xref: /openbmc/linux/drivers/crypto/bcm/cipher.c (revision 176f011b)
1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 #include <linux/err.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 #include <linux/crypto.h>
26 #include <linux/kthread.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/sched.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/io.h>
32 #include <linux/bitops.h>
33 
34 #include <crypto/algapi.h>
35 #include <crypto/aead.h>
36 #include <crypto/internal/aead.h>
37 #include <crypto/aes.h>
38 #include <crypto/des.h>
39 #include <crypto/hmac.h>
40 #include <crypto/sha.h>
41 #include <crypto/md5.h>
42 #include <crypto/authenc.h>
43 #include <crypto/skcipher.h>
44 #include <crypto/hash.h>
45 #include <crypto/sha3.h>
46 
47 #include "util.h"
48 #include "cipher.h"
49 #include "spu.h"
50 #include "spum.h"
51 #include "spu2.h"
52 
53 /* ================= Device Structure ================== */
54 
55 struct device_private iproc_priv;
56 
57 /* ==================== Parameters ===================== */
58 
59 int flow_debug_logging;
60 module_param(flow_debug_logging, int, 0644);
61 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
62 
63 int packet_debug_logging;
64 module_param(packet_debug_logging, int, 0644);
65 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
66 
67 int debug_logging_sleep;
68 module_param(debug_logging_sleep, int, 0644);
69 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
70 
71 /*
72  * The value of these module parameters is used to set the priority for each
73  * algo type when this driver registers algos with the kernel crypto API.
74  * To use a priority other than the default, set the priority in the insmod or
75  * modprobe. Changing the module priority after init time has no effect.
76  *
77  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
78  * algos, but more preferred than generic software algos.
79  */
80 static int cipher_pri = 150;
81 module_param(cipher_pri, int, 0644);
82 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
83 
84 static int hash_pri = 100;
85 module_param(hash_pri, int, 0644);
86 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
87 
88 static int aead_pri = 150;
89 module_param(aead_pri, int, 0644);
90 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
91 
92 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
93  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
94  * 0x60 - ring 0
95  * 0x68 - ring 1
96  * 0x70 - ring 2
97  * 0x78 - ring 3
98  */
99 char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
100 /*
101  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
102  * is set dynamically after reading SPU type from device tree.
103  */
104 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
105 
106 /* min and max time to sleep before retrying when mbox queue is full. usec */
107 #define MBOX_SLEEP_MIN  800
108 #define MBOX_SLEEP_MAX 1000
109 
110 /**
111  * select_channel() - Select a SPU channel to handle a crypto request. Selects
112  * channel in round robin order.
113  *
114  * Return:  channel index
115  */
116 static u8 select_channel(void)
117 {
118 	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
119 
120 	return chan_idx % iproc_priv.spu.num_chan;
121 }
122 
123 /**
124  * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
125  * receive a SPU response message for an ablkcipher request. Includes buffers to
126  * catch SPU message headers and the response data.
127  * @mssg:	mailbox message containing the receive sg
128  * @rctx:	crypto request context
129  * @rx_frag_num: number of scatterlist elements required to hold the
130  *		SPU response message
131  * @chunksize:	Number of bytes of response data expected
132  * @stat_pad_len: Number of bytes required to pad the STAT field to
133  *		a 4-byte boundary
134  *
135  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
136  * when the request completes, whether the request is handled successfully or
137  * there is an error.
138  *
139  * Returns:
140  *   0 if successful
141  *   < 0 if an error
142  */
143 static int
144 spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
145 			    struct iproc_reqctx_s *rctx,
146 			    u8 rx_frag_num,
147 			    unsigned int chunksize, u32 stat_pad_len)
148 {
149 	struct spu_hw *spu = &iproc_priv.spu;
150 	struct scatterlist *sg;	/* used to build sgs in mbox message */
151 	struct iproc_ctx_s *ctx = rctx->ctx;
152 	u32 datalen;		/* Number of bytes of response data expected */
153 
154 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
155 				rctx->gfp);
156 	if (!mssg->spu.dst)
157 		return -ENOMEM;
158 
159 	sg = mssg->spu.dst;
160 	sg_init_table(sg, rx_frag_num);
161 	/* Space for SPU message header */
162 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
163 
164 	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
165 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
166 	    spu->spu_xts_tweak_in_payload())
167 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
168 			   SPU_XTS_TWEAK_SIZE);
169 
170 	/* Copy in each dst sg entry from request, up to chunksize */
171 	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
172 				 rctx->dst_nents, chunksize);
173 	if (datalen < chunksize) {
174 		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
175 		       __func__, chunksize, datalen);
176 		return -EFAULT;
177 	}
178 
179 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
180 		/* Add buffer to catch 260-byte SUPDT field for RC4 */
181 		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
182 
183 	if (stat_pad_len)
184 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
185 
186 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
187 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
188 
189 	return 0;
190 }
191 
192 /**
193  * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
194  * send a SPU request message for an ablkcipher request. Includes SPU message
195  * headers and the request data.
196  * @mssg:	mailbox message containing the transmit sg
197  * @rctx:	crypto request context
198  * @tx_frag_num: number of scatterlist elements required to construct the
199  *		SPU request message
200  * @chunksize:	Number of bytes of request data
201  * @pad_len:	Number of pad bytes
202  *
203  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
204  * when the request completes, whether the request is handled successfully or
205  * there is an error.
206  *
207  * Returns:
208  *   0 if successful
209  *   < 0 if an error
210  */
211 static int
212 spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
213 			    struct iproc_reqctx_s *rctx,
214 			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
215 {
216 	struct spu_hw *spu = &iproc_priv.spu;
217 	struct scatterlist *sg;	/* used to build sgs in mbox message */
218 	struct iproc_ctx_s *ctx = rctx->ctx;
219 	u32 datalen;		/* Number of bytes of response data expected */
220 	u32 stat_len;
221 
222 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
223 				rctx->gfp);
224 	if (unlikely(!mssg->spu.src))
225 		return -ENOMEM;
226 
227 	sg = mssg->spu.src;
228 	sg_init_table(sg, tx_frag_num);
229 
230 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
231 		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
232 
233 	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
234 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
235 	    spu->spu_xts_tweak_in_payload())
236 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
237 
238 	/* Copy in each src sg entry from request, up to chunksize */
239 	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
240 				 rctx->src_nents, chunksize);
241 	if (unlikely(datalen < chunksize)) {
242 		pr_err("%s(): failed to copy src sg to mbox msg",
243 		       __func__);
244 		return -EFAULT;
245 	}
246 
247 	if (pad_len)
248 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
249 
250 	stat_len = spu->spu_tx_status_len();
251 	if (stat_len) {
252 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
253 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
254 	}
255 	return 0;
256 }
257 
258 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
259 				u8 chan_idx)
260 {
261 	int err;
262 	int retry_cnt = 0;
263 	struct device *dev = &(iproc_priv.pdev->dev);
264 
265 	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
266 	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
267 		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
268 			/*
269 			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
270 			 * not in atomic context and we can wait and try again.
271 			 */
272 			retry_cnt++;
273 			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
274 			err = mbox_send_message(iproc_priv.mbox[chan_idx],
275 						mssg);
276 			atomic_inc(&iproc_priv.mb_no_spc);
277 		}
278 	}
279 	if (err < 0) {
280 		atomic_inc(&iproc_priv.mb_send_fail);
281 		return err;
282 	}
283 
284 	/* Check error returned by mailbox controller */
285 	err = mssg->error;
286 	if (unlikely(err < 0)) {
287 		dev_err(dev, "message error %d", err);
288 		/* Signal txdone for mailbox channel */
289 	}
290 
291 	/* Signal txdone for mailbox channel */
292 	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
293 	return err;
294 }
295 
296 /**
297  * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
298  * a single SPU request message, starting at the current position in the request
299  * data.
300  * @rctx:	Crypto request context
301  *
302  * This may be called on the crypto API thread, or, when a request is so large
303  * it must be broken into multiple SPU messages, on the thread used to invoke
304  * the response callback. When requests are broken into multiple SPU
305  * messages, we assume subsequent messages depend on previous results, and
306  * thus always wait for previous results before submitting the next message.
307  * Because requests are submitted in lock step like this, there is no need
308  * to synchronize access to request data structures.
309  *
310  * Return: -EINPROGRESS: request has been accepted and result will be returned
311  *			 asynchronously
312  *         Any other value indicates an error
313  */
314 static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
315 {
316 	struct spu_hw *spu = &iproc_priv.spu;
317 	struct crypto_async_request *areq = rctx->parent;
318 	struct ablkcipher_request *req =
319 	    container_of(areq, struct ablkcipher_request, base);
320 	struct iproc_ctx_s *ctx = rctx->ctx;
321 	struct spu_cipher_parms cipher_parms;
322 	int err = 0;
323 	unsigned int chunksize = 0;	/* Num bytes of request to submit */
324 	int remaining = 0;	/* Bytes of request still to process */
325 	int chunk_start;	/* Beginning of data for current SPU msg */
326 
327 	/* IV or ctr value to use in this SPU msg */
328 	u8 local_iv_ctr[MAX_IV_SIZE];
329 	u32 stat_pad_len;	/* num bytes to align status field */
330 	u32 pad_len;		/* total length of all padding */
331 	bool update_key = false;
332 	struct brcm_message *mssg;	/* mailbox message */
333 
334 	/* number of entries in src and dst sg in mailbox message. */
335 	u8 rx_frag_num = 2;	/* response header and STATUS */
336 	u8 tx_frag_num = 1;	/* request header */
337 
338 	flow_log("%s\n", __func__);
339 
340 	cipher_parms.alg = ctx->cipher.alg;
341 	cipher_parms.mode = ctx->cipher.mode;
342 	cipher_parms.type = ctx->cipher_type;
343 	cipher_parms.key_len = ctx->enckeylen;
344 	cipher_parms.key_buf = ctx->enckey;
345 	cipher_parms.iv_buf = local_iv_ctr;
346 	cipher_parms.iv_len = rctx->iv_ctr_len;
347 
348 	mssg = &rctx->mb_mssg;
349 	chunk_start = rctx->src_sent;
350 	remaining = rctx->total_todo - chunk_start;
351 
352 	/* determine the chunk we are breaking off and update the indexes */
353 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
354 	    (remaining > ctx->max_payload))
355 		chunksize = ctx->max_payload;
356 	else
357 		chunksize = remaining;
358 
359 	rctx->src_sent += chunksize;
360 	rctx->total_sent = rctx->src_sent;
361 
362 	/* Count number of sg entries to be included in this request */
363 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
364 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
365 
366 	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367 	    rctx->is_encrypt && chunk_start)
368 		/*
369 		 * Encrypting non-first first chunk. Copy last block of
370 		 * previous result to IV for this chunk.
371 		 */
372 		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
373 				    rctx->iv_ctr_len,
374 				    chunk_start - rctx->iv_ctr_len);
375 
376 	if (rctx->iv_ctr_len) {
377 		/* get our local copy of the iv */
378 		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
379 				 rctx->iv_ctr_len);
380 
381 		/* generate the next IV if possible */
382 		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
383 		    !rctx->is_encrypt) {
384 			/*
385 			 * CBC Decrypt: next IV is the last ciphertext block in
386 			 * this chunk
387 			 */
388 			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
389 					    rctx->iv_ctr_len,
390 					    rctx->src_sent - rctx->iv_ctr_len);
391 		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
392 			/*
393 			 * The SPU hardware increments the counter once for
394 			 * each AES block of 16 bytes. So update the counter
395 			 * for the next chunk, if there is one. Note that for
396 			 * this chunk, the counter has already been copied to
397 			 * local_iv_ctr. We can assume a block size of 16,
398 			 * because we only support CTR mode for AES, not for
399 			 * any other cipher alg.
400 			 */
401 			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
402 		}
403 	}
404 
405 	if (ctx->cipher.alg == CIPHER_ALG_RC4) {
406 		rx_frag_num++;
407 		if (chunk_start) {
408 			/*
409 			 * for non-first RC4 chunks, use SUPDT from previous
410 			 * response as key for this chunk.
411 			 */
412 			cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
413 			update_key = true;
414 			cipher_parms.type = CIPHER_TYPE_UPDT;
415 		} else if (!rctx->is_encrypt) {
416 			/*
417 			 * First RC4 chunk. For decrypt, key in pre-built msg
418 			 * header may have been changed if encrypt required
419 			 * multiple chunks. So revert the key to the
420 			 * ctx->enckey value.
421 			 */
422 			update_key = true;
423 			cipher_parms.type = CIPHER_TYPE_INIT;
424 		}
425 	}
426 
427 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
428 		flow_log("max_payload infinite\n");
429 	else
430 		flow_log("max_payload %u\n", ctx->max_payload);
431 
432 	flow_log("sent:%u start:%u remains:%u size:%u\n",
433 		 rctx->src_sent, chunk_start, remaining, chunksize);
434 
435 	/* Copy SPU header template created at setkey time */
436 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
437 	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
438 
439 	/*
440 	 * Pass SUPDT field as key. Key field in finish() call is only used
441 	 * when update_key has been set above for RC4. Will be ignored in
442 	 * all other cases.
443 	 */
444 	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
445 				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
446 				   &cipher_parms, update_key, chunksize);
447 
448 	atomic64_add(chunksize, &iproc_priv.bytes_out);
449 
450 	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
451 	if (stat_pad_len)
452 		rx_frag_num++;
453 	pad_len = stat_pad_len;
454 	if (pad_len) {
455 		tx_frag_num++;
456 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
457 				     0, ctx->auth.alg, ctx->auth.mode,
458 				     rctx->total_sent, stat_pad_len);
459 	}
460 
461 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
462 			      ctx->spu_req_hdr_len);
463 	packet_log("payload:\n");
464 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
465 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
466 
467 	/*
468 	 * Build mailbox message containing SPU request msg and rx buffers
469 	 * to catch response message
470 	 */
471 	memset(mssg, 0, sizeof(*mssg));
472 	mssg->type = BRCM_MESSAGE_SPU;
473 	mssg->ctx = rctx;	/* Will be returned in response */
474 
475 	/* Create rx scatterlist to catch result */
476 	rx_frag_num += rctx->dst_nents;
477 
478 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
479 	    spu->spu_xts_tweak_in_payload())
480 		rx_frag_num++;	/* extra sg to insert tweak */
481 
482 	err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
483 					  stat_pad_len);
484 	if (err)
485 		return err;
486 
487 	/* Create tx scatterlist containing SPU request message */
488 	tx_frag_num += rctx->src_nents;
489 	if (spu->spu_tx_status_len())
490 		tx_frag_num++;
491 
492 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
493 	    spu->spu_xts_tweak_in_payload())
494 		tx_frag_num++;	/* extra sg to insert tweak */
495 
496 	err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
497 					  pad_len);
498 	if (err)
499 		return err;
500 
501 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
502 	if (unlikely(err < 0))
503 		return err;
504 
505 	return -EINPROGRESS;
506 }
507 
508 /**
509  * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
510  * total received count for the request and updates global stats.
511  * @rctx:	Crypto request context
512  */
513 static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
514 {
515 	struct spu_hw *spu = &iproc_priv.spu;
516 #ifdef DEBUG
517 	struct crypto_async_request *areq = rctx->parent;
518 	struct ablkcipher_request *req = ablkcipher_request_cast(areq);
519 #endif
520 	struct iproc_ctx_s *ctx = rctx->ctx;
521 	u32 payload_len;
522 
523 	/* See how much data was returned */
524 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
525 
526 	/*
527 	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
528 	 * encrypted tweak ("i") value; we don't count those.
529 	 */
530 	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
531 	    spu->spu_xts_tweak_in_payload() &&
532 	    (payload_len >= SPU_XTS_TWEAK_SIZE))
533 		payload_len -= SPU_XTS_TWEAK_SIZE;
534 
535 	atomic64_add(payload_len, &iproc_priv.bytes_in);
536 
537 	flow_log("%s() offset: %u, bd_len: %u BD:\n",
538 		 __func__, rctx->total_received, payload_len);
539 
540 	dump_sg(req->dst, rctx->total_received, payload_len);
541 	if (ctx->cipher.alg == CIPHER_ALG_RC4)
542 		packet_dump("  supdt ", rctx->msg_buf.c.supdt_tweak,
543 			    SPU_SUPDT_LEN);
544 
545 	rctx->total_received += payload_len;
546 	if (rctx->total_received == rctx->total_todo) {
547 		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
548 		atomic_inc(
549 		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
550 	}
551 }
552 
553 /**
554  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
555  * receive a SPU response message for an ahash request.
556  * @mssg:	mailbox message containing the receive sg
557  * @rctx:	crypto request context
558  * @rx_frag_num: number of scatterlist elements required to hold the
559  *		SPU response message
560  * @digestsize: length of hash digest, in bytes
561  * @stat_pad_len: Number of bytes required to pad the STAT field to
562  *		a 4-byte boundary
563  *
564  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
565  * when the request completes, whether the request is handled successfully or
566  * there is an error.
567  *
568  * Return:
569  *   0 if successful
570  *   < 0 if an error
571  */
572 static int
573 spu_ahash_rx_sg_create(struct brcm_message *mssg,
574 		       struct iproc_reqctx_s *rctx,
575 		       u8 rx_frag_num, unsigned int digestsize,
576 		       u32 stat_pad_len)
577 {
578 	struct spu_hw *spu = &iproc_priv.spu;
579 	struct scatterlist *sg;	/* used to build sgs in mbox message */
580 	struct iproc_ctx_s *ctx = rctx->ctx;
581 
582 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
583 				rctx->gfp);
584 	if (!mssg->spu.dst)
585 		return -ENOMEM;
586 
587 	sg = mssg->spu.dst;
588 	sg_init_table(sg, rx_frag_num);
589 	/* Space for SPU message header */
590 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
591 
592 	/* Space for digest */
593 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
594 
595 	if (stat_pad_len)
596 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
597 
598 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
599 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
600 	return 0;
601 }
602 
603 /**
604  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
605  * a SPU request message for an ahash request. Includes SPU message headers and
606  * the request data.
607  * @mssg:	mailbox message containing the transmit sg
608  * @rctx:	crypto request context
609  * @tx_frag_num: number of scatterlist elements required to construct the
610  *		SPU request message
611  * @spu_hdr_len: length in bytes of SPU message header
612  * @hash_carry_len: Number of bytes of data carried over from previous req
613  * @new_data_len: Number of bytes of new request data
614  * @pad_len:	Number of pad bytes
615  *
616  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
617  * when the request completes, whether the request is handled successfully or
618  * there is an error.
619  *
620  * Return:
621  *   0 if successful
622  *   < 0 if an error
623  */
624 static int
625 spu_ahash_tx_sg_create(struct brcm_message *mssg,
626 		       struct iproc_reqctx_s *rctx,
627 		       u8 tx_frag_num,
628 		       u32 spu_hdr_len,
629 		       unsigned int hash_carry_len,
630 		       unsigned int new_data_len, u32 pad_len)
631 {
632 	struct spu_hw *spu = &iproc_priv.spu;
633 	struct scatterlist *sg;	/* used to build sgs in mbox message */
634 	u32 datalen;		/* Number of bytes of response data expected */
635 	u32 stat_len;
636 
637 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
638 				rctx->gfp);
639 	if (!mssg->spu.src)
640 		return -ENOMEM;
641 
642 	sg = mssg->spu.src;
643 	sg_init_table(sg, tx_frag_num);
644 
645 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
646 		   BCM_HDR_LEN + spu_hdr_len);
647 
648 	if (hash_carry_len)
649 		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
650 
651 	if (new_data_len) {
652 		/* Copy in each src sg entry from request, up to chunksize */
653 		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
654 					 rctx->src_nents, new_data_len);
655 		if (datalen < new_data_len) {
656 			pr_err("%s(): failed to copy src sg to mbox msg",
657 			       __func__);
658 			return -EFAULT;
659 		}
660 	}
661 
662 	if (pad_len)
663 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
664 
665 	stat_len = spu->spu_tx_status_len();
666 	if (stat_len) {
667 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
668 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
669 	}
670 
671 	return 0;
672 }
673 
674 /**
675  * handle_ahash_req() - Process an asynchronous hash request from the crypto
676  * API.
