xref: /openbmc/linux/drivers/crypto/atmel-sha.c (revision c4ee0af3)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/delay.h>
34 #include <linux/crypto.h>
35 #include <linux/cryptohash.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/sha.h>
39 #include <crypto/hash.h>
40 #include <crypto/internal/hash.h>
41 #include <linux/platform_data/crypto-atmel.h>
42 #include "atmel-sha-regs.h"
43 
44 /* SHA flags */
45 #define SHA_FLAGS_BUSY			BIT(0)
46 #define	SHA_FLAGS_FINAL			BIT(1)
47 #define SHA_FLAGS_DMA_ACTIVE	BIT(2)
48 #define SHA_FLAGS_OUTPUT_READY	BIT(3)
49 #define SHA_FLAGS_INIT			BIT(4)
50 #define SHA_FLAGS_CPU			BIT(5)
51 #define SHA_FLAGS_DMA_READY		BIT(6)
52 
53 #define SHA_FLAGS_FINUP		BIT(16)
54 #define SHA_FLAGS_SG		BIT(17)
55 #define SHA_FLAGS_SHA1		BIT(18)
56 #define SHA_FLAGS_SHA224	BIT(19)
57 #define SHA_FLAGS_SHA256	BIT(20)
58 #define SHA_FLAGS_SHA384	BIT(21)
59 #define SHA_FLAGS_SHA512	BIT(22)
60 #define SHA_FLAGS_ERROR		BIT(23)
61 #define SHA_FLAGS_PAD		BIT(24)
62 
63 #define SHA_OP_UPDATE	1
64 #define SHA_OP_FINAL	2
65 
66 #define SHA_BUFFER_LEN		PAGE_SIZE
67 
68 #define ATMEL_SHA_DMA_THRESHOLD		56
69 
70 struct atmel_sha_caps {
71 	bool	has_dma;
72 	bool	has_dualbuff;
73 	bool	has_sha224;
74 	bool	has_sha_384_512;
75 };
76 
77 struct atmel_sha_dev;
78 
79 struct atmel_sha_reqctx {
80 	struct atmel_sha_dev	*dd;
81 	unsigned long	flags;
82 	unsigned long	op;
83 
84 	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
85 	u64	digcnt[2];
86 	size_t	bufcnt;
87 	size_t	buflen;
88 	dma_addr_t	dma_addr;
89 
90 	/* walk state */
91 	struct scatterlist	*sg;
92 	unsigned int	offset;	/* offset in current sg */
93 	unsigned int	total;	/* total request */
94 
95 	size_t block_size;
96 
97 	u8	buffer[0] __aligned(sizeof(u32));
98 };
99 
100 struct atmel_sha_ctx {
101 	struct atmel_sha_dev	*dd;
102 
103 	unsigned long		flags;
104 
105 	/* fallback stuff */
106 	struct crypto_shash	*fallback;
107 
108 };
109 
110 #define ATMEL_SHA_QUEUE_LENGTH	50
111 
112 struct atmel_sha_dma {
113 	struct dma_chan			*chan;
114 	struct dma_slave_config dma_conf;
115 };
116 
117 struct atmel_sha_dev {
118 	struct list_head	list;
119 	unsigned long		phys_base;
120 	struct device		*dev;
121 	struct clk			*iclk;
122 	int					irq;
123 	void __iomem		*io_base;
124 
125 	spinlock_t		lock;
126 	int			err;
127 	struct tasklet_struct	done_task;
128 
129 	unsigned long		flags;
130 	struct crypto_queue	queue;
131 	struct ahash_request	*req;
132 
133 	struct atmel_sha_dma	dma_lch_in;
134 
135 	struct atmel_sha_caps	caps;
136 
137 	u32	hw_version;
138 };
139 
140 struct atmel_sha_drv {
141 	struct list_head	dev_list;
142 	spinlock_t		lock;
143 };
144 
145 static struct atmel_sha_drv atmel_sha = {
146 	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
147 	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
148 };
149 
150 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
151 {
152 	return readl_relaxed(dd->io_base + offset);
153 }
154 
155 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
156 					u32 offset, u32 value)
157 {
158 	writel_relaxed(value, dd->io_base + offset);
159 }
160 
161 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
162 {
163 	size_t count;
164 
165 	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
166 		count = min(ctx->sg->length - ctx->offset, ctx->total);
167 		count = min(count, ctx->buflen - ctx->bufcnt);
168 
169 		if (count <= 0)
170 			break;
171 
172 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
173 			ctx->offset, count, 0);
174 
175 		ctx->bufcnt += count;
176 		ctx->offset += count;
177 		ctx->total -= count;
178 
179 		if (ctx->offset == ctx->sg->length) {
180 			ctx->sg = sg_next(ctx->sg);
181 			if (ctx->sg)
182 				ctx->offset = 0;
183 			else
184 				ctx->total = 0;
185 		}
186 	}
187 
188 	return 0;
189 }
190 
191 /*
192  * The purpose of this padding is to ensure that the padded message is a
193  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
194  * The bit "1" is appended at the end of the message followed by
195  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
196  * 128 bits block (SHA384/SHA512) equals to the message length in bits
197  * is appended.
