1 /* 2 * Copyright 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation (the "GPL"). 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License version 2 (GPLv2) for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * version 2 (GPLv2) along with this source code. 15 */ 16 17 #include <linux/err.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/kernel.h> 22 #include <linux/interrupt.h> 23 #include <linux/platform_device.h> 24 #include <linux/scatterlist.h> 25 #include <linux/crypto.h> 26 #include <linux/kthread.h> 27 #include <linux/rtnetlink.h> 28 #include <linux/sched.h> 29 #include <linux/of_address.h> 30 #include <linux/of_device.h> 31 #include <linux/io.h> 32 #include <linux/bitops.h> 33 34 #include <crypto/algapi.h> 35 #include <crypto/aead.h> 36 #include <crypto/internal/aead.h> 37 #include <crypto/aes.h> 38 #include <crypto/des.h> 39 #include <crypto/hmac.h> 40 #include <crypto/sha.h> 41 #include <crypto/md5.h> 42 #include <crypto/authenc.h> 43 #include <crypto/skcipher.h> 44 #include <crypto/hash.h> 45 #include <crypto/sha3.h> 46 47 #include "util.h" 48 #include "cipher.h" 49 #include "spu.h" 50 #include "spum.h" 51 #include "spu2.h" 52 53 /* ================= Device Structure ================== */ 54 55 struct device_private iproc_priv; 56 57 /* ==================== Parameters ===================== */ 58 59 int flow_debug_logging; 60 module_param(flow_debug_logging, int, 0644); 61 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); 62 63 int packet_debug_logging; 64 module_param(packet_debug_logging, int, 0644); 65 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); 66 67 int debug_logging_sleep; 68 module_param(debug_logging_sleep, int, 0644); 69 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); 70 71 /* 72 * The value of these module parameters is used to set the priority for each 73 * algo type when this driver registers algos with the kernel crypto API. 74 * To use a priority other than the default, set the priority in the insmod or 75 * modprobe. Changing the module priority after init time has no effect. 76 * 77 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE 78 * algos, but more preferred than generic software algos. 79 */ 80 static int cipher_pri = 150; 81 module_param(cipher_pri, int, 0644); 82 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); 83 84 static int hash_pri = 100; 85 module_param(hash_pri, int, 0644); 86 MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); 87 88 static int aead_pri = 150; 89 module_param(aead_pri, int, 0644); 90 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); 91 92 /* A type 3 BCM header, expected to precede the SPU header for SPU-M. 93 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). 94 * 0x60 - ring 0 95 * 0x68 - ring 1 96 * 0x70 - ring 2 97 * 0x78 - ring 3 98 */ 99 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; 100 /* 101 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN 102 * is set dynamically after reading SPU type from device tree. 103 */ 104 #define BCM_HDR_LEN iproc_priv.bcm_hdr_len 105 106 /* min and max time to sleep before retrying when mbox queue is full. usec */ 107 #define MBOX_SLEEP_MIN 800 108 #define MBOX_SLEEP_MAX 1000 109 110 /** 111 * select_channel() - Select a SPU channel to handle a crypto request. Selects 112 * channel in round robin order. 113 * 114 * Return: channel index 115 */ 116 static u8 select_channel(void) 117 { 118 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); 119 120 return chan_idx % iproc_priv.spu.num_chan; 121 } 122 123 /** 124 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to 125 * receive a SPU response message for an ablkcipher request. Includes buffers to 126 * catch SPU message headers and the response data. 127 * @mssg: mailbox message containing the receive sg 128 * @rctx: crypto request context 129 * @rx_frag_num: number of scatterlist elements required to hold the 130 * SPU response message 131 * @chunksize: Number of bytes of response data expected 132 * @stat_pad_len: Number of bytes required to pad the STAT field to 133 * a 4-byte boundary 134 * 135 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 136 * when the request completes, whether the request is handled successfully or 137 * there is an error. 138 * 139 * Returns: 140 * 0 if successful 141 * < 0 if an error 142 */ 143 static int 144 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, 145 struct iproc_reqctx_s *rctx, 146 u8 rx_frag_num, 147 unsigned int chunksize, u32 stat_pad_len) 148 { 149 struct spu_hw *spu = &iproc_priv.spu; 150 struct scatterlist *sg; /* used to build sgs in mbox message */ 151 struct iproc_ctx_s *ctx = rctx->ctx; 152 u32 datalen; /* Number of bytes of response data expected */ 153 154 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 155 rctx->gfp); 156 if (!mssg->spu.dst) 157 return -ENOMEM; 158 159 sg = mssg->spu.dst; 160 sg_init_table(sg, rx_frag_num); 161 /* Space for SPU message header */ 162 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 163 164 /* If XTS tweak in payload, add buffer to receive encrypted tweak */ 165 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 166 spu->spu_xts_tweak_in_payload()) 167 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, 168 SPU_XTS_TWEAK_SIZE); 169 170 /* Copy in each dst sg entry from request, up to chunksize */ 171 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 172 rctx->dst_nents, chunksize); 173 if (datalen < chunksize) { 174 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", 175 __func__, chunksize, datalen); 176 return -EFAULT; 177 } 178 179 if (ctx->cipher.alg == CIPHER_ALG_RC4) 180 /* Add buffer to catch 260-byte SUPDT field for RC4 */ 181 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); 182 183 if (stat_pad_len) 184 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 185 186 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 187 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 188 189 return 0; 190 } 191 192 /** 193 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to 194 * send a SPU request message for an ablkcipher request. Includes SPU message 195 * headers and the request data. 196 * @mssg: mailbox message containing the transmit sg 197 * @rctx: crypto request context 198 * @tx_frag_num: number of scatterlist elements required to construct the 199 * SPU request message 200 * @chunksize: Number of bytes of request data 201 * @pad_len: Number of pad bytes 202 * 203 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 204 * when the request completes, whether the request is handled successfully or 205 * there is an error. 206 * 207 * Returns: 208 * 0 if successful 209 * < 0 if an error 210 */ 211 static int 212 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, 213 struct iproc_reqctx_s *rctx, 214 u8 tx_frag_num, unsigned int chunksize, u32 pad_len) 215 { 216 struct spu_hw *spu = &iproc_priv.spu; 217 struct scatterlist *sg; /* used to build sgs in mbox message */ 218 struct iproc_ctx_s *ctx = rctx->ctx; 219 u32 datalen; /* Number of bytes of response data expected */ 220 u32 stat_len; 221 222 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 223 rctx->gfp); 224 if (unlikely(!mssg->spu.src)) 225 return -ENOMEM; 226 227 sg = mssg->spu.src; 228 sg_init_table(sg, tx_frag_num); 229 230 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 231 BCM_HDR_LEN + ctx->spu_req_hdr_len); 232 233 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ 234 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 235 spu->spu_xts_tweak_in_payload()) 236 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); 237 238 /* Copy in each src sg entry from request, up to chunksize */ 239 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 240 rctx->src_nents, chunksize); 241 if (unlikely(datalen < chunksize)) { 242 pr_err("%s(): failed to copy src sg to mbox msg", 243 __func__); 244 return -EFAULT; 245 } 246 247 if (pad_len) 248 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 249 250 stat_len = spu->spu_tx_status_len(); 251 if (stat_len) { 252 memset(rctx->msg_buf.tx_stat, 0, stat_len); 253 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 254 } 255 return 0; 256 } 257 258 static int mailbox_send_message(struct brcm_message *mssg, u32 flags, 259 u8 chan_idx) 260 { 261 int err; 262 int retry_cnt = 0; 263 struct device *dev = &(iproc_priv.pdev->dev); 264 265 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); 266 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { 267 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { 268 /* 269 * Mailbox queue is full. Since MAY_SLEEP is set, assume 270 * not in atomic context and we can wait and try again. 271 */ 272 retry_cnt++; 273 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); 274 err = mbox_send_message(iproc_priv.mbox[chan_idx], 275 mssg); 276 atomic_inc(&iproc_priv.mb_no_spc); 277 } 278 } 279 if (err < 0) { 280 atomic_inc(&iproc_priv.mb_send_fail); 281 return err; 282 } 283 284 /* Check error returned by mailbox controller */ 285 err = mssg->error; 286 if (unlikely(err < 0)) { 287 dev_err(dev, "message error %d", err); 288 /* Signal txdone for mailbox channel */ 289 } 290 291 /* Signal txdone for mailbox channel */ 292 mbox_client_txdone(iproc_priv.mbox[chan_idx], err); 293 return err; 294 } 295 296 /** 297 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in 298 * a single SPU request message, starting at the current position in the request 299 * data. 300 * @rctx: Crypto request context 301 * 302 * This may be called on the crypto API thread, or, when a request is so large 303 * it must be broken into multiple SPU messages, on the thread used to invoke 304 * the response callback. When requests are broken into multiple SPU 305 * messages, we assume subsequent messages depend on previous results, and 306 * thus always wait for previous results before submitting the next message. 307 * Because requests are submitted in lock step like this, there is no need 308 * to synchronize access to request data structures. 309 * 310 * Return: -EINPROGRESS: request has been accepted and result will be returned 311 * asynchronously 312 * Any other value indicates an error 313 */ 314 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) 315 { 316 struct spu_hw *spu = &iproc_priv.spu; 317 struct crypto_async_request *areq = rctx->parent; 318 struct ablkcipher_request *req = 319 container_of(areq, struct ablkcipher_request, base); 320 struct iproc_ctx_s *ctx = rctx->ctx; 321 struct spu_cipher_parms cipher_parms; 322 int err = 0; 323 unsigned int chunksize = 0; /* Num bytes of request to submit */ 324 int remaining = 0; /* Bytes of request still to process */ 325 int chunk_start; /* Beginning of data for current SPU msg */ 326 327 /* IV or ctr value to use in this SPU msg */ 328 u8 local_iv_ctr[MAX_IV_SIZE]; 329 u32 stat_pad_len; /* num bytes to align status field */ 330 u32 pad_len; /* total length of all padding */ 331 bool update_key = false; 332 struct brcm_message *mssg; /* mailbox message */ 333 334 /* number of entries in src and dst sg in mailbox message. */ 335 u8 rx_frag_num = 2; /* response header and STATUS */ 336 u8 tx_frag_num = 1; /* request header */ 337 338 flow_log("%s\n", __func__); 339 340 cipher_parms.alg = ctx->cipher.alg; 341 cipher_parms.mode = ctx->cipher.mode; 342 cipher_parms.type = ctx->cipher_type; 343 cipher_parms.key_len = ctx->enckeylen; 344 cipher_parms.key_buf = ctx->enckey; 345 cipher_parms.iv_buf = local_iv_ctr; 346 cipher_parms.iv_len = rctx->iv_ctr_len; 347 348 mssg = &rctx->mb_mssg; 349 chunk_start = rctx->src_sent; 350 remaining = rctx->total_todo - chunk_start; 351 352 /* determine the chunk we are breaking off and update the indexes */ 353 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 354 (remaining > ctx->max_payload)) 355 chunksize = ctx->max_payload; 356 else 357 chunksize = remaining; 358 359 rctx->src_sent += chunksize; 360 rctx->total_sent = rctx->src_sent; 361 362 /* Count number of sg entries to be included in this request */ 363 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 364 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 365 366 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 367 rctx->is_encrypt && chunk_start) 368 /* 369 * Encrypting non-first first chunk. Copy last block of 370 * previous result to IV for this chunk. 371 */ 372 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, 373 rctx->iv_ctr_len, 374 chunk_start - rctx->iv_ctr_len); 375 376 if (rctx->iv_ctr_len) { 377 /* get our local copy of the iv */ 378 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, 379 rctx->iv_ctr_len); 380 381 /* generate the next IV if possible */ 382 if ((ctx->cipher.mode == CIPHER_MODE_CBC) && 383 !rctx->is_encrypt) { 384 /* 385 * CBC Decrypt: next IV is the last ciphertext block in 386 * this chunk 387 */ 388 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, 389 rctx->iv_ctr_len, 390 rctx->src_sent - rctx->iv_ctr_len); 391 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { 392 /* 393 * The SPU hardware increments the counter once for 394 * each AES block of 16 bytes. So update the counter 395 * for the next chunk, if there is one. Note that for 396 * this chunk, the counter has already been copied to 397 * local_iv_ctr. We can assume a block size of 16, 398 * because we only support CTR mode for AES, not for 399 * any other cipher alg. 400 */ 401 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); 402 } 403 } 404 405 if (ctx->cipher.alg == CIPHER_ALG_RC4) { 406 rx_frag_num++; 407 if (chunk_start) { 408 /* 409 * for non-first RC4 chunks, use SUPDT from previous 410 * response as key for this chunk. 411 */ 412 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; 413 update_key = true; 414 cipher_parms.type = CIPHER_TYPE_UPDT; 415 } else if (!rctx->is_encrypt) { 416 /* 417 * First RC4 chunk. For decrypt, key in pre-built msg 418 * header may have been changed if encrypt required 419 * multiple chunks. So revert the key to the 420 * ctx->enckey value. 421 */ 422 update_key = true; 423 cipher_parms.type = CIPHER_TYPE_INIT; 424 } 425 } 426 427 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 428 flow_log("max_payload infinite\n"); 429 else 430 flow_log("max_payload %u\n", ctx->max_payload); 431 432 flow_log("sent:%u start:%u remains:%u size:%u\n", 433 rctx->src_sent, chunk_start, remaining, chunksize); 434 435 /* Copy SPU header template created at setkey time */ 436 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, 437 sizeof(rctx->msg_buf.bcm_spu_req_hdr)); 438 439 /* 440 * Pass SUPDT field as key. Key field in finish() call is only used 441 * when update_key has been set above for RC4. Will be ignored in 442 * all other cases. 443 */ 444 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 445 ctx->spu_req_hdr_len, !(rctx->is_encrypt), 446 &cipher_parms, update_key, chunksize); 447 448 atomic64_add(chunksize, &iproc_priv.bytes_out); 449 450 stat_pad_len = spu->spu_wordalign_padlen(chunksize); 451 if (stat_pad_len) 452 rx_frag_num++; 453 pad_len = stat_pad_len; 454 if (pad_len) { 455 tx_frag_num++; 456 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, 457 0, ctx->auth.alg, ctx->auth.mode, 458 rctx->total_sent, stat_pad_len); 459 } 460 461 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 462 ctx->spu_req_hdr_len); 463 packet_log("payload:\n"); 464 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 465 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 466 467 /* 468 * Build mailbox message containing SPU request msg and rx buffers 469 * to catch response message 470 */ 471 memset(mssg, 0, sizeof(*mssg)); 472 mssg->type = BRCM_MESSAGE_SPU; 473 mssg->ctx = rctx; /* Will be returned in response */ 474 475 /* Create rx scatterlist to catch result */ 476 rx_frag_num += rctx->dst_nents; 477 478 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 479 spu->spu_xts_tweak_in_payload()) 480 rx_frag_num++; /* extra sg to insert tweak */ 481 482 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, 483 stat_pad_len); 484 if (err) 485 return err; 486 487 /* Create tx scatterlist containing SPU request message */ 488 tx_frag_num += rctx->src_nents; 489 if (spu->spu_tx_status_len()) 490 tx_frag_num++; 491 492 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 493 spu->spu_xts_tweak_in_payload()) 494 tx_frag_num++; /* extra sg to insert tweak */ 495 496 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, 497 pad_len); 498 if (err) 499 return err; 500 501 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 502 if (unlikely(err < 0)) 503 return err; 504 505 return -EINPROGRESS; 506 } 507 508 /** 509 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the 510 * total received count for the request and updates global stats. 511 * @rctx: Crypto request context 512 */ 513 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) 514 { 515 struct spu_hw *spu = &iproc_priv.spu; 516 #ifdef DEBUG 517 struct crypto_async_request *areq = rctx->parent; 518 struct ablkcipher_request *req = ablkcipher_request_cast(areq); 519 #endif 520 struct iproc_ctx_s *ctx = rctx->ctx; 521 u32 payload_len; 522 523 /* See how much data was returned */ 524 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 525 526 /* 527 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the 528 * encrypted tweak ("i") value; we don't count those. 529 */ 530 if ((ctx->cipher.mode == CIPHER_MODE_XTS) && 531 spu->spu_xts_tweak_in_payload() && 532 (payload_len >= SPU_XTS_TWEAK_SIZE)) 533 payload_len -= SPU_XTS_TWEAK_SIZE; 534 535 atomic64_add(payload_len, &iproc_priv.bytes_in); 536 537 flow_log("%s() offset: %u, bd_len: %u BD:\n", 538 __func__, rctx->total_received, payload_len); 539 540 dump_sg(req->dst, rctx->total_received, payload_len); 541 if (ctx->cipher.alg == CIPHER_ALG_RC4) 542 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, 543 SPU_SUPDT_LEN); 544 545 rctx->total_received += payload_len; 546 if (rctx->total_received == rctx->total_todo) { 547 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); 548 atomic_inc( 549 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); 550 } 551 } 552 553 /** 554 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to 555 * receive a SPU response message for an ahash request. 556 * @mssg: mailbox message containing the receive sg 557 * @rctx: crypto request context 558 * @rx_frag_num: number of scatterlist elements required to hold the 559 * SPU response message 560 * @digestsize: length of hash digest, in bytes 561 * @stat_pad_len: Number of bytes required to pad the STAT field to 562 * a 4-byte boundary 563 * 564 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 565 * when the request completes, whether the request is handled successfully or 566 * there is an error. 