677  * @rctx:  Crypto request context
678  *
679  * Builds a SPU request message embedded in a mailbox message and submits the
680  * mailbox message on a selected mailbox channel. The SPU request message is
681  * constructed as a scatterlist, including entries from the crypto API's
682  * src scatterlist to avoid copying the data to be hashed. This function is
683  * called either on the thread from the crypto API, or, in the case that the
684  * crypto API request is too large to fit in a single SPU request message,
685  * on the thread that invokes the receive callback with a response message.
686  * Because some operations require the response from one chunk before the next
687  * chunk can be submitted, we always wait for the response for the previous
688  * chunk before submitting the next chunk. Because requests are submitted in
689  * lock step like this, there is no need to synchronize access to request data
690  * structures.
691  *
692  * Return:
693  *   -EINPROGRESS: request has been submitted to SPU and response will be
694  *		   returned asynchronously
695  *   -EAGAIN:      non-final request included a small amount of data, which for
696  *		   efficiency we did not submit to the SPU, but instead stored
697  *		   to be submitted to the SPU with the next part of the request
698  *   other:        an error code
699  */
700 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
701 {
702 	struct spu_hw *spu = &iproc_priv.spu;
703 	struct crypto_async_request *areq = rctx->parent;
704 	struct ahash_request *req = ahash_request_cast(areq);
705 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
706 	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
707 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
708 	struct iproc_ctx_s *ctx = rctx->ctx;
709 
710 	/* number of bytes still to be hashed in this req */
711 	unsigned int nbytes_to_hash = 0;
712 	int err = 0;
713 	unsigned int chunksize = 0;	/* length of hash carry + new data */
714 	/*
715 	 * length of new data, not from hash carry, to be submitted in
716 	 * this hw request
717 	 */
718 	unsigned int new_data_len;
719 
720 	unsigned int chunk_start = 0;
721 	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
722 	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
723 	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
724 	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
725 	struct brcm_message *mssg;	/* mailbox message */
726 	struct spu_request_opts req_opts;
727 	struct spu_cipher_parms cipher_parms;
728 	struct spu_hash_parms hash_parms;
729 	struct spu_aead_parms aead_parms;
730 	unsigned int local_nbuf;
731 	u32 spu_hdr_len;
732 	unsigned int digestsize;
733 	u16 rem = 0;
734 
735 	/*
736 	 * number of entries in src and dst sg. Always includes SPU msg header.
737 	 * rx always includes a buffer to catch digest and STATUS.
738 	 */
739 	u8 rx_frag_num = 3;
740 	u8 tx_frag_num = 1;
741 
742 	flow_log("total_todo %u, total_sent %u\n",
743 		 rctx->total_todo, rctx->total_sent);
744 
745 	memset(&req_opts, 0, sizeof(req_opts));
746 	memset(&cipher_parms, 0, sizeof(cipher_parms));
747 	memset(&hash_parms, 0, sizeof(hash_parms));
748 	memset(&aead_parms, 0, sizeof(aead_parms));
749 
750 	req_opts.bd_suppress = true;
751 	hash_parms.alg = ctx->auth.alg;
752 	hash_parms.mode = ctx->auth.mode;
753 	hash_parms.type = HASH_TYPE_NONE;
754 	hash_parms.key_buf = (u8 *)ctx->authkey;
755 	hash_parms.key_len = ctx->authkeylen;
756 
757 	/*
758 	 * For hash algorithms below assignment looks bit odd but
759 	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
760 	 * to differentiate between 128, 192, 256 bit key values.
761 	 * Based on the key values, hash algorithm is selected.
762 	 * For example for 128 bit key, hash algorithm is AES-128.
763 	 */
764 	cipher_parms.type = ctx->cipher_type;
765 
766 	mssg = &rctx->mb_mssg;
767 	chunk_start = rctx->src_sent;
768 
769 	/*
770 	 * Compute the amount remaining to hash. This may include data
771 	 * carried over from previous requests.
772 	 */
773 	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
774 	chunksize = nbytes_to_hash;
775 	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
776 	    (chunksize > ctx->max_payload))
777 		chunksize = ctx->max_payload;
778 
779 	/*
780 	 * If this is not a final request and the request data is not a multiple
781 	 * of a full block, then simply park the extra data and prefix it to the
782 	 * data for the next request.
783 	 */
784 	if (!rctx->is_final) {
785 		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
786 		u16 new_len;  /* len of data to add to hash carry */
787 
788 		rem = chunksize % blocksize;   /* remainder */
789 		if (rem) {
790 			/* chunksize not a multiple of blocksize */
791 			chunksize -= rem;
792 			if (chunksize == 0) {
793 				/* Don't have a full block to submit to hw */
794 				new_len = rem - rctx->hash_carry_len;
795 				sg_copy_part_to_buf(req->src, dest, new_len,
796 						    rctx->src_sent);
797 				rctx->hash_carry_len = rem;
798 				flow_log("Exiting with hash carry len: %u\n",
799 					 rctx->hash_carry_len);
800 				packet_dump("  buf: ",
801 					    rctx->hash_carry,
802 					    rctx->hash_carry_len);
803 				return -EAGAIN;
804 			}
805 		}
806 	}
807 
808 	/* if we have hash carry, then prefix it to the data in this request */
809 	local_nbuf = rctx->hash_carry_len;
810 	rctx->hash_carry_len = 0;
811 	if (local_nbuf)
812 		tx_frag_num++;
813 	new_data_len = chunksize - local_nbuf;
814 
815 	/* Count number of sg entries to be used in this request */
816 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
817 				       new_data_len);
818 
819 	/* AES hashing keeps key size in type field, so need to copy it here */
820 	if (hash_parms.alg == HASH_ALG_AES)
821 		hash_parms.type = (enum hash_type)cipher_parms.type;
822 	else
823 		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
824 
825 	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
826 					  hash_parms.type);
827 	hash_parms.digestsize =	digestsize;
828 
829 	/* update the indexes */
830 	rctx->total_sent += chunksize;
831 	/* if you sent a prebuf then that wasn't from this req->src */
832 	rctx->src_sent += new_data_len;
833 
834 	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
835 		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
836 							   hash_parms.mode,
837 							   chunksize,
838 							   blocksize);
839 
840 	/*
841 	 * If a non-first chunk, then include the digest returned from the
842 	 * previous chunk so that hw can add to it (except for AES types).
843 	 */
844 	if ((hash_parms.type == HASH_TYPE_UPDT) &&
845 	    (hash_parms.alg != HASH_ALG_AES)) {
846 		hash_parms.key_buf = rctx->incr_hash;
847 		hash_parms.key_len = digestsize;
848 	}
849 
850 	atomic64_add(chunksize, &iproc_priv.bytes_out);
851 
852 	flow_log("%s() final: %u nbuf: %u ",
853 		 __func__, rctx->is_final, local_nbuf);
854 
855 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
856 		flow_log("max_payload infinite\n");
857 	else
858 		flow_log("max_payload %u\n", ctx->max_payload);
859 
860 	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
861 
862 	/* Prepend SPU header with type 3 BCM header */
863 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
864 
865 	hash_parms.prebuf_len = local_nbuf;
866 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
867 					      BCM_HDR_LEN,
868 					      &req_opts, &cipher_parms,
869 					      &hash_parms, &aead_parms,
870 					      new_data_len);
871 
872 	if (spu_hdr_len == 0) {
873 		pr_err("Failed to create SPU request header\n");
874 		return -EFAULT;
875 	}
876 
877 	/*
878 	 * Determine total length of padding required. Put all padding in one
879 	 * buffer.
880 	 */
881 	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
882 	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
883 				   0, 0, hash_parms.pad_len);
884 	if (spu->spu_tx_status_len())
885 		stat_pad_len = spu->spu_wordalign_padlen(db_size);
886 	if (stat_pad_len)
887 		rx_frag_num++;
888 	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
889 	if (pad_len) {
890 		tx_frag_num++;
891 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
892 				     hash_parms.pad_len, ctx->auth.alg,
893 				     ctx->auth.mode, rctx->total_sent,
894 				     stat_pad_len);
895 	}
896 
897 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
898 			      spu_hdr_len);
899 	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
900 	flow_log("Data:\n");
901 	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
902 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
903 
904 	/*
905 	 * Build mailbox message containing SPU request msg and rx buffers
906 	 * to catch response message
907 	 */
908 	memset(mssg, 0, sizeof(*mssg));
909 	mssg->type = BRCM_MESSAGE_SPU;
910 	mssg->ctx = rctx;	/* Will be returned in response */
911 
912 	/* Create rx scatterlist to catch result */
913 	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
914 				     stat_pad_len);
915 	if (err)
916 		return err;
917 
918 	/* Create tx scatterlist containing SPU request message */
919 	tx_frag_num += rctx->src_nents;
920 	if (spu->spu_tx_status_len())
921 		tx_frag_num++;
922 	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
923 				     local_nbuf, new_data_len, pad_len);
924 	if (err)
925 		return err;
926 
927 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
928 	if (unlikely(err < 0))
929 		return err;
930 
931 	return -EINPROGRESS;
932 }
933 
934 /**
935  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
936  * for an HMAC request.
937  * @req:  The HMAC request from the crypto API
938  * @ctx:  The session context
939  *
940  * Return: 0 if synchronous hash operation successful
941  *         -EINVAL if the hash algo is unrecognized
942  *         any other value indicates an error
943  */
944 static int spu_hmac_outer_hash(struct ahash_request *req,
945 			       struct iproc_ctx_s *ctx)
946 {
947 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
948 	unsigned int blocksize =
949 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
950 	int rc;
951 
952 	switch (ctx->auth.alg) {
953 	case HASH_ALG_MD5:
954 		rc = do_shash("md5", req->result, ctx->opad, blocksize,
955 			      req->result, ctx->digestsize, NULL, 0);
956 		break;
957 	case HASH_ALG_SHA1:
958 		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
959 			      req->result, ctx->digestsize, NULL, 0);
960 		break;
961 	case HASH_ALG_SHA224:
962 		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
963 			      req->result, ctx->digestsize, NULL, 0);
964 		break;
965 	case HASH_ALG_SHA256:
966 		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
967 			      req->result, ctx->digestsize, NULL, 0);
968 		break;
969 	case HASH_ALG_SHA384:
970 		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
971 			      req->result, ctx->digestsize, NULL, 0);
972 		break;
973 	case HASH_ALG_SHA512:
974 		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
975 			      req->result, ctx->digestsize, NULL, 0);
976 		break;
977 	default:
978 		pr_err("%s() Error : unknown hmac type\n", __func__);
979 		rc = -EINVAL;
980 	}
981 	return rc;
982 }
983 
984 /**
985  * ahash_req_done() - Process a hash result from the SPU hardware.
986  * @rctx: Crypto request context
987  *
988  * Return: 0 if successful
989  *         < 0 if an error
990  */
991 static int ahash_req_done(struct iproc_reqctx_s *rctx)
992 {
993 	struct spu_hw *spu = &iproc_priv.spu;
994 	struct crypto_async_request *areq = rctx->parent;
995 	struct ahash_request *req = ahash_request_cast(areq);
996 	struct iproc_ctx_s *ctx = rctx->ctx;
997 	int err;
998 
999 	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
1000 
1001 	if (spu->spu_type == SPU_TYPE_SPUM) {
1002 		/* byte swap the output from the UPDT function to network byte
1003 		 * order
1004 		 */
1005 		if (ctx->auth.alg == HASH_ALG_MD5) {
1006 			__swab32s((u32 *)req->result);
1007 			__swab32s(((u32 *)req->result) + 1);
1008 			__swab32s(((u32 *)req->result) + 2);
1009 			__swab32s(((u32 *)req->result) + 3);
1010 			__swab32s(((u32 *)req->result) + 4);
1011 		}
1012 	}
1013 
1014 	flow_dump("  digest ", req->result, ctx->digestsize);
1015 
1016 	/* if this an HMAC then do the outer hash */
1017 	if (rctx->is_sw_hmac) {
1018 		err = spu_hmac_outer_hash(req, ctx);
1019 		if (err < 0)
1020 			return err;
1021 		flow_dump("  hmac: ", req->result, ctx->digestsize);
1022 	}
1023 
1024 	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1025 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1026 		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1027 	} else {
1028 		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1029 		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * handle_ahash_resp() - Process a SPU response message for a hash request.
1037  * Checks if the entire crypto API request has been processed, and if so,
1038  * invokes post processing on the result.
1039  * @rctx: Crypto request context
1040  */
1041 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1042 {
1043 	struct iproc_ctx_s *ctx = rctx->ctx;
1044 #ifdef DEBUG
1045 	struct crypto_async_request *areq = rctx->parent;
1046 	struct ahash_request *req = ahash_request_cast(areq);
1047 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1048 	unsigned int blocksize =
1049 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1050 #endif
1051 	/*
1052 	 * Save hash to use as input to next op if incremental. Might be copying
1053 	 * too much, but that's easier than figuring out actual digest size here
1054 	 */
1055 	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1056 
1057 	flow_log("%s() blocksize:%u digestsize:%u\n",
1058 		 __func__, blocksize, ctx->digestsize);
1059 
1060 	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1061 
1062 	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1063 		ahash_req_done(rctx);
1064 }
1065 
1066 /**
1067  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1068  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1069  * message headers and the response data.
1070  * @mssg:	mailbox message containing the receive sg
1071  * @rctx:	crypto request context
1072  * @rx_frag_num: number of scatterlist elements required to hold the
1073  *		SPU response message
1074  * @assoc_len:	Length of associated data included in the crypto request
1075  * @ret_iv_len: Length of IV returned in response
1076  * @resp_len:	Number of bytes of response data expected to be written to
1077  *              dst buffer from crypto API
1078  * @digestsize: Length of hash digest, in bytes
1079  * @stat_pad_len: Number of bytes required to pad the STAT field to
1080  *		a 4-byte boundary
1081  *
1082  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1083  * when the request completes, whether the request is handled successfully or
1084  * there is an error.
1085  *
1086  * Returns:
1087  *   0 if successful
1088  *   < 0 if an error
1089  */
1090 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1091 				 struct aead_request *req,
1092 				 struct iproc_reqctx_s *rctx,
1093 				 u8 rx_frag_num,
1094 				 unsigned int assoc_len,
1095 				 u32 ret_iv_len, unsigned int resp_len,
1096 				 unsigned int digestsize, u32 stat_pad_len)
1097 {
1098 	struct spu_hw *spu = &iproc_priv.spu;
1099 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1100 	struct iproc_ctx_s *ctx = rctx->ctx;
1101 	u32 datalen;		/* Number of bytes of response data expected */
1102 	u32 assoc_buf_len;
1103 	u8 data_padlen = 0;
1104 
1105 	if (ctx->is_rfc4543) {
1106 		/* RFC4543: only pad after data, not after AAD */
1107 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1108 							  assoc_len + resp_len);
1109 		assoc_buf_len = assoc_len;
1110 	} else {
1111 		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1112 							  resp_len);
1113 		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1114 						assoc_len, ret_iv_len,
1115 						rctx->is_encrypt);
1116 	}
1117 
1118 	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1119 		/* ICV (after data) must be in the next 32-bit word for CCM */
1120 		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1121 							 resp_len +
1122 							 data_padlen);
1123 
1124 	if (data_padlen)
1125 		/* have to catch gcm pad in separate buffer */
1126 		rx_frag_num++;
1127 
1128 	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1129 				rctx->gfp);
1130 	if (!mssg->spu.dst)
1131 		return -ENOMEM;
1132 
1133 	sg = mssg->spu.dst;
1134 	sg_init_table(sg, rx_frag_num);
1135 
1136 	/* Space for SPU message header */
1137 	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1138 
1139 	if (assoc_buf_len) {
1140 		/*
1141 		 * Don't write directly to req->dst, because SPU may pad the
1142 		 * assoc data in the response
1143 		 */
1144 		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1145 		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1146 	}
1147 
1148 	if (resp_len) {
1149 		/*
1150 		 * Copy in each dst sg entry from request, up to chunksize.
1151 		 * dst sg catches just the data. digest caught in separate buf.
1152 		 */
1153 		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1154 					 rctx->dst_nents, resp_len);
1155 		if (datalen < (resp_len)) {
1156 			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1157 			       __func__, resp_len, datalen);
1158 			return -EFAULT;
1159 		}
1160 	}
1161 
1162 	/* If GCM/CCM data is padded, catch padding in separate buffer */
1163 	if (data_padlen) {
1164 		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1165 		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1166 	}
1167 
1168 	/* Always catch ICV in separate buffer */
1169 	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1170 
1171 	flow_log("stat_pad_len %u\n", stat_pad_len);
1172 	if (stat_pad_len) {
1173 		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1174 		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1175 	}
1176 
1177 	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1178 	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1185  * SPU request message for an AEAD request. Includes SPU message headers and the
1186  * request data.
1187  * @mssg:	mailbox message containing the transmit sg
1188  * @rctx:	crypto request context
1189  * @tx_frag_num: number of scatterlist elements required to construct the
1190  *		SPU request message
1191  * @spu_hdr_len: length of SPU message header in bytes
1192  * @assoc:	crypto API associated data scatterlist
1193  * @assoc_len:	length of associated data
1194  * @assoc_nents: number of scatterlist entries containing assoc data
1195  * @aead_iv_len: length of AEAD IV, if included
1196  * @chunksize:	Number of bytes of request data
1197  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1198  * @pad_len:	Number of pad bytes
1199  * @incl_icv:	If true, write separate ICV buffer after data and
1200  *              any padding
1201  *
1202  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1203  * when the request completes, whether the request is handled successfully or
1204  * there is an error.
1205  *
1206  * Return:
1207  *   0 if successful
1208  *   < 0 if an error
1209  */
1210 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1211 				 struct iproc_reqctx_s *rctx,
1212 				 u8 tx_frag_num,
1213 				 u32 spu_hdr_len,
1214 				 struct scatterlist *assoc,
1215 				 unsigned int assoc_len,
1216 				 int assoc_nents,
1217 				 unsigned int aead_iv_len,
1218 				 unsigned int chunksize,
1219 				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1220 {
1221 	struct spu_hw *spu = &iproc_priv.spu;
1222 	struct scatterlist *sg;	/* used to build sgs in mbox message */
1223 	struct scatterlist *assoc_sg = assoc;
1224 	struct iproc_ctx_s *ctx = rctx->ctx;
1225 	u32 datalen;		/* Number of bytes of data to write */
1226 	u32 written;		/* Number of bytes of data written */
1227 	u32 assoc_offset = 0;
1228 	u32 stat_len;
1229 
1230 	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1231 				rctx->gfp);
1232 	if (!mssg->spu.src)
1233 		return -ENOMEM;
1234 
1235 	sg = mssg->spu.src;
1236 	sg_init_table(sg, tx_frag_num);
1237 
1238 	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1239 		   BCM_HDR_LEN + spu_hdr_len);
1240 
1241 	if (assoc_len) {
1242 		/* Copy in each associated data sg entry from request */
1243 		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1244 					 assoc_nents, assoc_len);
1245 		if (written < assoc_len) {
1246 			pr_err("%s(): failed to copy assoc sg to mbox msg",
1247 			       __func__);
1248 			return -EFAULT;
1249 		}
1250 	}
1251 
1252 	if (aead_iv_len)
1253 		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1254 
1255 	if (aad_pad_len) {
1256 		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1257 		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1258 	}
1259 
1260 	datalen = chunksize;
1261 	if ((chunksize > ctx->digestsize) && incl_icv)
1262 		datalen -= ctx->digestsize;
1263 	if (datalen) {
1264 		/* For aead, a single msg should consume the entire src sg */
1265 		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1266 					 rctx->src_nents, datalen);
1267 		if (written < datalen) {
1268 			pr_err("%s(): failed to copy src sg to mbox msg",
1269 			       __func__);
1270 			return -EFAULT;
1271 		}
1272 	}
1273 
1274 	if (pad_len) {
1275 		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1276 		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1277 	}
1278 
1279 	if (incl_icv)
1280 		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1281 
1282 	stat_len = spu->spu_tx_status_len();
1283 	if (stat_len) {
1284 		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1285 		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1286 	}
1287 	return 0;
1288 }
1289 
1290 /**
1291  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1292  * current AEAD request.