198  *
199  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
200  *  - if message length < 56 bytes then padlen = 56 - message length
201  *  - else padlen = 64 + 56 - message length
202  *
203  * For SHA384/SHA512, padlen is calculated as followed:
204  *  - if message length < 112 bytes then padlen = 112 - message length
205  *  - else padlen = 128 + 112 - message length
206  */
207 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
208 {
209 	unsigned int index, padlen;
210 	u64 bits[2];
211 	u64 size[2];
212 
213 	size[0] = ctx->digcnt[0];
214 	size[1] = ctx->digcnt[1];
215 
216 	size[0] += ctx->bufcnt;
217 	if (size[0] < ctx->bufcnt)
218 		size[1]++;
219 
220 	size[0] += length;
221 	if (size[0]  < length)
222 		size[1]++;
223 
224 	bits[1] = cpu_to_be64(size[0] << 3);
225 	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
226 
227 	if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
228 		index = ctx->bufcnt & 0x7f;
229 		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
230 		*(ctx->buffer + ctx->bufcnt) = 0x80;
231 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
232 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
233 		ctx->bufcnt += padlen + 16;
234 		ctx->flags |= SHA_FLAGS_PAD;
235 	} else {
236 		index = ctx->bufcnt & 0x3f;
237 		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
238 		*(ctx->buffer + ctx->bufcnt) = 0x80;
239 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
240 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
241 		ctx->bufcnt += padlen + 8;
242 		ctx->flags |= SHA_FLAGS_PAD;
243 	}
244 }
245 
246 static int atmel_sha_init(struct ahash_request *req)
247 {
248 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
249 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
250 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
251 	struct atmel_sha_dev *dd = NULL;
252 	struct atmel_sha_dev *tmp;
253 
254 	spin_lock_bh(&atmel_sha.lock);
255 	if (!tctx->dd) {
256 		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
257 			dd = tmp;
258 			break;
259 		}
260 		tctx->dd = dd;
261 	} else {
262 		dd = tctx->dd;
263 	}
264 
265 	spin_unlock_bh(&atmel_sha.lock);
266 
267 	ctx->dd = dd;
268 
269 	ctx->flags = 0;
270 
271 	dev_dbg(dd->dev, "init: digest size: %d\n",
272 		crypto_ahash_digestsize(tfm));
273 
274 	switch (crypto_ahash_digestsize(tfm)) {
275 	case SHA1_DIGEST_SIZE:
276 		ctx->flags |= SHA_FLAGS_SHA1;
277 		ctx->block_size = SHA1_BLOCK_SIZE;
278 		break;
279 	case SHA224_DIGEST_SIZE:
280 		ctx->flags |= SHA_FLAGS_SHA224;
281 		ctx->block_size = SHA224_BLOCK_SIZE;
282 		break;
283 	case SHA256_DIGEST_SIZE:
284 		ctx->flags |= SHA_FLAGS_SHA256;
285 		ctx->block_size = SHA256_BLOCK_SIZE;
286 		break;
287 	case SHA384_DIGEST_SIZE:
288 		ctx->flags |= SHA_FLAGS_SHA384;
289 		ctx->block_size = SHA384_BLOCK_SIZE;
290 		break;
291 	case SHA512_DIGEST_SIZE:
292 		ctx->flags |= SHA_FLAGS_SHA512;
293 		ctx->block_size = SHA512_BLOCK_SIZE;
294 		break;
295 	default:
296 		return -EINVAL;
297 		break;
298 	}
299 
300 	ctx->bufcnt = 0;
301 	ctx->digcnt[0] = 0;
302 	ctx->digcnt[1] = 0;
303 	ctx->buflen = SHA_BUFFER_LEN;
304 
305 	return 0;
306 }
307 
308 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
309 {
310 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
311 	u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
312 
313 	if (likely(dma)) {
314 		if (!dd->caps.has_dma)
315 			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
316 		valmr = SHA_MR_MODE_PDC;
317 		if (dd->caps.has_dualbuff)
318 			valmr |= SHA_MR_DUALBUFF;
319 	} else {
320 		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
321 	}
322 
323 	if (ctx->flags & SHA_FLAGS_SHA1)
324 		valmr |= SHA_MR_ALGO_SHA1;
325 	else if (ctx->flags & SHA_FLAGS_SHA224)
326 		valmr |= SHA_MR_ALGO_SHA224;
327 	else if (ctx->flags & SHA_FLAGS_SHA256)
328 		valmr |= SHA_MR_ALGO_SHA256;
329 	else if (ctx->flags & SHA_FLAGS_SHA384)
330 		valmr |= SHA_MR_ALGO_SHA384;
331 	else if (ctx->flags & SHA_FLAGS_SHA512)
332 		valmr |= SHA_MR_ALGO_SHA512;
333 
334 	/* Setting CR_FIRST only for the first iteration */
335 	if (!(ctx->digcnt[0] || ctx->digcnt[1]))
336 		valcr = SHA_CR_FIRST;
337 
338 	atmel_sha_write(dd, SHA_CR, valcr);
339 	atmel_sha_write(dd, SHA_MR, valmr);
340 }
341 
342 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
343 			      size_t length, int final)
344 {
345 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