567 * 568 * Return: 569 * 0 if successful 570 * < 0 if an error 571 */ 572 static int 573 spu_ahash_rx_sg_create(struct brcm_message *mssg, 574 struct iproc_reqctx_s *rctx, 575 u8 rx_frag_num, unsigned int digestsize, 576 u32 stat_pad_len) 577 { 578 struct spu_hw *spu = &iproc_priv.spu; 579 struct scatterlist *sg; /* used to build sgs in mbox message */ 580 struct iproc_ctx_s *ctx = rctx->ctx; 581 582 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 583 rctx->gfp); 584 if (!mssg->spu.dst) 585 return -ENOMEM; 586 587 sg = mssg->spu.dst; 588 sg_init_table(sg, rx_frag_num); 589 /* Space for SPU message header */ 590 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 591 592 /* Space for digest */ 593 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 594 595 if (stat_pad_len) 596 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 597 598 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 599 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 600 return 0; 601 } 602 603 /** 604 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send 605 * a SPU request message for an ahash request. Includes SPU message headers and 606 * the request data. 607 * @mssg: mailbox message containing the transmit sg 608 * @rctx: crypto request context 609 * @tx_frag_num: number of scatterlist elements required to construct the 610 * SPU request message 611 * @spu_hdr_len: length in bytes of SPU message header 612 * @hash_carry_len: Number of bytes of data carried over from previous req 613 * @new_data_len: Number of bytes of new request data 614 * @pad_len: Number of pad bytes 615 * 616 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 617 * when the request completes, whether the request is handled successfully or 618 * there is an error. 619 * 620 * Return: 621 * 0 if successful 622 * < 0 if an error 623 */ 624 static int 625 spu_ahash_tx_sg_create(struct brcm_message *mssg, 626 struct iproc_reqctx_s *rctx, 627 u8 tx_frag_num, 628 u32 spu_hdr_len, 629 unsigned int hash_carry_len, 630 unsigned int new_data_len, u32 pad_len) 631 { 632 struct spu_hw *spu = &iproc_priv.spu; 633 struct scatterlist *sg; /* used to build sgs in mbox message */ 634 u32 datalen; /* Number of bytes of response data expected */ 635 u32 stat_len; 636 637 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 638 rctx->gfp); 639 if (!mssg->spu.src) 640 return -ENOMEM; 641 642 sg = mssg->spu.src; 643 sg_init_table(sg, tx_frag_num); 644 645 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 646 BCM_HDR_LEN + spu_hdr_len); 647 648 if (hash_carry_len) 649 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); 650 651 if (new_data_len) { 652 /* Copy in each src sg entry from request, up to chunksize */ 653 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 654 rctx->src_nents, new_data_len); 655 if (datalen < new_data_len) { 656 pr_err("%s(): failed to copy src sg to mbox msg", 657 __func__); 658 return -EFAULT; 659 } 660 } 661 662 if (pad_len) 663 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 664 665 stat_len = spu->spu_tx_status_len(); 666 if (stat_len) { 667 memset(rctx->msg_buf.tx_stat, 0, stat_len); 668 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 669 } 670 671 return 0; 672 } 673 674 /** 675 * handle_ahash_req() - Process an asynchronous hash request from the crypto 676 * API. 677 * @rctx: Crypto request context 678 * 679 * Builds a SPU request message embedded in a mailbox message and submits the 680 * mailbox message on a selected mailbox channel. The SPU request message is 681 * constructed as a scatterlist, including entries from the crypto API's 682 * src scatterlist to avoid copying the data to be hashed. This function is 683 * called either on the thread from the crypto API, or, in the case that the 684 * crypto API request is too large to fit in a single SPU request message, 685 * on the thread that invokes the receive callback with a response message. 686 * Because some operations require the response from one chunk before the next 687 * chunk can be submitted, we always wait for the response for the previous 688 * chunk before submitting the next chunk. Because requests are submitted in 689 * lock step like this, there is no need to synchronize access to request data 690 * structures. 691 * 692 * Return: 693 * -EINPROGRESS: request has been submitted to SPU and response will be 694 * returned asynchronously 695 * -EAGAIN: non-final request included a small amount of data, which for 696 * efficiency we did not submit to the SPU, but instead stored 697 * to be submitted to the SPU with the next part of the request 698 * other: an error code 699 */ 700 static int handle_ahash_req(struct iproc_reqctx_s *rctx) 701 { 702 struct spu_hw *spu = &iproc_priv.spu; 703 struct crypto_async_request *areq = rctx->parent; 704 struct ahash_request *req = ahash_request_cast(areq); 705 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 706 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); 707 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 708 struct iproc_ctx_s *ctx = rctx->ctx; 709 710 /* number of bytes still to be hashed in this req */ 711 unsigned int nbytes_to_hash = 0; 712 int err = 0; 713 unsigned int chunksize = 0; /* length of hash carry + new data */ 714 /* 715 * length of new data, not from hash carry, to be submitted in 716 * this hw request 717 */ 718 unsigned int new_data_len; 719 720 unsigned int chunk_start = 0; 721 u32 db_size; /* Length of data field, incl gcm and hash padding */ 722 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ 723 u32 data_pad_len = 0; /* length of GCM/CCM padding */ 724 u32 stat_pad_len = 0; /* length of padding to align STATUS word */ 725 struct brcm_message *mssg; /* mailbox message */ 726 struct spu_request_opts req_opts; 727 struct spu_cipher_parms cipher_parms; 728 struct spu_hash_parms hash_parms; 729 struct spu_aead_parms aead_parms; 730 unsigned int local_nbuf; 731 u32 spu_hdr_len; 732 unsigned int digestsize; 733 u16 rem = 0; 734 735 /* 736 * number of entries in src and dst sg. Always includes SPU msg header. 737 * rx always includes a buffer to catch digest and STATUS. 738 */ 739 u8 rx_frag_num = 3; 740 u8 tx_frag_num = 1; 741 742 flow_log("total_todo %u, total_sent %u\n", 743 rctx->total_todo, rctx->total_sent); 744 745 memset(&req_opts, 0, sizeof(req_opts)); 746 memset(&cipher_parms, 0, sizeof(cipher_parms)); 747 memset(&hash_parms, 0, sizeof(hash_parms)); 748 memset(&aead_parms, 0, sizeof(aead_parms)); 749 750 req_opts.bd_suppress = true; 751 hash_parms.alg = ctx->auth.alg; 752 hash_parms.mode = ctx->auth.mode; 753 hash_parms.type = HASH_TYPE_NONE; 754 hash_parms.key_buf = (u8 *)ctx->authkey; 755 hash_parms.key_len = ctx->authkeylen; 756 757 /* 758 * For hash algorithms below assignment looks bit odd but 759 * it's needed for AES-XCBC and AES-CMAC hash algorithms 760 * to differentiate between 128, 192, 256 bit key values. 761 * Based on the key values, hash algorithm is selected. 762 * For example for 128 bit key, hash algorithm is AES-128. 763 */ 764 cipher_parms.type = ctx->cipher_type; 765 766 mssg = &rctx->mb_mssg; 767 chunk_start = rctx->src_sent; 768 769 /* 770 * Compute the amount remaining to hash. This may include data 771 * carried over from previous requests. 772 */ 773 nbytes_to_hash = rctx->total_todo - rctx->total_sent; 774 chunksize = nbytes_to_hash; 775 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 776 (chunksize > ctx->max_payload)) 777 chunksize = ctx->max_payload; 778 779 /* 780 * If this is not a final request and the request data is not a multiple 781 * of a full block, then simply park the extra data and prefix it to the 782 * data for the next request. 783 */ 784 if (!rctx->is_final) { 785 u8 *dest = rctx->hash_carry + rctx->hash_carry_len; 786 u16 new_len; /* len of data to add to hash carry */ 787 788 rem = chunksize % blocksize; /* remainder */ 789 if (rem) { 790 /* chunksize not a multiple of blocksize */ 791 chunksize -= rem; 792 if (chunksize == 0) { 793 /* Don't have a full block to submit to hw */ 794 new_len = rem - rctx->hash_carry_len; 795 sg_copy_part_to_buf(req->src, dest, new_len, 796 rctx->src_sent); 797 rctx->hash_carry_len = rem; 798 flow_log("Exiting with hash carry len: %u\n", 799 rctx->hash_carry_len); 800 packet_dump(" buf: ", 801 rctx->hash_carry, 802 rctx->hash_carry_len); 803 return -EAGAIN; 804 } 805 } 806 } 807 808 /* if we have hash carry, then prefix it to the data in this request */ 809 local_nbuf = rctx->hash_carry_len; 810 rctx->hash_carry_len = 0; 811 if (local_nbuf) 812 tx_frag_num++; 813 new_data_len = chunksize - local_nbuf; 814 815 /* Count number of sg entries to be used in this request */ 816 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, 817 new_data_len); 818 819 /* AES hashing keeps key size in type field, so need to copy it here */ 820 if (hash_parms.alg == HASH_ALG_AES) 821 hash_parms.type = cipher_parms.type; 822 else 823 hash_parms.type = spu->spu_hash_type(rctx->total_sent); 824 825 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, 826 hash_parms.type); 827 hash_parms.digestsize = digestsize; 828 829 /* update the indexes */ 830 rctx->total_sent += chunksize; 831 /* if you sent a prebuf then that wasn't from this req->src */ 832 rctx->src_sent += new_data_len; 833 834 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) 835 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, 836 hash_parms.mode, 837 chunksize, 838 blocksize); 839 840 /* 841 * If a non-first chunk, then include the digest returned from the 842 * previous chunk so that hw can add to it (except for AES types). 843 */ 844 if ((hash_parms.type == HASH_TYPE_UPDT) && 845 (hash_parms.alg != HASH_ALG_AES)) { 846 hash_parms.key_buf = rctx->incr_hash; 847 hash_parms.key_len = digestsize; 848 } 849 850 atomic64_add(chunksize, &iproc_priv.bytes_out); 851 852 flow_log("%s() final: %u nbuf: %u ", 853 __func__, rctx->is_final, local_nbuf); 854 855 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 856 flow_log("max_payload infinite\n"); 857 else 858 flow_log("max_payload %u\n", ctx->max_payload); 859 860 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); 861 862 /* Prepend SPU header with type 3 BCM header */ 863 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 864 865 hash_parms.prebuf_len = local_nbuf; 866 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 867 BCM_HDR_LEN, 868 &req_opts, &cipher_parms, 869 &hash_parms, &aead_parms, 870 new_data_len); 871 872 if (spu_hdr_len == 0) { 873 pr_err("Failed to create SPU request header\n"); 874 return -EFAULT; 875 } 876 877 /* 878 * Determine total length of padding required. Put all padding in one 879 * buffer. 880 */ 881 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); 882 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, 883 0, 0, hash_parms.pad_len); 884 if (spu->spu_tx_status_len()) 885 stat_pad_len = spu->spu_wordalign_padlen(db_size); 886 if (stat_pad_len) 887 rx_frag_num++; 888 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; 889 if (pad_len) { 890 tx_frag_num++; 891 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, 892 hash_parms.pad_len, ctx->auth.alg, 893 ctx->auth.mode, rctx->total_sent, 894 stat_pad_len); 895 } 896 897 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 898 spu_hdr_len); 899 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); 900 flow_log("Data:\n"); 901 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); 902 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 903 904 /* 905 * Build mailbox message containing SPU request msg and rx buffers 906 * to catch response message 907 */ 908 memset(mssg, 0, sizeof(*mssg)); 909 mssg->type = BRCM_MESSAGE_SPU; 910 mssg->ctx = rctx; /* Will be returned in response */ 911 912 /* Create rx scatterlist to catch result */ 913 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, 914 stat_pad_len); 915 if (err) 916 return err; 917 918 /* Create tx scatterlist containing SPU request message */ 919 tx_frag_num += rctx->src_nents; 920 if (spu->spu_tx_status_len()) 921 tx_frag_num++; 922 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 923 local_nbuf, new_data_len, pad_len); 924 if (err) 925 return err; 926 927 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 928 if (unlikely(err < 0)) 929 return err; 930 931 return -EINPROGRESS; 932 } 933 934 /** 935 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash 936 * for an HMAC request. 937 * @req: The HMAC request from the crypto API 938 * @ctx: The session context 939 * 940 * Return: 0 if synchronous hash operation successful 941 * -EINVAL if the hash algo is unrecognized 942 * any other value indicates an error 943 */ 944 static int spu_hmac_outer_hash(struct ahash_request *req, 945 struct iproc_ctx_s *ctx) 946 { 947 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 948 unsigned int blocksize = 949 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 950 int rc; 951 952 switch (ctx->auth.alg) { 953 case HASH_ALG_MD5: 954 rc = do_shash("md5", req->result, ctx->opad, blocksize, 955 req->result, ctx->digestsize, NULL, 0); 956 break; 957 case HASH_ALG_SHA1: 958 rc = do_shash("sha1", req->result, ctx->opad, blocksize, 959 req->result, ctx->digestsize, NULL, 0); 960 break; 961 case HASH_ALG_SHA224: 962 rc = do_shash("sha224", req->result, ctx->opad, blocksize, 963 req->result, ctx->digestsize, NULL, 0); 964 break; 965 case HASH_ALG_SHA256: 966 rc = do_shash("sha256", req->result, ctx->opad, blocksize, 967 req->result, ctx->digestsize, NULL, 0); 968 break; 969 case HASH_ALG_SHA384: 970 rc = do_shash("sha384", req->result, ctx->opad, blocksize, 971 req->result, ctx->digestsize, NULL, 0); 972 break; 973 case HASH_ALG_SHA512: 974 rc = do_shash("sha512", req->result, ctx->opad, blocksize, 975 req->result, ctx->digestsize, NULL, 0); 976 break; 977 default: 978 pr_err("%s() Error : unknown hmac type\n", __func__); 979 rc = -EINVAL; 980 } 981 return rc; 982 } 983 984 /** 985 * ahash_req_done() - Process a hash result from the SPU hardware. 986 * @rctx: Crypto request context 987 * 988 * Return: 0 if successful 989 * < 0 if an error 990 */ 991 static int ahash_req_done(struct iproc_reqctx_s *rctx) 992 { 993 struct spu_hw *spu = &iproc_priv.spu; 994 struct crypto_async_request *areq = rctx->parent; 995 struct ahash_request *req = ahash_request_cast(areq); 996 struct iproc_ctx_s *ctx = rctx->ctx; 997 int err; 998 999 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); 1000 1001 if (spu->spu_type == SPU_TYPE_SPUM) { 1002 /* byte swap the output from the UPDT function to network byte 1003 * order 1004 */ 1005 if (ctx->auth.alg == HASH_ALG_MD5) { 1006 __swab32s((u32 *)req->result); 1007 __swab32s(((u32 *)req->result) + 1); 1008 __swab32s(((u32 *)req->result) + 2); 1009 __swab32s(((u32 *)req->result) + 3); 1010 __swab32s(((u32 *)req->result) + 4); 1011 } 1012 } 1013 1014 flow_dump(" digest ", req->result, ctx->digestsize); 1015 1016 /* if this an HMAC then do the outer hash */ 1017 if (rctx->is_sw_hmac) { 1018 err = spu_hmac_outer_hash(req, ctx); 1019 if (err < 0) 1020 return err; 1021 flow_dump(" hmac: ", req->result, ctx->digestsize); 1022 } 1023 1024 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { 1025 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); 1026 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); 1027 } else { 1028 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); 1029 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); 1030 } 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * handle_ahash_resp() - Process a SPU response message for a hash request. 1037 * Checks if the entire crypto API request has been processed, and if so, 1038 * invokes post processing on the result. 1039 * @rctx: Crypto request context 1040 */ 1041 static void handle_ahash_resp(struct iproc_reqctx_s *rctx) 1042 { 1043 struct iproc_ctx_s *ctx = rctx->ctx; 1044 #ifdef DEBUG 1045 struct crypto_async_request *areq = rctx->parent; 1046 struct ahash_request *req = ahash_request_cast(areq); 1047 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); 1048 unsigned int blocksize = 1049 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 1050 #endif 1051 /* 1052 * Save hash to use as input to next op if incremental. Might be copying 1053 * too much, but that's easier than figuring out actual digest size here 1054 */ 1055 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); 1056 1057 flow_log("%s() blocksize:%u digestsize:%u\n", 1058 __func__, blocksize, ctx->digestsize); 1059 1060 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); 1061 1062 if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) 1063 ahash_req_done(rctx); 1064 } 1065 1066 /** 1067 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive 1068 * a SPU response message for an AEAD request. Includes buffers to catch SPU 1069 * message headers and the response data. 1070 * @mssg: mailbox message containing the receive sg 1071 * @rctx: crypto request context 1072 * @rx_frag_num: number of scatterlist elements required to hold the 1073 * SPU response message 1074 * @assoc_len: Length of associated data included in the crypto request 1075 * @ret_iv_len: Length of IV returned in response 1076 * @resp_len: Number of bytes of response data expected to be written to 1077 * dst buffer from crypto API 1078 * @digestsize: Length of hash digest, in bytes 1079 * @stat_pad_len: Number of bytes required to pad the STAT field to 1080 * a 4-byte boundary 1081 * 1082 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1083 * when the request completes, whether the request is handled successfully or 1084 * there is an error. 