1293  * @rctx:  Crypto request context
1294  *
1295  * Unlike other operation types, we assume the length of the request fits in
1296  * a single SPU request message. aead_enqueue() makes sure this is true.
1297  * Comments for other op types regarding threads applies here as well.
1298  *
1299  * Unlike incremental hash ops, where the spu returns the entire hash for
1300  * truncated algs like sha-224, the SPU returns just the truncated hash in
1301  * response to aead requests. So digestsize is always ctx->digestsize here.
1302  *
1303  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1304  *			 returned asynchronously
1305  *         Any other value indicates an error
1306  */
1307 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1308 {
1309 	struct spu_hw *spu = &iproc_priv.spu;
1310 	struct crypto_async_request *areq = rctx->parent;
1311 	struct aead_request *req = container_of(areq,
1312 						struct aead_request, base);
1313 	struct iproc_ctx_s *ctx = rctx->ctx;
1314 	int err;
1315 	unsigned int chunksize;
1316 	unsigned int resp_len;
1317 	u32 spu_hdr_len;
1318 	u32 db_size;
1319 	u32 stat_pad_len;
1320 	u32 pad_len;
1321 	struct brcm_message *mssg;	/* mailbox message */
1322 	struct spu_request_opts req_opts;
1323 	struct spu_cipher_parms cipher_parms;
1324 	struct spu_hash_parms hash_parms;
1325 	struct spu_aead_parms aead_parms;
1326 	int assoc_nents = 0;
1327 	bool incl_icv = false;
1328 	unsigned int digestsize = ctx->digestsize;
1329 
1330 	/* number of entries in src and dst sg. Always includes SPU msg header.
1331 	 */
1332 	u8 rx_frag_num = 2;	/* and STATUS */
1333 	u8 tx_frag_num = 1;
1334 
1335 	/* doing the whole thing at once */
1336 	chunksize = rctx->total_todo;
1337 
1338 	flow_log("%s: chunksize %u\n", __func__, chunksize);
1339 
1340 	memset(&req_opts, 0, sizeof(req_opts));
1341 	memset(&hash_parms, 0, sizeof(hash_parms));
1342 	memset(&aead_parms, 0, sizeof(aead_parms));
1343 
1344 	req_opts.is_inbound = !(rctx->is_encrypt);
1345 	req_opts.auth_first = ctx->auth_first;
1346 	req_opts.is_aead = true;
1347 	req_opts.is_esp = ctx->is_esp;
1348 
1349 	cipher_parms.alg = ctx->cipher.alg;
1350 	cipher_parms.mode = ctx->cipher.mode;
1351 	cipher_parms.type = ctx->cipher_type;
1352 	cipher_parms.key_buf = ctx->enckey;
1353 	cipher_parms.key_len = ctx->enckeylen;
1354 	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1355 	cipher_parms.iv_len = rctx->iv_ctr_len;
1356 
1357 	hash_parms.alg = ctx->auth.alg;
1358 	hash_parms.mode = ctx->auth.mode;
1359 	hash_parms.type = HASH_TYPE_NONE;
1360 	hash_parms.key_buf = (u8 *)ctx->authkey;
1361 	hash_parms.key_len = ctx->authkeylen;
1362 	hash_parms.digestsize = digestsize;
1363 
1364 	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1365 	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1366 		hash_parms.key_len = SHA224_DIGEST_SIZE;
1367 
1368 	aead_parms.assoc_size = req->assoclen;
1369 	if (ctx->is_esp && !ctx->is_rfc4543) {
1370 		/*
1371 		 * 8-byte IV is included assoc data in request. SPU2
1372 		 * expects AAD to include just SPI and seqno. So
1373 		 * subtract off the IV len.
1374 		 */
1375 		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1376 
1377 		if (rctx->is_encrypt) {
1378 			aead_parms.return_iv = true;
1379 			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1380 			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1381 		}
1382 	} else {
1383 		aead_parms.ret_iv_len = 0;
1384 	}
1385 
1386 	/*
1387 	 * Count number of sg entries from the crypto API request that are to
1388 	 * be included in this mailbox message. For dst sg, don't count space
1389 	 * for digest. Digest gets caught in a separate buffer and copied back
1390 	 * to dst sg when processing response.
1391 	 */
1392 	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1393 	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1394 	if (aead_parms.assoc_size)
1395 		assoc_nents = spu_sg_count(rctx->assoc, 0,
1396 					   aead_parms.assoc_size);
1397 
1398 	mssg = &rctx->mb_mssg;
1399 
1400 	rctx->total_sent = chunksize;
1401 	rctx->src_sent = chunksize;
1402 	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1403 				    aead_parms.assoc_size,
1404 				    aead_parms.ret_iv_len,
1405 				    rctx->is_encrypt))
1406 		rx_frag_num++;
1407 
1408 	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1409 						rctx->iv_ctr_len);
1410 
1411 	if (ctx->auth.alg == HASH_ALG_AES)
1412 		hash_parms.type = (enum hash_type)ctx->cipher_type;
1413 
1414 	/* General case AAD padding (CCM and RFC4543 special cases below) */
1415 	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1416 						 aead_parms.assoc_size);
1417 
1418 	/* General case data padding (CCM decrypt special case below) */
1419 	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1420 							   chunksize);
1421 
1422 	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1423 		/*
1424 		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1425 		 * 128-bit aligned
1426 		 */
1427 		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1428 					 ctx->cipher.mode,
1429 					 aead_parms.assoc_size + 2);
1430 
1431 		/*
1432 		 * And when decrypting CCM, need to pad without including
1433 		 * size of ICV which is tacked on to end of chunk
1434 		 */
1435 		if (!rctx->is_encrypt)
1436 			aead_parms.data_pad_len =
1437 				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1438 							chunksize - digestsize);
1439 
1440 		/* CCM also requires software to rewrite portions of IV: */
1441 		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1442 				       chunksize, rctx->is_encrypt,
1443 				       ctx->is_esp);
1444 	}
1445 
1446 	if (ctx->is_rfc4543) {
1447 		/*
1448 		 * RFC4543: data is included in AAD, so don't pad after AAD
1449 		 * and pad data based on both AAD + data size
1450 		 */
1451 		aead_parms.aad_pad_len = 0;
1452 		if (!rctx->is_encrypt)
1453 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1454 					ctx->cipher.mode,
1455 					aead_parms.assoc_size + chunksize -
1456 					digestsize);
1457 		else
1458 			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1459 					ctx->cipher.mode,
1460 					aead_parms.assoc_size + chunksize);
1461 
1462 		req_opts.is_rfc4543 = true;
1463 	}
1464 
1465 	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1466 		incl_icv = true;
1467 		tx_frag_num++;
1468 		/* Copy ICV from end of src scatterlist to digest buf */
1469 		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1470 				    req->assoclen + rctx->total_sent -
1471 				    digestsize);
1472 	}
1473 
1474 	atomic64_add(chunksize, &iproc_priv.bytes_out);
1475 
1476 	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1477 
1478 	/* Prepend SPU header with type 3 BCM header */
1479 	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1480 
1481 	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1482 					      BCM_HDR_LEN, &req_opts,
1483 					      &cipher_parms, &hash_parms,
1484 					      &aead_parms, chunksize);
1485 
1486 	/* Determine total length of padding. Put all padding in one buffer. */
1487 	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1488 				   chunksize, aead_parms.aad_pad_len,
1489 				   aead_parms.data_pad_len, 0);
1490 
1491 	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1492 
1493 	if (stat_pad_len)
1494 		rx_frag_num++;
1495 	pad_len = aead_parms.data_pad_len + stat_pad_len;
1496 	if (pad_len) {
1497 		tx_frag_num++;
1498 		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1499 				     aead_parms.data_pad_len, 0,
1500 				     ctx->auth.alg, ctx->auth.mode,
1501 				     rctx->total_sent, stat_pad_len);
1502 	}
1503 
1504 	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1505 			      spu_hdr_len);
1506 	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1507 	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1508 	packet_log("BD:\n");
1509 	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1510 	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1511 
1512 	/*
1513 	 * Build mailbox message containing SPU request msg and rx buffers
1514 	 * to catch response message
1515 	 */
1516 	memset(mssg, 0, sizeof(*mssg));
1517 	mssg->type = BRCM_MESSAGE_SPU;
1518 	mssg->ctx = rctx;	/* Will be returned in response */
1519 
1520 	/* Create rx scatterlist to catch result */
1521 	rx_frag_num += rctx->dst_nents;
1522 	resp_len = chunksize;
1523 
1524 	/*
1525 	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1526 	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1527 	 * sends entire digest back.
1528 	 */
1529 	rx_frag_num++;
1530 
1531 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1532 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1533 		/*
1534 		 * Input is ciphertxt plus ICV, but ICV not incl
1535 		 * in output.
1536 		 */
1537 		resp_len -= ctx->digestsize;
1538 		if (resp_len == 0)
1539 			/* no rx frags to catch output data */
1540 			rx_frag_num -= rctx->dst_nents;
1541 	}
1542 
1543 	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1544 				    aead_parms.assoc_size,
1545 				    aead_parms.ret_iv_len, resp_len, digestsize,
1546 				    stat_pad_len);
1547 	if (err)
1548 		return err;
1549 
1550 	/* Create tx scatterlist containing SPU request message */
1551 	tx_frag_num += rctx->src_nents;
1552 	tx_frag_num += assoc_nents;
1553 	if (aead_parms.aad_pad_len)
1554 		tx_frag_num++;
1555 	if (aead_parms.iv_len)
1556 		tx_frag_num++;
1557 	if (spu->spu_tx_status_len())
1558 		tx_frag_num++;
1559 	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1560 				    rctx->assoc, aead_parms.assoc_size,
1561 				    assoc_nents, aead_parms.iv_len, chunksize,
1562 				    aead_parms.aad_pad_len, pad_len, incl_icv);
1563 	if (err)
1564 		return err;
1565 
1566 	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1567 	if (unlikely(err < 0))
1568 		return err;
1569 
1570 	return -EINPROGRESS;
1571 }
1572 
1573 /**
1574  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1575  * @rctx:  Crypto request context
1576  */
1577 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1578 {
1579 	struct spu_hw *spu = &iproc_priv.spu;
1580 	struct crypto_async_request *areq = rctx->parent;
1581 	struct aead_request *req = container_of(areq,
1582 						struct aead_request, base);
1583 	struct iproc_ctx_s *ctx = rctx->ctx;
1584 	u32 payload_len;
1585 	unsigned int icv_offset;
1586 	u32 result_len;
1587 
1588 	/* See how much data was returned */
1589 	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1590 	flow_log("payload_len %u\n", payload_len);
1591 
1592 	/* only count payload */
1593 	atomic64_add(payload_len, &iproc_priv.bytes_in);
1594 
1595 	if (req->assoclen)
1596 		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1597 			    req->assoclen);
1598 
1599 	/*
1600 	 * Copy the ICV back to the destination
1601 	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1602 	 * API doesn't expect ICV in dst buffer.
1603 	 */
1604 	result_len = req->cryptlen;
1605 	if (rctx->is_encrypt) {
1606 		icv_offset = req->assoclen + rctx->total_sent;
1607 		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1608 		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1609 		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1610 				      ctx->digestsize, icv_offset);
1611 		result_len += ctx->digestsize;
1612 	}
1613 
1614 	packet_log("response data:  ");
1615 	dump_sg(req->dst, req->assoclen, result_len);
1616 
1617 	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1618 	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1619 		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1620 			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1621 		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1622 			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1623 		else
1624 			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1625 	} else {
1626 		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1627 	}
1628 }
1629 
1630 /**
1631  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1632  * @rctx:  request context
1633  *
1634  * Mailbox scatterlists are allocated for each chunk. So free them after
1635  * processing each chunk.
1636  */
1637 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1638 {
1639 	/* mailbox message used to tx request */
1640 	struct brcm_message *mssg = &rctx->mb_mssg;
1641 
1642 	kfree(mssg->spu.src);
1643 	kfree(mssg->spu.dst);
1644 	memset(mssg, 0, sizeof(struct brcm_message));
1645 }
1646 
1647 /**
1648  * finish_req() - Used to invoke the complete callback from the requester when
1649  * a request has been handled asynchronously.
1650  * @rctx:  Request context
1651  * @err:   Indicates whether the request was successful or not
1652  *
1653  * Ensures that cleanup has been done for request
1654  */
1655 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1656 {
1657 	struct crypto_async_request *areq = rctx->parent;
1658 
1659 	flow_log("%s() err:%d\n\n", __func__, err);
1660 
1661 	/* No harm done if already called */
1662 	spu_chunk_cleanup(rctx);
1663 
1664 	if (areq)
1665 		areq->complete(areq, err);
1666 }
1667 
1668 /**
1669  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1670  * @cl:		mailbox client structure for SPU driver
1671  * @msg:	mailbox message containing SPU response
1672  */
1673 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1674 {
1675 	struct spu_hw *spu = &iproc_priv.spu;
1676 	struct brcm_message *mssg = msg;
1677 	struct iproc_reqctx_s *rctx;
1678 	struct iproc_ctx_s *ctx;
1679 	struct crypto_async_request *areq;
1680 	int err = 0;
1681 
1682 	rctx = mssg->ctx;
1683 	if (unlikely(!rctx)) {
1684 		/* This is fatal */
1685 		pr_err("%s(): no request context", __func__);
1686 		err = -EFAULT;
1687 		goto cb_finish;
1688 	}
1689 	areq = rctx->parent;
1690 	ctx = rctx->ctx;
1691 
1692 	/* process the SPU status */
1693 	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1694 	if (err != 0) {
1695 		if (err == SPU_INVALID_ICV)
1696 			atomic_inc(&iproc_priv.bad_icv);
1697 		err = -EBADMSG;
1698 		goto cb_finish;
1699 	}
1700 
1701 	/* Process the SPU response message */
1702 	switch (rctx->ctx->alg->type) {
1703 	case CRYPTO_ALG_TYPE_ABLKCIPHER:
1704 		handle_ablkcipher_resp(rctx);
1705 		break;
1706 	case CRYPTO_ALG_TYPE_AHASH:
1707 		handle_ahash_resp(rctx);
1708 		break;
1709 	case CRYPTO_ALG_TYPE_AEAD:
1710 		handle_aead_resp(rctx);
1711 		break;
1712 	default:
1713 		err = -EINVAL;
1714 		goto cb_finish;
1715 	}
1716 
1717 	/*
1718 	 * If this response does not complete the request, then send the next
1719 	 * request chunk.
1720 	 */
1721 	if (rctx->total_sent < rctx->total_todo) {
1722 		/* Deallocate anything specific to previous chunk */
1723 		spu_chunk_cleanup(rctx);
1724 
1725 		switch (rctx->ctx->alg->type) {
1726 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
1727 			err = handle_ablkcipher_req(rctx);
1728 			break;
1729 		case CRYPTO_ALG_TYPE_AHASH:
1730 			err = handle_ahash_req(rctx);
1731 			if (err == -EAGAIN)
1732 				/*
1733 				 * we saved data in hash carry, but tell crypto
1734 				 * API we successfully completed request.
1735 				 */
1736 				err = 0;
1737 			break;
1738 		case CRYPTO_ALG_TYPE_AEAD:
1739 			err = handle_aead_req(rctx);
1740 			break;
1741 		default:
1742 			err = -EINVAL;
1743 		}
1744 
1745 		if (err == -EINPROGRESS)
1746 			/* Successfully submitted request for next chunk */
1747 			return;
1748 	}
1749 
1750 cb_finish:
1751 	finish_req(rctx, err);
1752 }
1753 
1754 /* ==================== Kernel Cryptographic API ==================== */
1755 
1756 /**
1757  * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1758  * @req:	Crypto API request
1759  * @encrypt:	true if encrypting; false if decrypting
1760  *
1761  * Return: -EINPROGRESS if request accepted and result will be returned
1762  *			asynchronously
1763  *	   < 0 if an error
1764  */
1765 static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1766 {
1767 	struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1768 	struct iproc_ctx_s *ctx =
1769 	    crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1770 	int err;
1771 
1772 	flow_log("%s() enc:%u\n", __func__, encrypt);
1773 
1774 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1775 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1776 	rctx->parent = &req->base;
1777 	rctx->is_encrypt = encrypt;
1778 	rctx->bd_suppress = false;
1779 	rctx->total_todo = req->nbytes;
1780 	rctx->src_sent = 0;
1781 	rctx->total_sent = 0;
1782 	rctx->total_received = 0;
1783 	rctx->ctx = ctx;
1784 
1785 	/* Initialize current position in src and dst scatterlists */
1786 	rctx->src_sg = req->src;
1787 	rctx->src_nents = 0;
1788 	rctx->src_skip = 0;
1789 	rctx->dst_sg = req->dst;
1790 	rctx->dst_nents = 0;
1791 	rctx->dst_skip = 0;
1792 
1793 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1794 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1795 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1796 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1797 	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1798 	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1799 		rctx->iv_ctr_len =
1800 		    crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1801 		memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1802 	} else {
1803 		rctx->iv_ctr_len = 0;
1804 	}
1805 
1806 	/* Choose a SPU to process this request */
1807 	rctx->chan_idx = select_channel();
1808 	err = handle_ablkcipher_req(rctx);
1809 	if (err != -EINPROGRESS)
1810 		/* synchronous result */
1811 		spu_chunk_cleanup(rctx);
1812 
1813 	return err;
1814 }
1815 
1816 static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1817 		      unsigned int keylen)
1818 {
1819 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1820 	u32 tmp[DES_EXPKEY_WORDS];
1821 
1822 	if (keylen == DES_KEY_SIZE) {
1823 		if (des_ekey(tmp, key) == 0) {
1824 			if (crypto_ablkcipher_get_flags(cipher) &
1825 			    CRYPTO_TFM_REQ_WEAK_KEY) {
1826 				u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1827 
1828 				crypto_ablkcipher_set_flags(cipher, flags);
1829 				return -EINVAL;
1830 			}
1831 		}
1832 
1833 		ctx->cipher_type = CIPHER_TYPE_DES;
1834 	} else {
1835 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1836 		return -EINVAL;
1837 	}
1838 	return 0;
1839 }
1840 
1841 static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1842 			   unsigned int keylen)
1843 {
1844 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1845 
1846 	if (keylen == (DES_KEY_SIZE * 3)) {
1847 		const u32 *K = (const u32 *)key;
1848 		u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
1849 
1850 		if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1851 		    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
1852 			crypto_ablkcipher_set_flags(cipher, flags);
1853 			return -EINVAL;
1854 		}
1855 
1856 		ctx->cipher_type = CIPHER_TYPE_3DES;
1857 	} else {
1858 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1859 		return -EINVAL;
1860 	}
1861 	return 0;
1862 }
1863 
1864 static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1865 		      unsigned int keylen)
1866 {
1867 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1868 
1869 	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1870 		/* XTS includes two keys of equal length */
1871 		keylen = keylen / 2;
1872 
1873 	switch (keylen) {
1874 	case AES_KEYSIZE_128:
1875 		ctx->cipher_type = CIPHER_TYPE_AES128;
1876 		break;
1877 	case AES_KEYSIZE_192:
1878 		ctx->cipher_type = CIPHER_TYPE_AES192;
1879 		break;
1880 	case AES_KEYSIZE_256:
1881 		ctx->cipher_type = CIPHER_TYPE_AES256;
1882 		break;
1883 	default:
1884 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1885 		return -EINVAL;
1886 	}
1887 	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1888 		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1889 	return 0;
1890 }
1891 
1892 static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1893 		      unsigned int keylen)
1894 {
1895 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1896 	int i;
1897 
1898 	ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1899 
1900 	ctx->enckey[0] = 0x00;	/* 0x00 */
1901 	ctx->enckey[1] = 0x00;	/* i    */
1902 	ctx->enckey[2] = 0x00;	/* 0x00 */
1903 	ctx->enckey[3] = 0x00;	/* j    */
1904 	for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1905 		ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1906 
1907 	ctx->cipher_type = CIPHER_TYPE_INIT;
1908 
1909 	return 0;
1910 }
1911 
1912 static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1913 			     unsigned int keylen)
1914 {
1915 	struct spu_hw *spu = &iproc_priv.spu;
1916 	struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1917 	struct spu_cipher_parms cipher_parms;
1918 	u32 alloc_len = 0;
1919 	int err;
1920 
1921 	flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1922 	flow_dump("  key: ", key, keylen);
1923 
1924 	switch (ctx->cipher.alg) {
1925 	case CIPHER_ALG_DES:
1926 		err = des_setkey(cipher, key, keylen);
1927 		break;
1928 	case CIPHER_ALG_3DES:
1929 		err = threedes_setkey(cipher, key, keylen);
1930 		break;
1931 	case CIPHER_ALG_AES:
1932 		err = aes_setkey(cipher, key, keylen);
1933 		break;
1934 	case CIPHER_ALG_RC4:
1935 		err = rc4_setkey(cipher, key, keylen);
1936 		break;
1937 	default:
1938 		pr_err("%s() Error: unknown cipher alg\n", __func__);
1939 		err = -EINVAL;
1940 	}
1941 	if (err)
1942 		return err;
1943 
1944 	/* RC4 already populated ctx->enkey */
1945 	if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1946 		memcpy(ctx->enckey, key, keylen);
1947 		ctx->enckeylen = keylen;
1948 	}
1949 	/* SPU needs XTS keys in the reverse order the crypto API presents */
1950 	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1951 	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1952 		unsigned int xts_keylen = keylen / 2;
1953 
1954 		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1955 		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1956 	}
1957 
1958 	if (spu->spu_type == SPU_TYPE_SPUM)
1959 		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1960 	else if (spu->spu_type == SPU_TYPE_SPU2)
1961 		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1962 	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1963 	cipher_parms.iv_buf = NULL;
1964 	cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1965 	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1966 
1967 	cipher_parms.alg = ctx->cipher.alg;
1968 	cipher_parms.mode = ctx->cipher.mode;
1969 	cipher_parms.type = ctx->cipher_type;
1970 	cipher_parms.key_buf = ctx->enckey;
1971 	cipher_parms.key_len = ctx->enckeylen;
1972 
1973 	/* Prepend SPU request message with BCM header */
1974 	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1975 	ctx->spu_req_hdr_len =
1976 	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1977 				     &cipher_parms);
1978 
1979 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1980 							  ctx->enckeylen,
1981 							  false);
1982 
1983 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1984 
1985 	return 0;
1986 }
1987 
1988 static int ablkcipher_encrypt(struct ablkcipher_request *req)
1989 {
1990 	flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1991 
1992 	return ablkcipher_enqueue(req, true);
1993 }
1994 
1995 static int ablkcipher_decrypt(struct ablkcipher_request *req)
1996 {
1997 	flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1998 	return ablkcipher_enqueue(req, false);
1999 }
2000 
2001 static int ahash_enqueue(struct ahash_request *req)
2002 {
2003 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2004 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2005 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2006 	int err = 0;
2007 	const char *alg_name;
2008 
2009 	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
2010 
2011 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2012 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2013 	rctx->parent = &req->base;
2014 	rctx->ctx = ctx;
2015 	rctx->bd_suppress = true;
2016 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2017 
2018 	/* Initialize position in src scatterlist */
2019 	rctx->src_sg = req->src;
2020 	rctx->src_skip = 0;
2021 	rctx->src_nents = 0;
2022 	rctx->dst_sg = NULL;
2023 	rctx->dst_skip = 0;
2024 	rctx->dst_nents = 0;
2025 
2026 	/* SPU2 hardware does not compute hash of zero length data */
2027 	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2028 	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2029 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2030 		flow_log("Doing %sfinal %s zero-len hash request in software\n",
2031 			 rctx->is_final ? "" : "non-", alg_name);
2032 		err = do_shash((unsigned char *)alg_name, req->result,
2033 			       NULL, 0, NULL, 0, ctx->authkey,
2034 			       ctx->authkeylen);
2035 		if (err < 0)
2036 			flow_log("Hash request failed with error %d\n", err);
2037 		return err;
2038 	}
2039 	/* Choose a SPU to process this request */
2040 	rctx->chan_idx = select_channel();
2041 
2042 	err = handle_ahash_req(rctx);
2043 	if (err != -EINPROGRESS)
2044 		/* synchronous result */
2045 		spu_chunk_cleanup(rctx);
2046 
2047 	if (err == -EAGAIN)
2048 		/*
2049 		 * we saved data in hash carry, but tell crypto API
2050 		 * we successfully completed request.