346 	int count, len32;
347 	const u32 *buffer = (const u32 *)buf;
348 
349 	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
350 		ctx->digcnt[1], ctx->digcnt[0], length, final);
351 
352 	atmel_sha_write_ctrl(dd, 0);
353 
354 	/* should be non-zero before next lines to disable clocks later */
355 	ctx->digcnt[0] += length;
356 	if (ctx->digcnt[0] < length)
357 		ctx->digcnt[1]++;
358 
359 	if (final)
360 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
361 
362 	len32 = DIV_ROUND_UP(length, sizeof(u32));
363 
364 	dd->flags |= SHA_FLAGS_CPU;
365 
366 	for (count = 0; count < len32; count++)
367 		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
368 
369 	return -EINPROGRESS;
370 }
371 
372 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
373 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
374 {
375 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
376 	int len32;
377 
378 	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
379 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
380 
381 	len32 = DIV_ROUND_UP(length1, sizeof(u32));
382 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
383 	atmel_sha_write(dd, SHA_TPR, dma_addr1);
384 	atmel_sha_write(dd, SHA_TCR, len32);
385 
386 	len32 = DIV_ROUND_UP(length2, sizeof(u32));
387 	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
388 	atmel_sha_write(dd, SHA_TNCR, len32);
389 
390 	atmel_sha_write_ctrl(dd, 1);
391 
392 	/* should be non-zero before next lines to disable clocks later */
393 	ctx->digcnt[0] += length1;
394 	if (ctx->digcnt[0] < length1)
395 		ctx->digcnt[1]++;
396 
397 	if (final)
398 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
399 
400 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
401 
402 	/* Start DMA transfer */
403 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
404 
405 	return -EINPROGRESS;
406 }
407 
408 static void atmel_sha_dma_callback(void *data)
409 {
410 	struct atmel_sha_dev *dd = data;
411 
412 	/* dma_lch_in - completed - wait DATRDY */
413 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
414 }
415 
416 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
417 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
418 {
419 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
420 	struct dma_async_tx_descriptor	*in_desc;
421 	struct scatterlist sg[2];
422 
423 	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
424 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
425 
426 	if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
427 			SHA_FLAGS_SHA256)) {
428 		dd->dma_lch_in.dma_conf.src_maxburst = 16;
429 		dd->dma_lch_in.dma_conf.dst_maxburst = 16;
430 	} else {
431 		dd->dma_lch_in.dma_conf.src_maxburst = 32;
432 		dd->dma_lch_in.dma_conf.dst_maxburst = 32;
433 	}
434 
435 	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
436 
437 	if (length2) {
438 		sg_init_table(sg, 2);
439 		sg_dma_address(&sg[0]) = dma_addr1;
440 		sg_dma_len(&sg[0]) = length1;
441 		sg_dma_address(&sg[1]) = dma_addr2;
442 		sg_dma_len(&sg[1]) = length2;
443 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
444 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
445 	} else {
446 		sg_init_table(sg, 1);
447 		sg_dma_address(&sg[0]) = dma_addr1;
448 		sg_dma_len(&sg[0]) = length1;
449 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
450 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
451 	}
452 	if (!in_desc)
453 		return -EINVAL;
454 
455 	in_desc->callback = atmel_sha_dma_callback;
456 	in_desc->callback_param = dd;
457 
458 	atmel_sha_write_ctrl(dd, 1);
459 
460 	/* should be non-zero before next lines to disable clocks later */
461 	ctx->digcnt[0] += length1;
462 	if (ctx->digcnt[0] < length1)
463 		ctx->digcnt[1]++;
464 
465 	if (final)
466 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
467 
468 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
469 
470 	/* Start DMA transfer */
471 	dmaengine_submit(in_desc);
472 	dma_async_issue_pending(dd->dma_lch_in.chan);
473 
474 	return -EINPROGRESS;
475 }
476 
477 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
478 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
479 {
480 	if (dd->caps.has_dma)
481 		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
482 				dma_addr2, length2, final);
483 	else
484 		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
485 				dma_addr2, length2, final);
486 }
487 