1085 * 1086 * Returns: 1087 * 0 if successful 1088 * < 0 if an error 1089 */ 1090 static int spu_aead_rx_sg_create(struct brcm_message *mssg, 1091 struct aead_request *req, 1092 struct iproc_reqctx_s *rctx, 1093 u8 rx_frag_num, 1094 unsigned int assoc_len, 1095 u32 ret_iv_len, unsigned int resp_len, 1096 unsigned int digestsize, u32 stat_pad_len) 1097 { 1098 struct spu_hw *spu = &iproc_priv.spu; 1099 struct scatterlist *sg; /* used to build sgs in mbox message */ 1100 struct iproc_ctx_s *ctx = rctx->ctx; 1101 u32 datalen; /* Number of bytes of response data expected */ 1102 u32 assoc_buf_len; 1103 u8 data_padlen = 0; 1104 1105 if (ctx->is_rfc4543) { 1106 /* RFC4543: only pad after data, not after AAD */ 1107 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1108 assoc_len + resp_len); 1109 assoc_buf_len = assoc_len; 1110 } else { 1111 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1112 resp_len); 1113 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, 1114 assoc_len, ret_iv_len, 1115 rctx->is_encrypt); 1116 } 1117 1118 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1119 /* ICV (after data) must be in the next 32-bit word for CCM */ 1120 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + 1121 resp_len + 1122 data_padlen); 1123 1124 if (data_padlen) 1125 /* have to catch gcm pad in separate buffer */ 1126 rx_frag_num++; 1127 1128 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), 1129 rctx->gfp); 1130 if (!mssg->spu.dst) 1131 return -ENOMEM; 1132 1133 sg = mssg->spu.dst; 1134 sg_init_table(sg, rx_frag_num); 1135 1136 /* Space for SPU message header */ 1137 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); 1138 1139 if (assoc_buf_len) { 1140 /* 1141 * Don't write directly to req->dst, because SPU may pad the 1142 * assoc data in the response 1143 */ 1144 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); 1145 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); 1146 } 1147 1148 if (resp_len) { 1149 /* 1150 * Copy in each dst sg entry from request, up to chunksize. 1151 * dst sg catches just the data. digest caught in separate buf. 1152 */ 1153 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, 1154 rctx->dst_nents, resp_len); 1155 if (datalen < (resp_len)) { 1156 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", 1157 __func__, resp_len, datalen); 1158 return -EFAULT; 1159 } 1160 } 1161 1162 /* If GCM/CCM data is padded, catch padding in separate buffer */ 1163 if (data_padlen) { 1164 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); 1165 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); 1166 } 1167 1168 /* Always catch ICV in separate buffer */ 1169 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); 1170 1171 flow_log("stat_pad_len %u\n", stat_pad_len); 1172 if (stat_pad_len) { 1173 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); 1174 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); 1175 } 1176 1177 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); 1178 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a 1185 * SPU request message for an AEAD request. Includes SPU message headers and the 1186 * request data. 1187 * @mssg: mailbox message containing the transmit sg 1188 * @rctx: crypto request context 1189 * @tx_frag_num: number of scatterlist elements required to construct the 1190 * SPU request message 1191 * @spu_hdr_len: length of SPU message header in bytes 1192 * @assoc: crypto API associated data scatterlist 1193 * @assoc_len: length of associated data 1194 * @assoc_nents: number of scatterlist entries containing assoc data 1195 * @aead_iv_len: length of AEAD IV, if included 1196 * @chunksize: Number of bytes of request data 1197 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. 1198 * @pad_len: Number of pad bytes 1199 * @incl_icv: If true, write separate ICV buffer after data and 1200 * any padding 1201 * 1202 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() 1203 * when the request completes, whether the request is handled successfully or 1204 * there is an error. 1205 * 1206 * Return: 1207 * 0 if successful 1208 * < 0 if an error 1209 */ 1210 static int spu_aead_tx_sg_create(struct brcm_message *mssg, 1211 struct iproc_reqctx_s *rctx, 1212 u8 tx_frag_num, 1213 u32 spu_hdr_len, 1214 struct scatterlist *assoc, 1215 unsigned int assoc_len, 1216 int assoc_nents, 1217 unsigned int aead_iv_len, 1218 unsigned int chunksize, 1219 u32 aad_pad_len, u32 pad_len, bool incl_icv) 1220 { 1221 struct spu_hw *spu = &iproc_priv.spu; 1222 struct scatterlist *sg; /* used to build sgs in mbox message */ 1223 struct scatterlist *assoc_sg = assoc; 1224 struct iproc_ctx_s *ctx = rctx->ctx; 1225 u32 datalen; /* Number of bytes of data to write */ 1226 u32 written; /* Number of bytes of data written */ 1227 u32 assoc_offset = 0; 1228 u32 stat_len; 1229 1230 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), 1231 rctx->gfp); 1232 if (!mssg->spu.src) 1233 return -ENOMEM; 1234 1235 sg = mssg->spu.src; 1236 sg_init_table(sg, tx_frag_num); 1237 1238 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, 1239 BCM_HDR_LEN + spu_hdr_len); 1240 1241 if (assoc_len) { 1242 /* Copy in each associated data sg entry from request */ 1243 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, 1244 assoc_nents, assoc_len); 1245 if (written < assoc_len) { 1246 pr_err("%s(): failed to copy assoc sg to mbox msg", 1247 __func__); 1248 return -EFAULT; 1249 } 1250 } 1251 1252 if (aead_iv_len) 1253 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); 1254 1255 if (aad_pad_len) { 1256 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); 1257 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); 1258 } 1259 1260 datalen = chunksize; 1261 if ((chunksize > ctx->digestsize) && incl_icv) 1262 datalen -= ctx->digestsize; 1263 if (datalen) { 1264 /* For aead, a single msg should consume the entire src sg */ 1265 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, 1266 rctx->src_nents, datalen); 1267 if (written < datalen) { 1268 pr_err("%s(): failed to copy src sg to mbox msg", 1269 __func__); 1270 return -EFAULT; 1271 } 1272 } 1273 1274 if (pad_len) { 1275 memset(rctx->msg_buf.spu_req_pad, 0, pad_len); 1276 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); 1277 } 1278 1279 if (incl_icv) 1280 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); 1281 1282 stat_len = spu->spu_tx_status_len(); 1283 if (stat_len) { 1284 memset(rctx->msg_buf.tx_stat, 0, stat_len); 1285 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); 1286 } 1287 return 0; 1288 } 1289 1290 /** 1291 * handle_aead_req() - Submit a SPU request message for the next chunk of the 1292 * current AEAD request. 1293 * @rctx: Crypto request context 1294 * 1295 * Unlike other operation types, we assume the length of the request fits in 1296 * a single SPU request message. aead_enqueue() makes sure this is true. 1297 * Comments for other op types regarding threads applies here as well. 1298 * 1299 * Unlike incremental hash ops, where the spu returns the entire hash for 1300 * truncated algs like sha-224, the SPU returns just the truncated hash in 1301 * response to aead requests. So digestsize is always ctx->digestsize here. 1302 * 1303 * Return: -EINPROGRESS: crypto request has been accepted and result will be 1304 * returned asynchronously 1305 * Any other value indicates an error 1306 */ 1307 static int handle_aead_req(struct iproc_reqctx_s *rctx) 1308 { 1309 struct spu_hw *spu = &iproc_priv.spu; 1310 struct crypto_async_request *areq = rctx->parent; 1311 struct aead_request *req = container_of(areq, 1312 struct aead_request, base); 1313 struct iproc_ctx_s *ctx = rctx->ctx; 1314 int err; 1315 unsigned int chunksize; 1316 unsigned int resp_len; 1317 u32 spu_hdr_len; 1318 u32 db_size; 1319 u32 stat_pad_len; 1320 u32 pad_len; 1321 struct brcm_message *mssg; /* mailbox message */ 1322 struct spu_request_opts req_opts; 1323 struct spu_cipher_parms cipher_parms; 1324 struct spu_hash_parms hash_parms; 1325 struct spu_aead_parms aead_parms; 1326 int assoc_nents = 0; 1327 bool incl_icv = false; 1328 unsigned int digestsize = ctx->digestsize; 1329 1330 /* number of entries in src and dst sg. Always includes SPU msg header. 1331 */ 1332 u8 rx_frag_num = 2; /* and STATUS */ 1333 u8 tx_frag_num = 1; 1334 1335 /* doing the whole thing at once */ 1336 chunksize = rctx->total_todo; 1337 1338 flow_log("%s: chunksize %u\n", __func__, chunksize); 1339 1340 memset(&req_opts, 0, sizeof(req_opts)); 1341 memset(&hash_parms, 0, sizeof(hash_parms)); 1342 memset(&aead_parms, 0, sizeof(aead_parms)); 1343 1344 req_opts.is_inbound = !(rctx->is_encrypt); 1345 req_opts.auth_first = ctx->auth_first; 1346 req_opts.is_aead = true; 1347 req_opts.is_esp = ctx->is_esp; 1348 1349 cipher_parms.alg = ctx->cipher.alg; 1350 cipher_parms.mode = ctx->cipher.mode; 1351 cipher_parms.type = ctx->cipher_type; 1352 cipher_parms.key_buf = ctx->enckey; 1353 cipher_parms.key_len = ctx->enckeylen; 1354 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; 1355 cipher_parms.iv_len = rctx->iv_ctr_len; 1356 1357 hash_parms.alg = ctx->auth.alg; 1358 hash_parms.mode = ctx->auth.mode; 1359 hash_parms.type = HASH_TYPE_NONE; 1360 hash_parms.key_buf = (u8 *)ctx->authkey; 1361 hash_parms.key_len = ctx->authkeylen; 1362 hash_parms.digestsize = digestsize; 1363 1364 if ((ctx->auth.alg == HASH_ALG_SHA224) && 1365 (ctx->authkeylen < SHA224_DIGEST_SIZE)) 1366 hash_parms.key_len = SHA224_DIGEST_SIZE; 1367 1368 aead_parms.assoc_size = req->assoclen; 1369 if (ctx->is_esp && !ctx->is_rfc4543) { 1370 /* 1371 * 8-byte IV is included assoc data in request. SPU2 1372 * expects AAD to include just SPI and seqno. So 1373 * subtract off the IV len. 1374 */ 1375 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; 1376 1377 if (rctx->is_encrypt) { 1378 aead_parms.return_iv = true; 1379 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; 1380 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; 1381 } 1382 } else { 1383 aead_parms.ret_iv_len = 0; 1384 } 1385 1386 /* 1387 * Count number of sg entries from the crypto API request that are to 1388 * be included in this mailbox message. For dst sg, don't count space 1389 * for digest. Digest gets caught in a separate buffer and copied back 1390 * to dst sg when processing response. 1391 */ 1392 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); 1393 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); 1394 if (aead_parms.assoc_size) 1395 assoc_nents = spu_sg_count(rctx->assoc, 0, 1396 aead_parms.assoc_size); 1397 1398 mssg = &rctx->mb_mssg; 1399 1400 rctx->total_sent = chunksize; 1401 rctx->src_sent = chunksize; 1402 if (spu->spu_assoc_resp_len(ctx->cipher.mode, 1403 aead_parms.assoc_size, 1404 aead_parms.ret_iv_len, 1405 rctx->is_encrypt)) 1406 rx_frag_num++; 1407 1408 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, 1409 rctx->iv_ctr_len); 1410 1411 if (ctx->auth.alg == HASH_ALG_AES) 1412 hash_parms.type = ctx->cipher_type; 1413 1414 /* General case AAD padding (CCM and RFC4543 special cases below) */ 1415 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1416 aead_parms.assoc_size); 1417 1418 /* General case data padding (CCM decrypt special case below) */ 1419 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1420 chunksize); 1421 1422 if (ctx->cipher.mode == CIPHER_MODE_CCM) { 1423 /* 1424 * for CCM, AAD len + 2 (rather than AAD len) needs to be 1425 * 128-bit aligned 1426 */ 1427 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( 1428 ctx->cipher.mode, 1429 aead_parms.assoc_size + 2); 1430 1431 /* 1432 * And when decrypting CCM, need to pad without including 1433 * size of ICV which is tacked on to end of chunk 1434 */ 1435 if (!rctx->is_encrypt) 1436 aead_parms.data_pad_len = 1437 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, 1438 chunksize - digestsize); 1439 1440 /* CCM also requires software to rewrite portions of IV: */ 1441 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, 1442 chunksize, rctx->is_encrypt, 1443 ctx->is_esp); 1444 } 1445 1446 if (ctx->is_rfc4543) { 1447 /* 1448 * RFC4543: data is included in AAD, so don't pad after AAD 1449 * and pad data based on both AAD + data size 1450 */ 1451 aead_parms.aad_pad_len = 0; 1452 if (!rctx->is_encrypt) 1453 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1454 ctx->cipher.mode, 1455 aead_parms.assoc_size + chunksize - 1456 digestsize); 1457 else 1458 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( 1459 ctx->cipher.mode, 1460 aead_parms.assoc_size + chunksize); 1461 1462 req_opts.is_rfc4543 = true; 1463 } 1464 1465 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { 1466 incl_icv = true; 1467 tx_frag_num++; 1468 /* Copy ICV from end of src scatterlist to digest buf */ 1469 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, 1470 req->assoclen + rctx->total_sent - 1471 digestsize); 1472 } 1473 1474 atomic64_add(chunksize, &iproc_priv.bytes_out); 1475 1476 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); 1477 1478 /* Prepend SPU header with type 3 BCM header */ 1479 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1480 1481 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + 1482 BCM_HDR_LEN, &req_opts, 1483 &cipher_parms, &hash_parms, 1484 &aead_parms, chunksize); 1485 1486 /* Determine total length of padding. Put all padding in one buffer. */ 1487 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, 1488 chunksize, aead_parms.aad_pad_len, 1489 aead_parms.data_pad_len, 0); 1490 1491 stat_pad_len = spu->spu_wordalign_padlen(db_size); 1492 1493 if (stat_pad_len) 1494 rx_frag_num++; 1495 pad_len = aead_parms.data_pad_len + stat_pad_len; 1496 if (pad_len) { 1497 tx_frag_num++; 1498 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 1499 aead_parms.data_pad_len, 0, 1500 ctx->auth.alg, ctx->auth.mode, 1501 rctx->total_sent, stat_pad_len); 1502 } 1503 1504 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, 1505 spu_hdr_len); 1506 dump_sg(rctx->assoc, 0, aead_parms.assoc_size); 1507 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); 1508 packet_log("BD:\n"); 1509 dump_sg(rctx->src_sg, rctx->src_skip, chunksize); 1510 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); 1511 1512 /* 1513 * Build mailbox message containing SPU request msg and rx buffers 1514 * to catch response message 1515 */ 1516 memset(mssg, 0, sizeof(*mssg)); 1517 mssg->type = BRCM_MESSAGE_SPU; 1518 mssg->ctx = rctx; /* Will be returned in response */ 1519 1520 /* Create rx scatterlist to catch result */ 1521 rx_frag_num += rctx->dst_nents; 1522 resp_len = chunksize; 1523 1524 /* 1525 * Always catch ICV in separate buffer. Have to for GCM/CCM because of 1526 * padding. Have to for SHA-224 and other truncated SHAs because SPU 1527 * sends entire digest back. 1528 */ 1529 rx_frag_num++; 1530 1531 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 1532 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { 1533 /* 1534 * Input is ciphertxt plus ICV, but ICV not incl 1535 * in output. 1536 */ 1537 resp_len -= ctx->digestsize; 1538 if (resp_len == 0) 1539 /* no rx frags to catch output data */ 1540 rx_frag_num -= rctx->dst_nents; 1541 } 1542 1543 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, 1544 aead_parms.assoc_size, 1545 aead_parms.ret_iv_len, resp_len, digestsize, 1546 stat_pad_len); 1547 if (err) 1548 return err; 1549 1550 /* Create tx scatterlist containing SPU request message */ 1551 tx_frag_num += rctx->src_nents; 1552 tx_frag_num += assoc_nents; 1553 if (aead_parms.aad_pad_len) 1554 tx_frag_num++; 1555 if (aead_parms.iv_len) 1556 tx_frag_num++; 1557 if (spu->spu_tx_status_len()) 1558 tx_frag_num++; 1559 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, 1560 rctx->assoc, aead_parms.assoc_size, 1561 assoc_nents, aead_parms.iv_len, chunksize, 1562 aead_parms.aad_pad_len, pad_len, incl_icv); 1563 if (err) 1564 return err; 1565 1566 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); 1567 if (unlikely(err < 0)) 1568 return err; 1569 1570 return -EINPROGRESS; 1571 } 1572 1573 /** 1574 * handle_aead_resp() - Process a SPU response message for an AEAD request. 1575 * @rctx: Crypto request context 1576 */ 1577 static void handle_aead_resp(struct iproc_reqctx_s *rctx) 1578 { 1579 struct spu_hw *spu = &iproc_priv.spu; 1580 struct crypto_async_request *areq = rctx->parent; 1581 struct aead_request *req = container_of(areq, 1582 struct aead_request, base); 1583 struct iproc_ctx_s *ctx = rctx->ctx; 1584 u32 payload_len; 1585 unsigned int icv_offset; 1586 u32 result_len; 1587 1588 /* See how much data was returned */ 1589 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); 1590 flow_log("payload_len %u\n", payload_len); 1591 1592 /* only count payload */ 1593 atomic64_add(payload_len, &iproc_priv.bytes_in); 1594 1595 if (req->assoclen) 1596 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, 1597 req->assoclen); 1598 1599 /* 1600 * Copy the ICV back to the destination 1601 * buffer. In decrypt case, SPU gives us back the digest, but crypto 1602 * API doesn't expect ICV in dst buffer. 1603 */ 1604 result_len = req->cryptlen; 1605 if (rctx->is_encrypt) { 1606 icv_offset = req->assoclen + rctx->total_sent; 1607 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); 1608 flow_log("copying ICV to dst sg at offset %u\n", icv_offset); 1609 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, 1610 ctx->digestsize, icv_offset); 1611 result_len += ctx->digestsize; 1612 } 1613 1614 packet_log("response data: "); 1615 dump_sg(req->dst, req->assoclen, result_len); 1616 1617 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); 1618 if (ctx->cipher.alg == CIPHER_ALG_AES) { 1619 if (ctx->cipher.mode == CIPHER_MODE_CCM) 1620 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); 1621 else if (ctx->cipher.mode == CIPHER_MODE_GCM) 1622 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); 1623 else 1624 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1625 } else { 1626 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); 1627 } 1628 } 1629 1630 /** 1631 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request 1632 * @rctx: request context 1633 * 1634 * Mailbox scatterlists are allocated for each chunk. So free them after 1635 * processing each chunk. 1636 */ 1637 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) 1638 { 1639 /* mailbox message used to tx request */ 1640 struct brcm_message *mssg = &rctx->mb_mssg; 1641 1642 kfree(mssg->spu.src); 1643 kfree(mssg->spu.dst); 1644 memset(mssg, 0, sizeof(struct brcm_message)); 1645 } 1646 1647 /** 1648 * finish_req() - Used to invoke the complete callback from the requester when 1649 * a request has been handled asynchronously. 1650 * @rctx: Request context 1651 * @err: Indicates whether the request was successful or not 1652 * 1653 * Ensures that cleanup has been done for request 1654 */ 1655 static void finish_req(struct iproc_reqctx_s *rctx, int err) 1656 { 1657 struct crypto_async_request *areq = rctx->parent; 1658 1659 flow_log("%s() err:%d\n\n", __func__, err); 1660 1661 /* No harm done if already called */ 1662 spu_chunk_cleanup(rctx); 1663 1664 if (areq) 1665 areq->complete(areq, err); 1666 } 1667 1668 /** 1669 * spu_rx_callback() - Callback from mailbox framework with a SPU response. 