2051 		 */
2052 		err = 0;
2053 
2054 	return err;
2055 }
2056 
2057 static int __ahash_init(struct ahash_request *req)
2058 {
2059 	struct spu_hw *spu = &iproc_priv.spu;
2060 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2061 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2062 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2063 
2064 	flow_log("%s()\n", __func__);
2065 
2066 	/* Initialize the context */
2067 	rctx->hash_carry_len = 0;
2068 	rctx->is_final = 0;
2069 
2070 	rctx->total_todo = 0;
2071 	rctx->src_sent = 0;
2072 	rctx->total_sent = 0;
2073 	rctx->total_received = 0;
2074 
2075 	ctx->digestsize = crypto_ahash_digestsize(tfm);
2076 	/* If we add a hash whose digest is larger, catch it here. */
2077 	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2078 
2079 	rctx->is_sw_hmac = false;
2080 
2081 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2082 							  true);
2083 
2084 	return 0;
2085 }
2086 
2087 /**
2088  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2089  * @ctx:  Crypto session context
2090  *
2091  * SPU-2 does not support incremental hashing (we'll have to revisit and
2092  * condition based on chip revision or device tree entry if future versions do
2093  * support incremental hash)
2094  *
2095  * SPU-M also doesn't support incremental hashing of AES-XCBC
2096  *
2097  * Return: true if incremental hashing is not supported
2098  *         false otherwise
2099  */
2100 bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2101 {
2102 	struct spu_hw *spu = &iproc_priv.spu;
2103 
2104 	if (spu->spu_type == SPU_TYPE_SPU2)
2105 		return true;
2106 
2107 	if ((ctx->auth.alg == HASH_ALG_AES) &&
2108 	    (ctx->auth.mode == HASH_MODE_XCBC))
2109 		return true;
2110 
2111 	/* Otherwise, incremental hashing is supported */
2112 	return false;
2113 }
2114 
2115 static int ahash_init(struct ahash_request *req)
2116 {
2117 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2118 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2119 	const char *alg_name;
2120 	struct crypto_shash *hash;
2121 	int ret;
2122 	gfp_t gfp;
2123 
2124 	if (spu_no_incr_hash(ctx)) {
2125 		/*
2126 		 * If we get an incremental hashing request and it's not
2127 		 * supported by the hardware, we need to handle it in software
2128 		 * by calling synchronous hash functions.
2129 		 */
2130 		alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2131 		hash = crypto_alloc_shash(alg_name, 0, 0);
2132 		if (IS_ERR(hash)) {
2133 			ret = PTR_ERR(hash);
2134 			goto err;
2135 		}
2136 
2137 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2138 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2139 		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2140 				     crypto_shash_descsize(hash), gfp);
2141 		if (!ctx->shash) {
2142 			ret = -ENOMEM;
2143 			goto err_hash;
2144 		}
2145 		ctx->shash->tfm = hash;
2146 		ctx->shash->flags = 0;
2147 
2148 		/* Set the key using data we already have from setkey */
2149 		if (ctx->authkeylen > 0) {
2150 			ret = crypto_shash_setkey(hash, ctx->authkey,
2151 						  ctx->authkeylen);
2152 			if (ret)
2153 				goto err_shash;
2154 		}
2155 
2156 		/* Initialize hash w/ this key and other params */
2157 		ret = crypto_shash_init(ctx->shash);
2158 		if (ret)
2159 			goto err_shash;
2160 	} else {
2161 		/* Otherwise call the internal function which uses SPU hw */
2162 		ret = __ahash_init(req);
2163 	}
2164 
2165 	return ret;
2166 
2167 err_shash:
2168 	kfree(ctx->shash);
2169 err_hash:
2170 	crypto_free_shash(hash);
2171 err:
2172 	return ret;
2173 }
2174 
2175 static int __ahash_update(struct ahash_request *req)
2176 {
2177 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2178 
2179 	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2180 
2181 	if (!req->nbytes)
2182 		return 0;
2183 	rctx->total_todo += req->nbytes;
2184 	rctx->src_sent = 0;
2185 
2186 	return ahash_enqueue(req);
2187 }
2188 
2189 static int ahash_update(struct ahash_request *req)
2190 {
2191 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2192 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2193 	u8 *tmpbuf;
2194 	int ret;
2195 	int nents;
2196 	gfp_t gfp;
2197 
2198 	if (spu_no_incr_hash(ctx)) {
2199 		/*
2200 		 * If we get an incremental hashing request and it's not
2201 		 * supported by the hardware, we need to handle it in software
2202 		 * by calling synchronous hash functions.
2203 		 */
2204 		if (req->src)
2205 			nents = sg_nents(req->src);
2206 		else
2207 			return -EINVAL;
2208 
2209 		/* Copy data from req scatterlist to tmp buffer */
2210 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2211 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2212 		tmpbuf = kmalloc(req->nbytes, gfp);
2213 		if (!tmpbuf)
2214 			return -ENOMEM;
2215 
2216 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2217 				req->nbytes) {
2218 			kfree(tmpbuf);
2219 			return -EINVAL;
2220 		}
2221 
2222 		/* Call synchronous update */
2223 		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2224 		kfree(tmpbuf);
2225 	} else {
2226 		/* Otherwise call the internal function which uses SPU hw */
2227 		ret = __ahash_update(req);
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 static int __ahash_final(struct ahash_request *req)
2234 {
2235 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2236 
2237 	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2238 
2239 	rctx->is_final = 1;
2240 
2241 	return ahash_enqueue(req);
2242 }
2243 
2244 static int ahash_final(struct ahash_request *req)
2245 {
2246 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2247 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2248 	int ret;
2249 
2250 	if (spu_no_incr_hash(ctx)) {
2251 		/*
2252 		 * If we get an incremental hashing request and it's not
2253 		 * supported by the hardware, we need to handle it in software
2254 		 * by calling synchronous hash functions.
2255 		 */
2256 		ret = crypto_shash_final(ctx->shash, req->result);
2257 
2258 		/* Done with hash, can deallocate it now */
2259 		crypto_free_shash(ctx->shash->tfm);
2260 		kfree(ctx->shash);
2261 
2262 	} else {
2263 		/* Otherwise call the internal function which uses SPU hw */
2264 		ret = __ahash_final(req);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static int __ahash_finup(struct ahash_request *req)
2271 {
2272 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2273 
2274 	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2275 
2276 	rctx->total_todo += req->nbytes;
2277 	rctx->src_sent = 0;
2278 	rctx->is_final = 1;
2279 
2280 	return ahash_enqueue(req);
2281 }
2282 
2283 static int ahash_finup(struct ahash_request *req)
2284 {
2285 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2286 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2287 	u8 *tmpbuf;
2288 	int ret;
2289 	int nents;
2290 	gfp_t gfp;
2291 
2292 	if (spu_no_incr_hash(ctx)) {
2293 		/*
2294 		 * If we get an incremental hashing request and it's not
2295 		 * supported by the hardware, we need to handle it in software
2296 		 * by calling synchronous hash functions.
2297 		 */
2298 		if (req->src) {
2299 			nents = sg_nents(req->src);
2300 		} else {
2301 			ret = -EINVAL;
2302 			goto ahash_finup_exit;
2303 		}
2304 
2305 		/* Copy data from req scatterlist to tmp buffer */
2306 		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2307 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2308 		tmpbuf = kmalloc(req->nbytes, gfp);
2309 		if (!tmpbuf) {
2310 			ret = -ENOMEM;
2311 			goto ahash_finup_exit;
2312 		}
2313 
2314 		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2315 				req->nbytes) {
2316 			ret = -EINVAL;
2317 			goto ahash_finup_free;
2318 		}
2319 
2320 		/* Call synchronous update */
2321 		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2322 					 req->result);
2323 	} else {
2324 		/* Otherwise call the internal function which uses SPU hw */
2325 		return __ahash_finup(req);
2326 	}
2327 ahash_finup_free:
2328 	kfree(tmpbuf);
2329 
2330 ahash_finup_exit:
2331 	/* Done with hash, can deallocate it now */
2332 	crypto_free_shash(ctx->shash->tfm);
2333 	kfree(ctx->shash);
2334 	return ret;
2335 }
2336 
2337 static int ahash_digest(struct ahash_request *req)
2338 {
2339 	int err = 0;
2340 
2341 	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2342 
2343 	/* whole thing at once */
2344 	err = __ahash_init(req);
2345 	if (!err)
2346 		err = __ahash_finup(req);
2347 
2348 	return err;
2349 }
2350 
2351 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2352 			unsigned int keylen)
2353 {
2354 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2355 
2356 	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2357 		 __func__, ahash, key, keylen);
2358 	flow_dump("  key: ", key, keylen);
2359 
2360 	if (ctx->auth.alg == HASH_ALG_AES) {
2361 		switch (keylen) {
2362 		case AES_KEYSIZE_128:
2363 			ctx->cipher_type = CIPHER_TYPE_AES128;
2364 			break;
2365 		case AES_KEYSIZE_192:
2366 			ctx->cipher_type = CIPHER_TYPE_AES192;
2367 			break;
2368 		case AES_KEYSIZE_256:
2369 			ctx->cipher_type = CIPHER_TYPE_AES256;
2370 			break;
2371 		default:
2372 			pr_err("%s() Error: Invalid key length\n", __func__);
2373 			return -EINVAL;
2374 		}
2375 	} else {
2376 		pr_err("%s() Error: unknown hash alg\n", __func__);
2377 		return -EINVAL;
2378 	}
2379 	memcpy(ctx->authkey, key, keylen);
2380 	ctx->authkeylen = keylen;
2381 
2382 	return 0;
2383 }
2384 
2385 static int ahash_export(struct ahash_request *req, void *out)
2386 {
2387 	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2388 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2389 
2390 	spu_exp->total_todo = rctx->total_todo;
2391 	spu_exp->total_sent = rctx->total_sent;
2392 	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2393 	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2394 	spu_exp->hash_carry_len = rctx->hash_carry_len;
2395 	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2396 
2397 	return 0;
2398 }
2399 
2400 static int ahash_import(struct ahash_request *req, const void *in)
2401 {
2402 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2403 	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2404 
2405 	rctx->total_todo = spu_exp->total_todo;
2406 	rctx->total_sent = spu_exp->total_sent;
2407 	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2408 	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2409 	rctx->hash_carry_len = spu_exp->hash_carry_len;
2410 	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2411 
2412 	return 0;
2413 }
2414 
2415 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2416 			     unsigned int keylen)
2417 {
2418 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2419 	unsigned int blocksize =
2420 		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2421 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2422 	unsigned int index;
2423 	int rc;
2424 
2425 	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2426 		 __func__, ahash, key, keylen, blocksize, digestsize);
2427 	flow_dump("  key: ", key, keylen);
2428 
2429 	if (keylen > blocksize) {
2430 		switch (ctx->auth.alg) {
2431 		case HASH_ALG_MD5:
2432 			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2433 				      0, NULL, 0);
2434 			break;
2435 		case HASH_ALG_SHA1:
2436 			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2437 				      0, NULL, 0);
2438 			break;
2439 		case HASH_ALG_SHA224:
2440 			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2441 				      0, NULL, 0);
2442 			break;
2443 		case HASH_ALG_SHA256:
2444 			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2445 				      0, NULL, 0);
2446 			break;
2447 		case HASH_ALG_SHA384:
2448 			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2449 				      0, NULL, 0);
2450 			break;
2451 		case HASH_ALG_SHA512:
2452 			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2453 				      0, NULL, 0);
2454 			break;
2455 		case HASH_ALG_SHA3_224:
2456 			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2457 				      NULL, 0, NULL, 0);
2458 			break;
2459 		case HASH_ALG_SHA3_256:
2460 			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2461 				      NULL, 0, NULL, 0);
2462 			break;
2463 		case HASH_ALG_SHA3_384:
2464 			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2465 				      NULL, 0, NULL, 0);
2466 			break;
2467 		case HASH_ALG_SHA3_512:
2468 			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2469 				      NULL, 0, NULL, 0);
2470 			break;
2471 		default:
2472 			pr_err("%s() Error: unknown hash alg\n", __func__);
2473 			return -EINVAL;
2474 		}
2475 		if (rc < 0) {
2476 			pr_err("%s() Error %d computing shash for %s\n",
2477 			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2478 			return rc;
2479 		}
2480 		ctx->authkeylen = digestsize;
2481 
2482 		flow_log("  keylen > digestsize... hashed\n");
2483 		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2484 	} else {
2485 		memcpy(ctx->authkey, key, keylen);
2486 		ctx->authkeylen = keylen;
2487 	}
2488 
2489 	/*
2490 	 * Full HMAC operation in SPUM is not verified,
2491 	 * So keeping the generation of IPAD, OPAD and
2492 	 * outer hashing in software.
2493 	 */
2494 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2495 		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2496 		memset(ctx->ipad + ctx->authkeylen, 0,
2497 		       blocksize - ctx->authkeylen);
2498 		ctx->authkeylen = 0;
2499 		memcpy(ctx->opad, ctx->ipad, blocksize);
2500 
2501 		for (index = 0; index < blocksize; index++) {
2502 			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2503 			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2504 		}
2505 
2506 		flow_dump("  ipad: ", ctx->ipad, blocksize);
2507 		flow_dump("  opad: ", ctx->opad, blocksize);
2508 	}
2509 	ctx->digestsize = digestsize;
2510 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2511 
2512 	return 0;
2513 }
2514 
2515 static int ahash_hmac_init(struct ahash_request *req)
2516 {
2517 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2518 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2519 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2520 	unsigned int blocksize =
2521 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2522 
2523 	flow_log("ahash_hmac_init()\n");
2524 
2525 	/* init the context as a hash */
2526 	ahash_init(req);
2527 
2528 	if (!spu_no_incr_hash(ctx)) {
2529 		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2530 		rctx->is_sw_hmac = true;
2531 		ctx->auth.mode = HASH_MODE_HASH;
2532 		/* start with a prepended ipad */
2533 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2534 		rctx->hash_carry_len = blocksize;
2535 		rctx->total_todo += blocksize;
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static int ahash_hmac_update(struct ahash_request *req)
2542 {
2543 	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2544 
2545 	if (!req->nbytes)
2546 		return 0;
2547 
2548 	return ahash_update(req);
2549 }
2550 
2551 static int ahash_hmac_final(struct ahash_request *req)
2552 {
2553 	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2554 
2555 	return ahash_final(req);
2556 }
2557 
2558 static int ahash_hmac_finup(struct ahash_request *req)
2559 {
2560 	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2561 
2562 	return ahash_finup(req);
2563 }
2564 
2565 static int ahash_hmac_digest(struct ahash_request *req)
2566 {
2567 	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2568 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2569 	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2570 	unsigned int blocksize =
2571 			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2572 
2573 	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2574 
2575 	/* Perform initialization and then call finup */
2576 	__ahash_init(req);
2577 
2578 	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2579 		/*
2580 		 * SPU2 supports full HMAC implementation in the
2581 		 * hardware, need not to generate IPAD, OPAD and
2582 		 * outer hash in software.
2583 		 * Only for hash key len > hash block size, SPU2
2584 		 * expects to perform hashing on the key, shorten
2585 		 * it to digest size and feed it as hash key.
2586 		 */
2587 		rctx->is_sw_hmac = false;
2588 		ctx->auth.mode = HASH_MODE_HMAC;
2589 	} else {
2590 		rctx->is_sw_hmac = true;
2591 		ctx->auth.mode = HASH_MODE_HASH;
2592 		/* start with a prepended ipad */
2593 		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2594 		rctx->hash_carry_len = blocksize;
2595 		rctx->total_todo += blocksize;
2596 	}
2597 
2598 	return __ahash_finup(req);
2599 }
2600 
2601 /* aead helpers */
2602 
2603 static int aead_need_fallback(struct aead_request *req)
2604 {
2605 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2606 	struct spu_hw *spu = &iproc_priv.spu;
2607 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2608 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2609 	u32 payload_len;
2610 
2611 	/*
2612 	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2613 	 * and AAD are both 0 bytes long. So use fallback in this case.