488 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
489 {
490 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
491 	int bufcnt;
492 
493 	atmel_sha_append_sg(ctx);
494 	atmel_sha_fill_padding(ctx, 0);
495 	bufcnt = ctx->bufcnt;
496 	ctx->bufcnt = 0;
497 
498 	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
499 }
500 
501 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
502 					struct atmel_sha_reqctx *ctx,
503 					size_t length, int final)
504 {
505 	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
506 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
507 	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
508 		dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
509 				ctx->block_size);
510 		return -EINVAL;
511 	}
512 
513 	ctx->flags &= ~SHA_FLAGS_SG;
514 
515 	/* next call does not fail... so no unmap in the case of error */
516 	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
517 }
518 
519 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
520 {
521 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
522 	unsigned int final;
523 	size_t count;
524 
525 	atmel_sha_append_sg(ctx);
526 
527 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
528 
529 	dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
530 		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
531 
532 	if (final)
533 		atmel_sha_fill_padding(ctx, 0);
534 
535 	if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
536 		count = ctx->bufcnt;
537 		ctx->bufcnt = 0;
538 		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
539 	}
540 
541 	return 0;
542 }
543 
544 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
545 {
546 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
547 	unsigned int length, final, tail;
548 	struct scatterlist *sg;
549 	unsigned int count;
550 
551 	if (!ctx->total)
552 		return 0;
553 
554 	if (ctx->bufcnt || ctx->offset)
555 		return atmel_sha_update_dma_slow(dd);
556 
557 	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
558 		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
559 
560 	sg = ctx->sg;
561 
562 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
563 		return atmel_sha_update_dma_slow(dd);
564 
565 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
566 		/* size is not ctx->block_size aligned */
567 		return atmel_sha_update_dma_slow(dd);
568 
569 	length = min(ctx->total, sg->length);
570 
571 	if (sg_is_last(sg)) {
572 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
573 			/* not last sg must be ctx->block_size aligned */
574 			tail = length & (ctx->block_size - 1);
575 			length -= tail;
576 		}
577 	}
578 
579 	ctx->total -= length;
580 	ctx->offset = length; /* offset where to start slow */
581 
582 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
583 
584 	/* Add padding */
585 	if (final) {
586 		tail = length & (ctx->block_size - 1);
587 		length -= tail;
588 		ctx->total += tail;
589 		ctx->offset = length; /* offset where to start slow */
590 
591 		sg = ctx->sg;
592 		atmel_sha_append_sg(ctx);
593 
594 		atmel_sha_fill_padding(ctx, length);
595 
596 		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
597 			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
598 		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
599 			dev_err(dd->dev, "dma %u bytes error\n",
600 				ctx->buflen + ctx->block_size);
601 			return -EINVAL;
602 		}
603 
604 		if (length == 0) {
605 			ctx->flags &= ~SHA_FLAGS_SG;
606 			count = ctx->bufcnt;
607 			ctx->bufcnt = 0;
608 			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
609 					0, final);
610 		} else {
611 			ctx->sg = sg;
612 			if (!dma_map_sg(dd->dev, ctx->sg, 1,
613 				DMA_TO_DEVICE)) {
614 					dev_err(dd->dev, "dma_map_sg  error\n");
615 					return -EINVAL;
616 			}
617 
618 			ctx->flags |= SHA_FLAGS_SG;
619 
620 			count = ctx->bufcnt;
621 			ctx->bufcnt = 0;
622 			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
623 					length, ctx->dma_addr, count, final);
624 		}
625 	}
626 
627 	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
628 		dev_err(dd->dev, "dma_map_sg  error\n");
629 		return -EINVAL;
630 	}
631 
632 	ctx->flags |= SHA_FLAGS_SG;
633 
634 	/* next call does not fail... so no unmap in the case of error */
635 	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
636 								0, final);
637 }
638 
639 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