1670 * @cl: mailbox client structure for SPU driver 1671 * @msg: mailbox message containing SPU response 1672 */ 1673 static void spu_rx_callback(struct mbox_client *cl, void *msg) 1674 { 1675 struct spu_hw *spu = &iproc_priv.spu; 1676 struct brcm_message *mssg = msg; 1677 struct iproc_reqctx_s *rctx; 1678 struct iproc_ctx_s *ctx; 1679 struct crypto_async_request *areq; 1680 int err = 0; 1681 1682 rctx = mssg->ctx; 1683 if (unlikely(!rctx)) { 1684 /* This is fatal */ 1685 pr_err("%s(): no request context", __func__); 1686 err = -EFAULT; 1687 goto cb_finish; 1688 } 1689 areq = rctx->parent; 1690 ctx = rctx->ctx; 1691 1692 /* process the SPU status */ 1693 err = spu->spu_status_process(rctx->msg_buf.rx_stat); 1694 if (err != 0) { 1695 if (err == SPU_INVALID_ICV) 1696 atomic_inc(&iproc_priv.bad_icv); 1697 err = -EBADMSG; 1698 goto cb_finish; 1699 } 1700 1701 /* Process the SPU response message */ 1702 switch (rctx->ctx->alg->type) { 1703 case CRYPTO_ALG_TYPE_ABLKCIPHER: 1704 handle_ablkcipher_resp(rctx); 1705 break; 1706 case CRYPTO_ALG_TYPE_AHASH: 1707 handle_ahash_resp(rctx); 1708 break; 1709 case CRYPTO_ALG_TYPE_AEAD: 1710 handle_aead_resp(rctx); 1711 break; 1712 default: 1713 err = -EINVAL; 1714 goto cb_finish; 1715 } 1716 1717 /* 1718 * If this response does not complete the request, then send the next 1719 * request chunk. 1720 */ 1721 if (rctx->total_sent < rctx->total_todo) { 1722 /* Deallocate anything specific to previous chunk */ 1723 spu_chunk_cleanup(rctx); 1724 1725 switch (rctx->ctx->alg->type) { 1726 case CRYPTO_ALG_TYPE_ABLKCIPHER: 1727 err = handle_ablkcipher_req(rctx); 1728 break; 1729 case CRYPTO_ALG_TYPE_AHASH: 1730 err = handle_ahash_req(rctx); 1731 if (err == -EAGAIN) 1732 /* 1733 * we saved data in hash carry, but tell crypto 1734 * API we successfully completed request. 1735 */ 1736 err = 0; 1737 break; 1738 case CRYPTO_ALG_TYPE_AEAD: 1739 err = handle_aead_req(rctx); 1740 break; 1741 default: 1742 err = -EINVAL; 1743 } 1744 1745 if (err == -EINPROGRESS) 1746 /* Successfully submitted request for next chunk */ 1747 return; 1748 } 1749 1750 cb_finish: 1751 finish_req(rctx, err); 1752 } 1753 1754 /* ==================== Kernel Cryptographic API ==================== */ 1755 1756 /** 1757 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. 1758 * @req: Crypto API request 1759 * @encrypt: true if encrypting; false if decrypting 1760 * 1761 * Return: -EINPROGRESS if request accepted and result will be returned 1762 * asynchronously 1763 * < 0 if an error 1764 */ 1765 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) 1766 { 1767 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); 1768 struct iproc_ctx_s *ctx = 1769 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); 1770 int err; 1771 1772 flow_log("%s() enc:%u\n", __func__, encrypt); 1773 1774 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 1775 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 1776 rctx->parent = &req->base; 1777 rctx->is_encrypt = encrypt; 1778 rctx->bd_suppress = false; 1779 rctx->total_todo = req->nbytes; 1780 rctx->src_sent = 0; 1781 rctx->total_sent = 0; 1782 rctx->total_received = 0; 1783 rctx->ctx = ctx; 1784 1785 /* Initialize current position in src and dst scatterlists */ 1786 rctx->src_sg = req->src; 1787 rctx->src_nents = 0; 1788 rctx->src_skip = 0; 1789 rctx->dst_sg = req->dst; 1790 rctx->dst_nents = 0; 1791 rctx->dst_skip = 0; 1792 1793 if (ctx->cipher.mode == CIPHER_MODE_CBC || 1794 ctx->cipher.mode == CIPHER_MODE_CTR || 1795 ctx->cipher.mode == CIPHER_MODE_OFB || 1796 ctx->cipher.mode == CIPHER_MODE_XTS || 1797 ctx->cipher.mode == CIPHER_MODE_GCM || 1798 ctx->cipher.mode == CIPHER_MODE_CCM) { 1799 rctx->iv_ctr_len = 1800 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 1801 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); 1802 } else { 1803 rctx->iv_ctr_len = 0; 1804 } 1805 1806 /* Choose a SPU to process this request */ 1807 rctx->chan_idx = select_channel(); 1808 err = handle_ablkcipher_req(rctx); 1809 if (err != -EINPROGRESS) 1810 /* synchronous result */ 1811 spu_chunk_cleanup(rctx); 1812 1813 return err; 1814 } 1815 1816 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1817 unsigned int keylen) 1818 { 1819 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1820 u32 tmp[DES_EXPKEY_WORDS]; 1821 1822 if (keylen == DES_KEY_SIZE) { 1823 if (des_ekey(tmp, key) == 0) { 1824 if (crypto_ablkcipher_get_flags(cipher) & 1825 CRYPTO_TFM_REQ_WEAK_KEY) { 1826 u32 flags = CRYPTO_TFM_RES_WEAK_KEY; 1827 1828 crypto_ablkcipher_set_flags(cipher, flags); 1829 return -EINVAL; 1830 } 1831 } 1832 1833 ctx->cipher_type = CIPHER_TYPE_DES; 1834 } else { 1835 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1836 return -EINVAL; 1837 } 1838 return 0; 1839 } 1840 1841 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1842 unsigned int keylen) 1843 { 1844 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1845 1846 if (keylen == (DES_KEY_SIZE * 3)) { 1847 const u32 *K = (const u32 *)key; 1848 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; 1849 1850 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || 1851 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { 1852 crypto_ablkcipher_set_flags(cipher, flags); 1853 return -EINVAL; 1854 } 1855 1856 ctx->cipher_type = CIPHER_TYPE_3DES; 1857 } else { 1858 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1859 return -EINVAL; 1860 } 1861 return 0; 1862 } 1863 1864 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1865 unsigned int keylen) 1866 { 1867 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1868 1869 if (ctx->cipher.mode == CIPHER_MODE_XTS) 1870 /* XTS includes two keys of equal length */ 1871 keylen = keylen / 2; 1872 1873 switch (keylen) { 1874 case AES_KEYSIZE_128: 1875 ctx->cipher_type = CIPHER_TYPE_AES128; 1876 break; 1877 case AES_KEYSIZE_192: 1878 ctx->cipher_type = CIPHER_TYPE_AES192; 1879 break; 1880 case AES_KEYSIZE_256: 1881 ctx->cipher_type = CIPHER_TYPE_AES256; 1882 break; 1883 default: 1884 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1885 return -EINVAL; 1886 } 1887 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && 1888 ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); 1889 return 0; 1890 } 1891 1892 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1893 unsigned int keylen) 1894 { 1895 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1896 int i; 1897 1898 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; 1899 1900 ctx->enckey[0] = 0x00; /* 0x00 */ 1901 ctx->enckey[1] = 0x00; /* i */ 1902 ctx->enckey[2] = 0x00; /* 0x00 */ 1903 ctx->enckey[3] = 0x00; /* j */ 1904 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) 1905 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; 1906 1907 ctx->cipher_type = CIPHER_TYPE_INIT; 1908 1909 return 0; 1910 } 1911 1912 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1913 unsigned int keylen) 1914 { 1915 struct spu_hw *spu = &iproc_priv.spu; 1916 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); 1917 struct spu_cipher_parms cipher_parms; 1918 u32 alloc_len = 0; 1919 int err; 1920 1921 flow_log("ablkcipher_setkey() keylen: %d\n", keylen); 1922 flow_dump(" key: ", key, keylen); 1923 1924 switch (ctx->cipher.alg) { 1925 case CIPHER_ALG_DES: 1926 err = des_setkey(cipher, key, keylen); 1927 break; 1928 case CIPHER_ALG_3DES: 1929 err = threedes_setkey(cipher, key, keylen); 1930 break; 1931 case CIPHER_ALG_AES: 1932 err = aes_setkey(cipher, key, keylen); 1933 break; 1934 case CIPHER_ALG_RC4: 1935 err = rc4_setkey(cipher, key, keylen); 1936 break; 1937 default: 1938 pr_err("%s() Error: unknown cipher alg\n", __func__); 1939 err = -EINVAL; 1940 } 1941 if (err) 1942 return err; 1943 1944 /* RC4 already populated ctx->enkey */ 1945 if (ctx->cipher.alg != CIPHER_ALG_RC4) { 1946 memcpy(ctx->enckey, key, keylen); 1947 ctx->enckeylen = keylen; 1948 } 1949 /* SPU needs XTS keys in the reverse order the crypto API presents */ 1950 if ((ctx->cipher.alg == CIPHER_ALG_AES) && 1951 (ctx->cipher.mode == CIPHER_MODE_XTS)) { 1952 unsigned int xts_keylen = keylen / 2; 1953 1954 memcpy(ctx->enckey, key + xts_keylen, xts_keylen); 1955 memcpy(ctx->enckey + xts_keylen, key, xts_keylen); 1956 } 1957 1958 if (spu->spu_type == SPU_TYPE_SPUM) 1959 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; 1960 else if (spu->spu_type == SPU_TYPE_SPU2) 1961 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; 1962 memset(ctx->bcm_spu_req_hdr, 0, alloc_len); 1963 cipher_parms.iv_buf = NULL; 1964 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); 1965 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); 1966 1967 cipher_parms.alg = ctx->cipher.alg; 1968 cipher_parms.mode = ctx->cipher.mode; 1969 cipher_parms.type = ctx->cipher_type; 1970 cipher_parms.key_buf = ctx->enckey; 1971 cipher_parms.key_len = ctx->enckeylen; 1972 1973 /* Prepend SPU request message with BCM header */ 1974 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); 1975 ctx->spu_req_hdr_len = 1976 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, 1977 &cipher_parms); 1978 1979 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 1980 ctx->enckeylen, 1981 false); 1982 1983 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); 1984 1985 return 0; 1986 } 1987 1988 static int ablkcipher_encrypt(struct ablkcipher_request *req) 1989 { 1990 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); 1991 1992 return ablkcipher_enqueue(req, true); 1993 } 1994 1995 static int ablkcipher_decrypt(struct ablkcipher_request *req) 1996 { 1997 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); 1998 return ablkcipher_enqueue(req, false); 1999 } 2000 2001 static int ahash_enqueue(struct ahash_request *req) 2002 { 2003 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2004 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2005 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2006 int err = 0; 2007 const char *alg_name; 2008 2009 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); 2010 2011 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2012 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2013 rctx->parent = &req->base; 2014 rctx->ctx = ctx; 2015 rctx->bd_suppress = true; 2016 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2017 2018 /* Initialize position in src scatterlist */ 2019 rctx->src_sg = req->src; 2020 rctx->src_skip = 0; 2021 rctx->src_nents = 0; 2022 rctx->dst_sg = NULL; 2023 rctx->dst_skip = 0; 2024 rctx->dst_nents = 0; 2025 2026 /* SPU2 hardware does not compute hash of zero length data */ 2027 if ((rctx->is_final == 1) && (rctx->total_todo == 0) && 2028 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { 2029 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2030 flow_log("Doing %sfinal %s zero-len hash request in software\n", 2031 rctx->is_final ? "" : "non-", alg_name); 2032 err = do_shash((unsigned char *)alg_name, req->result, 2033 NULL, 0, NULL, 0, ctx->authkey, 2034 ctx->authkeylen); 2035 if (err < 0) 2036 flow_log("Hash request failed with error %d\n", err); 2037 return err; 2038 } 2039 /* Choose a SPU to process this request */ 2040 rctx->chan_idx = select_channel(); 2041 2042 err = handle_ahash_req(rctx); 2043 if (err != -EINPROGRESS) 2044 /* synchronous result */ 2045 spu_chunk_cleanup(rctx); 2046 2047 if (err == -EAGAIN) 2048 /* 2049 * we saved data in hash carry, but tell crypto API 2050 * we successfully completed request. 2051 */ 2052 err = 0; 2053 2054 return err; 2055 } 2056 2057 static int __ahash_init(struct ahash_request *req) 2058 { 2059 struct spu_hw *spu = &iproc_priv.spu; 2060 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2061 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2062 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2063 2064 flow_log("%s()\n", __func__); 2065 2066 /* Initialize the context */ 2067 rctx->hash_carry_len = 0; 2068 rctx->is_final = 0; 2069 2070 rctx->total_todo = 0; 2071 rctx->src_sent = 0; 2072 rctx->total_sent = 0; 2073 rctx->total_received = 0; 2074 2075 ctx->digestsize = crypto_ahash_digestsize(tfm); 2076 /* If we add a hash whose digest is larger, catch it here. */ 2077 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); 2078 2079 rctx->is_sw_hmac = false; 2080 2081 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, 2082 true); 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * spu_no_incr_hash() - Determine whether incremental hashing is supported. 2089 * @ctx: Crypto session context 2090 * 2091 * SPU-2 does not support incremental hashing (we'll have to revisit and 2092 * condition based on chip revision or device tree entry if future versions do 2093 * support incremental hash) 2094 * 2095 * SPU-M also doesn't support incremental hashing of AES-XCBC 2096 * 2097 * Return: true if incremental hashing is not supported 2098 * false otherwise 2099 */ 2100 bool spu_no_incr_hash(struct iproc_ctx_s *ctx) 2101 { 2102 struct spu_hw *spu = &iproc_priv.spu; 2103 2104 if (spu->spu_type == SPU_TYPE_SPU2) 2105 return true; 2106 2107 if ((ctx->auth.alg == HASH_ALG_AES) && 2108 (ctx->auth.mode == HASH_MODE_XCBC)) 2109 return true; 2110 2111 /* Otherwise, incremental hashing is supported */ 2112 return false; 2113 } 2114 2115 static int ahash_init(struct ahash_request *req) 2116 { 2117 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2118 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2119 const char *alg_name; 2120 struct crypto_shash *hash; 2121 int ret; 2122 gfp_t gfp; 2123 2124 if (spu_no_incr_hash(ctx)) { 2125 /* 2126 * If we get an incremental hashing request and it's not 2127 * supported by the hardware, we need to handle it in software 2128 * by calling synchronous hash functions. 2129 */ 2130 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); 2131 hash = crypto_alloc_shash(alg_name, 0, 0); 2132 if (IS_ERR(hash)) { 2133 ret = PTR_ERR(hash); 2134 goto err; 2135 } 2136 2137 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2138 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2139 ctx->shash = kmalloc(sizeof(*ctx->shash) + 2140 crypto_shash_descsize(hash), gfp); 2141 if (!ctx->shash) { 2142 ret = -ENOMEM; 2143 goto err_hash; 2144 } 2145 ctx->shash->tfm = hash; 2146 ctx->shash->flags = 0; 2147 2148 /* Set the key using data we already have from setkey */ 2149 if (ctx->authkeylen > 0) { 2150 ret = crypto_shash_setkey(hash, ctx->authkey, 2151 ctx->authkeylen); 2152 if (ret) 2153 goto err_shash; 2154 } 2155 2156 /* Initialize hash w/ this key and other params */ 2157 ret = crypto_shash_init(ctx->shash); 2158 if (ret) 2159 goto err_shash; 2160 } else { 2161 /* Otherwise call the internal function which uses SPU hw */ 2162 ret = __ahash_init(req); 2163 } 2164 2165 return ret; 2166 2167 err_shash: 2168 kfree(ctx->shash); 2169 err_hash: 2170 crypto_free_shash(hash); 2171 err: 2172 return ret; 2173 } 2174 2175 static int __ahash_update(struct ahash_request *req) 2176 { 2177 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2178 2179 flow_log("ahash_update() nbytes:%u\n", req->nbytes); 2180 2181 if (!req->nbytes) 2182 return 0; 2183 rctx->total_todo += req->nbytes; 2184 rctx->src_sent = 0; 2185 2186 return ahash_enqueue(req); 2187 } 2188 2189 static int ahash_update(struct ahash_request *req) 2190 { 2191 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2192 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2193 u8 *tmpbuf; 2194 int ret; 2195 int nents; 2196 gfp_t gfp; 2197 2198 if (spu_no_incr_hash(ctx)) { 2199 /* 2200 * If we get an incremental hashing request and it's not 2201 * supported by the hardware, we need to handle it in software 2202 * by calling synchronous hash functions. 2203 */ 2204 if (req->src) 2205 nents = sg_nents(req->src); 2206 else 2207 return -EINVAL; 2208 2209 /* Copy data from req scatterlist to tmp buffer */ 2210 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2211 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2212 tmpbuf = kmalloc(req->nbytes, gfp); 2213 if (!tmpbuf) 2214 return -ENOMEM; 2215 2216 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2217 req->nbytes) { 2218 kfree(tmpbuf); 2219 return -EINVAL; 2220 } 2221 2222 /* Call synchronous update */ 2223 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); 2224 kfree(tmpbuf); 2225 } else { 2226 /* Otherwise call the internal function which uses SPU hw */ 2227 ret = __ahash_update(req); 2228 } 2229 2230 return ret; 2231 } 2232 2233 static int __ahash_final(struct ahash_request *req) 2234 { 2235 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2236 2237 flow_log("ahash_final() nbytes:%u\n", req->nbytes); 2238 2239 rctx->is_final = 1; 2240 2241 return ahash_enqueue(req); 2242 } 2243 2244 static int ahash_final(struct ahash_request *req) 2245 { 2246 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2247 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2248 int ret; 2249 2250 if (spu_no_incr_hash(ctx)) { 2251 /* 2252 * If we get an incremental hashing request and it's not 2253 * supported by the hardware, we need to handle it in software 2254 * by calling synchronous hash functions. 2255 */ 2256 ret = crypto_shash_final(ctx->shash, req->result); 2257 2258 /* Done with hash, can deallocate it now */ 2259 crypto_free_shash(ctx->shash->tfm); 2260 kfree(ctx->shash); 2261 2262 } else { 2263 /* Otherwise call the internal function which uses SPU hw */ 2264 ret = __ahash_final(req); 2265 } 2266 2267 return ret; 2268 } 2269 2270 static int __ahash_finup(struct ahash_request *req) 2271 { 2272 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2273 2274 flow_log("ahash_finup() nbytes:%u\n", req->nbytes); 2275 2276 rctx->total_todo += req->nbytes; 2277 rctx->src_sent = 0; 2278 rctx->is_final = 1; 2279 2280 return ahash_enqueue(req); 2281 } 2282 2283 static int ahash_finup(struct ahash_request *req) 2284 { 2285 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2286 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2287 u8 *tmpbuf; 2288 int ret; 2289 int nents; 2290 gfp_t gfp; 2291 2292 if (spu_no_incr_hash(ctx)) { 2293 /* 2294 * If we get an incremental hashing request and it's not 2295 * supported by the hardware, we need to handle it in software 2296 * by calling synchronous hash functions. 2297 */ 2298 if (req->src) { 2299 nents = sg_nents(req->src); 2300 } else { 2301 ret = -EINVAL; 2302 goto ahash_finup_exit; 2303 } 2304 2305 /* Copy data from req scatterlist to tmp buffer */ 2306 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2307 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2308 tmpbuf = kmalloc(req->nbytes, gfp); 2309 if (!tmpbuf) { 2310 ret = -ENOMEM; 2311 goto ahash_finup_exit; 2312 } 2313 2314 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != 2315 req->nbytes) { 2316 ret = -EINVAL; 2317 goto ahash_finup_free; 2318 } 2319 2320 /* Call synchronous update */ 2321 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, 2322 req->result); 2323 } else { 2324 /* Otherwise call the internal function which uses SPU hw */ 2325 return __ahash_finup(req); 2326 } 2327 ahash_finup_free: 2328 kfree(tmpbuf); 2329 2330 ahash_finup_exit: 2331 /* Done with hash, can deallocate it now */ 2332 crypto_free_shash(ctx->shash->tfm); 2333 kfree(ctx->shash); 2334 return ret; 2335 } 2336 2337 static int ahash_digest(struct ahash_request *req) 2338 { 2339 int err = 0; 2340 2341 flow_log("ahash_digest() nbytes:%u\n", req->nbytes); 2342 2343 /* whole thing at once */ 2344 err = __ahash_init(req); 2345 if (!err) 2346 err = __ahash_finup(req); 2347 2348 return err; 2349 } 2350 2351 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, 2352 unsigned int keylen) 2353 { 2354 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2355 2356 flow_log("%s() ahash:%p key:%p keylen:%u\n", 2357 __func__, ahash, key, keylen); 2358 flow_dump(" key: ", key, keylen); 2359 2360 if (ctx->auth.alg == HASH_ALG_AES) { 2361 switch (keylen) { 2362 case AES_KEYSIZE_128: 2363 ctx->cipher_type = CIPHER_TYPE_AES128; 2364 break; 2365 case AES_KEYSIZE_192: 2366 ctx->cipher_type = CIPHER_TYPE_AES192; 2367 break; 2368 case AES_KEYSIZE_256: 2369 ctx->cipher_type = CIPHER_TYPE_AES256; 2370 break; 2371 default: 2372 pr_err("%s() Error: Invalid key length\n", __func__); 2373 return -EINVAL; 2374 } 2375 } else { 2376 pr_err("%s() Error: unknown hash alg\n", __func__); 2377 return -EINVAL; 2378 } 2379 memcpy(ctx->authkey, key, keylen); 2380 ctx->authkeylen = keylen; 2381 2382 return 0; 2383 } 2384 2385 static int ahash_export(struct ahash_request *req, void *out) 2386 { 2387 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2388 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; 2389 2390 spu_exp->total_todo = rctx->total_todo; 2391 spu_exp->total_sent = rctx->total_sent; 2392 spu_exp->is_sw_hmac = rctx->is_sw_hmac; 2393 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); 2394 spu_exp->hash_carry_len = rctx->hash_carry_len; 2395 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); 2396 2397 return 0; 2398 } 2399 2400 static int ahash_import(struct ahash_request *req, const void *in) 2401 { 2402 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2403 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; 2404 2405 rctx->total_todo = spu_exp->total_todo; 2406 rctx->total_sent = spu_exp->total_sent; 2407 rctx->is_sw_hmac = spu_exp->is_sw_hmac; 2408 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); 2409 rctx->hash_carry_len = spu_exp->hash_carry_len; 2410 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); 2411 2412 return 0; 2413 } 2414 2415 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, 2416 unsigned int keylen) 2417 { 2418 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); 2419 unsigned int blocksize = 2420 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); 2421 unsigned int digestsize = crypto_ahash_digestsize(ahash); 2422 unsigned int index; 2423 int rc; 2424 2425 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", 2426 __func__, ahash, key, keylen, blocksize, digestsize); 2427 flow_dump(" key: ", key, keylen); 2428 2429 if (keylen > blocksize) { 2430 switch (ctx->auth.alg) { 2431 case HASH_ALG_MD5: 2432 rc = do_shash("md5", ctx->authkey, key, keylen, NULL, 2433 0, NULL, 0); 2434 break; 2435 case HASH_ALG_SHA1: 2436 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, 2437 0, NULL, 0); 2438 break; 2439 case HASH_ALG_SHA224: 2440 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, 2441 0, NULL, 0); 2442 break; 2443 case HASH_ALG_SHA256: 2444 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, 2445 0, NULL, 0); 2446 break; 2447 case HASH_ALG_SHA384: 2448 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, 2449 0, NULL, 0); 2450 break; 2451 case HASH_ALG_SHA512: 2452 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, 2453 0, NULL, 0); 2454 break; 2455 case HASH_ALG_SHA3_224: 2456 rc = do_shash("sha3-224", ctx->authkey, key, keylen, 2457 NULL, 0, NULL, 0); 2458 break; 2459 case HASH_ALG_SHA3_256: 2460 rc = do_shash("sha3-256", ctx->authkey, key, keylen, 2461 NULL, 0, NULL, 0); 2462 break; 2463 case HASH_ALG_SHA3_384: 2464 rc = do_shash("sha3-384", ctx->authkey, key, keylen, 2465 NULL, 0, NULL, 0); 2466 break; 2467 case HASH_ALG_SHA3_512: 2468 rc = do_shash("sha3-512", ctx->authkey, key, keylen, 2469 NULL, 0, NULL, 0); 2470 break; 2471 default: 2472 pr_err("%s() Error: unknown hash alg\n", __func__); 2473 return -EINVAL; 2474 } 2475 if (rc < 0) { 2476 pr_err("%s() Error %d computing shash for %s\n", 2477 __func__, rc, hash_alg_name[ctx->auth.alg]); 2478 return rc; 2479 } 2480 ctx->authkeylen = digestsize; 2481 2482 flow_log(" keylen > digestsize... hashed\n"); 2483 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); 2484 } else { 2485 memcpy(ctx->authkey, key, keylen); 2486 ctx->authkeylen = keylen; 2487 } 2488 2489 /* 2490 * Full HMAC operation in SPUM is not verified, 2491 * So keeping the generation of IPAD, OPAD and 2492 * outer hashing in software. 2493 */ 2494 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { 2495 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); 2496 memset(ctx->ipad + ctx->authkeylen, 0, 2497 blocksize - ctx->authkeylen); 2498 ctx->authkeylen = 0; 2499 memcpy(ctx->opad, ctx->ipad, blocksize); 2500 2501 for (index = 0; index < blocksize; index++) { 2502 ctx->ipad[index] ^= HMAC_IPAD_VALUE; 2503 ctx->opad[index] ^= HMAC_OPAD_VALUE; 2504 } 2505 2506 flow_dump(" ipad: ", ctx->ipad, blocksize); 2507 flow_dump(" opad: ", ctx->opad, blocksize); 2508 } 2509 ctx->digestsize = digestsize; 2510 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); 2511 2512 return 0; 2513 } 2514 2515 static int ahash_hmac_init(struct ahash_request *req) 2516 { 2517 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2518 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2519 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2520 unsigned int blocksize = 2521 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2522 2523 flow_log("ahash_hmac_init()\n"); 2524 2525 /* init the context as a hash */ 2526 ahash_init(req); 2527 2528 if (!spu_no_incr_hash(ctx)) { 2529 /* SPU-M can do incr hashing but needs sw for outer HMAC */ 2530 rctx->is_sw_hmac = true; 2531 ctx->auth.mode = HASH_MODE_HASH; 2532 /* start with a prepended ipad */ 2533 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2534 rctx->hash_carry_len = blocksize; 2535 rctx->total_todo += blocksize; 2536 } 2537 2538 return 0; 2539 } 2540 2541 static int ahash_hmac_update(struct ahash_request *req) 2542 { 2543 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); 2544 2545 if (!req->nbytes) 2546 return 0; 2547 2548 return ahash_update(req); 2549 } 2550 2551 static int ahash_hmac_final(struct ahash_request *req) 2552 { 2553 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); 2554 2555 return ahash_final(req); 2556 } 2557 2558 static int ahash_hmac_finup(struct ahash_request *req) 2559 { 2560 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); 2561 2562 return ahash_finup(req); 2563 } 2564 2565 static int ahash_hmac_digest(struct ahash_request *req) 2566 { 2567 struct iproc_reqctx_s *rctx = ahash_request_ctx(req); 2568 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 2569 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); 2570 unsigned int blocksize = 2571 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); 2572 2573 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); 2574 2575 /* Perform initialization and then call finup */ 2576 __ahash_init(req); 2577 2578 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { 2579 /* 2580 * SPU2 supports full HMAC implementation in the 2581 * hardware, need not to generate IPAD, OPAD and 2582 * outer hash in software. 2583 * Only for hash key len > hash block size, SPU2 2584 * expects to perform hashing on the key, shorten 2585 * it to digest size and feed it as hash key. 2586 */ 2587 rctx->is_sw_hmac = false; 2588 ctx->auth.mode = HASH_MODE_HMAC; 2589 } else { 2590 rctx->is_sw_hmac = true; 2591 ctx->auth.mode = HASH_MODE_HASH; 2592 /* start with a prepended ipad */ 2593 memcpy(rctx->hash_carry, ctx->ipad, blocksize); 2594 rctx->hash_carry_len = blocksize; 2595 rctx->total_todo += blocksize; 2596 } 2597 2598 return __ahash_finup(req); 2599 } 2600 2601 /* aead helpers */ 2602 2603 static int aead_need_fallback(struct aead_request *req) 2604 { 2605 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2606 struct spu_hw *spu = &iproc_priv.spu; 2607 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2608 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2609 u32 payload_len; 2610 2611 /* 2612 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext 2613 * and AAD are both 0 bytes long. So use fallback in this case. 2614 */ 2615 if (((ctx->cipher.mode == CIPHER_MODE_GCM) || 2616 (ctx->cipher.mode == CIPHER_MODE_CCM)) && 2617 (req->assoclen == 0)) { 2618 if ((rctx->is_encrypt && (req->cryptlen == 0)) || 2619 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { 2620 flow_log("AES GCM/CCM needs fallback for 0 len req\n"); 2621 return 1; 2622 } 2623 } 2624 2625 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ 2626 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2627 (spu->spu_type == SPU_TYPE_SPUM) && 2628 (ctx->digestsize != 8) && (ctx->digestsize != 12) && 2629 (ctx->digestsize != 16)) { 2630 flow_log("%s() AES CCM needs fallback for digest size %d\n", 2631 __func__, ctx->digestsize); 2632 return 1; 2633 } 2634 2635 /* 2636 * SPU-M on NSP has an issue where AES-CCM hash is not correct 2637 * when AAD size is 0 2638 */ 2639 if ((ctx->cipher.mode == CIPHER_MODE_CCM) && 2640 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && 2641 (req->assoclen == 0)) { 2642 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", 2643 __func__); 2644 return 1; 2645 } 2646 2647 payload_len = req->cryptlen; 2648 if (spu->spu_type == SPU_TYPE_SPUM) 2649 payload_len += req->assoclen; 2650 2651 flow_log("%s() payload len: %u\n", __func__, payload_len); 2652 2653 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2654 return 0; 2655 else 2656 return payload_len > ctx->max_payload; 2657 } 2658 2659 static void aead_complete(struct crypto_async_request *areq, int err) 2660 { 2661 struct aead_request *req = 2662 container_of(areq, struct aead_request, base); 2663 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2664 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2665 2666 flow_log("%s() err:%d\n", __func__, err); 2667 2668 areq->tfm = crypto_aead_tfm(aead); 2669 2670 areq->complete = rctx->old_complete; 2671 areq->data = rctx->old_data; 2672 2673 areq->complete(areq, err); 2674 } 2675 2676 static int aead_do_fallback(struct aead_request *req, bool is_encrypt) 2677 { 2678 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2679 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 2680 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2681 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 2682 int err; 2683 u32 req_flags; 2684 2685 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2686 2687 if (ctx->fallback_cipher) { 2688 /* Store the cipher tfm and then use the fallback tfm */ 2689 rctx->old_tfm = tfm; 2690 aead_request_set_tfm(req, ctx->fallback_cipher); 2691 /* 2692 * Save the callback and chain ourselves in, so we can restore 2693 * the tfm 2694 */ 2695 rctx->old_complete = req->base.complete; 2696 rctx->old_data = req->base.data; 2697 req_flags = aead_request_flags(req); 2698 aead_request_set_callback(req, req_flags, aead_complete, req); 2699 err = is_encrypt ? crypto_aead_encrypt(req) : 2700 crypto_aead_decrypt(req); 2701 2702 if (err == 0) { 2703 /* 2704 * fallback was synchronous (did not return 2705 * -EINPROGRESS). So restore request state here. 2706 */ 2707 aead_request_set_callback(req, req_flags, 2708 rctx->old_complete, req); 2709 req->base.data = rctx->old_data; 2710 aead_request_set_tfm(req, aead); 2711 flow_log("%s() fallback completed successfully\n\n", 2712 __func__); 2713 } 2714 } else { 2715 err = -EINVAL; 2716 } 2717 2718 return err; 2719 } 2720 2721 static int aead_enqueue(struct aead_request *req, bool is_encrypt) 2722 { 2723 struct iproc_reqctx_s *rctx = aead_request_ctx(req); 2724 struct crypto_aead *aead = crypto_aead_reqtfm(req); 2725 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); 2726 int err; 2727 2728 flow_log("%s() enc:%u\n", __func__, is_encrypt); 2729 2730 if (req->assoclen > MAX_ASSOC_SIZE) { 2731 pr_err 2732 ("%s() Error: associated data too long. (%u > %u bytes)\n", 2733 __func__, req->assoclen, MAX_ASSOC_SIZE); 2734 return -EINVAL; 2735 } 2736 2737 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | 2738 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; 2739 rctx->parent = &req->base; 2740 rctx->is_encrypt = is_encrypt; 2741 rctx->bd_suppress = false; 2742 rctx->total_todo = req->cryptlen; 2743 rctx->src_sent = 0; 2744 rctx->total_sent = 0; 2745 rctx->total_received = 0; 2746 rctx->is_sw_hmac = false; 2747 rctx->ctx = ctx; 2748 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); 2749 2750 /* assoc data is at start of src sg */ 2751 rctx->assoc = req->src; 2752 2753 /* 2754 * Init current position in src scatterlist to be after assoc data. 2755 * src_skip set to buffer offset where data begins. (Assoc data could 2756 * end in the middle of a buffer.) 2757 */ 2758 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, 2759 &rctx->src_skip) < 0) { 2760 pr_err("%s() Error: Unable to find start of src data\n", 2761 __func__); 2762 return -EINVAL; 2763 } 2764 2765 rctx->src_nents = 0; 2766 rctx->dst_nents = 0; 2767 if (req->dst == req->src) { 2768 rctx->dst_sg = rctx->src_sg; 2769 rctx->dst_skip = rctx->src_skip; 2770 } else { 2771 /* 2772 * Expect req->dst to have room for assoc data followed by 2773 * output data and ICV, if encrypt. So initialize dst_sg 2774 * to point beyond assoc len offset. 2775 */ 2776 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, 2777 &rctx->dst_skip) < 0) { 2778 pr_err("%s() Error: Unable to find start of dst data\n", 2779 __func__); 2780 return -EINVAL; 2781 } 2782 } 2783 2784 if (ctx->cipher.mode == CIPHER_MODE_CBC || 2785 ctx->cipher.mode == CIPHER_MODE_CTR || 2786 ctx->cipher.mode == CIPHER_MODE_OFB || 2787 ctx->cipher.mode == CIPHER_MODE_XTS || 2788 ctx->cipher.mode == CIPHER_MODE_GCM) { 2789 rctx->iv_ctr_len = 2790 ctx->salt_len + 2791 crypto_aead_ivsize(crypto_aead_reqtfm(req)); 2792 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { 2793 rctx->iv_ctr_len = CCM_AES_IV_SIZE; 2794 } else { 2795 rctx->iv_ctr_len = 0; 2796 } 2797 2798 rctx->hash_carry_len = 0; 2799 2800 flow_log(" src sg: %p\n", req->src); 2801 flow_log(" rctx->src_sg: %p, src_skip %u\n", 2802 rctx->src_sg, rctx->src_skip); 2803 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); 2804 flow_log(" dst sg: %p\n", req->dst); 2805 flow_log(" rctx->dst_sg: %p, dst_skip %u\n", 2806 rctx->dst_sg, rctx->dst_skip); 2807 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); 2808 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); 2809 flow_log(" authkeylen:%u\n", ctx->authkeylen); 2810 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); 2811 2812 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) 2813 flow_log(" max_payload infinite"); 2814 else 2815 flow_log(" max_payload: %u\n", ctx->max_payload); 2816 2817 if (unlikely(aead_need_fallback(req))) 2818 return aead_do_fallback(req, is_encrypt); 2819 2820 /* 2821 * Do memory allocations for request after fallback check, because if we 2822 * do fallback, we won't call finish_req() to dealloc. 2823 */ 2824 if (rctx->iv_ctr_len) { 2825 if (ctx->salt_len) 2826 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, 2827 ctx->salt, ctx->salt_len); 2828 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, 2829 req->iv, 2830 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); 2831 } 2832 2833 rctx->chan_idx = select_channel(); 2834 err = handle_aead_req(rctx); 2835 if (err != -EINPROGRESS) 2836 /* synchronous result */ 2837 spu_chunk_cleanup(rctx); 2838 2839 return err; 2840 } 2841 2842 static int aead_authenc_setkey(struct crypto_aead *cipher, 2843 const u8 *key, unsigned int keylen) 2844 { 2845 struct spu_hw *spu = &iproc_priv.spu; 2846 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2847 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2848 struct rtattr *rta = (void *)key; 2849 struct crypto_authenc_key_param *param; 2850 const u8 *origkey = key; 2851 const unsigned int origkeylen = keylen; 2852 2853 int ret = 0; 2854 2855 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, 2856 keylen); 2857 flow_dump(" key: ", key, keylen); 2858 2859 if (!RTA_OK(rta, keylen)) 2860 goto badkey; 2861 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) 2862 goto badkey; 2863 if (RTA_PAYLOAD(rta) < sizeof(*param)) 2864 goto badkey; 2865 2866 param = RTA_DATA(rta); 2867 ctx->enckeylen = be32_to_cpu(param->enckeylen); 2868 2869 key += RTA_ALIGN(rta->rta_len); 2870 keylen -= RTA_ALIGN(rta->rta_len); 2871 2872 if (keylen < ctx->enckeylen) 2873 goto badkey; 2874 if (ctx->enckeylen > MAX_KEY_SIZE) 2875 goto badkey; 2876 2877 ctx->authkeylen = keylen - ctx->enckeylen; 2878 2879 if (ctx->authkeylen > MAX_KEY_SIZE) 2880 goto badkey; 2881 2882 memcpy(ctx->enckey, key + ctx->authkeylen, ctx->enckeylen); 2883 /* May end up padding auth key. So make sure it's zeroed. */ 2884 memset(ctx->authkey, 0, sizeof(ctx->authkey)); 2885 memcpy(ctx->authkey, key, ctx->authkeylen); 2886 2887 switch (ctx->alg->cipher_info.alg) { 2888 case CIPHER_ALG_DES: 2889 if (ctx->enckeylen == DES_KEY_SIZE) { 2890 u32 tmp[DES_EXPKEY_WORDS]; 2891 u32 flags = CRYPTO_TFM_RES_WEAK_KEY; 2892 2893 if (des_ekey(tmp, key) == 0) { 2894 if (crypto_aead_get_flags(cipher) & 2895 CRYPTO_TFM_REQ_WEAK_KEY) { 2896 crypto_aead_set_flags(cipher, flags); 2897 return -EINVAL; 2898 } 2899 } 2900 2901 ctx->cipher_type = CIPHER_TYPE_DES; 2902 } else { 2903 goto badkey; 2904 } 2905 break; 2906 case CIPHER_ALG_3DES: 2907 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { 2908 const u32 *K = (const u32 *)key; 2909 u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED; 2910 2911 if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) || 2912 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) { 2913 crypto_aead_set_flags(cipher, flags); 2914 return -EINVAL; 2915 } 2916 2917 ctx->cipher_type = CIPHER_TYPE_3DES; 2918 } else { 2919 crypto_aead_set_flags(cipher, 2920 CRYPTO_TFM_RES_BAD_KEY_LEN); 2921 return -EINVAL; 2922 } 2923 break; 2924 case CIPHER_ALG_AES: 2925 switch (ctx->enckeylen) { 2926 case AES_KEYSIZE_128: 2927 ctx->cipher_type = CIPHER_TYPE_AES128; 2928 break; 2929 case AES_KEYSIZE_192: 2930 ctx->cipher_type = CIPHER_TYPE_AES192; 2931 break; 2932 case AES_KEYSIZE_256: 2933 ctx->cipher_type = CIPHER_TYPE_AES256; 2934 break; 2935 default: 2936 goto badkey; 2937 } 2938 break; 2939 case CIPHER_ALG_RC4: 2940 ctx->cipher_type = CIPHER_TYPE_INIT; 2941 break; 2942 default: 2943 pr_err("%s() Error: Unknown cipher alg\n", __func__); 2944 return -EINVAL; 2945 } 2946 2947 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 2948 ctx->authkeylen); 2949 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 2950 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 2951 2952 /* setkey the fallback just in case we needto use it */ 2953 if (ctx->fallback_cipher) { 2954 flow_log(" running fallback setkey()\n"); 2955 2956 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 2957 ctx->fallback_cipher->base.crt_flags |= 2958 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 2959 ret = 2960 crypto_aead_setkey(ctx->fallback_cipher, origkey, 2961 origkeylen); 2962 if (ret) { 2963 flow_log(" fallback setkey() returned:%d\n", ret); 2964 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; 2965 tfm->crt_flags |= 2966 (ctx->fallback_cipher->base.crt_flags & 2967 CRYPTO_TFM_RES_MASK); 2968 } 2969 } 2970 2971 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 2972 ctx->enckeylen, 2973 false); 2974 2975 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 2976 2977 return ret; 2978 2979 badkey: 2980 ctx->enckeylen = 0; 2981 ctx->authkeylen = 0; 2982 ctx->digestsize = 0; 2983 2984 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 2985 return -EINVAL; 2986 } 2987 2988 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, 2989 const u8 *key, unsigned int keylen) 2990 { 2991 struct spu_hw *spu = &iproc_priv.spu; 2992 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 2993 struct crypto_tfm *tfm = crypto_aead_tfm(cipher); 2994 2995 int ret = 0; 2996 2997 flow_log("%s() keylen:%u\n", __func__, keylen); 2998 flow_dump(" key: ", key, keylen); 2999 3000 if (!ctx->is_esp) 3001 ctx->digestsize = keylen; 3002 3003 ctx->enckeylen = keylen; 3004 ctx->authkeylen = 0; 3005 memcpy(ctx->enckey, key, ctx->enckeylen); 3006 3007 switch (ctx->enckeylen) { 3008 case AES_KEYSIZE_128: 3009 ctx->cipher_type = CIPHER_TYPE_AES128; 3010 break; 3011 case AES_KEYSIZE_192: 3012 ctx->cipher_type = CIPHER_TYPE_AES192; 3013 break; 3014 case AES_KEYSIZE_256: 3015 ctx->cipher_type = CIPHER_TYPE_AES256; 3016 break; 3017 default: 3018 goto badkey; 3019 } 3020 3021 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 3022 ctx->authkeylen); 3023 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); 3024 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); 3025 3026 /* setkey the fallback just in case we need to use it */ 3027 if (ctx->fallback_cipher) { 3028 flow_log(" running fallback setkey()\n"); 3029 3030 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; 3031 ctx->fallback_cipher->base.crt_flags |= 3032 tfm->crt_flags & CRYPTO_TFM_REQ_MASK; 3033 ret = crypto_aead_setkey(ctx->fallback_cipher, key, 3034 keylen + ctx->salt_len); 3035 if (ret) { 3036 flow_log(" fallback setkey() returned:%d\n", ret); 3037 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; 3038 tfm->crt_flags |= 3039 (ctx->fallback_cipher->base.crt_flags & 3040 CRYPTO_TFM_RES_MASK); 3041 } 3042 } 3043 3044 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 3045 ctx->enckeylen, 3046 false); 3047 3048 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); 3049 3050 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, 3051 ctx->authkeylen); 3052 3053 return ret; 3054 3055 badkey: 3056 ctx->enckeylen = 0; 3057 ctx->authkeylen = 0; 3058 ctx->digestsize = 0; 3059 3060 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 3061 return -EINVAL; 3062 } 3063 3064 /** 3065 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. 3066 * @cipher: AEAD structure 3067 * @key: Key followed by 4 bytes of salt 3068 * @keylen: Length of key plus salt, in bytes 3069 * 3070 * Extracts salt from key and stores it to be prepended to IV on each request. 3071 * Digest is always 16 bytes 3072 * 3073 * Return: Value from generic gcm setkey. 3074 */ 3075 static int aead_gcm_esp_setkey(struct crypto_aead *cipher, 3076 const u8 *key, unsigned int keylen) 3077 { 3078 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3079 3080 flow_log("%s\n", __func__); 3081 ctx->salt_len = GCM_ESP_SALT_SIZE; 3082 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3083 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3084 keylen -= GCM_ESP_SALT_SIZE; 3085 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3086 ctx->is_esp = true; 3087 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3088 3089 return aead_gcm_ccm_setkey(cipher, key, keylen); 3090 } 3091 3092 /** 3093 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. 3094 * cipher: AEAD structure 3095 * key: Key followed by 4 bytes of salt 3096 * keylen: Length of key plus salt, in bytes 3097 * 3098 * Extracts salt from key and stores it to be prepended to IV on each request. 3099 * Digest is always 16 bytes 3100 * 3101 * Return: Value from generic gcm setkey. 3102 */ 3103 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, 3104 const u8 *key, unsigned int keylen) 3105 { 3106 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3107 3108 flow_log("%s\n", __func__); 3109 ctx->salt_len = GCM_ESP_SALT_SIZE; 3110 ctx->salt_offset = GCM_ESP_SALT_OFFSET; 3111 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); 3112 keylen -= GCM_ESP_SALT_SIZE; 3113 ctx->digestsize = GCM_ESP_DIGESTSIZE; 3114 ctx->is_esp = true; 3115 ctx->is_rfc4543 = true; 3116 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); 3117 3118 return aead_gcm_ccm_setkey(cipher, key, keylen); 3119 } 3120 3121 /** 3122 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. 3123 * @cipher: AEAD structure 3124 * @key: Key followed by 4 bytes of salt 3125 * @keylen: Length of key plus salt, in bytes 3126 * 3127 * Extracts salt from key and stores it to be prepended to IV on each request. 3128 * Digest is always 16 bytes 3129 * 3130 * Return: Value from generic ccm setkey. 3131 */ 3132 static int aead_ccm_esp_setkey(struct crypto_aead *cipher, 3133 const u8 *key, unsigned int keylen) 3134 { 3135 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3136 3137 flow_log("%s\n", __func__); 3138 ctx->salt_len = CCM_ESP_SALT_SIZE; 3139 ctx->salt_offset = CCM_ESP_SALT_OFFSET; 3140 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); 3141 keylen -= CCM_ESP_SALT_SIZE; 3142 ctx->is_esp = true; 3143 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); 3144 3145 return aead_gcm_ccm_setkey(cipher, key, keylen); 3146 } 3147 3148 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) 3149 { 3150 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); 3151 int ret = 0; 3152 3153 flow_log("%s() authkeylen:%u authsize:%u\n", 3154 __func__, ctx->authkeylen, authsize); 3155 3156 ctx->digestsize = authsize; 3157 3158 /* setkey the fallback just in case we needto use it */ 3159 if (ctx->fallback_cipher) { 3160 flow_log(" running fallback setauth()\n"); 3161 3162 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); 3163 if (ret) 3164 flow_log(" fallback setauth() returned:%d\n", ret); 3165 } 3166 3167 return ret; 3168 } 3169 3170 static int aead_encrypt(struct aead_request *req) 3171 { 3172 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, 3173 req->cryptlen); 3174 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3175 flow_log(" assoc_len:%u\n", req->assoclen); 3176 3177 return aead_enqueue(req, true); 3178 } 3179 3180 static int aead_decrypt(struct aead_request *req) 3181 { 3182 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); 3183 dump_sg(req->src, 0, req->cryptlen + req->assoclen); 3184 flow_log(" assoc_len:%u\n", req->assoclen); 3185 3186 return aead_enqueue(req, false); 3187 } 3188 3189 /* ==================== Supported Cipher Algorithms ==================== */ 3190 3191 static struct iproc_alg_s driver_algs[] = { 3192 { 3193 .type = CRYPTO_ALG_TYPE_AEAD, 3194 .alg.aead = { 3195 .base = { 3196 .cra_name = "gcm(aes)", 3197 .cra_driver_name = "gcm-aes-iproc", 3198 .cra_blocksize = AES_BLOCK_SIZE, 3199 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3200 }, 3201 .setkey = aead_gcm_ccm_setkey, 3202 .ivsize = GCM_AES_IV_SIZE, 3203 .maxauthsize = AES_BLOCK_SIZE, 3204 }, 3205 .cipher_info = { 3206 .alg = CIPHER_ALG_AES, 3207 .mode = CIPHER_MODE_GCM, 3208 }, 3209 .auth_info = { 3210 .alg = HASH_ALG_AES, 3211 .mode = HASH_MODE_GCM, 3212 }, 3213 .auth_first = 0, 3214 }, 3215 { 3216 .type = CRYPTO_ALG_TYPE_AEAD, 3217 .alg.aead = { 3218 .base = { 3219 .cra_name = "ccm(aes)", 3220 .cra_driver_name = "ccm-aes-iproc", 3221 .cra_blocksize = AES_BLOCK_SIZE, 3222 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3223 }, 3224 .setkey = aead_gcm_ccm_setkey, 3225 .ivsize = CCM_AES_IV_SIZE, 3226 .maxauthsize = AES_BLOCK_SIZE, 3227 }, 3228 .cipher_info = { 3229 .alg = CIPHER_ALG_AES, 3230 .mode = CIPHER_MODE_CCM, 3231 }, 3232 .auth_info = { 3233 .alg = HASH_ALG_AES, 3234 .mode = HASH_MODE_CCM, 3235 }, 3236 .auth_first = 0, 3237 }, 3238 { 3239 .type = CRYPTO_ALG_TYPE_AEAD, 3240 .alg.aead = { 3241 .base = { 3242 .cra_name = "rfc4106(gcm(aes))", 3243 .cra_driver_name = "gcm-aes-esp-iproc", 3244 .cra_blocksize = AES_BLOCK_SIZE, 3245 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3246 }, 3247 .setkey = aead_gcm_esp_setkey, 3248 .ivsize = GCM_RFC4106_IV_SIZE, 3249 .maxauthsize = AES_BLOCK_SIZE, 3250 }, 3251 .cipher_info = { 3252 .alg = CIPHER_ALG_AES, 3253 .mode = CIPHER_MODE_GCM, 3254 }, 3255 .auth_info = { 3256 .alg = HASH_ALG_AES, 3257 .mode = HASH_MODE_GCM, 3258 }, 3259 .auth_first = 0, 3260 }, 3261 { 3262 .type = CRYPTO_ALG_TYPE_AEAD, 3263 .alg.aead = { 3264 .base = { 3265 .cra_name = "rfc4309(ccm(aes))", 3266 .cra_driver_name = "ccm-aes-esp-iproc", 3267 .cra_blocksize = AES_BLOCK_SIZE, 3268 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3269 }, 3270 .setkey = aead_ccm_esp_setkey, 3271 .ivsize = CCM_AES_IV_SIZE, 3272 .maxauthsize = AES_BLOCK_SIZE, 3273 }, 3274 .cipher_info = { 3275 .alg = CIPHER_ALG_AES, 3276 .mode = CIPHER_MODE_CCM, 3277 }, 3278 .auth_info = { 3279 .alg = HASH_ALG_AES, 3280 .mode = HASH_MODE_CCM, 3281 }, 3282 .auth_first = 0, 3283 }, 3284 { 3285 .type = CRYPTO_ALG_TYPE_AEAD, 3286 .alg.aead = { 3287 .base = { 3288 .cra_name = "rfc4543(gcm(aes))", 3289 .cra_driver_name = "gmac-aes-esp-iproc", 3290 .cra_blocksize = AES_BLOCK_SIZE, 3291 .cra_flags = CRYPTO_ALG_NEED_FALLBACK 3292 }, 3293 .setkey = rfc4543_gcm_esp_setkey, 3294 .ivsize = GCM_RFC4106_IV_SIZE, 3295 .maxauthsize = AES_BLOCK_SIZE, 3296 }, 3297 .cipher_info = { 3298 .alg = CIPHER_ALG_AES, 3299 .mode = CIPHER_MODE_GCM, 3300 }, 3301 .auth_info = { 3302 .alg = HASH_ALG_AES, 3303 .mode = HASH_MODE_GCM, 3304 }, 3305 .auth_first = 0, 3306 }, 3307 { 3308 .type = CRYPTO_ALG_TYPE_AEAD, 3309 .alg.aead = { 3310 .base = { 3311 .cra_name = "authenc(hmac(md5),cbc(aes))", 3312 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", 3313 .cra_blocksize = AES_BLOCK_SIZE, 3314 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3315 }, 3316 .setkey = aead_authenc_setkey, 3317 .ivsize = AES_BLOCK_SIZE, 3318 .maxauthsize = MD5_DIGEST_SIZE, 3319 }, 3320 .cipher_info = { 3321 .alg = CIPHER_ALG_AES, 3322 .mode = CIPHER_MODE_CBC, 3323 }, 3324 .auth_info = { 3325 .alg = HASH_ALG_MD5, 3326 .mode = HASH_MODE_HMAC, 3327 }, 3328 .auth_first = 0, 3329 }, 3330 { 3331 .type = CRYPTO_ALG_TYPE_AEAD, 3332 .alg.aead = { 3333 .base = { 3334 .cra_name = "authenc(hmac(sha1),cbc(aes))", 3335 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", 3336 .cra_blocksize = AES_BLOCK_SIZE, 3337 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3338 }, 3339 .setkey = aead_authenc_setkey, 3340 .ivsize = AES_BLOCK_SIZE, 3341 .maxauthsize = SHA1_DIGEST_SIZE, 3342 }, 3343 .cipher_info = { 3344 .alg = CIPHER_ALG_AES, 3345 .mode = CIPHER_MODE_CBC, 3346 }, 3347 .auth_info = { 3348 .alg = HASH_ALG_SHA1, 3349 .mode = HASH_MODE_HMAC, 3350 }, 3351 .auth_first = 0, 3352 }, 3353 { 3354 .type = CRYPTO_ALG_TYPE_AEAD, 3355 .alg.aead = { 3356 .base = { 3357 .cra_name = "authenc(hmac(sha256),cbc(aes))", 3358 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", 3359 .cra_blocksize = AES_BLOCK_SIZE, 3360 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3361 }, 3362 .setkey = aead_authenc_setkey, 3363 .ivsize = AES_BLOCK_SIZE, 3364 .maxauthsize = SHA256_DIGEST_SIZE, 3365 }, 3366 .cipher_info = { 3367 .alg = CIPHER_ALG_AES, 3368 .mode = CIPHER_MODE_CBC, 3369 }, 3370 .auth_info = { 3371 .alg = HASH_ALG_SHA256, 3372 .mode = HASH_MODE_HMAC, 3373 }, 3374 .auth_first = 0, 3375 }, 3376 { 3377 .type = CRYPTO_ALG_TYPE_AEAD, 3378 .alg.aead = { 3379 .base = { 3380 .cra_name = "authenc(hmac(md5),cbc(des))", 3381 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", 3382 .cra_blocksize = DES_BLOCK_SIZE, 3383 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3384 }, 3385 .setkey = aead_authenc_setkey, 3386 .ivsize = DES_BLOCK_SIZE, 3387 .maxauthsize = MD5_DIGEST_SIZE, 3388 }, 3389 .cipher_info = { 3390 .alg = CIPHER_ALG_DES, 3391 .mode = CIPHER_MODE_CBC, 3392 }, 3393 .auth_info = { 3394 .alg = HASH_ALG_MD5, 3395 .mode = HASH_MODE_HMAC, 3396 }, 3397 .auth_first = 0, 3398 }, 3399 { 3400 .type = CRYPTO_ALG_TYPE_AEAD, 3401 .alg.aead = { 3402 .base = { 3403 .cra_name = "authenc(hmac(sha1),cbc(des))", 3404 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", 3405 .cra_blocksize = DES_BLOCK_SIZE, 3406 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3407 }, 3408 .setkey = aead_authenc_setkey, 3409 .ivsize = DES_BLOCK_SIZE, 3410 .maxauthsize = SHA1_DIGEST_SIZE, 3411 }, 3412 .cipher_info = { 3413 .alg = CIPHER_ALG_DES, 3414 .mode = CIPHER_MODE_CBC, 3415 }, 3416 .auth_info = { 3417 .alg = HASH_ALG_SHA1, 3418 .mode = HASH_MODE_HMAC, 3419 }, 3420 .auth_first = 0, 3421 }, 3422 { 3423 .type = CRYPTO_ALG_TYPE_AEAD, 3424 .alg.aead = { 3425 .base = { 3426 .cra_name = "authenc(hmac(sha224),cbc(des))", 3427 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", 3428 .cra_blocksize = DES_BLOCK_SIZE, 3429 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3430 }, 3431 .setkey = aead_authenc_setkey, 3432 .ivsize = DES_BLOCK_SIZE, 3433 .maxauthsize = SHA224_DIGEST_SIZE, 3434 }, 3435 .cipher_info = { 3436 .alg = CIPHER_ALG_DES, 3437 .mode = CIPHER_MODE_CBC, 3438 }, 3439 .auth_info = { 3440 .alg = HASH_ALG_SHA224, 3441 .mode = HASH_MODE_HMAC, 3442 }, 3443 .auth_first = 0, 3444 }, 3445 { 3446 .type = CRYPTO_ALG_TYPE_AEAD, 3447 .alg.aead = { 3448 .base = { 3449 .cra_name = "authenc(hmac(sha256),cbc(des))", 3450 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", 3451 .cra_blocksize = DES_BLOCK_SIZE, 3452 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3453 }, 3454 .setkey = aead_authenc_setkey, 3455 .ivsize = DES_BLOCK_SIZE, 3456 .maxauthsize = SHA256_DIGEST_SIZE, 3457 }, 3458 .cipher_info = { 3459 .alg = CIPHER_ALG_DES, 3460 .mode = CIPHER_MODE_CBC, 3461 }, 3462 .auth_info = { 3463 .alg = HASH_ALG_SHA256, 3464 .mode = HASH_MODE_HMAC, 3465 }, 3466 .auth_first = 0, 3467 }, 3468 { 3469 .type = CRYPTO_ALG_TYPE_AEAD, 3470 .alg.aead = { 3471 .base = { 3472 .cra_name = "authenc(hmac(sha384),cbc(des))", 3473 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", 3474 .cra_blocksize = DES_BLOCK_SIZE, 3475 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3476 }, 3477 .setkey = aead_authenc_setkey, 3478 .ivsize = DES_BLOCK_SIZE, 3479 .maxauthsize = SHA384_DIGEST_SIZE, 3480 }, 3481 .cipher_info = { 3482 .alg = CIPHER_ALG_DES, 3483 .mode = CIPHER_MODE_CBC, 3484 }, 3485 .auth_info = { 3486 .alg = HASH_ALG_SHA384, 3487 .mode = HASH_MODE_HMAC, 3488 }, 3489 .auth_first = 0, 3490 }, 3491 { 3492 .type = CRYPTO_ALG_TYPE_AEAD, 3493 .alg.aead = { 3494 .base = { 3495 .cra_name = "authenc(hmac(sha512),cbc(des))", 3496 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", 3497 .cra_blocksize = DES_BLOCK_SIZE, 3498 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3499 }, 3500 .setkey = aead_authenc_setkey, 3501 .ivsize = DES_BLOCK_SIZE, 3502 .maxauthsize = SHA512_DIGEST_SIZE, 3503 }, 3504 .cipher_info = { 3505 .alg = CIPHER_ALG_DES, 3506 .mode = CIPHER_MODE_CBC, 3507 }, 3508 .auth_info = { 3509 .alg = HASH_ALG_SHA512, 3510 .mode = HASH_MODE_HMAC, 3511 }, 3512 .auth_first = 0, 3513 }, 3514 { 3515 .type = CRYPTO_ALG_TYPE_AEAD, 3516 .alg.aead = { 3517 .base = { 3518 .cra_name = "authenc(hmac(md5),cbc(des3_ede))", 3519 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", 3520 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3521 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3522 }, 3523 .setkey = aead_authenc_setkey, 3524 .ivsize = DES3_EDE_BLOCK_SIZE, 3525 .maxauthsize = MD5_DIGEST_SIZE, 3526 }, 3527 .cipher_info = { 3528 .alg = CIPHER_ALG_3DES, 3529 .mode = CIPHER_MODE_CBC, 3530 }, 3531 .auth_info = { 3532 .alg = HASH_ALG_MD5, 3533 .mode = HASH_MODE_HMAC, 3534 }, 3535 .auth_first = 0, 3536 }, 3537 { 3538 .type = CRYPTO_ALG_TYPE_AEAD, 3539 .alg.aead = { 3540 .base = { 3541 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", 3542 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", 3543 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3544 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3545 }, 3546 .setkey = aead_authenc_setkey, 3547 .ivsize = DES3_EDE_BLOCK_SIZE, 3548 .maxauthsize = SHA1_DIGEST_SIZE, 3549 }, 3550 .cipher_info = { 3551 .alg = CIPHER_ALG_3DES, 3552 .mode = CIPHER_MODE_CBC, 3553 }, 3554 .auth_info = { 3555 .alg = HASH_ALG_SHA1, 3556 .mode = HASH_MODE_HMAC, 3557 }, 3558 .auth_first = 0, 3559 }, 3560 { 3561 .type = CRYPTO_ALG_TYPE_AEAD, 3562 .alg.aead = { 3563 .base = { 3564 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", 3565 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", 3566 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3567 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3568 }, 3569 .setkey = aead_authenc_setkey, 3570 .ivsize = DES3_EDE_BLOCK_SIZE, 3571 .maxauthsize = SHA224_DIGEST_SIZE, 3572 }, 3573 .cipher_info = { 3574 .alg = CIPHER_ALG_3DES, 3575 .mode = CIPHER_MODE_CBC, 3576 }, 3577 .auth_info = { 3578 .alg = HASH_ALG_SHA224, 3579 .mode = HASH_MODE_HMAC, 3580 }, 3581 .auth_first = 0, 3582 }, 3583 { 3584 .type = CRYPTO_ALG_TYPE_AEAD, 3585 .alg.aead = { 3586 .base = { 3587 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", 3588 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", 3589 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3590 