2614 	 */
2615 	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2616 	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2617 	    (req->assoclen == 0)) {
2618 		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2619 		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2620 			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2621 			return 1;
2622 		}
2623 	}
2624 
2625 	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2626 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2627 	    (spu->spu_type == SPU_TYPE_SPUM) &&
2628 	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2629 	    (ctx->digestsize != 16)) {
2630 		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2631 			 __func__, ctx->digestsize);
2632 		return 1;
2633 	}
2634 
2635 	/*
2636 	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2637 	 * when AAD size is 0
2638 	 */
2639 	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2640 	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2641 	    (req->assoclen == 0)) {
2642 		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2643 			 __func__);
2644 		return 1;
2645 	}
2646 
2647 	payload_len = req->cryptlen;
2648 	if (spu->spu_type == SPU_TYPE_SPUM)
2649 		payload_len += req->assoclen;
2650 
2651 	flow_log("%s() payload len: %u\n", __func__, payload_len);
2652 
2653 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2654 		return 0;
2655 	else
2656 		return payload_len > ctx->max_payload;
2657 }
2658 
2659 static void aead_complete(struct crypto_async_request *areq, int err)
2660 {
2661 	struct aead_request *req =
2662 	    container_of(areq, struct aead_request, base);
2663 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2664 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2665 
2666 	flow_log("%s() err:%d\n", __func__, err);
2667 
2668 	areq->tfm = crypto_aead_tfm(aead);
2669 
2670 	areq->complete = rctx->old_complete;
2671 	areq->data = rctx->old_data;
2672 
2673 	areq->complete(areq, err);
2674 }
2675 
2676 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2677 {
2678 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2679 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2680 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2681 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2682 	int err;
2683 	u32 req_flags;
2684 
2685 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2686 
2687 	if (ctx->fallback_cipher) {
2688 		/* Store the cipher tfm and then use the fallback tfm */
2689 		rctx->old_tfm = tfm;
2690 		aead_request_set_tfm(req, ctx->fallback_cipher);
2691 		/*
2692 		 * Save the callback and chain ourselves in, so we can restore
2693 		 * the tfm
2694 		 */
2695 		rctx->old_complete = req->base.complete;
2696 		rctx->old_data = req->base.data;
2697 		req_flags = aead_request_flags(req);
2698 		aead_request_set_callback(req, req_flags, aead_complete, req);
2699 		err = is_encrypt ? crypto_aead_encrypt(req) :
2700 		    crypto_aead_decrypt(req);
2701 
2702 		if (err == 0) {
2703 			/*
2704 			 * fallback was synchronous (did not return
2705 			 * -EINPROGRESS). So restore request state here.
2706 			 */
2707 			aead_request_set_callback(req, req_flags,
2708 						  rctx->old_complete, req);
2709 			req->base.data = rctx->old_data;
2710 			aead_request_set_tfm(req, aead);
2711 			flow_log("%s() fallback completed successfully\n\n",
2712 				 __func__);
2713 		}
2714 	} else {
2715 		err = -EINVAL;
2716 	}
2717 
2718 	return err;
2719 }
2720 
2721 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2722 {
2723 	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2724 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2725 	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2726 	int err;
2727 
2728 	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2729 
2730 	if (req->assoclen > MAX_ASSOC_SIZE) {
2731 		pr_err
2732 		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2733 		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2734 		return -EINVAL;
2735 	}
2736 
2737 	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2738 		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2739 	rctx->parent = &req->base;
2740 	rctx->is_encrypt = is_encrypt;
2741 	rctx->bd_suppress = false;
2742 	rctx->total_todo = req->cryptlen;
2743 	rctx->src_sent = 0;
2744 	rctx->total_sent = 0;
2745 	rctx->total_received = 0;
2746 	rctx->is_sw_hmac = false;
2747 	rctx->ctx = ctx;
2748 	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2749 
2750 	/* assoc data is at start of src sg */
2751 	rctx->assoc = req->src;
2752 
2753 	/*
2754 	 * Init current position in src scatterlist to be after assoc data.
2755 	 * src_skip set to buffer offset where data begins. (Assoc data could
2756 	 * end in the middle of a buffer.)
2757 	 */
2758 	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2759 			     &rctx->src_skip) < 0) {
2760 		pr_err("%s() Error: Unable to find start of src data\n",
2761 		       __func__);
2762 		return -EINVAL;
2763 	}
2764 
2765 	rctx->src_nents = 0;
2766 	rctx->dst_nents = 0;
2767 	if (req->dst == req->src) {
2768 		rctx->dst_sg = rctx->src_sg;
2769 		rctx->dst_skip = rctx->src_skip;
2770 	} else {
2771 		/*
2772 		 * Expect req->dst to have room for assoc data followed by
2773 		 * output data and ICV, if encrypt. So initialize dst_sg
2774 		 * to point beyond assoc len offset.
2775 		 */
2776 		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2777 				     &rctx->dst_skip) < 0) {
2778 			pr_err("%s() Error: Unable to find start of dst data\n",
2779 			       __func__);
2780 			return -EINVAL;
2781 		}
2782 	}
2783 
2784 	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2785 	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2786 	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2787 	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2788 	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2789 		rctx->iv_ctr_len =
2790 			ctx->salt_len +
2791 			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2792 	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2793 		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2794 	} else {
2795 		rctx->iv_ctr_len = 0;
2796 	}
2797 
2798 	rctx->hash_carry_len = 0;
2799 
2800 	flow_log("  src sg: %p\n", req->src);
2801 	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2802 		 rctx->src_sg, rctx->src_skip);
2803 	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2804 	flow_log("  dst sg: %p\n", req->dst);
2805 	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2806 		 rctx->dst_sg, rctx->dst_skip);
2807 	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2808 	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2809 	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2810 	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2811 
2812 	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2813 		flow_log("  max_payload infinite");
2814 	else
2815 		flow_log("  max_payload: %u\n", ctx->max_payload);
2816 
2817 	if (unlikely(aead_need_fallback(req)))
2818 		return aead_do_fallback(req, is_encrypt);
2819 
2820 	/*
2821 	 * Do memory allocations for request after fallback check, because if we
2822 	 * do fallback, we won't call finish_req() to dealloc.
2823 	 */
2824 	if (rctx->iv_ctr_len) {
2825 		if (ctx->salt_len)
2826 			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2827 			       ctx->salt, ctx->salt_len);
2828 		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2829 		       req->iv,
2830 		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2831 	}
2832 
2833 	rctx->chan_idx = select_channel();
2834 	err = handle_aead_req(rctx);
2835 	if (err != -EINPROGRESS)
2836 		/* synchronous result */
2837 		spu_chunk_cleanup(rctx);
2838 
2839 	return err;
2840 }
2841 
2842 static int aead_authenc_setkey(struct crypto_aead *cipher,
2843 			       const u8 *key, unsigned int keylen)
2844 {
2845 	struct spu_hw *spu = &iproc_priv.spu;
2846 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2847 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2848 	struct crypto_authenc_keys keys;
2849 	int ret;
2850 
2851 	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2852 		 keylen);
2853 	flow_dump("  key: ", key, keylen);
2854 
2855 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2856 	if (ret)
2857 		goto badkey;
2858 
2859 	if (keys.enckeylen > MAX_KEY_SIZE ||
2860 	    keys.authkeylen > MAX_KEY_SIZE)
2861 		goto badkey;
2862 
2863 	ctx->enckeylen = keys.enckeylen;
2864 	ctx->authkeylen = keys.authkeylen;
2865 
2866 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2867 	/* May end up padding auth key. So make sure it's zeroed. */
2868 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2869 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2870 
2871 	switch (ctx->alg->cipher_info.alg) {
2872 	case CIPHER_ALG_DES:
2873 		if (ctx->enckeylen == DES_KEY_SIZE) {
2874 			u32 tmp[DES_EXPKEY_WORDS];
2875 			u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2876 
2877 			if (des_ekey(tmp, keys.enckey) == 0) {
2878 				if (crypto_aead_get_flags(cipher) &
2879 				    CRYPTO_TFM_REQ_WEAK_KEY) {
2880 					crypto_aead_set_flags(cipher, flags);
2881 					return -EINVAL;
2882 				}
2883 			}
2884 
2885 			ctx->cipher_type = CIPHER_TYPE_DES;
2886 		} else {
2887 			goto badkey;
2888 		}
2889 		break;
2890 	case CIPHER_ALG_3DES:
2891 		if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2892 			const u32 *K = (const u32 *)keys.enckey;
2893 			u32 flags = CRYPTO_TFM_RES_BAD_KEY_SCHED;
2894 
2895 			if (!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
2896 			    !((K[2] ^ K[4]) | (K[3] ^ K[5]))) {
2897 				crypto_aead_set_flags(cipher, flags);
2898 				return -EINVAL;
2899 			}
2900 
2901 			ctx->cipher_type = CIPHER_TYPE_3DES;
2902 		} else {
2903 			crypto_aead_set_flags(cipher,
2904 					      CRYPTO_TFM_RES_BAD_KEY_LEN);
2905 			return -EINVAL;
2906 		}
2907 		break;
2908 	case CIPHER_ALG_AES:
2909 		switch (ctx->enckeylen) {
2910 		case AES_KEYSIZE_128:
2911 			ctx->cipher_type = CIPHER_TYPE_AES128;
2912 			break;
2913 		case AES_KEYSIZE_192:
2914 			ctx->cipher_type = CIPHER_TYPE_AES192;
2915 			break;
2916 		case AES_KEYSIZE_256:
2917 			ctx->cipher_type = CIPHER_TYPE_AES256;
2918 			break;
2919 		default:
2920 			goto badkey;
2921 		}
2922 		break;
2923 	case CIPHER_ALG_RC4:
2924 		ctx->cipher_type = CIPHER_TYPE_INIT;
2925 		break;
2926 	default:
2927 		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2928 		return -EINVAL;
2929 	}
2930 
2931 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2932 		 ctx->authkeylen);
2933 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2934 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2935 
2936 	/* setkey the fallback just in case we needto use it */
2937 	if (ctx->fallback_cipher) {
2938 		flow_log("  running fallback setkey()\n");
2939 
2940 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2941 		ctx->fallback_cipher->base.crt_flags |=
2942 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2943 		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2944 		if (ret) {
2945 			flow_log("  fallback setkey() returned:%d\n", ret);
2946 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2947 			tfm->crt_flags |=
2948 			    (ctx->fallback_cipher->base.crt_flags &
2949 			     CRYPTO_TFM_RES_MASK);
2950 		}
2951 	}
2952 
2953 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2954 							  ctx->enckeylen,
2955 							  false);
2956 
2957 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2958 
2959 	return ret;
2960 
2961 badkey:
2962 	ctx->enckeylen = 0;
2963 	ctx->authkeylen = 0;
2964 	ctx->digestsize = 0;
2965 
2966 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2967 	return -EINVAL;
2968 }
2969 
2970 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2971 			       const u8 *key, unsigned int keylen)
2972 {
2973 	struct spu_hw *spu = &iproc_priv.spu;
2974 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2975 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2976 
2977 	int ret = 0;
2978 
2979 	flow_log("%s() keylen:%u\n", __func__, keylen);
2980 	flow_dump("  key: ", key, keylen);
2981 
2982 	if (!ctx->is_esp)
2983 		ctx->digestsize = keylen;
2984 
2985 	ctx->enckeylen = keylen;
2986 	ctx->authkeylen = 0;
2987 	memcpy(ctx->enckey, key, ctx->enckeylen);
2988 
2989 	switch (ctx->enckeylen) {
2990 	case AES_KEYSIZE_128:
2991 		ctx->cipher_type = CIPHER_TYPE_AES128;
2992 		break;
2993 	case AES_KEYSIZE_192:
2994 		ctx->cipher_type = CIPHER_TYPE_AES192;
2995 		break;
2996 	case AES_KEYSIZE_256:
2997 		ctx->cipher_type = CIPHER_TYPE_AES256;
2998 		break;
2999 	default:
3000 		goto badkey;
3001 	}
3002 
3003 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3004 		 ctx->authkeylen);
3005 	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
3006 	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
3007 
3008 	/* setkey the fallback just in case we need to use it */
3009 	if (ctx->fallback_cipher) {
3010 		flow_log("  running fallback setkey()\n");
3011 
3012 		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
3013 		ctx->fallback_cipher->base.crt_flags |=
3014 		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3015 		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3016 					 keylen + ctx->salt_len);
3017 		if (ret) {
3018 			flow_log("  fallback setkey() returned:%d\n", ret);
3019 			tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3020 			tfm->crt_flags |=
3021 			    (ctx->fallback_cipher->base.crt_flags &
3022 			     CRYPTO_TFM_RES_MASK);
3023 		}
3024 	}
3025 
3026 	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3027 							  ctx->enckeylen,
3028 							  false);
3029 
3030 	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3031 
3032 	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3033 		 ctx->authkeylen);
3034 
3035 	return ret;
3036 
3037 badkey:
3038 	ctx->enckeylen = 0;
3039 	ctx->authkeylen = 0;
3040 	ctx->digestsize = 0;
3041 
3042 	crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3043 	return -EINVAL;
3044 }
3045 
3046 /**
3047  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3048  * @cipher: AEAD structure
3049  * @key:    Key followed by 4 bytes of salt
3050  * @keylen: Length of key plus salt, in bytes
3051  *
3052  * Extracts salt from key and stores it to be prepended to IV on each request.
3053  * Digest is always 16 bytes
3054  *
3055  * Return: Value from generic gcm setkey.
3056  */
3057 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3058 			       const u8 *key, unsigned int keylen)
3059 {
3060 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3061 
3062 	flow_log("%s\n", __func__);
3063 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3064 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3065 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3066 	keylen -= GCM_ESP_SALT_SIZE;
3067 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3068 	ctx->is_esp = true;
3069 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3070 
3071 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3072 }
3073 
3074 /**
3075  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3076  * cipher: AEAD structure
3077  * key:    Key followed by 4 bytes of salt
3078  * keylen: Length of key plus salt, in bytes
3079  *
3080  * Extracts salt from key and stores it to be prepended to IV on each request.
3081  * Digest is always 16 bytes
3082  *
3083  * Return: Value from generic gcm setkey.
3084  */
3085 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3086 				  const u8 *key, unsigned int keylen)
3087 {
3088 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3089 
3090 	flow_log("%s\n", __func__);
3091 	ctx->salt_len = GCM_ESP_SALT_SIZE;
3092 	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3093 	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3094 	keylen -= GCM_ESP_SALT_SIZE;
3095 	ctx->digestsize = GCM_ESP_DIGESTSIZE;
3096 	ctx->is_esp = true;
3097 	ctx->is_rfc4543 = true;
3098 	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3099 
3100 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3101 }
3102 
3103 /**
3104  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3105  * @cipher: AEAD structure
3106  * @key:    Key followed by 4 bytes of salt
3107  * @keylen: Length of key plus salt, in bytes
3108  *
3109  * Extracts salt from key and stores it to be prepended to IV on each request.
3110  * Digest is always 16 bytes
3111  *
3112  * Return: Value from generic ccm setkey.