640 {
641 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
642 
643 	if (ctx->flags & SHA_FLAGS_SG) {
644 		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
645 		if (ctx->sg->length == ctx->offset) {
646 			ctx->sg = sg_next(ctx->sg);
647 			if (ctx->sg)
648 				ctx->offset = 0;
649 		}
650 		if (ctx->flags & SHA_FLAGS_PAD) {
651 			dma_unmap_single(dd->dev, ctx->dma_addr,
652 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
653 		}
654 	} else {
655 		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
656 						ctx->block_size, DMA_TO_DEVICE);
657 	}
658 
659 	return 0;
660 }
661 
662 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
663 {
664 	struct ahash_request *req = dd->req;
665 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
666 	int err;
667 
668 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
669 		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
670 
671 	if (ctx->flags & SHA_FLAGS_CPU)
672 		err = atmel_sha_update_cpu(dd);
673 	else
674 		err = atmel_sha_update_dma_start(dd);
675 
676 	/* wait for dma completion before can take more data */
677 	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
678 			err, ctx->digcnt[1], ctx->digcnt[0]);
679 
680 	return err;
681 }
682 
683 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
684 {
685 	struct ahash_request *req = dd->req;
686 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
687 	int err = 0;
688 	int count;
689 
690 	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
691 		atmel_sha_fill_padding(ctx, 0);
692 		count = ctx->bufcnt;
693 		ctx->bufcnt = 0;
694 		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
695 	}
696 	/* faster to handle last block with cpu */
697 	else {
698 		atmel_sha_fill_padding(ctx, 0);
699 		count = ctx->bufcnt;
700 		ctx->bufcnt = 0;
701 		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
702 	}
703 
704 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
705 
706 	return err;
707 }
708 
709 static void atmel_sha_copy_hash(struct ahash_request *req)
710 {
711 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
712 	u32 *hash = (u32 *)ctx->digest;
713 	int i;
714 
715 	if (ctx->flags & SHA_FLAGS_SHA1)
716 		for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
717 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
718 	else if (ctx->flags & SHA_FLAGS_SHA224)
719 		for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
720 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721 	else if (ctx->flags & SHA_FLAGS_SHA256)
722 		for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
723 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724 	else if (ctx->flags & SHA_FLAGS_SHA384)
725 		for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
726 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727 	else
728 		for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
729 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
730 }
731 
732 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
733 {
734 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
735 
736 	if (!req->result)
737 		return;
738 
739 	if (ctx->flags & SHA_FLAGS_SHA1)
740 		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
741 	else if (ctx->flags & SHA_FLAGS_SHA224)
742 		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
743 	else if (ctx->flags & SHA_FLAGS_SHA256)
744 		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
745 	else if (ctx->flags & SHA_FLAGS_SHA384)
746 		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
747 	else
748 		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
749 }
750 
751 static int atmel_sha_finish(struct ahash_request *req)
752 {
753 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
754 	struct atmel_sha_dev *dd = ctx->dd;
755 	int err = 0;
756 
757 	if (ctx->digcnt[0] || ctx->digcnt[1])
758 		atmel_sha_copy_ready_hash(req);
759 
760 	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
761 		ctx->digcnt[0], ctx->bufcnt);
762 
763 	return err;
764 }
765 
766 static void atmel_sha_finish_req(struct ahash_request *req, int err)
767 {
768 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
769 	struct atmel_sha_dev *dd = ctx->dd;
770 
771 	if (!err) {
772 		atmel_sha_copy_hash(req);
773 		if (SHA_FLAGS_FINAL & dd->flags)
774 			err = atmel_sha_finish(req);
775 	} else {
776 		ctx->flags |= SHA_FLAGS_ERROR;
777 	}
778 
779 	/* atomic operation is not needed here */