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3591 }, 3592 .setkey = aead_authenc_setkey, 3593 .ivsize = DES3_EDE_BLOCK_SIZE, 3594 .maxauthsize = SHA256_DIGEST_SIZE, 3595 }, 3596 .cipher_info = { 3597 .alg = CIPHER_ALG_3DES, 3598 .mode = CIPHER_MODE_CBC, 3599 }, 3600 .auth_info = { 3601 .alg = HASH_ALG_SHA256, 3602 .mode = HASH_MODE_HMAC, 3603 }, 3604 .auth_first = 0, 3605 }, 3606 { 3607 .type = CRYPTO_ALG_TYPE_AEAD, 3608 .alg.aead = { 3609 .base = { 3610 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", 3611 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", 3612 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3613 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3614 }, 3615 .setkey = aead_authenc_setkey, 3616 .ivsize = DES3_EDE_BLOCK_SIZE, 3617 .maxauthsize = SHA384_DIGEST_SIZE, 3618 }, 3619 .cipher_info = { 3620 .alg = CIPHER_ALG_3DES, 3621 .mode = CIPHER_MODE_CBC, 3622 }, 3623 .auth_info = { 3624 .alg = HASH_ALG_SHA384, 3625 .mode = HASH_MODE_HMAC, 3626 }, 3627 .auth_first = 0, 3628 }, 3629 { 3630 .type = CRYPTO_ALG_TYPE_AEAD, 3631 .alg.aead = { 3632 .base = { 3633 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", 3634 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", 3635 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3636 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC 3637 }, 3638 .setkey = aead_authenc_setkey, 3639 .ivsize = DES3_EDE_BLOCK_SIZE, 3640 .maxauthsize = SHA512_DIGEST_SIZE, 3641 }, 3642 .cipher_info = { 3643 .alg = CIPHER_ALG_3DES, 3644 .mode = CIPHER_MODE_CBC, 3645 }, 3646 .auth_info = { 3647 .alg = HASH_ALG_SHA512, 3648 .mode = HASH_MODE_HMAC, 3649 }, 3650 .auth_first = 0, 3651 }, 3652 3653 /* ABLKCIPHER algorithms. */ 3654 { 3655 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3656 .alg.crypto = { 3657 .cra_name = "ecb(arc4)", 3658 .cra_driver_name = "ecb-arc4-iproc", 3659 .cra_blocksize = ARC4_BLOCK_SIZE, 3660 .cra_ablkcipher = { 3661 .min_keysize = ARC4_MIN_KEY_SIZE, 3662 .max_keysize = ARC4_MAX_KEY_SIZE, 3663 .ivsize = 0, 3664 } 3665 }, 3666 .cipher_info = { 3667 .alg = CIPHER_ALG_RC4, 3668 .mode = CIPHER_MODE_NONE, 3669 }, 3670 .auth_info = { 3671 .alg = HASH_ALG_NONE, 3672 .mode = HASH_MODE_NONE, 3673 }, 3674 }, 3675 { 3676 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3677 .alg.crypto = { 3678 .cra_name = "ofb(des)", 3679 .cra_driver_name = "ofb-des-iproc", 3680 .cra_blocksize = DES_BLOCK_SIZE, 3681 .cra_ablkcipher = { 3682 .min_keysize = DES_KEY_SIZE, 3683 .max_keysize = DES_KEY_SIZE, 3684 .ivsize = DES_BLOCK_SIZE, 3685 } 3686 }, 3687 .cipher_info = { 3688 .alg = CIPHER_ALG_DES, 3689 .mode = CIPHER_MODE_OFB, 3690 }, 3691 .auth_info = { 3692 .alg = HASH_ALG_NONE, 3693 .mode = HASH_MODE_NONE, 3694 }, 3695 }, 3696 { 3697 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3698 .alg.crypto = { 3699 .cra_name = "cbc(des)", 3700 .cra_driver_name = "cbc-des-iproc", 3701 .cra_blocksize = DES_BLOCK_SIZE, 3702 .cra_ablkcipher = { 3703 .min_keysize = DES_KEY_SIZE, 3704 .max_keysize = DES_KEY_SIZE, 3705 .ivsize = DES_BLOCK_SIZE, 3706 } 3707 }, 3708 .cipher_info = { 3709 .alg = CIPHER_ALG_DES, 3710 .mode = CIPHER_MODE_CBC, 3711 }, 3712 .auth_info = { 3713 .alg = HASH_ALG_NONE, 3714 .mode = HASH_MODE_NONE, 3715 }, 3716 }, 3717 { 3718 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3719 .alg.crypto = { 3720 .cra_name = "ecb(des)", 3721 .cra_driver_name = "ecb-des-iproc", 3722 .cra_blocksize = DES_BLOCK_SIZE, 3723 .cra_ablkcipher = { 3724 .min_keysize = DES_KEY_SIZE, 3725 .max_keysize = DES_KEY_SIZE, 3726 .ivsize = 0, 3727 } 3728 }, 3729 .cipher_info = { 3730 .alg = CIPHER_ALG_DES, 3731 .mode = CIPHER_MODE_ECB, 3732 }, 3733 .auth_info = { 3734 .alg = HASH_ALG_NONE, 3735 .mode = HASH_MODE_NONE, 3736 }, 3737 }, 3738 { 3739 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3740 .alg.crypto = { 3741 .cra_name = "ofb(des3_ede)", 3742 .cra_driver_name = "ofb-des3-iproc", 3743 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3744 .cra_ablkcipher = { 3745 .min_keysize = DES3_EDE_KEY_SIZE, 3746 .max_keysize = DES3_EDE_KEY_SIZE, 3747 .ivsize = DES3_EDE_BLOCK_SIZE, 3748 } 3749 }, 3750 .cipher_info = { 3751 .alg = CIPHER_ALG_3DES, 3752 .mode = CIPHER_MODE_OFB, 3753 }, 3754 .auth_info = { 3755 .alg = HASH_ALG_NONE, 3756 .mode = HASH_MODE_NONE, 3757 }, 3758 }, 3759 { 3760 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3761 .alg.crypto = { 3762 .cra_name = "cbc(des3_ede)", 3763 .cra_driver_name = "cbc-des3-iproc", 3764 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3765 .cra_ablkcipher = { 3766 .min_keysize = DES3_EDE_KEY_SIZE, 3767 .max_keysize = DES3_EDE_KEY_SIZE, 3768 .ivsize = DES3_EDE_BLOCK_SIZE, 3769 } 3770 }, 3771 .cipher_info = { 3772 .alg = CIPHER_ALG_3DES, 3773 .mode = CIPHER_MODE_CBC, 3774 }, 3775 .auth_info = { 3776 .alg = HASH_ALG_NONE, 3777 .mode = HASH_MODE_NONE, 3778 }, 3779 }, 3780 { 3781 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3782 .alg.crypto = { 3783 .cra_name = "ecb(des3_ede)", 3784 .cra_driver_name = "ecb-des3-iproc", 3785 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 3786 .cra_ablkcipher = { 3787 .min_keysize = DES3_EDE_KEY_SIZE, 3788 .max_keysize = DES3_EDE_KEY_SIZE, 3789 .ivsize = 0, 3790 } 3791 }, 3792 .cipher_info = { 3793 .alg = CIPHER_ALG_3DES, 3794 .mode = CIPHER_MODE_ECB, 3795 }, 3796 .auth_info = { 3797 .alg = HASH_ALG_NONE, 3798 .mode = HASH_MODE_NONE, 3799 }, 3800 }, 3801 { 3802 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3803 .alg.crypto = { 3804 .cra_name = "ofb(aes)", 3805 .cra_driver_name = "ofb-aes-iproc", 3806 .cra_blocksize = AES_BLOCK_SIZE, 3807 .cra_ablkcipher = { 3808 .min_keysize = AES_MIN_KEY_SIZE, 3809 .max_keysize = AES_MAX_KEY_SIZE, 3810 .ivsize = AES_BLOCK_SIZE, 3811 } 3812 }, 3813 .cipher_info = { 3814 .alg = CIPHER_ALG_AES, 3815 .mode = CIPHER_MODE_OFB, 3816 }, 3817 .auth_info = { 3818 .alg = HASH_ALG_NONE, 3819 .mode = HASH_MODE_NONE, 3820 }, 3821 }, 3822 { 3823 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3824 .alg.crypto = { 3825 .cra_name = "cbc(aes)", 3826 .cra_driver_name = "cbc-aes-iproc", 3827 .cra_blocksize = AES_BLOCK_SIZE, 3828 .cra_ablkcipher = { 3829 .min_keysize = AES_MIN_KEY_SIZE, 3830 .max_keysize = AES_MAX_KEY_SIZE, 3831 .ivsize = AES_BLOCK_SIZE, 3832 } 3833 }, 3834 .cipher_info = { 3835 .alg = CIPHER_ALG_AES, 3836 .mode = CIPHER_MODE_CBC, 3837 }, 3838 .auth_info = { 3839 .alg = HASH_ALG_NONE, 3840 .mode = HASH_MODE_NONE, 3841 }, 3842 }, 3843 { 3844 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3845 .alg.crypto = { 3846 .cra_name = "ecb(aes)", 3847 .cra_driver_name = "ecb-aes-iproc", 3848 .cra_blocksize = AES_BLOCK_SIZE, 3849 .cra_ablkcipher = { 3850 .min_keysize = AES_MIN_KEY_SIZE, 3851 .max_keysize = AES_MAX_KEY_SIZE, 3852 .ivsize = 0, 3853 } 3854 }, 3855 .cipher_info = { 3856 .alg = CIPHER_ALG_AES, 3857 .mode = CIPHER_MODE_ECB, 3858 }, 3859 .auth_info = { 3860 .alg = HASH_ALG_NONE, 3861 .mode = HASH_MODE_NONE, 3862 }, 3863 }, 3864 { 3865 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3866 .alg.crypto = { 3867 .cra_name = "ctr(aes)", 3868 .cra_driver_name = "ctr-aes-iproc", 3869 .cra_blocksize = AES_BLOCK_SIZE, 3870 .cra_ablkcipher = { 3871 /* .geniv = "chainiv", */ 3872 .min_keysize = AES_MIN_KEY_SIZE, 3873 .max_keysize = AES_MAX_KEY_SIZE, 3874 .ivsize = AES_BLOCK_SIZE, 3875 } 3876 }, 3877 .cipher_info = { 3878 .alg = CIPHER_ALG_AES, 3879 .mode = CIPHER_MODE_CTR, 3880 }, 3881 .auth_info = { 3882 .alg = HASH_ALG_NONE, 3883 .mode = HASH_MODE_NONE, 3884 }, 3885 }, 3886 { 3887 .type = CRYPTO_ALG_TYPE_ABLKCIPHER, 3888 .alg.crypto = { 3889 .cra_name = "xts(aes)", 3890 .cra_driver_name = "xts-aes-iproc", 3891 .cra_blocksize = AES_BLOCK_SIZE, 3892 .cra_ablkcipher = { 3893 .min_keysize = 2 * AES_MIN_KEY_SIZE, 3894 .max_keysize = 2 * AES_MAX_KEY_SIZE, 3895 .ivsize = AES_BLOCK_SIZE, 3896 } 3897 }, 3898 .cipher_info = { 3899 .alg = CIPHER_ALG_AES, 3900 .mode = CIPHER_MODE_XTS, 3901 }, 3902 .auth_info = { 3903 .alg = HASH_ALG_NONE, 3904 .mode = HASH_MODE_NONE, 3905 }, 3906 }, 3907 3908 /* AHASH algorithms. */ 3909 { 3910 .type = CRYPTO_ALG_TYPE_AHASH, 3911 .alg.hash = { 3912 .halg.digestsize = MD5_DIGEST_SIZE, 3913 .halg.base = { 3914 .cra_name = "md5", 3915 .cra_driver_name = "md5-iproc", 3916 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3917 .cra_flags = CRYPTO_ALG_TYPE_AHASH | 3918 CRYPTO_ALG_ASYNC, 3919 } 3920 }, 3921 .cipher_info = { 3922 .alg = CIPHER_ALG_NONE, 3923 .mode = CIPHER_MODE_NONE, 3924 }, 3925 .auth_info = { 3926 .alg = HASH_ALG_MD5, 3927 .mode = HASH_MODE_HASH, 3928 }, 3929 }, 3930 { 3931 .type = CRYPTO_ALG_TYPE_AHASH, 3932 .alg.hash = { 3933 .halg.digestsize = MD5_DIGEST_SIZE, 3934 .halg.base = { 3935 .cra_name = "hmac(md5)", 3936 .cra_driver_name = "hmac-md5-iproc", 3937 .cra_blocksize = MD5_BLOCK_WORDS * 4, 3938 } 3939 }, 3940 .cipher_info = { 3941 .alg = CIPHER_ALG_NONE, 3942 .mode = CIPHER_MODE_NONE, 3943 }, 3944 .auth_info = { 3945 .alg = HASH_ALG_MD5, 3946 .mode = HASH_MODE_HMAC, 3947 }, 3948 }, 3949 {.type = CRYPTO_ALG_TYPE_AHASH, 3950 .alg.hash = { 3951 .halg.digestsize = SHA1_DIGEST_SIZE, 3952 .halg.base = { 3953 .cra_name = "sha1", 3954 .cra_driver_name = "sha1-iproc", 3955 .cra_blocksize = SHA1_BLOCK_SIZE, 3956 } 3957 }, 3958 .cipher_info = { 3959 .alg = CIPHER_ALG_NONE, 3960 .mode = CIPHER_MODE_NONE, 3961 }, 3962 .auth_info = { 3963 .alg = HASH_ALG_SHA1, 3964 .mode = HASH_MODE_HASH, 3965 }, 3966 }, 3967 {.type = CRYPTO_ALG_TYPE_AHASH, 3968 .alg.hash = { 3969 .halg.digestsize = SHA1_DIGEST_SIZE, 3970 .halg.base = { 3971 .cra_name = "hmac(sha1)", 3972 .cra_driver_name = "hmac-sha1-iproc", 3973 .cra_blocksize = SHA1_BLOCK_SIZE, 3974 } 3975 }, 3976 .cipher_info = { 3977 .alg = CIPHER_ALG_NONE, 3978 .mode = CIPHER_MODE_NONE, 3979 }, 3980 .auth_info = { 3981 .alg = HASH_ALG_SHA1, 3982 .mode = HASH_MODE_HMAC, 3983 }, 3984 }, 3985 {.type = CRYPTO_ALG_TYPE_AHASH, 3986 .alg.hash = { 3987 .halg.digestsize = SHA224_DIGEST_SIZE, 3988 .halg.base = { 3989 .cra_name = "sha224", 3990 .cra_driver_name = "sha224-iproc", 3991 .cra_blocksize = SHA224_BLOCK_SIZE, 3992 } 3993 }, 3994 .cipher_info = { 3995 .alg = CIPHER_ALG_NONE, 3996 .mode = CIPHER_MODE_NONE, 3997 }, 3998 .auth_info = { 3999 .alg = HASH_ALG_SHA224, 4000 .mode = HASH_MODE_HASH, 4001 }, 4002 }, 4003 {.type = CRYPTO_ALG_TYPE_AHASH, 4004 .alg.hash = { 4005 .halg.digestsize = SHA224_DIGEST_SIZE, 4006 .halg.base = { 4007 .cra_name = "hmac(sha224)", 4008 .cra_driver_name = "hmac-sha224-iproc", 4009 .cra_blocksize = SHA224_BLOCK_SIZE, 4010 } 4011 }, 4012 .cipher_info = { 4013 .alg = CIPHER_ALG_NONE, 4014 .mode = CIPHER_MODE_NONE, 4015 }, 4016 .auth_info = { 4017 .alg = HASH_ALG_SHA224, 4018 .mode = HASH_MODE_HMAC, 4019 }, 4020 }, 4021 {.type = CRYPTO_ALG_TYPE_AHASH, 4022 .alg.hash = { 4023 .halg.digestsize = SHA256_DIGEST_SIZE, 4024 .halg.base = { 4025 .cra_name = "sha256", 4026 .cra_driver_name = "sha256-iproc", 4027 .cra_blocksize = SHA256_BLOCK_SIZE, 4028 } 4029 }, 4030 .cipher_info = { 4031 .alg = CIPHER_ALG_NONE, 4032 .mode = CIPHER_MODE_NONE, 4033 }, 4034 .auth_info = { 4035 .alg = HASH_ALG_SHA256, 4036 .mode = HASH_MODE_HASH, 4037 }, 4038 }, 4039 {.type = CRYPTO_ALG_TYPE_AHASH, 4040 .alg.hash = { 4041 .halg.digestsize = SHA256_DIGEST_SIZE, 4042 .halg.base = { 4043 .cra_name = "hmac(sha256)", 4044 .cra_driver_name = "hmac-sha256-iproc", 4045 .cra_blocksize = SHA256_BLOCK_SIZE, 4046 } 4047 }, 4048 .cipher_info = { 4049 .alg = CIPHER_ALG_NONE, 4050 .mode = CIPHER_MODE_NONE, 4051 }, 4052 .auth_info = { 4053 .alg = HASH_ALG_SHA256, 4054 .mode = HASH_MODE_HMAC, 4055 }, 4056 }, 4057 { 4058 .type = CRYPTO_ALG_TYPE_AHASH, 4059 .alg.hash = { 4060 .halg.digestsize = SHA384_DIGEST_SIZE, 4061 .halg.base = { 4062 .cra_name = "sha384", 4063 .cra_driver_name = "sha384-iproc", 4064 .cra_blocksize = SHA384_BLOCK_SIZE, 4065 } 4066 }, 4067 .cipher_info = { 4068 .alg = CIPHER_ALG_NONE, 4069 .mode = CIPHER_MODE_NONE, 4070 }, 4071 .auth_info = { 4072 .alg = HASH_ALG_SHA384, 4073 .mode = HASH_MODE_HASH, 4074 }, 4075 }, 4076 { 4077 .type = CRYPTO_ALG_TYPE_AHASH, 4078 .alg.hash = { 4079 .halg.digestsize = SHA384_DIGEST_SIZE, 4080 .halg.base = { 4081 .cra_name = "hmac(sha384)", 4082 .cra_driver_name = "hmac-sha384-iproc", 4083 .cra_blocksize = SHA384_BLOCK_SIZE, 4084 } 4085 }, 4086 .cipher_info = { 4087 .alg = CIPHER_ALG_NONE, 4088 .mode = CIPHER_MODE_NONE, 4089 }, 4090 .auth_info = { 4091 .alg = HASH_ALG_SHA384, 4092 .mode = HASH_MODE_HMAC, 4093 }, 4094 }, 4095 { 4096 .type = CRYPTO_ALG_TYPE_AHASH, 4097 .alg.hash = { 4098 .halg.digestsize = SHA512_DIGEST_SIZE, 4099 .halg.base = { 4100 .cra_name = "sha512", 4101 .cra_driver_name = "sha512-iproc", 4102 .cra_blocksize = SHA512_BLOCK_SIZE, 4103 } 4104 }, 4105 .cipher_info = { 4106 .alg = CIPHER_ALG_NONE, 4107 .mode = CIPHER_MODE_NONE, 4108 }, 4109 .auth_info = { 4110 .alg = HASH_ALG_SHA512, 4111 .mode = HASH_MODE_HASH, 4112 }, 4113 }, 4114 { 4115 .type = CRYPTO_ALG_TYPE_AHASH, 4116 .alg.hash = { 4117 .halg.digestsize = SHA512_DIGEST_SIZE, 4118 .halg.base = { 4119 .cra_name = "hmac(sha512)", 4120 .cra_driver_name = "hmac-sha512-iproc", 4121 .cra_blocksize = SHA512_BLOCK_SIZE, 4122 } 4123 }, 4124 .cipher_info = { 4125 .alg = CIPHER_ALG_NONE, 4126 .mode = CIPHER_MODE_NONE, 4127 }, 4128 .auth_info = { 4129 .alg = HASH_ALG_SHA512, 4130 .mode = HASH_MODE_HMAC, 4131 }, 4132 }, 4133 { 4134 .type = CRYPTO_ALG_TYPE_AHASH, 4135 .alg.hash = { 4136 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4137 .halg.base = { 4138 .cra_name = "sha3-224", 4139 .cra_driver_name = "sha3-224-iproc", 4140 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4141 } 4142 }, 4143 .cipher_info = { 4144 .alg = CIPHER_ALG_NONE, 4145 .mode = CIPHER_MODE_NONE, 4146 }, 4147 .auth_info = { 4148 .alg = HASH_ALG_SHA3_224, 4149 .mode = HASH_MODE_HASH, 4150 }, 4151 }, 4152 { 4153 .type = CRYPTO_ALG_TYPE_AHASH, 4154 .alg.hash = { 4155 .halg.digestsize = SHA3_224_DIGEST_SIZE, 4156 .halg.base = { 4157 .cra_name = "hmac(sha3-224)", 4158 .cra_driver_name = "hmac-sha3-224-iproc", 4159 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4160 } 4161 }, 4162 .cipher_info = { 4163 .alg = CIPHER_ALG_NONE, 4164 .mode = CIPHER_MODE_NONE, 4165 }, 4166 .auth_info = { 4167 .alg = HASH_ALG_SHA3_224, 4168 .mode = HASH_MODE_HMAC 4169 }, 4170 }, 4171 { 4172 .type = CRYPTO_ALG_TYPE_AHASH, 4173 .alg.hash = { 4174 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4175 .halg.base = { 4176 .cra_name = "sha3-256", 4177 .cra_driver_name = "sha3-256-iproc", 4178 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4179 } 4180 }, 4181 .cipher_info = { 4182 .alg = CIPHER_ALG_NONE, 4183 .mode = CIPHER_MODE_NONE, 4184 }, 4185 .auth_info = { 4186 .alg = HASH_ALG_SHA3_256, 4187 .mode = HASH_MODE_HASH, 4188 }, 4189 }, 4190 { 4191 .type = CRYPTO_ALG_TYPE_AHASH, 4192 .alg.hash = { 4193 .halg.digestsize = SHA3_256_DIGEST_SIZE, 4194 .halg.base = { 4195 .cra_name = "hmac(sha3-256)", 4196 .cra_driver_name = "hmac-sha3-256-iproc", 4197 .cra_blocksize = SHA3_256_BLOCK_SIZE, 4198 } 4199 }, 4200 .cipher_info = { 4201 .alg = CIPHER_ALG_NONE, 4202 .mode = CIPHER_MODE_NONE, 4203 }, 4204 .auth_info = { 4205 .alg = HASH_ALG_SHA3_256, 4206 .mode = HASH_MODE_HMAC, 4207 }, 4208 }, 4209 { 4210 .type = CRYPTO_ALG_TYPE_AHASH, 4211 .alg.hash = { 4212 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4213 .halg.base = { 4214 .cra_name = "sha3-384", 4215 .cra_driver_name = "sha3-384-iproc", 4216 .cra_blocksize = SHA3_224_BLOCK_SIZE, 4217 } 4218 }, 4219 .cipher_info = { 4220 .alg = CIPHER_ALG_NONE, 4221 .mode = CIPHER_MODE_NONE, 4222 }, 4223 .auth_info = { 4224 .alg = HASH_ALG_SHA3_384, 4225 .mode = HASH_MODE_HASH, 4226 }, 4227 }, 4228 { 4229 .type = CRYPTO_ALG_TYPE_AHASH, 4230 .alg.hash = { 4231 .halg.digestsize = SHA3_384_DIGEST_SIZE, 4232 .halg.base = { 4233 .cra_name = "hmac(sha3-384)", 4234 .cra_driver_name = "hmac-sha3-384-iproc", 4235 .cra_blocksize = SHA3_384_BLOCK_SIZE, 4236 } 4237 }, 4238 .cipher_info = { 4239 .alg = CIPHER_ALG_NONE, 4240 .mode = CIPHER_MODE_NONE, 4241 }, 4242 .auth_info = { 4243 .alg = HASH_ALG_SHA3_384, 4244 .mode = HASH_MODE_HMAC, 4245 }, 4246 }, 4247 { 4248 .type = CRYPTO_ALG_TYPE_AHASH, 4249 .alg.hash = { 4250 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4251 .halg.base = { 4252 .cra_name = "sha3-512", 4253 .cra_driver_name = "sha3-512-iproc", 4254 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4255 } 4256 }, 4257 .cipher_info = { 4258 .alg = CIPHER_ALG_NONE, 4259 .mode = CIPHER_MODE_NONE, 4260 }, 4261 .auth_info = { 4262 .alg = HASH_ALG_SHA3_512, 4263 .mode = HASH_MODE_HASH, 4264 }, 4265 }, 4266 { 4267 .type = CRYPTO_ALG_TYPE_AHASH, 4268 .alg.hash = { 4269 .halg.digestsize = SHA3_512_DIGEST_SIZE, 4270 .halg.base = { 4271 .cra_name = "hmac(sha3-512)", 4272 .cra_driver_name = "hmac-sha3-512-iproc", 4273 .cra_blocksize = SHA3_512_BLOCK_SIZE, 4274 } 4275 }, 4276 .cipher_info = { 4277 .alg = CIPHER_ALG_NONE, 4278 .mode = CIPHER_MODE_NONE, 4279 }, 4280 .auth_info = { 4281 .alg = HASH_ALG_SHA3_512, 4282 .mode = HASH_MODE_HMAC, 4283 }, 4284 }, 4285 { 4286 .type = CRYPTO_ALG_TYPE_AHASH, 4287 .alg.hash = { 4288 .halg.digestsize = AES_BLOCK_SIZE, 4289 .halg.base = { 4290 .cra_name = "xcbc(aes)", 4291 .cra_driver_name = "xcbc-aes-iproc", 4292 .cra_blocksize = AES_BLOCK_SIZE, 4293 } 4294 }, 4295 .cipher_info = { 4296 .alg = CIPHER_ALG_NONE, 4297 .mode = CIPHER_MODE_NONE, 4298 }, 4299 .auth_info = { 4300 .alg = HASH_ALG_AES, 4301 .mode = HASH_MODE_XCBC, 4302 }, 4303 }, 4304 { 4305 .type = CRYPTO_ALG_TYPE_AHASH, 4306 .alg.hash = { 4307 .halg.digestsize = AES_BLOCK_SIZE, 4308 .halg.base = { 4309 .cra_name = "cmac(aes)", 4310 .cra_driver_name = "cmac-aes-iproc", 4311 .cra_blocksize = AES_BLOCK_SIZE, 4312 } 4313 }, 4314 .cipher_info = { 4315 .alg = CIPHER_ALG_NONE, 4316 .mode = CIPHER_MODE_NONE, 4317 }, 4318 .auth_info = { 4319 .alg = HASH_ALG_AES, 4320 .mode = HASH_MODE_CMAC, 4321 }, 4322 }, 4323 }; 4324 4325 static int generic_cra_init(struct crypto_tfm *tfm, 4326 struct iproc_alg_s *cipher_alg) 4327 { 4328 struct spu_hw *spu = &iproc_priv.spu; 4329 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4330 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); 4331 4332 flow_log("%s()\n", __func__); 4333 4334 ctx->alg = cipher_alg; 4335 ctx->cipher = cipher_alg->cipher_info; 4336 ctx->auth = cipher_alg->auth_info; 4337 ctx->auth_first = cipher_alg->auth_first; 4338 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, 4339 ctx->cipher.mode, 4340 blocksize); 4341 ctx->fallback_cipher = NULL; 4342 4343 ctx->enckeylen = 0; 4344 ctx->authkeylen = 0; 4345 4346 atomic_inc(&iproc_priv.stream_count); 4347 atomic_inc(&iproc_priv.session_count); 