3113  */
3114 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3115 			       const u8 *key, unsigned int keylen)
3116 {
3117 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3118 
3119 	flow_log("%s\n", __func__);
3120 	ctx->salt_len = CCM_ESP_SALT_SIZE;
3121 	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3122 	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3123 	keylen -= CCM_ESP_SALT_SIZE;
3124 	ctx->is_esp = true;
3125 	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3126 
3127 	return aead_gcm_ccm_setkey(cipher, key, keylen);
3128 }
3129 
3130 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3131 {
3132 	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3133 	int ret = 0;
3134 
3135 	flow_log("%s() authkeylen:%u authsize:%u\n",
3136 		 __func__, ctx->authkeylen, authsize);
3137 
3138 	ctx->digestsize = authsize;
3139 
3140 	/* setkey the fallback just in case we needto use it */
3141 	if (ctx->fallback_cipher) {
3142 		flow_log("  running fallback setauth()\n");
3143 
3144 		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3145 		if (ret)
3146 			flow_log("  fallback setauth() returned:%d\n", ret);
3147 	}
3148 
3149 	return ret;
3150 }
3151 
3152 static int aead_encrypt(struct aead_request *req)
3153 {
3154 	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3155 		 req->cryptlen);
3156 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3157 	flow_log("  assoc_len:%u\n", req->assoclen);
3158 
3159 	return aead_enqueue(req, true);
3160 }
3161 
3162 static int aead_decrypt(struct aead_request *req)
3163 {
3164 	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3165 	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3166 	flow_log("  assoc_len:%u\n", req->assoclen);
3167 
3168 	return aead_enqueue(req, false);
3169 }
3170 
3171 /* ==================== Supported Cipher Algorithms ==================== */
3172 
3173 static struct iproc_alg_s driver_algs[] = {
3174 	{
3175 	 .type = CRYPTO_ALG_TYPE_AEAD,
3176 	 .alg.aead = {
3177 		 .base = {
3178 			.cra_name = "gcm(aes)",
3179 			.cra_driver_name = "gcm-aes-iproc",
3180 			.cra_blocksize = AES_BLOCK_SIZE,
3181 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3182 		 },
3183 		 .setkey = aead_gcm_ccm_setkey,
3184 		 .ivsize = GCM_AES_IV_SIZE,
3185 		.maxauthsize = AES_BLOCK_SIZE,
3186 	 },
3187 	 .cipher_info = {
3188 			 .alg = CIPHER_ALG_AES,
3189 			 .mode = CIPHER_MODE_GCM,
3190 			 },
3191 	 .auth_info = {
3192 		       .alg = HASH_ALG_AES,
3193 		       .mode = HASH_MODE_GCM,
3194 		       },
3195 	 .auth_first = 0,
3196 	 },
3197 	{
3198 	 .type = CRYPTO_ALG_TYPE_AEAD,
3199 	 .alg.aead = {
3200 		 .base = {
3201 			.cra_name = "ccm(aes)",
3202 			.cra_driver_name = "ccm-aes-iproc",
3203 			.cra_blocksize = AES_BLOCK_SIZE,
3204 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3205 		 },
3206 		 .setkey = aead_gcm_ccm_setkey,
3207 		 .ivsize = CCM_AES_IV_SIZE,
3208 		.maxauthsize = AES_BLOCK_SIZE,
3209 	 },
3210 	 .cipher_info = {
3211 			 .alg = CIPHER_ALG_AES,
3212 			 .mode = CIPHER_MODE_CCM,
3213 			 },
3214 	 .auth_info = {
3215 		       .alg = HASH_ALG_AES,
3216 		       .mode = HASH_MODE_CCM,
3217 		       },
3218 	 .auth_first = 0,
3219 	 },
3220 	{
3221 	 .type = CRYPTO_ALG_TYPE_AEAD,
3222 	 .alg.aead = {
3223 		 .base = {
3224 			.cra_name = "rfc4106(gcm(aes))",
3225 			.cra_driver_name = "gcm-aes-esp-iproc",
3226 			.cra_blocksize = AES_BLOCK_SIZE,
3227 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3228 		 },
3229 		 .setkey = aead_gcm_esp_setkey,
3230 		 .ivsize = GCM_RFC4106_IV_SIZE,
3231 		 .maxauthsize = AES_BLOCK_SIZE,
3232 	 },
3233 	 .cipher_info = {
3234 			 .alg = CIPHER_ALG_AES,
3235 			 .mode = CIPHER_MODE_GCM,
3236 			 },
3237 	 .auth_info = {
3238 		       .alg = HASH_ALG_AES,
3239 		       .mode = HASH_MODE_GCM,
3240 		       },
3241 	 .auth_first = 0,
3242 	 },
3243 	{
3244 	 .type = CRYPTO_ALG_TYPE_AEAD,
3245 	 .alg.aead = {
3246 		 .base = {
3247 			.cra_name = "rfc4309(ccm(aes))",
3248 			.cra_driver_name = "ccm-aes-esp-iproc",
3249 			.cra_blocksize = AES_BLOCK_SIZE,
3250 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3251 		 },
3252 		 .setkey = aead_ccm_esp_setkey,
3253 		 .ivsize = CCM_AES_IV_SIZE,
3254 		 .maxauthsize = AES_BLOCK_SIZE,
3255 	 },
3256 	 .cipher_info = {
3257 			 .alg = CIPHER_ALG_AES,
3258 			 .mode = CIPHER_MODE_CCM,
3259 			 },
3260 	 .auth_info = {
3261 		       .alg = HASH_ALG_AES,
3262 		       .mode = HASH_MODE_CCM,
3263 		       },
3264 	 .auth_first = 0,
3265 	 },
3266 	{
3267 	 .type = CRYPTO_ALG_TYPE_AEAD,
3268 	 .alg.aead = {
3269 		 .base = {
3270 			.cra_name = "rfc4543(gcm(aes))",
3271 			.cra_driver_name = "gmac-aes-esp-iproc",
3272 			.cra_blocksize = AES_BLOCK_SIZE,
3273 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3274 		 },
3275 		 .setkey = rfc4543_gcm_esp_setkey,
3276 		 .ivsize = GCM_RFC4106_IV_SIZE,
3277 		 .maxauthsize = AES_BLOCK_SIZE,
3278 	 },
3279 	 .cipher_info = {
3280 			 .alg = CIPHER_ALG_AES,
3281 			 .mode = CIPHER_MODE_GCM,
3282 			 },
3283 	 .auth_info = {
3284 		       .alg = HASH_ALG_AES,
3285 		       .mode = HASH_MODE_GCM,
3286 		       },
3287 	 .auth_first = 0,
3288 	 },
3289 	{
3290 	 .type = CRYPTO_ALG_TYPE_AEAD,
3291 	 .alg.aead = {
3292 		 .base = {
3293 			.cra_name = "authenc(hmac(md5),cbc(aes))",
3294 			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3295 			.cra_blocksize = AES_BLOCK_SIZE,
3296 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3297 		 },
3298 		 .setkey = aead_authenc_setkey,
3299 		.ivsize = AES_BLOCK_SIZE,
3300 		.maxauthsize = MD5_DIGEST_SIZE,
3301 	 },
3302 	 .cipher_info = {
3303 			 .alg = CIPHER_ALG_AES,
3304 			 .mode = CIPHER_MODE_CBC,
3305 			 },
3306 	 .auth_info = {
3307 		       .alg = HASH_ALG_MD5,
3308 		       .mode = HASH_MODE_HMAC,
3309 		       },
3310 	 .auth_first = 0,
3311 	 },
3312 	{
3313 	 .type = CRYPTO_ALG_TYPE_AEAD,
3314 	 .alg.aead = {
3315 		 .base = {
3316 			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3317 			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3318 			.cra_blocksize = AES_BLOCK_SIZE,
3319 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3320 		 },
3321 		 .setkey = aead_authenc_setkey,
3322 		 .ivsize = AES_BLOCK_SIZE,
3323 		 .maxauthsize = SHA1_DIGEST_SIZE,
3324 	 },
3325 	 .cipher_info = {
3326 			 .alg = CIPHER_ALG_AES,
3327 			 .mode = CIPHER_MODE_CBC,
3328 			 },
3329 	 .auth_info = {
3330 		       .alg = HASH_ALG_SHA1,
3331 		       .mode = HASH_MODE_HMAC,
3332 		       },
3333 	 .auth_first = 0,
3334 	 },
3335 	{
3336 	 .type = CRYPTO_ALG_TYPE_AEAD,
3337 	 .alg.aead = {
3338 		 .base = {
3339 			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3340 			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3341 			.cra_blocksize = AES_BLOCK_SIZE,
3342 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3343 		 },
3344 		 .setkey = aead_authenc_setkey,
3345 		 .ivsize = AES_BLOCK_SIZE,
3346 		 .maxauthsize = SHA256_DIGEST_SIZE,
3347 	 },
3348 	 .cipher_info = {
3349 			 .alg = CIPHER_ALG_AES,
3350 			 .mode = CIPHER_MODE_CBC,
3351 			 },
3352 	 .auth_info = {
3353 		       .alg = HASH_ALG_SHA256,
3354 		       .mode = HASH_MODE_HMAC,
3355 		       },
3356 	 .auth_first = 0,
3357 	 },
3358 	{
3359 	 .type = CRYPTO_ALG_TYPE_AEAD,
3360 	 .alg.aead = {
3361 		 .base = {
3362 			.cra_name = "authenc(hmac(md5),cbc(des))",
3363 			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3364 			.cra_blocksize = DES_BLOCK_SIZE,
3365 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3366 		 },
3367 		 .setkey = aead_authenc_setkey,
3368 		 .ivsize = DES_BLOCK_SIZE,
3369 		 .maxauthsize = MD5_DIGEST_SIZE,
3370 	 },
3371 	 .cipher_info = {
3372 			 .alg = CIPHER_ALG_DES,
3373 			 .mode = CIPHER_MODE_CBC,
3374 			 },
3375 	 .auth_info = {
3376 		       .alg = HASH_ALG_MD5,
3377 		       .mode = HASH_MODE_HMAC,
3378 		       },
3379 	 .auth_first = 0,
3380 	 },
3381 	{
3382 	 .type = CRYPTO_ALG_TYPE_AEAD,
3383 	 .alg.aead = {
3384 		 .base = {
3385 			.cra_name = "authenc(hmac(sha1),cbc(des))",
3386 			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3387 			.cra_blocksize = DES_BLOCK_SIZE,
3388 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3389 		 },
3390 		 .setkey = aead_authenc_setkey,
3391 		 .ivsize = DES_BLOCK_SIZE,
3392 		 .maxauthsize = SHA1_DIGEST_SIZE,
3393 	 },
3394 	 .cipher_info = {
3395 			 .alg = CIPHER_ALG_DES,
3396 			 .mode = CIPHER_MODE_CBC,
3397 			 },
3398 	 .auth_info = {
3399 		       .alg = HASH_ALG_SHA1,
3400 		       .mode = HASH_MODE_HMAC,
3401 		       },
3402 	 .auth_first = 0,
3403 	 },
3404 	{
3405 	 .type = CRYPTO_ALG_TYPE_AEAD,
3406 	 .alg.aead = {
3407 		 .base = {
3408 			.cra_name = "authenc(hmac(sha224),cbc(des))",
3409 			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3410 			.cra_blocksize = DES_BLOCK_SIZE,
3411 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3412 		 },
3413 		 .setkey = aead_authenc_setkey,
3414 		 .ivsize = DES_BLOCK_SIZE,
3415 		 .maxauthsize = SHA224_DIGEST_SIZE,
3416 	 },
3417 	 .cipher_info = {
3418 			 .alg = CIPHER_ALG_DES,
3419 			 .mode = CIPHER_MODE_CBC,
3420 			 },
3421 	 .auth_info = {
3422 		       .alg = HASH_ALG_SHA224,
3423 		       .mode = HASH_MODE_HMAC,
3424 		       },
3425 	 .auth_first = 0,
3426 	 },
3427 	{
3428 	 .type = CRYPTO_ALG_TYPE_AEAD,
3429 	 .alg.aead = {
3430 		 .base = {
3431 			.cra_name = "authenc(hmac(sha256),cbc(des))",
3432 			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3433 			.cra_blocksize = DES_BLOCK_SIZE,
3434 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3435 		 },
3436 		 .setkey = aead_authenc_setkey,
3437 		 .ivsize = DES_BLOCK_SIZE,
3438 		 .maxauthsize = SHA256_DIGEST_SIZE,
3439 	 },
3440 	 .cipher_info = {
3441 			 .alg = CIPHER_ALG_DES,
3442 			 .mode = CIPHER_MODE_CBC,
3443 			 },
3444 	 .auth_info = {
3445 		       .alg = HASH_ALG_SHA256,
3446 		       .mode = HASH_MODE_HMAC,
3447 		       },
3448 	 .auth_first = 0,
3449 	 },
3450 	{
3451 	 .type = CRYPTO_ALG_TYPE_AEAD,
3452 	 .alg.aead = {
3453 		 .base = {
3454 			.cra_name = "authenc(hmac(sha384),cbc(des))",
3455 			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3456 			.cra_blocksize = DES_BLOCK_SIZE,
3457 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3458 		 },
3459 		 .setkey = aead_authenc_setkey,
3460 		 .ivsize = DES_BLOCK_SIZE,
3461 		 .maxauthsize = SHA384_DIGEST_SIZE,
3462 	 },
3463 	 .cipher_info = {
3464 			 .alg = CIPHER_ALG_DES,
3465 			 .mode = CIPHER_MODE_CBC,
3466 			 },
3467 	 .auth_info = {
3468 		       .alg = HASH_ALG_SHA384,
3469 		       .mode = HASH_MODE_HMAC,
3470 		       },
3471 	 .auth_first = 0,
3472 	 },
3473 	{
3474 	 .type = CRYPTO_ALG_TYPE_AEAD,
3475 	 .alg.aead = {
3476 		 .base = {
3477 			.cra_name = "authenc(hmac(sha512),cbc(des))",
3478 			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3479 			.cra_blocksize = DES_BLOCK_SIZE,
3480 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3481 		 },
3482 		 .setkey = aead_authenc_setkey,
3483 		 .ivsize = DES_BLOCK_SIZE,
3484 		 .maxauthsize = SHA512_DIGEST_SIZE,
3485 	 },
3486 	 .cipher_info = {
3487 			 .alg = CIPHER_ALG_DES,
3488 			 .mode = CIPHER_MODE_CBC,
3489 			 },
3490 	 .auth_info = {
3491 		       .alg = HASH_ALG_SHA512,
3492 		       .mode = HASH_MODE_HMAC,
3493 		       },
3494 	 .auth_first = 0,
3495 	 },
3496 	{
3497 	 .type = CRYPTO_ALG_TYPE_AEAD,
3498 	 .alg.aead = {
3499 		 .base = {
3500 			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3501 			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3502 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3503 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3504 		 },
3505 		 .setkey = aead_authenc_setkey,
3506 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3507 		 .maxauthsize = MD5_DIGEST_SIZE,
3508 	 },
3509 	 .cipher_info = {
3510 			 .alg = CIPHER_ALG_3DES,
3511 			 .mode = CIPHER_MODE_CBC,
3512 			 },
3513 	 .auth_info = {
3514 		       .alg = HASH_ALG_MD5,
3515 		       .mode = HASH_MODE_HMAC,
3516 		       },
3517 	 .auth_first = 0,
3518 	 },
3519 	{
3520 	 .type = CRYPTO_ALG_TYPE_AEAD,
3521 	 .alg.aead = {
3522 		 .base = {
3523 			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3524 			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3525 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3526 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3527 		 },
3528 		 .setkey = aead_authenc_setkey,
3529 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3530 		 .maxauthsize = SHA1_DIGEST_SIZE,
3531 	 },
3532 	 .cipher_info = {
3533 			 .alg = CIPHER_ALG_3DES,
3534 			 .mode = CIPHER_MODE_CBC,
3535 			 },
3536 	 .auth_info = {
3537 		       .alg = HASH_ALG_SHA1,
3538 		       .mode = HASH_MODE_HMAC,
3539 		       },
3540 	 .auth_first = 0,
3541 	 },
3542 	{
3543 	 .type = CRYPTO_ALG_TYPE_AEAD,
3544 	 .alg.aead = {
3545 		 .base = {
3546 			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3547 			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3548 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3549 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3550 		 },
3551 		 .setkey = aead_authenc_setkey,
3552 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3553 		 .maxauthsize = SHA224_DIGEST_SIZE,
3554 	 },
3555 	 .cipher_info = {
3556 			 .alg = CIPHER_ALG_3DES,
3557 			 .mode = CIPHER_MODE_CBC,
3558 			 },
3559 	 .auth_info = {
3560 		       .alg = HASH_ALG_SHA224,
3561 		       .mode = HASH_MODE_HMAC,
3562 		       },
3563 	 .auth_first = 0,
3564 	 },
3565 	{
3566 	 .type = CRYPTO_ALG_TYPE_AEAD,
3567 	 .alg.aead = {
3568 		 .base = {
3569 			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3570 			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3571 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3572 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3573 		 },
3574 		 .setkey = aead_authenc_setkey,
3575 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3576 		 .maxauthsize = SHA256_DIGEST_SIZE,
3577 	 },
3578 	 .cipher_info = {
3579 			 .alg = CIPHER_ALG_3DES,
3580 			 .mode = CIPHER_MODE_CBC,
3581 			 },
3582 	 .auth_info = {
3583 		       .alg = HASH_ALG_SHA256,
3584 		       .mode = HASH_MODE_HMAC,
3585 		       },
3586 	 .auth_first = 0,
3587 	 },
3588 	{
3589 	 .type = CRYPTO_ALG_TYPE_AEAD,
3590 	 .alg.aead = {
3591 		 .base = {
3592 			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3593 			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3594 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3595 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3596 		 },
3597 		 .setkey = aead_authenc_setkey,
3598 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3599 		 .maxauthsize = SHA384_DIGEST_SIZE,
3600 	 },
3601 	 .cipher_info = {
3602 			 .alg = CIPHER_ALG_3DES,
3603 			 .mode = CIPHER_MODE_CBC,
3604 			 },
3605 	 .auth_info = {
3606 		       .alg = HASH_ALG_SHA384,
3607 		       .mode = HASH_MODE_HMAC,
3608 		       },
3609 	 .auth_first = 0,
3610 	 },
3611 	{
3612 	 .type = CRYPTO_ALG_TYPE_AEAD,
3613 	 .alg.aead = {
3614 		 .base = {
3615 			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3616 			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3617 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3618 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3619 		 },
3620 		 .setkey = aead_authenc_setkey,
3621 		 .ivsize = DES3_EDE_BLOCK_SIZE,
3622 		 .maxauthsize = SHA512_DIGEST_SIZE,
3623 	 },
3624 	 .cipher_info = {
3625 			 .alg = CIPHER_ALG_3DES,
3626 			 .mode = CIPHER_MODE_CBC,
3627 			 },
3628 	 .auth_info = {
3629 		       .alg = HASH_ALG_SHA512,
3630 		       .mode = HASH_MODE_HMAC,
3631 		       },
3632 	 .auth_first = 0,
3633 	 },
3634 
3635 /* ABLKCIPHER algorithms. */
3636 	{
3637 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3638 	 .alg.crypto = {
3639 			.cra_name = "ecb(arc4)",
3640 			.cra_driver_name = "ecb-arc4-iproc",
3641 			.cra_blocksize = ARC4_BLOCK_SIZE,
3642 			.cra_ablkcipher = {
3643 					   .min_keysize = ARC4_MIN_KEY_SIZE,
3644 					   .max_keysize = ARC4_MAX_KEY_SIZE,
3645 					   .ivsize = 0,
3646 					}
3647 			},
3648 	 .cipher_info = {
3649 			 .alg = CIPHER_ALG_RC4,
3650 			 .mode = CIPHER_MODE_NONE,
3651 			 },
3652 	 .auth_info = {
3653 		       .alg = HASH_ALG_NONE,
3654 		       .mode = HASH_MODE_NONE,
3655 		       },
3656 	 },
3657 	{
3658 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3659 	 .alg.crypto = {
3660 			.cra_name = "ofb(des)",
3661 			.cra_driver_name = "ofb-des-iproc",
3662 			.cra_blocksize = DES_BLOCK_SIZE,
3663 			.cra_ablkcipher = {
3664 					   .min_keysize = DES_KEY_SIZE,
3665 					   .max_keysize = DES_KEY_SIZE,
3666 					   .ivsize = DES_BLOCK_SIZE,
3667 					}
3668 			},
3669 	 .cipher_info = {
3670 			 .alg = CIPHER_ALG_DES,
3671 			 .mode = CIPHER_MODE_OFB,
3672 			 },
3673 	 .auth_info = {
3674 		       .alg = HASH_ALG_NONE,
3675 		       .mode = HASH_MODE_NONE,
3676 		       },
3677 	 },
3678 	{
3679 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3680 	 .alg.crypto = {
3681 			.cra_name = "cbc(des)",
3682 			.cra_driver_name = "cbc-des-iproc",
3683 			.cra_blocksize = DES_BLOCK_SIZE,
3684 			.cra_ablkcipher = {
3685 					   .min_keysize = DES_KEY_SIZE,
3686 					   .max_keysize = DES_KEY_SIZE,
3687 					   .ivsize = DES_BLOCK_SIZE,
3688 					}
3689 			},
3690 	 .cipher_info = {
3691 			 .alg = CIPHER_ALG_DES,
3692 			 .mode = CIPHER_MODE_CBC,
3693 			 },
3694 	 .auth_info = {
3695 		       .alg = HASH_ALG_NONE,
3696 		       .mode = HASH_MODE_NONE,
3697 		       },
3698 	 },
3699 	{
3700 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3701 	 .alg.crypto = {
3702 			.cra_name = "ecb(des)",
3703 			.cra_driver_name = "ecb-des-iproc",
3704 			.cra_blocksize = DES_BLOCK_SIZE,
3705 			.cra_ablkcipher = {
3706 					   .min_keysize = DES_KEY_SIZE,
3707 					   .max_keysize = DES_KEY_SIZE,
3708 					   .ivsize = 0,
3709 					}
3710 			},
3711 	 .cipher_info = {
3712 			 .alg = CIPHER_ALG_DES,
3713 			 .mode = CIPHER_MODE_ECB,
3714 			 },
3715 	 .auth_info = {
3716 		       .alg = HASH_ALG_NONE,
3717 		       .mode = HASH_MODE_NONE,
3718 		       },
3719 	 },
3720 	{
3721 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3722 	 .alg.crypto = {
3723 			.cra_name = "ofb(des3_ede)",
3724 			.cra_driver_name = "ofb-des3-iproc",
3725 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3726 			.cra_ablkcipher = {
3727 					   .min_keysize = DES3_EDE_KEY_SIZE,