780 	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
781 			SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
782 
783 	clk_disable_unprepare(dd->iclk);
784 
785 	if (req->base.complete)
786 		req->base.complete(&req->base, err);
787 
788 	/* handle new request */
789 	tasklet_schedule(&dd->done_task);
790 }
791 
792 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
793 {
794 	clk_prepare_enable(dd->iclk);
795 
796 	if (!(SHA_FLAGS_INIT & dd->flags)) {
797 		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
798 		dd->flags |= SHA_FLAGS_INIT;
799 		dd->err = 0;
800 	}
801 
802 	return 0;
803 }
804 
805 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
806 {
807 	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
808 }
809 
810 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
811 {
812 	atmel_sha_hw_init(dd);
813 
814 	dd->hw_version = atmel_sha_get_version(dd);
815 
816 	dev_info(dd->dev,
817 			"version: 0x%x\n", dd->hw_version);
818 
819 	clk_disable_unprepare(dd->iclk);
820 }
821 
822 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
823 				  struct ahash_request *req)
824 {
825 	struct crypto_async_request *async_req, *backlog;
826 	struct atmel_sha_reqctx *ctx;
827 	unsigned long flags;
828 	int err = 0, ret = 0;
829 
830 	spin_lock_irqsave(&dd->lock, flags);
831 	if (req)
832 		ret = ahash_enqueue_request(&dd->queue, req);
833 
834 	if (SHA_FLAGS_BUSY & dd->flags) {
835 		spin_unlock_irqrestore(&dd->lock, flags);
836 		return ret;
837 	}
838 
839 	backlog = crypto_get_backlog(&dd->queue);
840 	async_req = crypto_dequeue_request(&dd->queue);
841 	if (async_req)
842 		dd->flags |= SHA_FLAGS_BUSY;
843 
844 	spin_unlock_irqrestore(&dd->lock, flags);
845 
846 	if (!async_req)
847 		return ret;
848 
849 	if (backlog)
850 		backlog->complete(backlog, -EINPROGRESS);
851 
852 	req = ahash_request_cast(async_req);
853 	dd->req = req;
854 	ctx = ahash_request_ctx(req);
855 
856 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
857 						ctx->op, req->nbytes);
858 
859 	err = atmel_sha_hw_init(dd);
860 
861 	if (err)
862 		goto err1;
863 
864 	if (ctx->op == SHA_OP_UPDATE) {
865 		err = atmel_sha_update_req(dd);
866 		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
867 			/* no final() after finup() */
868 			err = atmel_sha_final_req(dd);
869 	} else if (ctx->op == SHA_OP_FINAL) {
870 		err = atmel_sha_final_req(dd);
871 	}
872 
873 err1:
874 	if (err != -EINPROGRESS)
875 		/* done_task will not finish it, so do it here */
876 		atmel_sha_finish_req(req, err);
877 
878 	dev_dbg(dd->dev, "exit, err: %d\n", err);
879 
880 	return ret;
881 }
882 
883 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
884 {
885 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
886 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
887 	struct atmel_sha_dev *dd = tctx->dd;
888 
889 	ctx->op = op;
890 
891 	return atmel_sha_handle_queue(dd, req);
892 }
893 
894 static int atmel_sha_update(struct ahash_request *req)
895 {
896 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
897 
898 	if (!req->nbytes)
899 		return 0;
900 
901 	ctx->total = req->nbytes;
902 	ctx->sg = req->src;
903 	ctx->offset = 0;
904 
905 	if (ctx->flags & SHA_FLAGS_FINUP) {
906 		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
907 			/* faster to use CPU for short transfers */
908 			ctx->flags |= SHA_FLAGS_CPU;
909 	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
910 		atmel_sha_append_sg(ctx);
911 		return 0;
912 	}
913 	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
914 }
915 
916 static int atmel_sha_final(struct ahash_request *req)
917 {
918 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
919 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
920 	struct atmel_sha_dev *dd = tctx->dd;
921 
922 	int err = 0;
923 
924 	ctx->flags |= SHA_FLAGS_FINUP;
925 
926 	if (ctx->flags & SHA_FLAGS_ERROR)
927 		return 0; /* uncompleted hash is not needed */
928 
929 	if (ctx->bufcnt) {
930 		return atmel_sha_enqueue(req, SHA_OP_FINAL);
931 	} else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
932 		err = atmel_sha_hw_init(dd);
933 		if (err)
934 			goto err1;
935 
936 		dd->flags |= SHA_FLAGS_BUSY;
937 		err = atmel_sha_final_req(dd);
938 	} else {
939 		/* copy ready hash (+ finalize hmac) */
940 		return atmel_sha_finish(req);
941 	}
942 
943 err1:
944 	if (err != -EINPROGRESS)
945 		/* done_task will not finish it, so do it here */