4348 4349 return 0; 4350 } 4351 4352 static int ablkcipher_cra_init(struct crypto_tfm *tfm) 4353 { 4354 struct crypto_alg *alg = tfm->__crt_alg; 4355 struct iproc_alg_s *cipher_alg; 4356 4357 flow_log("%s()\n", __func__); 4358 4359 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); 4360 4361 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); 4362 return generic_cra_init(tfm, cipher_alg); 4363 } 4364 4365 static int ahash_cra_init(struct crypto_tfm *tfm) 4366 { 4367 int err; 4368 struct crypto_alg *alg = tfm->__crt_alg; 4369 struct iproc_alg_s *cipher_alg; 4370 4371 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, 4372 alg.hash); 4373 4374 err = generic_cra_init(tfm, cipher_alg); 4375 flow_log("%s()\n", __func__); 4376 4377 /* 4378 * export state size has to be < 512 bytes. So don't include msg bufs 4379 * in state size. 4380 */ 4381 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 4382 sizeof(struct iproc_reqctx_s)); 4383 4384 return err; 4385 } 4386 4387 static int aead_cra_init(struct crypto_aead *aead) 4388 { 4389 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4390 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4391 struct crypto_alg *alg = tfm->__crt_alg; 4392 struct aead_alg *aalg = container_of(alg, struct aead_alg, base); 4393 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, 4394 alg.aead); 4395 4396 int err = generic_cra_init(tfm, cipher_alg); 4397 4398 flow_log("%s()\n", __func__); 4399 4400 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); 4401 ctx->is_esp = false; 4402 ctx->salt_len = 0; 4403 ctx->salt_offset = 0; 4404 4405 /* random first IV */ 4406 get_random_bytes(ctx->iv, MAX_IV_SIZE); 4407 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); 4408 4409 if (!err) { 4410 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { 4411 flow_log("%s() creating fallback cipher\n", __func__); 4412 4413 ctx->fallback_cipher = 4414 crypto_alloc_aead(alg->cra_name, 0, 4415 CRYPTO_ALG_ASYNC | 4416 CRYPTO_ALG_NEED_FALLBACK); 4417 if (IS_ERR(ctx->fallback_cipher)) { 4418 pr_err("%s() Error: failed to allocate fallback for %s\n", 4419 __func__, alg->cra_name); 4420 return PTR_ERR(ctx->fallback_cipher); 4421 } 4422 } 4423 } 4424 4425 return err; 4426 } 4427 4428 static void generic_cra_exit(struct crypto_tfm *tfm) 4429 { 4430 atomic_dec(&iproc_priv.session_count); 4431 } 4432 4433 static void aead_cra_exit(struct crypto_aead *aead) 4434 { 4435 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 4436 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); 4437 4438 generic_cra_exit(tfm); 4439 4440 if (ctx->fallback_cipher) { 4441 crypto_free_aead(ctx->fallback_cipher); 4442 ctx->fallback_cipher = NULL; 4443 } 4444 } 4445 4446 /** 4447 * spu_functions_register() - Specify hardware-specific SPU functions based on 4448 * SPU type read from device tree. 4449 * @dev: device structure 4450 * @spu_type: SPU hardware generation 4451 * @spu_subtype: SPU hardware version 4452 */ 4453 static void spu_functions_register(struct device *dev, 4454 enum spu_spu_type spu_type, 4455 enum spu_spu_subtype spu_subtype) 4456 { 4457 struct spu_hw *spu = &iproc_priv.spu; 4458 4459 if (spu_type == SPU_TYPE_SPUM) { 4460 dev_dbg(dev, "Registering SPUM functions"); 4461 spu->spu_dump_msg_hdr = spum_dump_msg_hdr; 4462 spu->spu_payload_length = spum_payload_length; 4463 spu->spu_response_hdr_len = spum_response_hdr_len; 4464 spu->spu_hash_pad_len = spum_hash_pad_len; 4465 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; 4466 spu->spu_assoc_resp_len = spum_assoc_resp_len; 4467 spu->spu_aead_ivlen = spum_aead_ivlen; 4468 spu->spu_hash_type = spum_hash_type; 4469 spu->spu_digest_size = spum_digest_size; 4470 spu->spu_create_request = spum_create_request; 4471 spu->spu_cipher_req_init = spum_cipher_req_init; 4472 spu->spu_cipher_req_finish = spum_cipher_req_finish; 4473 spu->spu_request_pad = spum_request_pad; 4474 spu->spu_tx_status_len = spum_tx_status_len; 4475 spu->spu_rx_status_len = spum_rx_status_len; 4476 spu->spu_status_process = spum_status_process; 4477 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; 4478 spu->spu_ccm_update_iv = spum_ccm_update_iv; 4479 spu->spu_wordalign_padlen = spum_wordalign_padlen; 4480 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) 4481 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; 4482 else 4483 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; 4484 } else { 4485 dev_dbg(dev, "Registering SPU2 functions"); 4486 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; 4487 spu->spu_ctx_max_payload = spu2_ctx_max_payload; 4488 spu->spu_payload_length = spu2_payload_length; 4489 spu->spu_response_hdr_len = spu2_response_hdr_len; 4490 spu->spu_hash_pad_len = spu2_hash_pad_len; 4491 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; 4492 spu->spu_assoc_resp_len = spu2_assoc_resp_len; 4493 spu->spu_aead_ivlen = spu2_aead_ivlen; 4494 spu->spu_hash_type = spu2_hash_type; 4495 spu->spu_digest_size = spu2_digest_size; 4496 spu->spu_create_request = spu2_create_request; 4497 spu->spu_cipher_req_init = spu2_cipher_req_init; 4498 spu->spu_cipher_req_finish = spu2_cipher_req_finish; 4499 spu->spu_request_pad = spu2_request_pad; 4500 spu->spu_tx_status_len = spu2_tx_status_len; 4501 spu->spu_rx_status_len = spu2_rx_status_len; 4502 spu->spu_status_process = spu2_status_process; 4503 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; 4504 spu->spu_ccm_update_iv = spu2_ccm_update_iv; 4505 spu->spu_wordalign_padlen = spu2_wordalign_padlen; 4506 } 4507 } 4508 4509 /** 4510 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox 4511 * channel for the SPU being probed. 4512 * @dev: SPU driver device structure 4513 * 4514 * Return: 0 if successful 4515 * < 0 otherwise 4516 */ 4517 static int spu_mb_init(struct device *dev) 4518 { 4519 struct mbox_client *mcl = &iproc_priv.mcl; 4520 int err, i; 4521 4522 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, 4523 sizeof(struct mbox_chan *), GFP_KERNEL); 4524 if (!iproc_priv.mbox) 4525 return -ENOMEM; 4526 4527 mcl->dev = dev; 4528 mcl->tx_block = false; 4529 mcl->tx_tout = 0; 4530 mcl->knows_txdone = true; 4531 mcl->rx_callback = spu_rx_callback; 4532 mcl->tx_done = NULL; 4533 4534 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4535 iproc_priv.mbox[i] = mbox_request_channel(mcl, i); 4536 if (IS_ERR(iproc_priv.mbox[i])) { 4537 err = (int)PTR_ERR(iproc_priv.mbox[i]); 4538 dev_err(dev, 4539 "Mbox channel %d request failed with err %d", 4540 i, err); 4541 iproc_priv.mbox[i] = NULL; 4542 goto free_channels; 4543 } 4544 } 4545 4546 return 0; 4547 free_channels: 4548 for (i = 0; i < iproc_priv.spu.num_chan; i++) { 4549 if (iproc_priv.mbox[i]) 4550 mbox_free_channel(iproc_priv.mbox[i]); 4551 } 4552 4553 return err; 4554 } 4555 4556 static void spu_mb_release(struct platform_device *pdev) 4557 { 4558 int i; 4559 4560 for (i = 0; i < iproc_priv.spu.num_chan; i++) 4561 mbox_free_channel(iproc_priv.mbox[i]); 4562 } 4563 4564 static void spu_counters_init(void) 4565 { 4566 int i; 4567 int j; 4568 4569 atomic_set(&iproc_priv.session_count, 0); 4570 atomic_set(&iproc_priv.stream_count, 0); 4571 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); 4572 atomic64_set(&iproc_priv.bytes_in, 0); 4573 atomic64_set(&iproc_priv.bytes_out, 0); 4574 for (i = 0; i < SPU_OP_NUM; i++) { 4575 atomic_set(&iproc_priv.op_counts[i], 0); 4576 atomic_set(&iproc_priv.setkey_cnt[i], 0); 4577 } 4578 for (i = 0; i < CIPHER_ALG_LAST; i++) 4579 for (j = 0; j < CIPHER_MODE_LAST; j++) 4580 atomic_set(&iproc_priv.cipher_cnt[i][j], 0); 4581 4582 for (i = 0; i < HASH_ALG_LAST; i++) { 4583 atomic_set(&iproc_priv.hash_cnt[i], 0); 4584 atomic_set(&iproc_priv.hmac_cnt[i], 0); 4585 } 4586 for (i = 0; i < AEAD_TYPE_LAST; i++) 4587 atomic_set(&iproc_priv.aead_cnt[i], 0); 4588 4589 atomic_set(&iproc_priv.mb_no_spc, 0); 4590 atomic_set(&iproc_priv.mb_send_fail, 0); 4591 atomic_set(&iproc_priv.bad_icv, 0); 4592 } 4593 4594 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) 4595 { 4596 struct spu_hw *spu = &iproc_priv.spu; 4597 struct crypto_alg *crypto = &driver_alg->alg.crypto; 4598 int err; 4599 4600 /* SPU2 does not support RC4 */ 4601 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && 4602 (spu->spu_type == SPU_TYPE_SPU2)) 4603 return 0; 4604 4605 crypto->cra_module = THIS_MODULE; 4606 crypto->cra_priority = cipher_pri; 4607 crypto->cra_alignmask = 0; 4608 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); 4609 INIT_LIST_HEAD(&crypto->cra_list); 4610 4611 crypto->cra_init = ablkcipher_cra_init; 4612 crypto->cra_exit = generic_cra_exit; 4613 crypto->cra_type = &crypto_ablkcipher_type; 4614 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | 4615 CRYPTO_ALG_KERN_DRIVER_ONLY; 4616 4617 crypto->cra_ablkcipher.setkey = ablkcipher_setkey; 4618 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; 4619 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; 4620 4621 err = crypto_register_alg(crypto); 4622 /* Mark alg as having been registered, if successful */ 4623 if (err == 0) 4624 driver_alg->registered = true; 4625 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name); 4626 return err; 4627 } 4628 4629 static int spu_register_ahash(struct iproc_alg_s *driver_alg) 4630 { 4631 struct spu_hw *spu = &iproc_priv.spu; 4632 struct ahash_alg *hash = &driver_alg->alg.hash; 4633 int err; 4634 4635 /* AES-XCBC is the only AES hash type currently supported on SPU-M */ 4636 if ((driver_alg->auth_info.alg == HASH_ALG_AES) && 4637 (driver_alg->auth_info.mode != HASH_MODE_XCBC) && 4638 (spu->spu_type == SPU_TYPE_SPUM)) 4639 return 0; 4640 4641 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ 4642 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && 4643 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) 4644 return 0; 4645 4646 hash->halg.base.cra_module = THIS_MODULE; 4647 hash->halg.base.cra_priority = hash_pri; 4648 hash->halg.base.cra_alignmask = 0; 4649 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4650 hash->halg.base.cra_init = ahash_cra_init; 4651 hash->halg.base.cra_exit = generic_cra_exit; 4652 hash->halg.base.cra_type = &crypto_ahash_type; 4653 hash->halg.base.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC; 4654 hash->halg.statesize = sizeof(struct spu_hash_export_s); 4655 4656 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { 4657 hash->setkey = ahash_setkey; 4658 hash->init = ahash_init; 4659 hash->update = ahash_update; 4660 hash->final = ahash_final; 4661 hash->finup = ahash_finup; 4662 hash->digest = ahash_digest; 4663 } else { 4664 hash->setkey = ahash_hmac_setkey; 4665 hash->init = ahash_hmac_init; 4666 hash->update = ahash_hmac_update; 4667 hash->final = ahash_hmac_final; 4668 hash->finup = ahash_hmac_finup; 4669 hash->digest = ahash_hmac_digest; 4670 } 4671 hash->export = ahash_export; 4672 hash->import = ahash_import; 4673 4674 err = crypto_register_ahash(hash); 4675 /* Mark alg as having been registered, if successful */ 4676 if (err == 0) 4677 driver_alg->registered = true; 4678 pr_debug(" registered ahash %s\n", 4679 hash->halg.base.cra_driver_name); 4680 return err; 4681 } 4682 4683 static int spu_register_aead(struct iproc_alg_s *driver_alg) 4684 { 4685 struct aead_alg *aead = &driver_alg->alg.aead; 4686 int err; 4687 4688 aead->base.cra_module = THIS_MODULE; 4689 aead->base.cra_priority = aead_pri; 4690 aead->base.cra_alignmask = 0; 4691 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); 4692 INIT_LIST_HEAD(&aead->base.cra_list); 4693 4694 aead->base.cra_flags |= CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC; 4695 /* setkey set in alg initialization */ 4696 aead->setauthsize = aead_setauthsize; 4697 aead->encrypt = aead_encrypt; 4698 aead->decrypt = aead_decrypt; 4699 aead->init = aead_cra_init; 4700 aead->exit = aead_cra_exit; 4701 4702 err = crypto_register_aead(aead); 4703 /* Mark alg as having been registered, if successful */ 4704 if (err == 0) 4705 driver_alg->registered = true; 4706 pr_debug(" registered aead %s\n", aead->base.cra_driver_name); 4707 return err; 4708 } 4709 4710 /* register crypto algorithms the device supports */ 4711 static int spu_algs_register(struct device *dev) 4712 { 4713 int i, j; 4714 int err; 4715 4716 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4717 switch (driver_algs[i].type) { 4718 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4719 err = spu_register_ablkcipher(&driver_algs[i]); 4720 break; 4721 case CRYPTO_ALG_TYPE_AHASH: 4722 err = spu_register_ahash(&driver_algs[i]); 4723 break; 4724 case CRYPTO_ALG_TYPE_AEAD: 4725 err = spu_register_aead(&driver_algs[i]); 4726 break; 4727 default: 4728 dev_err(dev, 4729 "iproc-crypto: unknown alg type: %d", 4730 driver_algs[i].type); 4731 err = -EINVAL; 4732 } 4733 4734 if (err) { 4735 dev_err(dev, "alg registration failed with error %d\n", 4736 err); 4737 goto err_algs; 4738 } 4739 } 4740 4741 return 0; 4742 4743 err_algs: 4744 for (j = 0; j < i; j++) { 4745 /* Skip any algorithm not registered */ 4746 if (!driver_algs[j].registered) 4747 continue; 4748 switch (driver_algs[j].type) { 4749 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4750 crypto_unregister_alg(&driver_algs[j].alg.crypto); 4751 driver_algs[j].registered = false; 4752 break; 4753 case CRYPTO_ALG_TYPE_AHASH: 4754 crypto_unregister_ahash(&driver_algs[j].alg.hash); 4755 driver_algs[j].registered = false; 4756 break; 4757 case CRYPTO_ALG_TYPE_AEAD: 4758 crypto_unregister_aead(&driver_algs[j].alg.aead); 4759 driver_algs[j].registered = false; 4760 break; 4761 } 4762 } 4763 return err; 4764 } 4765 4766 /* ==================== Kernel Platform API ==================== */ 4767 4768 static struct spu_type_subtype spum_ns2_types = { 4769 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 4770 }; 4771 4772 static struct spu_type_subtype spum_nsp_types = { 4773 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP 4774 }; 4775 4776 static struct spu_type_subtype spu2_types = { 4777 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 4778 }; 4779 4780 static struct spu_type_subtype spu2_v2_types = { 4781 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 4782 }; 4783 4784 static const struct of_device_id bcm_spu_dt_ids[] = { 4785 { 4786 .compatible = "brcm,spum-crypto", 4787 .data = &spum_ns2_types, 4788 }, 4789 { 4790 .compatible = "brcm,spum-nsp-crypto", 4791 .data = &spum_nsp_types, 4792 }, 4793 { 4794 .compatible = "brcm,spu2-crypto", 4795 .data = &spu2_types, 4796 }, 4797 { 4798 .compatible = "brcm,spu2-v2-crypto", 4799 .data = &spu2_v2_types, 4800 }, 4801 { /* sentinel */ } 4802 }; 4803 4804 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); 4805 4806 static int spu_dt_read(struct platform_device *pdev) 4807 { 4808 struct device *dev = &pdev->dev; 4809 struct spu_hw *spu = &iproc_priv.spu; 4810 struct resource *spu_ctrl_regs; 4811 const struct spu_type_subtype *matched_spu_type; 4812 struct device_node *dn = pdev->dev.of_node; 4813 int err, i; 4814 4815 /* Count number of mailbox channels */ 4816 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); 4817 4818 matched_spu_type = of_device_get_match_data(dev); 4819 if (!matched_spu_type) { 4820 dev_err(&pdev->dev, "Failed to match device\n"); 4821 return -ENODEV; 4822 } 4823 4824 spu->spu_type = matched_spu_type->type; 4825 spu->spu_subtype = matched_spu_type->subtype; 4826 4827 i = 0; 4828 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = 4829 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { 4830 4831 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); 4832 if (IS_ERR(spu->reg_vbase[i])) { 4833 err = PTR_ERR(spu->reg_vbase[i]); 4834 dev_err(&pdev->dev, "Failed to map registers: %d\n", 4835 err); 4836 spu->reg_vbase[i] = NULL; 4837 return err; 4838 } 4839 } 4840 spu->num_spu = i; 4841 dev_dbg(dev, "Device has %d SPUs", spu->num_spu); 4842 4843 return 0; 4844 } 4845 4846 int bcm_spu_probe(struct platform_device *pdev) 4847 { 4848 struct device *dev = &pdev->dev; 4849 struct spu_hw *spu = &iproc_priv.spu; 4850 int err = 0; 4851 4852 iproc_priv.pdev = pdev; 4853 platform_set_drvdata(iproc_priv.pdev, 4854 &iproc_priv); 4855 4856 err = spu_dt_read(pdev); 4857 if (err < 0) 4858 goto failure; 4859 4860 err = spu_mb_init(&pdev->dev); 4861 if (err < 0) 4862 goto failure; 4863 4864 if (spu->spu_type == SPU_TYPE_SPUM) 4865 iproc_priv.bcm_hdr_len = 8; 4866 else if (spu->spu_type == SPU_TYPE_SPU2) 4867 iproc_priv.bcm_hdr_len = 0; 4868 4869 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); 4870 4871 spu_counters_init(); 4872 4873 spu_setup_debugfs(); 4874 4875 err = spu_algs_register(dev); 4876 if (err < 0) 4877 goto fail_reg; 4878 4879 return 0; 4880 4881 fail_reg: 4882 spu_free_debugfs(); 4883 failure: 4884 spu_mb_release(pdev); 4885 dev_err(dev, "%s failed with error %d.\n", __func__, err); 4886 4887 return err; 4888 } 4889 4890 int bcm_spu_remove(struct platform_device *pdev) 4891 { 4892 int i; 4893 struct device *dev = &pdev->dev; 4894 char *cdn; 4895 4896 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { 4897 /* 4898 * Not all algorithms were registered, depending on whether 4899 * hardware is SPU or SPU2. So here we make sure to skip 4900 * those algorithms that were not previously registered. 4901 */ 4902 if (!driver_algs[i].registered) 4903 continue; 4904 4905 switch (driver_algs[i].type) { 4906 case CRYPTO_ALG_TYPE_ABLKCIPHER: 4907 crypto_unregister_alg(&driver_algs[i].alg.crypto); 4908 dev_dbg(dev, " unregistered cipher %s\n", 4909 driver_algs[i].alg.crypto.cra_driver_name); 4910 driver_algs[i].registered = false; 4911 break; 4912 case CRYPTO_ALG_TYPE_AHASH: 4913 crypto_unregister_ahash(&driver_algs[i].alg.hash); 4914 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; 4915 dev_dbg(dev, " unregistered hash %s\n", cdn); 4916 driver_algs[i].registered = false; 4917 break; 4918 case CRYPTO_ALG_TYPE_AEAD: 4919 crypto_unregister_aead(&driver_algs[i].alg.aead); 4920 dev_dbg(dev, " unregistered aead %s\n", 4921 driver_algs[i].alg.aead.base.cra_driver_name); 4922 driver_algs[i].registered = false; 4923 break; 4924 } 4925 } 4926 spu_free_debugfs(); 4927 spu_mb_release(pdev); 4928 return 0; 4929 } 4930 4931 /* ===== Kernel Module API ===== */ 4932 4933 static struct platform_driver bcm_spu_pdriver = { 4934 .driver = { 4935 .name = "brcm-spu-crypto", 4936 .of_match_table = of_match_ptr(bcm_spu_dt_ids), 4937 }, 4938 .probe = bcm_spu_probe, 4939 .remove = bcm_spu_remove, 4940 }; 4941 module_platform_driver(bcm_spu_pdriver); 4942 4943 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 4944 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); 4945 MODULE_LICENSE("GPL v2"); 4946