3728 					   .max_keysize = DES3_EDE_KEY_SIZE,
3729 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3730 					}
3731 			},
3732 	 .cipher_info = {
3733 			 .alg = CIPHER_ALG_3DES,
3734 			 .mode = CIPHER_MODE_OFB,
3735 			 },
3736 	 .auth_info = {
3737 		       .alg = HASH_ALG_NONE,
3738 		       .mode = HASH_MODE_NONE,
3739 		       },
3740 	 },
3741 	{
3742 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3743 	 .alg.crypto = {
3744 			.cra_name = "cbc(des3_ede)",
3745 			.cra_driver_name = "cbc-des3-iproc",
3746 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3747 			.cra_ablkcipher = {
3748 					   .min_keysize = DES3_EDE_KEY_SIZE,
3749 					   .max_keysize = DES3_EDE_KEY_SIZE,
3750 					   .ivsize = DES3_EDE_BLOCK_SIZE,
3751 					}
3752 			},
3753 	 .cipher_info = {
3754 			 .alg = CIPHER_ALG_3DES,
3755 			 .mode = CIPHER_MODE_CBC,
3756 			 },
3757 	 .auth_info = {
3758 		       .alg = HASH_ALG_NONE,
3759 		       .mode = HASH_MODE_NONE,
3760 		       },
3761 	 },
3762 	{
3763 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3764 	 .alg.crypto = {
3765 			.cra_name = "ecb(des3_ede)",
3766 			.cra_driver_name = "ecb-des3-iproc",
3767 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3768 			.cra_ablkcipher = {
3769 					   .min_keysize = DES3_EDE_KEY_SIZE,
3770 					   .max_keysize = DES3_EDE_KEY_SIZE,
3771 					   .ivsize = 0,
3772 					}
3773 			},
3774 	 .cipher_info = {
3775 			 .alg = CIPHER_ALG_3DES,
3776 			 .mode = CIPHER_MODE_ECB,
3777 			 },
3778 	 .auth_info = {
3779 		       .alg = HASH_ALG_NONE,
3780 		       .mode = HASH_MODE_NONE,
3781 		       },
3782 	 },
3783 	{
3784 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3785 	 .alg.crypto = {
3786 			.cra_name = "ofb(aes)",
3787 			.cra_driver_name = "ofb-aes-iproc",
3788 			.cra_blocksize = AES_BLOCK_SIZE,
3789 			.cra_ablkcipher = {
3790 					   .min_keysize = AES_MIN_KEY_SIZE,
3791 					   .max_keysize = AES_MAX_KEY_SIZE,
3792 					   .ivsize = AES_BLOCK_SIZE,
3793 					}
3794 			},
3795 	 .cipher_info = {
3796 			 .alg = CIPHER_ALG_AES,
3797 			 .mode = CIPHER_MODE_OFB,
3798 			 },
3799 	 .auth_info = {
3800 		       .alg = HASH_ALG_NONE,
3801 		       .mode = HASH_MODE_NONE,
3802 		       },
3803 	 },
3804 	{
3805 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3806 	 .alg.crypto = {
3807 			.cra_name = "cbc(aes)",
3808 			.cra_driver_name = "cbc-aes-iproc",
3809 			.cra_blocksize = AES_BLOCK_SIZE,
3810 			.cra_ablkcipher = {
3811 					   .min_keysize = AES_MIN_KEY_SIZE,
3812 					   .max_keysize = AES_MAX_KEY_SIZE,
3813 					   .ivsize = AES_BLOCK_SIZE,
3814 					}
3815 			},
3816 	 .cipher_info = {
3817 			 .alg = CIPHER_ALG_AES,
3818 			 .mode = CIPHER_MODE_CBC,
3819 			 },
3820 	 .auth_info = {
3821 		       .alg = HASH_ALG_NONE,
3822 		       .mode = HASH_MODE_NONE,
3823 		       },
3824 	 },
3825 	{
3826 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3827 	 .alg.crypto = {
3828 			.cra_name = "ecb(aes)",
3829 			.cra_driver_name = "ecb-aes-iproc",
3830 			.cra_blocksize = AES_BLOCK_SIZE,
3831 			.cra_ablkcipher = {
3832 					   .min_keysize = AES_MIN_KEY_SIZE,
3833 					   .max_keysize = AES_MAX_KEY_SIZE,
3834 					   .ivsize = 0,
3835 					}
3836 			},
3837 	 .cipher_info = {
3838 			 .alg = CIPHER_ALG_AES,
3839 			 .mode = CIPHER_MODE_ECB,
3840 			 },
3841 	 .auth_info = {
3842 		       .alg = HASH_ALG_NONE,
3843 		       .mode = HASH_MODE_NONE,
3844 		       },
3845 	 },
3846 	{
3847 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3848 	 .alg.crypto = {
3849 			.cra_name = "ctr(aes)",
3850 			.cra_driver_name = "ctr-aes-iproc",
3851 			.cra_blocksize = AES_BLOCK_SIZE,
3852 			.cra_ablkcipher = {
3853 					   .min_keysize = AES_MIN_KEY_SIZE,
3854 					   .max_keysize = AES_MAX_KEY_SIZE,
3855 					   .ivsize = AES_BLOCK_SIZE,
3856 					}
3857 			},
3858 	 .cipher_info = {
3859 			 .alg = CIPHER_ALG_AES,
3860 			 .mode = CIPHER_MODE_CTR,
3861 			 },
3862 	 .auth_info = {
3863 		       .alg = HASH_ALG_NONE,
3864 		       .mode = HASH_MODE_NONE,
3865 		       },
3866 	 },
3867 {
3868 	 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3869 	 .alg.crypto = {
3870 			.cra_name = "xts(aes)",
3871 			.cra_driver_name = "xts-aes-iproc",
3872 			.cra_blocksize = AES_BLOCK_SIZE,
3873 			.cra_ablkcipher = {
3874 				.min_keysize = 2 * AES_MIN_KEY_SIZE,
3875 				.max_keysize = 2 * AES_MAX_KEY_SIZE,
3876 				.ivsize = AES_BLOCK_SIZE,
3877 				}
3878 			},
3879 	 .cipher_info = {
3880 			 .alg = CIPHER_ALG_AES,
3881 			 .mode = CIPHER_MODE_XTS,
3882 			 },
3883 	 .auth_info = {
3884 		       .alg = HASH_ALG_NONE,
3885 		       .mode = HASH_MODE_NONE,
3886 		       },
3887 	 },
3888 
3889 /* AHASH algorithms. */
3890 	{
3891 	 .type = CRYPTO_ALG_TYPE_AHASH,
3892 	 .alg.hash = {
3893 		      .halg.digestsize = MD5_DIGEST_SIZE,
3894 		      .halg.base = {
3895 				    .cra_name = "md5",
3896 				    .cra_driver_name = "md5-iproc",
3897 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3898 				    .cra_flags = CRYPTO_ALG_ASYNC,
3899 				}
3900 		      },
3901 	 .cipher_info = {
3902 			 .alg = CIPHER_ALG_NONE,
3903 			 .mode = CIPHER_MODE_NONE,
3904 			 },
3905 	 .auth_info = {
3906 		       .alg = HASH_ALG_MD5,
3907 		       .mode = HASH_MODE_HASH,
3908 		       },
3909 	 },
3910 	{
3911 	 .type = CRYPTO_ALG_TYPE_AHASH,
3912 	 .alg.hash = {
3913 		      .halg.digestsize = MD5_DIGEST_SIZE,
3914 		      .halg.base = {
3915 				    .cra_name = "hmac(md5)",
3916 				    .cra_driver_name = "hmac-md5-iproc",
3917 				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3918 				}
3919 		      },
3920 	 .cipher_info = {
3921 			 .alg = CIPHER_ALG_NONE,
3922 			 .mode = CIPHER_MODE_NONE,
3923 			 },
3924 	 .auth_info = {
3925 		       .alg = HASH_ALG_MD5,
3926 		       .mode = HASH_MODE_HMAC,
3927 		       },
3928 	 },
3929 	{.type = CRYPTO_ALG_TYPE_AHASH,
3930 	 .alg.hash = {
3931 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3932 		      .halg.base = {
3933 				    .cra_name = "sha1",
3934 				    .cra_driver_name = "sha1-iproc",
3935 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3936 				}
3937 		      },
3938 	 .cipher_info = {
3939 			 .alg = CIPHER_ALG_NONE,
3940 			 .mode = CIPHER_MODE_NONE,
3941 			 },
3942 	 .auth_info = {
3943 		       .alg = HASH_ALG_SHA1,
3944 		       .mode = HASH_MODE_HASH,
3945 		       },
3946 	 },
3947 	{.type = CRYPTO_ALG_TYPE_AHASH,
3948 	 .alg.hash = {
3949 		      .halg.digestsize = SHA1_DIGEST_SIZE,
3950 		      .halg.base = {
3951 				    .cra_name = "hmac(sha1)",
3952 				    .cra_driver_name = "hmac-sha1-iproc",
3953 				    .cra_blocksize = SHA1_BLOCK_SIZE,
3954 				}
3955 		      },
3956 	 .cipher_info = {
3957 			 .alg = CIPHER_ALG_NONE,
3958 			 .mode = CIPHER_MODE_NONE,
3959 			 },
3960 	 .auth_info = {
3961 		       .alg = HASH_ALG_SHA1,
3962 		       .mode = HASH_MODE_HMAC,
3963 		       },
3964 	 },
3965 	{.type = CRYPTO_ALG_TYPE_AHASH,
3966 	 .alg.hash = {
3967 			.halg.digestsize = SHA224_DIGEST_SIZE,
3968 			.halg.base = {
3969 				    .cra_name = "sha224",
3970 				    .cra_driver_name = "sha224-iproc",
3971 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3972 			}
3973 		      },
3974 	 .cipher_info = {
3975 			 .alg = CIPHER_ALG_NONE,
3976 			 .mode = CIPHER_MODE_NONE,
3977 			 },
3978 	 .auth_info = {
3979 		       .alg = HASH_ALG_SHA224,
3980 		       .mode = HASH_MODE_HASH,
3981 		       },
3982 	 },
3983 	{.type = CRYPTO_ALG_TYPE_AHASH,
3984 	 .alg.hash = {
3985 		      .halg.digestsize = SHA224_DIGEST_SIZE,
3986 		      .halg.base = {
3987 				    .cra_name = "hmac(sha224)",
3988 				    .cra_driver_name = "hmac-sha224-iproc",
3989 				    .cra_blocksize = SHA224_BLOCK_SIZE,
3990 				}
3991 		      },
3992 	 .cipher_info = {
3993 			 .alg = CIPHER_ALG_NONE,
3994 			 .mode = CIPHER_MODE_NONE,
3995 			 },
3996 	 .auth_info = {
3997 		       .alg = HASH_ALG_SHA224,
3998 		       .mode = HASH_MODE_HMAC,
3999 		       },
4000 	 },
4001 	{.type = CRYPTO_ALG_TYPE_AHASH,
4002 	 .alg.hash = {
4003 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4004 		      .halg.base = {
4005 				    .cra_name = "sha256",
4006 				    .cra_driver_name = "sha256-iproc",
4007 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4008 				}
4009 		      },
4010 	 .cipher_info = {
4011 			 .alg = CIPHER_ALG_NONE,
4012 			 .mode = CIPHER_MODE_NONE,
4013 			 },
4014 	 .auth_info = {
4015 		       .alg = HASH_ALG_SHA256,
4016 		       .mode = HASH_MODE_HASH,
4017 		       },
4018 	 },
4019 	{.type = CRYPTO_ALG_TYPE_AHASH,
4020 	 .alg.hash = {
4021 		      .halg.digestsize = SHA256_DIGEST_SIZE,
4022 		      .halg.base = {
4023 				    .cra_name = "hmac(sha256)",
4024 				    .cra_driver_name = "hmac-sha256-iproc",
4025 				    .cra_blocksize = SHA256_BLOCK_SIZE,
4026 				}
4027 		      },
4028 	 .cipher_info = {
4029 			 .alg = CIPHER_ALG_NONE,
4030 			 .mode = CIPHER_MODE_NONE,
4031 			 },
4032 	 .auth_info = {
4033 		       .alg = HASH_ALG_SHA256,
4034 		       .mode = HASH_MODE_HMAC,
4035 		       },
4036 	 },
4037 	{
4038 	.type = CRYPTO_ALG_TYPE_AHASH,
4039 	 .alg.hash = {
4040 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4041 		      .halg.base = {
4042 				    .cra_name = "sha384",
4043 				    .cra_driver_name = "sha384-iproc",
4044 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4045 				}
4046 		      },
4047 	 .cipher_info = {
4048 			 .alg = CIPHER_ALG_NONE,
4049 			 .mode = CIPHER_MODE_NONE,
4050 			 },
4051 	 .auth_info = {
4052 		       .alg = HASH_ALG_SHA384,
4053 		       .mode = HASH_MODE_HASH,
4054 		       },
4055 	 },
4056 	{
4057 	 .type = CRYPTO_ALG_TYPE_AHASH,
4058 	 .alg.hash = {
4059 		      .halg.digestsize = SHA384_DIGEST_SIZE,
4060 		      .halg.base = {
4061 				    .cra_name = "hmac(sha384)",
4062 				    .cra_driver_name = "hmac-sha384-iproc",
4063 				    .cra_blocksize = SHA384_BLOCK_SIZE,
4064 				}
4065 		      },
4066 	 .cipher_info = {
4067 			 .alg = CIPHER_ALG_NONE,
4068 			 .mode = CIPHER_MODE_NONE,
4069 			 },
4070 	 .auth_info = {
4071 		       .alg = HASH_ALG_SHA384,
4072 		       .mode = HASH_MODE_HMAC,
4073 		       },
4074 	 },
4075 	{
4076 	 .type = CRYPTO_ALG_TYPE_AHASH,
4077 	 .alg.hash = {
4078 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4079 		      .halg.base = {
4080 				    .cra_name = "sha512",
4081 				    .cra_driver_name = "sha512-iproc",
4082 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4083 				}
4084 		      },
4085 	 .cipher_info = {
4086 			 .alg = CIPHER_ALG_NONE,
4087 			 .mode = CIPHER_MODE_NONE,
4088 			 },
4089 	 .auth_info = {
4090 		       .alg = HASH_ALG_SHA512,
4091 		       .mode = HASH_MODE_HASH,
4092 		       },
4093 	 },
4094 	{
4095 	 .type = CRYPTO_ALG_TYPE_AHASH,
4096 	 .alg.hash = {
4097 		      .halg.digestsize = SHA512_DIGEST_SIZE,
4098 		      .halg.base = {
4099 				    .cra_name = "hmac(sha512)",
4100 				    .cra_driver_name = "hmac-sha512-iproc",
4101 				    .cra_blocksize = SHA512_BLOCK_SIZE,
4102 				}
4103 		      },
4104 	 .cipher_info = {
4105 			 .alg = CIPHER_ALG_NONE,
4106 			 .mode = CIPHER_MODE_NONE,
4107 			 },
4108 	 .auth_info = {
4109 		       .alg = HASH_ALG_SHA512,
4110 		       .mode = HASH_MODE_HMAC,
4111 		       },
4112 	 },
4113 	{
4114 	 .type = CRYPTO_ALG_TYPE_AHASH,
4115 	 .alg.hash = {
4116 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4117 		      .halg.base = {
4118 				    .cra_name = "sha3-224",
4119 				    .cra_driver_name = "sha3-224-iproc",
4120 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4121 				}
4122 		      },
4123 	 .cipher_info = {
4124 			 .alg = CIPHER_ALG_NONE,
4125 			 .mode = CIPHER_MODE_NONE,
4126 			 },
4127 	 .auth_info = {
4128 		       .alg = HASH_ALG_SHA3_224,
4129 		       .mode = HASH_MODE_HASH,
4130 		       },
4131 	 },
4132 	{
4133 	 .type = CRYPTO_ALG_TYPE_AHASH,
4134 	 .alg.hash = {
4135 		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
4136 		      .halg.base = {
4137 				    .cra_name = "hmac(sha3-224)",
4138 				    .cra_driver_name = "hmac-sha3-224-iproc",
4139 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4140 				}
4141 		      },
4142 	 .cipher_info = {
4143 			 .alg = CIPHER_ALG_NONE,
4144 			 .mode = CIPHER_MODE_NONE,
4145 			 },
4146 	 .auth_info = {
4147 		       .alg = HASH_ALG_SHA3_224,
4148 		       .mode = HASH_MODE_HMAC
4149 		       },
4150 	 },
4151 	{
4152 	 .type = CRYPTO_ALG_TYPE_AHASH,
4153 	 .alg.hash = {
4154 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4155 		      .halg.base = {
4156 				    .cra_name = "sha3-256",
4157 				    .cra_driver_name = "sha3-256-iproc",
4158 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4159 				}
4160 		      },
4161 	 .cipher_info = {
4162 			 .alg = CIPHER_ALG_NONE,
4163 			 .mode = CIPHER_MODE_NONE,
4164 			 },
4165 	 .auth_info = {
4166 		       .alg = HASH_ALG_SHA3_256,
4167 		       .mode = HASH_MODE_HASH,
4168 		       },
4169 	 },
4170 	{
4171 	 .type = CRYPTO_ALG_TYPE_AHASH,
4172 	 .alg.hash = {
4173 		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
4174 		      .halg.base = {
4175 				    .cra_name = "hmac(sha3-256)",
4176 				    .cra_driver_name = "hmac-sha3-256-iproc",
4177 				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
4178 				}
4179 		      },
4180 	 .cipher_info = {
4181 			 .alg = CIPHER_ALG_NONE,
4182 			 .mode = CIPHER_MODE_NONE,
4183 			 },
4184 	 .auth_info = {
4185 		       .alg = HASH_ALG_SHA3_256,
4186 		       .mode = HASH_MODE_HMAC,
4187 		       },
4188 	 },
4189 	{
4190 	 .type = CRYPTO_ALG_TYPE_AHASH,
4191 	 .alg.hash = {
4192 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4193 		      .halg.base = {
4194 				    .cra_name = "sha3-384",
4195 				    .cra_driver_name = "sha3-384-iproc",
4196 				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
4197 				}
4198 		      },
4199 	 .cipher_info = {
4200 			 .alg = CIPHER_ALG_NONE,
4201 			 .mode = CIPHER_MODE_NONE,
4202 			 },
4203 	 .auth_info = {
4204 		       .alg = HASH_ALG_SHA3_384,
4205 		       .mode = HASH_MODE_HASH,
4206 		       },
4207 	 },
4208 	{
4209 	 .type = CRYPTO_ALG_TYPE_AHASH,
4210 	 .alg.hash = {
4211 		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
4212 		      .halg.base = {
4213 				    .cra_name = "hmac(sha3-384)",
4214 				    .cra_driver_name = "hmac-sha3-384-iproc",
4215 				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4216 				}
4217 		      },
4218 	 .cipher_info = {
4219 			 .alg = CIPHER_ALG_NONE,
4220 			 .mode = CIPHER_MODE_NONE,
4221 			 },
4222 	 .auth_info = {
4223 		       .alg = HASH_ALG_SHA3_384,
4224 		       .mode = HASH_MODE_HMAC,
4225 		       },
4226 	 },
4227 	{
4228 	 .type = CRYPTO_ALG_TYPE_AHASH,
4229 	 .alg.hash = {
4230 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4231 		      .halg.base = {
4232 				    .cra_name = "sha3-512",
4233 				    .cra_driver_name = "sha3-512-iproc",
4234 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4235 				}
4236 		      },
4237 	 .cipher_info = {
4238 			 .alg = CIPHER_ALG_NONE,
4239 			 .mode = CIPHER_MODE_NONE,
4240 			 },
4241 	 .auth_info = {
4242 		       .alg = HASH_ALG_SHA3_512,
4243 		       .mode = HASH_MODE_HASH,
4244 		       },
4245 	 },
4246 	{
4247 	 .type = CRYPTO_ALG_TYPE_AHASH,
4248 	 .alg.hash = {
4249 		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4250 		      .halg.base = {
4251 				    .cra_name = "hmac(sha3-512)",
4252 				    .cra_driver_name = "hmac-sha3-512-iproc",
4253 				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4254 				}
4255 		      },
4256 	 .cipher_info = {
4257 			 .alg = CIPHER_ALG_NONE,
4258 			 .mode = CIPHER_MODE_NONE,
4259 			 },
4260 	 .auth_info = {
4261 		       .alg = HASH_ALG_SHA3_512,
4262 		       .mode = HASH_MODE_HMAC,
4263 		       },
4264 	 },
4265 	{
4266 	 .type = CRYPTO_ALG_TYPE_AHASH,
4267 	 .alg.hash = {
4268 		      .halg.digestsize = AES_BLOCK_SIZE,
4269 		      .halg.base = {
4270 				    .cra_name = "xcbc(aes)",
4271 				    .cra_driver_name = "xcbc-aes-iproc",
4272 				    .cra_blocksize = AES_BLOCK_SIZE,
4273 				}
4274 		      },
4275 	 .cipher_info = {
4276 			 .alg = CIPHER_ALG_NONE,
4277 			 .mode = CIPHER_MODE_NONE,
4278 			 },
4279 	 .auth_info = {
4280 		       .alg = HASH_ALG_AES,
4281 		       .mode = HASH_MODE_XCBC,
4282 		       },
4283 	 },
4284 	{
4285 	 .type = CRYPTO_ALG_TYPE_AHASH,
4286 	 .alg.hash = {
4287 		      .halg.digestsize = AES_BLOCK_SIZE,
4288 		      .halg.base = {
4289 				    .cra_name = "cmac(aes)",
4290 				    .cra_driver_name = "cmac-aes-iproc",
4291 				    .cra_blocksize = AES_BLOCK_SIZE,
4292 				}
4293 		      },
4294 	 .cipher_info = {
4295 			 .alg = CIPHER_ALG_NONE,
4296 			 .mode = CIPHER_MODE_NONE,
4297 			 },
4298 	 .auth_info = {
4299 		       .alg = HASH_ALG_AES,
4300 		       .mode = HASH_MODE_CMAC,
4301 		       },
4302 	 },
4303 };
4304 
4305 static int generic_cra_init(struct crypto_tfm *tfm,
4306 			    struct iproc_alg_s *cipher_alg)
4307 {
4308 	struct spu_hw *spu = &iproc_priv.spu;
4309 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4310 	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4311 
4312 	flow_log("%s()\n", __func__);
4313 
4314 	ctx->alg = cipher_alg;
4315 	ctx->cipher = cipher_alg->cipher_info;
4316 	ctx->auth = cipher_alg->auth_info;
4317 	ctx->auth_first = cipher_alg->auth_first;
4318 	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4319 						    ctx->cipher.mode,
4320 						    blocksize);
4321 	ctx->fallback_cipher = NULL;
4322 
4323 	ctx->enckeylen = 0;
4324 	ctx->authkeylen = 0;
4325 
4326 	atomic_inc(&iproc_priv.stream_count);
4327 	atomic_inc(&iproc_priv.session_count);
4328 
4329 	return 0;
4330 }
4331 
4332 static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4333 {
4334 	struct crypto_alg *alg = tfm->__crt_alg;
4335 	struct iproc_alg_s *cipher_alg;
4336 
4337 	flow_log("%s()\n", __func__);
4338 
4339 	tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4340 
4341 	cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4342 	return generic_cra_init(tfm, cipher_alg);
4343 }
4344 
4345 static int ahash_cra_init(struct crypto_tfm *tfm)
4346 {
4347 	int err;
4348 	struct crypto_alg *alg = tfm->__crt_alg;
4349 	struct iproc_alg_s *cipher_alg;
4350 
4351 	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4352 				  alg.hash);
4353 
4354 	err = generic_cra_init(tfm, cipher_alg);
4355 	flow_log("%s()\n", __func__);
4356 
4357 	/*
4358 	 * export state size has to be < 512 bytes. So don't include msg bufs
4359 	 * in state size.