946 		atmel_sha_finish_req(req, err);
947 
948 	return err;
949 }
950 
951 static int atmel_sha_finup(struct ahash_request *req)
952 {
953 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
954 	int err1, err2;
955 
956 	ctx->flags |= SHA_FLAGS_FINUP;
957 
958 	err1 = atmel_sha_update(req);
959 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
960 		return err1;
961 
962 	/*
963 	 * final() has to be always called to cleanup resources
964 	 * even if udpate() failed, except EINPROGRESS
965 	 */
966 	err2 = atmel_sha_final(req);
967 
968 	return err1 ?: err2;
969 }
970 
971 static int atmel_sha_digest(struct ahash_request *req)
972 {
973 	return atmel_sha_init(req) ?: atmel_sha_finup(req);
974 }
975 
976 static int atmel_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
977 {
978 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
979 	const char *alg_name = crypto_tfm_alg_name(tfm);
980 
981 	/* Allocate a fallback and abort if it failed. */
982 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
983 					    CRYPTO_ALG_NEED_FALLBACK);
984 	if (IS_ERR(tctx->fallback)) {
985 		pr_err("atmel-sha: fallback driver '%s' could not be loaded.\n",
986 				alg_name);
987 		return PTR_ERR(tctx->fallback);
988 	}
989 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
990 				 sizeof(struct atmel_sha_reqctx) +
991 				 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
992 
993 	return 0;
994 }
995 
996 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
997 {
998 	return atmel_sha_cra_init_alg(tfm, NULL);
999 }
1000 
1001 static void atmel_sha_cra_exit(struct crypto_tfm *tfm)
1002 {
1003 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(tfm);
1004 
1005 	crypto_free_shash(tctx->fallback);
1006 	tctx->fallback = NULL;
1007 }
1008 
1009 static struct ahash_alg sha_1_256_algs[] = {
1010 {
1011 	.init		= atmel_sha_init,
1012 	.update		= atmel_sha_update,
1013 	.final		= atmel_sha_final,
1014 	.finup		= atmel_sha_finup,
1015 	.digest		= atmel_sha_digest,
1016 	.halg = {
1017 		.digestsize	= SHA1_DIGEST_SIZE,
1018 		.base	= {
1019 			.cra_name		= "sha1",
1020 			.cra_driver_name	= "atmel-sha1",
1021 			.cra_priority		= 100,
1022 			.cra_flags		= CRYPTO_ALG_ASYNC |
1023 						CRYPTO_ALG_NEED_FALLBACK,
1024 			.cra_blocksize		= SHA1_BLOCK_SIZE,
1025 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1026 			.cra_alignmask		= 0,
1027 			.cra_module		= THIS_MODULE,
1028 			.cra_init		= atmel_sha_cra_init,
1029 			.cra_exit		= atmel_sha_cra_exit,
1030 		}
1031 	}
1032 },
1033 {
1034 	.init		= atmel_sha_init,
1035 	.update		= atmel_sha_update,
1036 	.final		= atmel_sha_final,
1037 	.finup		= atmel_sha_finup,
1038 	.digest		= atmel_sha_digest,
1039 	.halg = {
1040 		.digestsize	= SHA256_DIGEST_SIZE,
1041 		.base	= {
1042 			.cra_name		= "sha256",
1043 			.cra_driver_name	= "atmel-sha256",
1044 			.cra_priority		= 100,
1045 			.cra_flags		= CRYPTO_ALG_ASYNC |
1046 						CRYPTO_ALG_NEED_FALLBACK,
1047 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1048 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1049 			.cra_alignmask		= 0,
1050 			.cra_module		= THIS_MODULE,
1051 			.cra_init		= atmel_sha_cra_init,
1052 			.cra_exit		= atmel_sha_cra_exit,
1053 		}
1054 	}
1055 },
1056 };
1057 
1058 static struct ahash_alg sha_224_alg = {
1059 	.init		= atmel_sha_init,
1060 	.update		= atmel_sha_update,
1061 	.final		= atmel_sha_final,
1062 	.finup		= atmel_sha_finup,
1063 	.digest		= atmel_sha_digest,
1064 	.halg = {
1065 		.digestsize	= SHA224_DIGEST_SIZE,
1066 		.base	= {
1067 			.cra_name		= "sha224",
1068 			.cra_driver_name	= "atmel-sha224",
1069 			.cra_priority		= 100,
1070 			.cra_flags		= CRYPTO_ALG_ASYNC |
1071 						CRYPTO_ALG_NEED_FALLBACK,
1072 			.cra_blocksize		= SHA224_BLOCK_SIZE,
1073 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1074 			.cra_alignmask		= 0,
1075 			.cra_module		= THIS_MODULE,
1076 			.cra_init		= atmel_sha_cra_init,
1077 			.cra_exit		= atmel_sha_cra_exit,
1078 		}
1079 	}
1080 };
1081 
1082 static struct ahash_alg sha_384_512_algs[] = {
1083 {
1084 	.init		= atmel_sha_init,
1085 	.update		= atmel_sha_update,
1086 	.final		= atmel_sha_final,
1087 	.finup		= atmel_sha_finup,
1088 	.digest		= atmel_sha_digest,
1089 	.halg = {
1090 		.digestsize	= SHA384_DIGEST_SIZE,
1091 		.base	= {
1092 			.cra_name		= "sha384",
1093 			.cra_driver_name	= "atmel-sha384",
1094 			.cra_priority		= 100,
