type->subtype;
4839 
4840 	i = 0;
4841 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4842 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4843 
4844 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4845 		if (IS_ERR(spu->reg_vbase[i])) {
4846 			err = PTR_ERR(spu->reg_vbase[i]);
4847 			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4848 				err);
4849 			spu->reg_vbase[i] = NULL;
4850 			return err;
4851 		}
4852 	}
4853 	spu->num_spu = i;
4854 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4855 
4856 	return 0;
4857 }
4858 
4859 int bcm_spu_probe(struct platform_device *pdev)
4860 {
4861 	struct device *dev = &pdev->dev;
4862 	struct spu_hw *spu = &iproc_priv.spu;
4863 	int err = 0;
4864 
4865 	iproc_priv.pdev  = pdev;
4866 	platform_set_drvdata(iproc_priv.pdev,
4867 			     &iproc_priv);
4868 
4869 	err = spu_dt_read(pdev);
4870 	if (err < 0)
4871 		goto failure;
4872 
4873 	err = spu_mb_init(&pdev->dev);
4874 	if (err < 0)
4875 		goto failure;
4876 
4877 	if (spu->spu_type == SPU_TYPE_SPUM)
4878 		iproc_priv.bcm_hdr_len = 8;
4879 	else if (spu->spu_type == SPU_TYPE_SPU2)
4880 		iproc_priv.bcm_hdr_len = 0;
4881 
4882 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4883 
4884 	spu_counters_init();
4885 
4886 	spu_setup_debugfs();
4887 
4888 	err = spu_algs_register(dev);
4889 	if (err < 0)
4890 		goto fail_reg;
4891 
4892 	return 0;
4893 
4894 fail_reg:
4895 	spu_free_debugfs();
4896 failure:
4897 	spu_mb_release(pdev);
4898 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4899 
4900 	return err;
4901 }
4902 
4903 int bcm_spu_remove(struct platform_device *pdev)
4904 {
4905 	int i;
4906 	struct device *dev = &pdev->dev;
4907 	char *cdn;
4908 
4909 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4910 		/*
4911 		 * Not all algorithms were registered, depending on whether
4912 		 * hardware is SPU or SPU2.  So here we make sure to skip
4913 		 * those algorithms that were not previously registered.
4914 		 */
4915 		if (!driver_algs[i].registered)
4916 			continue;
4917 
4918 		switch (driver_algs[i].type) {
4919 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4920 			crypto_unregister_alg(&driver_algs[i].alg.crypto);
4921 			dev_dbg(dev, "  unregistered cipher %s\n",
4922 				driver_algs[i].alg.crypto.cra_driver_name);
4923 			driver_algs[i].registered = false;
4924 			break;
4925 		case CRYPTO_ALG_TYPE_AHASH:
4926 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4927 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4928 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4929 			driver_algs[i].registered = false;
4930 			break;
4931 		case CRYPTO_ALG_TYPE_AEAD:
4932 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4933 			dev_dbg(dev, "  unregistered aead %s\n",
4934 				driver_algs[i].alg.aead.base.cra_driver_name);
4935 			driver_algs[i].registered = false;
4936 			break;
4937 		}
4938 	}
4939 	spu_free_debugfs();
4940 	spu_mb_release(pdev);
4941 	return 0;
4942 }
4943 
4944 /* ===== Kernel Module API ===== */
4945 
4946 static struct platform_driver bcm_spu_pdriver = {
4947 	.driver = {
4948 		   .name = "brcm-spu-crypto",
4949 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4950 		   },
4951 	.probe = bcm_spu_probe,
4952 	.remove = bcm_spu_remove,
4953 };
4954 module_platform_driver(bcm_spu_pdriver);
4955 
4956 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4957 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4958 MODULE_LICENSE("GPL v2");
4959