4360 	 */
4361 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4362 				 sizeof(struct iproc_reqctx_s));
4363 
4364 	return err;
4365 }
4366 
4367 static int aead_cra_init(struct crypto_aead *aead)
4368 {
4369 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4370 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4371 	struct crypto_alg *alg = tfm->__crt_alg;
4372 	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4373 	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4374 						      alg.aead);
4375 
4376 	int err = generic_cra_init(tfm, cipher_alg);
4377 
4378 	flow_log("%s()\n", __func__);
4379 
4380 	crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4381 	ctx->is_esp = false;
4382 	ctx->salt_len = 0;
4383 	ctx->salt_offset = 0;
4384 
4385 	/* random first IV */
4386 	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4387 	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4388 
4389 	if (!err) {
4390 		if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4391 			flow_log("%s() creating fallback cipher\n", __func__);
4392 
4393 			ctx->fallback_cipher =
4394 			    crypto_alloc_aead(alg->cra_name, 0,
4395 					      CRYPTO_ALG_ASYNC |
4396 					      CRYPTO_ALG_NEED_FALLBACK);
4397 			if (IS_ERR(ctx->fallback_cipher)) {
4398 				pr_err("%s() Error: failed to allocate fallback for %s\n",
4399 				       __func__, alg->cra_name);
4400 				return PTR_ERR(ctx->fallback_cipher);
4401 			}
4402 		}
4403 	}
4404 
4405 	return err;
4406 }
4407 
4408 static void generic_cra_exit(struct crypto_tfm *tfm)
4409 {
4410 	atomic_dec(&iproc_priv.session_count);
4411 }
4412 
4413 static void aead_cra_exit(struct crypto_aead *aead)
4414 {
4415 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4416 	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4417 
4418 	generic_cra_exit(tfm);
4419 
4420 	if (ctx->fallback_cipher) {
4421 		crypto_free_aead(ctx->fallback_cipher);
4422 		ctx->fallback_cipher = NULL;
4423 	}
4424 }
4425 
4426 /**
4427  * spu_functions_register() - Specify hardware-specific SPU functions based on
4428  * SPU type read from device tree.
4429  * @dev:	device structure
4430  * @spu_type:	SPU hardware generation
4431  * @spu_subtype: SPU hardware version
4432  */
4433 static void spu_functions_register(struct device *dev,
4434 				   enum spu_spu_type spu_type,
4435 				   enum spu_spu_subtype spu_subtype)
4436 {
4437 	struct spu_hw *spu = &iproc_priv.spu;
4438 
4439 	if (spu_type == SPU_TYPE_SPUM) {
4440 		dev_dbg(dev, "Registering SPUM functions");
4441 		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4442 		spu->spu_payload_length = spum_payload_length;
4443 		spu->spu_response_hdr_len = spum_response_hdr_len;
4444 		spu->spu_hash_pad_len = spum_hash_pad_len;
4445 		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4446 		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4447 		spu->spu_aead_ivlen = spum_aead_ivlen;
4448 		spu->spu_hash_type = spum_hash_type;
4449 		spu->spu_digest_size = spum_digest_size;
4450 		spu->spu_create_request = spum_create_request;
4451 		spu->spu_cipher_req_init = spum_cipher_req_init;
4452 		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4453 		spu->spu_request_pad = spum_request_pad;
4454 		spu->spu_tx_status_len = spum_tx_status_len;
4455 		spu->spu_rx_status_len = spum_rx_status_len;
4456 		spu->spu_status_process = spum_status_process;
4457 		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4458 		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4459 		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4460 		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4461 			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4462 		else
4463 			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4464 	} else {
4465 		dev_dbg(dev, "Registering SPU2 functions");
4466 		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4467 		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4468 		spu->spu_payload_length = spu2_payload_length;
4469 		spu->spu_response_hdr_len = spu2_response_hdr_len;
4470 		spu->spu_hash_pad_len = spu2_hash_pad_len;
4471 		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4472 		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4473 		spu->spu_aead_ivlen = spu2_aead_ivlen;
4474 		spu->spu_hash_type = spu2_hash_type;
4475 		spu->spu_digest_size = spu2_digest_size;
4476 		spu->spu_create_request = spu2_create_request;
4477 		spu->spu_cipher_req_init = spu2_cipher_req_init;
4478 		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4479 		spu->spu_request_pad = spu2_request_pad;
4480 		spu->spu_tx_status_len = spu2_tx_status_len;
4481 		spu->spu_rx_status_len = spu2_rx_status_len;
4482 		spu->spu_status_process = spu2_status_process;
4483 		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4484 		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4485 		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4486 	}
4487 }
4488 
4489 /**
4490  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4491  * channel for the SPU being probed.
4492  * @dev:  SPU driver device structure
4493  *
4494  * Return: 0 if successful
4495  *	   < 0 otherwise
4496  */
4497 static int spu_mb_init(struct device *dev)
4498 {
4499 	struct mbox_client *mcl = &iproc_priv.mcl;
4500 	int err, i;
4501 
4502 	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4503 				  sizeof(struct mbox_chan *), GFP_KERNEL);
4504 	if (!iproc_priv.mbox)
4505 		return -ENOMEM;
4506 
4507 	mcl->dev = dev;
4508 	mcl->tx_block = false;
4509 	mcl->tx_tout = 0;
4510 	mcl->knows_txdone = true;
4511 	mcl->rx_callback = spu_rx_callback;
4512 	mcl->tx_done = NULL;
4513 
4514 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4515 		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4516 		if (IS_ERR(iproc_priv.mbox[i])) {
4517 			err = (int)PTR_ERR(iproc_priv.mbox[i]);
4518 			dev_err(dev,
4519 				"Mbox channel %d request failed with err %d",
4520 				i, err);
4521 			iproc_priv.mbox[i] = NULL;
4522 			goto free_channels;
4523 		}
4524 	}
4525 
4526 	return 0;
4527 free_channels:
4528 	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4529 		if (iproc_priv.mbox[i])
4530 			mbox_free_channel(iproc_priv.mbox[i]);
4531 	}
4532 
4533 	return err;
4534 }
4535 
4536 static void spu_mb_release(struct platform_device *pdev)
4537 {
4538 	int i;
4539 
4540 	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4541 		mbox_free_channel(iproc_priv.mbox[i]);
4542 }
4543 
4544 static void spu_counters_init(void)
4545 {
4546 	int i;
4547 	int j;
4548 
4549 	atomic_set(&iproc_priv.session_count, 0);
4550 	atomic_set(&iproc_priv.stream_count, 0);
4551 	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4552 	atomic64_set(&iproc_priv.bytes_in, 0);
4553 	atomic64_set(&iproc_priv.bytes_out, 0);
4554 	for (i = 0; i < SPU_OP_NUM; i++) {
4555 		atomic_set(&iproc_priv.op_counts[i], 0);
4556 		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4557 	}
4558 	for (i = 0; i < CIPHER_ALG_LAST; i++)
4559 		for (j = 0; j < CIPHER_MODE_LAST; j++)
4560 			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4561 
4562 	for (i = 0; i < HASH_ALG_LAST; i++) {
4563 		atomic_set(&iproc_priv.hash_cnt[i], 0);
4564 		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4565 	}
4566 	for (i = 0; i < AEAD_TYPE_LAST; i++)
4567 		atomic_set(&iproc_priv.aead_cnt[i], 0);
4568 
4569 	atomic_set(&iproc_priv.mb_no_spc, 0);
4570 	atomic_set(&iproc_priv.mb_send_fail, 0);
4571 	atomic_set(&iproc_priv.bad_icv, 0);
4572 }
4573 
4574 static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4575 {
4576 	struct spu_hw *spu = &iproc_priv.spu;
4577 	struct crypto_alg *crypto = &driver_alg->alg.crypto;
4578 	int err;
4579 
4580 	/* SPU2 does not support RC4 */
4581 	if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4582 	    (spu->spu_type == SPU_TYPE_SPU2))
4583 		return 0;
4584 
4585 	crypto->cra_module = THIS_MODULE;
4586 	crypto->cra_priority = cipher_pri;
4587 	crypto->cra_alignmask = 0;
4588 	crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4589 
4590 	crypto->cra_init = ablkcipher_cra_init;
4591 	crypto->cra_exit = generic_cra_exit;
4592 	crypto->cra_type = &crypto_ablkcipher_type;
4593 	crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4594 				CRYPTO_ALG_KERN_DRIVER_ONLY;
4595 
4596 	crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4597 	crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4598 	crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4599 
4600 	err = crypto_register_alg(crypto);
4601 	/* Mark alg as having been registered, if successful */
4602 	if (err == 0)
4603 		driver_alg->registered = true;
4604 	pr_debug("  registered ablkcipher %s\n", crypto->cra_driver_name);
4605 	return err;
4606 }
4607 
4608 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4609 {
4610 	struct spu_hw *spu = &iproc_priv.spu;
4611 	struct ahash_alg *hash = &driver_alg->alg.hash;
4612 	int err;
4613 
4614 	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4615 	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4616 	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4617 	    (spu->spu_type == SPU_TYPE_SPUM))
4618 		return 0;
4619 
4620 	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4621 	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4622 	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4623 		return 0;
4624 
4625 	hash->halg.base.cra_module = THIS_MODULE;
4626 	hash->halg.base.cra_priority = hash_pri;
4627 	hash->halg.base.cra_alignmask = 0;
4628 	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4629 	hash->halg.base.cra_init = ahash_cra_init;
4630 	hash->halg.base.cra_exit = generic_cra_exit;
4631 	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
4632 	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4633 
4634 	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4635 		hash->init = ahash_init;
4636 		hash->update = ahash_update;
4637 		hash->final = ahash_final;
4638 		hash->finup = ahash_finup;
4639 		hash->digest = ahash_digest;
4640 		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4641 		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4642 		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4643 			hash->setkey = ahash_setkey;
4644 		}
4645 	} else {
4646 		hash->setkey = ahash_hmac_setkey;
4647 		hash->init = ahash_hmac_init;
4648 		hash->update = ahash_hmac_update;
4649 		hash->final = ahash_hmac_final;
4650 		hash->finup = ahash_hmac_finup;
4651 		hash->digest = ahash_hmac_digest;
4652 	}
4653 	hash->export = ahash_export;
4654 	hash->import = ahash_import;
4655 
4656 	err = crypto_register_ahash(hash);
4657 	/* Mark alg as having been registered, if successful */
4658 	if (err == 0)
4659 		driver_alg->registered = true;
4660 	pr_debug("  registered ahash %s\n",
4661 		 hash->halg.base.cra_driver_name);
4662 	return err;
4663 }
4664 
4665 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4666 {
4667 	struct aead_alg *aead = &driver_alg->alg.aead;
4668 	int err;
4669 
4670 	aead->base.cra_module = THIS_MODULE;
4671 	aead->base.cra_priority = aead_pri;
4672 	aead->base.cra_alignmask = 0;
4673 	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4674 
4675 	aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4676 	/* setkey set in alg initialization */
4677 	aead->setauthsize = aead_setauthsize;
4678 	aead->encrypt = aead_encrypt;
4679 	aead->decrypt = aead_decrypt;
4680 	aead->init = aead_cra_init;
4681 	aead->exit = aead_cra_exit;
4682 
4683 	err = crypto_register_aead(aead);
4684 	/* Mark alg as having been registered, if successful */
4685 	if (err == 0)
4686 		driver_alg->registered = true;
4687 	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4688 	return err;
4689 }
4690 
4691 /* register crypto algorithms the device supports */
4692 static int spu_algs_register(struct device *dev)
4693 {
4694 	int i, j;
4695 	int err;
4696 
4697 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4698 		switch (driver_algs[i].type) {
4699 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4700 			err = spu_register_ablkcipher(&driver_algs[i]);
4701 			break;
4702 		case CRYPTO_ALG_TYPE_AHASH:
4703 			err = spu_register_ahash(&driver_algs[i]);
4704 			break;
4705 		case CRYPTO_ALG_TYPE_AEAD:
4706 			err = spu_register_aead(&driver_algs[i]);
4707 			break;
4708 		default:
4709 			dev_err(dev,
4710 				"iproc-crypto: unknown alg type: %d",
4711 				driver_algs[i].type);
4712 			err = -EINVAL;
4713 		}
4714 
4715 		if (err) {
4716 			dev_err(dev, "alg registration failed with error %d\n",
4717 				err);
4718 			goto err_algs;
4719 		}
4720 	}
4721 
4722 	return 0;
4723 
4724 err_algs:
4725 	for (j = 0; j < i; j++) {
4726 		/* Skip any algorithm not registered */
4727 		if (!driver_algs[j].registered)
4728 			continue;
4729 		switch (driver_algs[j].type) {
4730 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4731 			crypto_unregister_alg(&driver_algs[j].alg.crypto);
4732 			driver_algs[j].registered = false;
4733 			break;
4734 		case CRYPTO_ALG_TYPE_AHASH:
4735 			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4736 			driver_algs[j].registered = false;
4737 			break;
4738 		case CRYPTO_ALG_TYPE_AEAD:
4739 			crypto_unregister_aead(&driver_algs[j].alg.aead);
4740 			driver_algs[j].registered = false;
4741 			break;
4742 		}
4743 	}
4744 	return err;
4745 }
4746 
4747 /* ==================== Kernel Platform API ==================== */
4748 
4749 static struct spu_type_subtype spum_ns2_types = {
4750 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4751 };
4752 
4753 static struct spu_type_subtype spum_nsp_types = {
4754 	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4755 };
4756 
4757 static struct spu_type_subtype spu2_types = {
4758 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4759 };
4760 
4761 static struct spu_type_subtype spu2_v2_types = {
4762 	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4763 };
4764 
4765 static const struct of_device_id bcm_spu_dt_ids[] = {
4766 	{
4767 		.compatible = "brcm,spum-crypto",
4768 		.data = &spum_ns2_types,
4769 	},
4770 	{
4771 		.compatible = "brcm,spum-nsp-crypto",
4772 		.data = &spum_nsp_types,
4773 	},
4774 	{
4775 		.compatible = "brcm,spu2-crypto",
4776 		.data = &spu2_types,
4777 	},
4778 	{
4779 		.compatible = "brcm,spu2-v2-crypto",
4780 		.data = &spu2_v2_types,
4781 	},
4782 	{ /* sentinel */ }
4783 };
4784 
4785 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4786 
4787 static int spu_dt_read(struct platform_device *pdev)
4788 {
4789 	struct device *dev = &pdev->dev;
4790 	struct spu_hw *spu = &iproc_priv.spu;
4791 	struct resource *spu_ctrl_regs;
4792 	const struct spu_type_subtype *matched_spu_type;
4793 	struct device_node *dn = pdev->dev.of_node;
4794 	int err, i;
4795 
4796 	/* Count number of mailbox channels */
4797 	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4798 
4799 	matched_spu_type = of_device_get_match_data(dev);
4800 	if (!matched_spu_type) {
4801 		dev_err(&pdev->dev, "Failed to match device\n");
4802 		return -ENODEV;
4803 	}
4804 
4805 	spu->spu_type = matched_spu_type->type;
4806 	spu->spu_subtype = matched_spu_type->subtype;
4807 
4808 	i = 0;
4809 	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4810 		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4811 
4812 		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4813 		if (IS_ERR(spu->reg_vbase[i])) {
4814 			err = PTR_ERR(spu->reg_vbase[i]);
4815 			dev_err(&pdev->dev, "Failed to map registers: %d\n",
4816 				err);
4817 			spu->reg_vbase[i] = NULL;
4818 			return err;
4819 		}
4820 	}
4821 	spu->num_spu = i;
4822 	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4823 
4824 	return 0;
4825 }
4826 
4827 int bcm_spu_probe(struct platform_device *pdev)
4828 {
4829 	struct device *dev = &pdev->dev;
4830 	struct spu_hw *spu = &iproc_priv.spu;
4831 	int err = 0;
4832 
4833 	iproc_priv.pdev  = pdev;
4834 	platform_set_drvdata(iproc_priv.pdev,
4835 			     &iproc_priv);
4836 
4837 	err = spu_dt_read(pdev);
4838 	if (err < 0)
4839 		goto failure;
4840 
4841 	err = spu_mb_init(&pdev->dev);
4842 	if (err < 0)
4843 		goto failure;
4844 
4845 	if (spu->spu_type == SPU_TYPE_SPUM)
4846 		iproc_priv.bcm_hdr_len = 8;
4847 	else if (spu->spu_type == SPU_TYPE_SPU2)
4848 		iproc_priv.bcm_hdr_len = 0;
4849 
4850 	spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4851 
4852 	spu_counters_init();
4853 
4854 	spu_setup_debugfs();
4855 
4856 	err = spu_algs_register(dev);
4857 	if (err < 0)
4858 		goto fail_reg;
4859 
4860 	return 0;
4861 
4862 fail_reg:
4863 	spu_free_debugfs();
4864 failure:
4865 	spu_mb_release(pdev);
4866 	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4867 
4868 	return err;
4869 }
4870 
4871 int bcm_spu_remove(struct platform_device *pdev)
4872 {
4873 	int i;
4874 	struct device *dev = &pdev->dev;
4875 	char *cdn;
4876 
4877 	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4878 		/*
4879 		 * Not all algorithms were registered, depending on whether
4880 		 * hardware is SPU or SPU2.  So here we make sure to skip
4881 		 * those algorithms that were not previously registered.
4882 		 */
4883 		if (!driver_algs[i].registered)
4884 			continue;
4885 
4886 		switch (driver_algs[i].type) {
4887 		case CRYPTO_ALG_TYPE_ABLKCIPHER:
4888 			crypto_unregister_alg(&driver_algs[i].alg.crypto);
4889 			dev_dbg(dev, "  unregistered cipher %s\n",
4890 				driver_algs[i].alg.crypto.cra_driver_name);
4891 			driver_algs[i].registered = false;
4892 			break;
4893 		case CRYPTO_ALG_TYPE_AHASH:
4894 			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4895 			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4896 			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4897 			driver_algs[i].registered = false;
4898 			break;
4899 		case CRYPTO_ALG_TYPE_AEAD:
4900 			crypto_unregister_aead(&driver_algs[i].alg.aead);
4901 			dev_dbg(dev, "  unregistered aead %s\n",
4902 				driver_algs[i].alg.aead.base.cra_driver_name);
4903 			driver_algs[i].registered = false;
4904 			break;
4905 		}
4906 	}
4907 	spu_free_debugfs();
4908 	spu_mb_release(pdev);
4909 	return 0;
4910 }
4911 
4912 /* ===== Kernel Module API ===== */
4913 
4914 static struct platform_driver bcm_spu_pdriver = {
4915 	.driver = {
4916 		   .name = "brcm-spu-crypto",
4917 		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4918 		   },
4919 	.probe = bcm_spu_probe,
4920 	.remove = bcm_spu_remove,
4921 };
4922 module_platform_driver(bcm_spu_pdriver);
4923 
4924 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4925 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4926 MODULE_LICENSE("GPL v2");
4927