1095 			.cra_flags		= CRYPTO_ALG_ASYNC |
1096 						CRYPTO_ALG_NEED_FALLBACK,
1097 			.cra_blocksize		= SHA384_BLOCK_SIZE,
1098 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1099 			.cra_alignmask		= 0x3,
1100 			.cra_module		= THIS_MODULE,
1101 			.cra_init		= atmel_sha_cra_init,
1102 			.cra_exit		= atmel_sha_cra_exit,
1103 		}
1104 	}
1105 },
1106 {
1107 	.init		= atmel_sha_init,
1108 	.update		= atmel_sha_update,
1109 	.final		= atmel_sha_final,
1110 	.finup		= atmel_sha_finup,
1111 	.digest		= atmel_sha_digest,
1112 	.halg = {
1113 		.digestsize	= SHA512_DIGEST_SIZE,
1114 		.base	= {
1115 			.cra_name		= "sha512",
1116 			.cra_driver_name	= "atmel-sha512",
1117 			.cra_priority		= 100,
1118 			.cra_flags		= CRYPTO_ALG_ASYNC |
1119 						CRYPTO_ALG_NEED_FALLBACK,
1120 			.cra_blocksize		= SHA512_BLOCK_SIZE,
1121 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1122 			.cra_alignmask		= 0x3,
1123 			.cra_module		= THIS_MODULE,
1124 			.cra_init		= atmel_sha_cra_init,
1125 			.cra_exit		= atmel_sha_cra_exit,
1126 		}
1127 	}
1128 },
1129 };
1130 
1131 static void atmel_sha_done_task(unsigned long data)
1132 {
1133 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1134 	int err = 0;
1135 
1136 	if (!(SHA_FLAGS_BUSY & dd->flags)) {
1137 		atmel_sha_handle_queue(dd, NULL);
1138 		return;
1139 	}
1140 
1141 	if (SHA_FLAGS_CPU & dd->flags) {
1142 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1143 			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1144 			goto finish;
1145 		}
1146 	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1147 		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1148 			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1149 			atmel_sha_update_dma_stop(dd);
1150 			if (dd->err) {
1151 				err = dd->err;
1152 				goto finish;
1153 			}
1154 		}
1155 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1156 			/* hash or semi-hash ready */
1157 			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1158 						SHA_FLAGS_OUTPUT_READY);
1159 			err = atmel_sha_update_dma_start(dd);
1160 			if (err != -EINPROGRESS)
1161 				goto finish;
1162 		}
1163 	}
1164 	return;
1165 
1166 finish:
1167 	/* finish curent request */
1168 	atmel_sha_finish_req(dd->req, err);
1169 }
1170 
1171 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1172 {
1173 	struct atmel_sha_dev *sha_dd = dev_id;
1174 	u32 reg;
1175 
1176 	reg = atmel_sha_read(sha_dd, SHA_ISR);
1177 	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1178 		atmel_sha_write(sha_dd, SHA_IDR, reg);
1179 		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1180 			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1181 			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1182 				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1183 			tasklet_schedule(&sha_dd->done_task);
1184 		} else {
1185 			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1186 		}
1187 		return IRQ_HANDLED;
1188 	}
1189 
1190 	return IRQ_NONE;
1191 }
1192 
1193 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1194 {
1195 	int i;
1196 
1197 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1198 		crypto_unregister_ahash(&sha_1_256_algs[i]);
1199 
1200 	if (dd->caps.has_sha224)
1201 		crypto_unregister_ahash(&sha_224_alg);
1202 
1203 	if (dd->caps.has_sha_384_512) {
1204 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1205 			crypto_unregister_ahash(&sha_384_512_algs[i]);
1206 	}
1207 }
1208 
1209 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1210 {
1211 	int err, i, j;
1212 
1213 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1214 		err = crypto_register_ahash(&sha_1_256_algs[i]);
1215 		if (err)
1216 			goto err_sha_1_256_algs;
1217 	}
1218 
1219 	if (dd->caps.has_sha224) {
1220 		err = crypto_register_ahash(&sha_224_alg);
1221 		if (err)
1222 			goto err_sha_224_algs;
1223 	}
1224 
1225 	if (dd->caps.has_sha_384_512) {
1226 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1227 			err = crypto_register_ahash(&sha_384_512_algs[i]);
1228 			if (err)
1229 				goto err_sha_384_512_algs;
1230 		}
1231 	}
1232 
1233 	return 0;
1234 
1235 err_sha_384_512_algs:
1236 	for (j = 0; j < i; j++)
1237 		crypto_unregister_ahash(&sha_384_512_algs[j]);
1238 	crypto_unregister_ahash(&sha_224_alg);
1239 err_sha_224_algs:
1240 	i = ARRAY_SIZE(sha_1_256_algs);
1241 err_sha_1_256_algs:
1242 	for (j = 0; j < i; j++)
1243 		crypto_unregister_ahash(&sha_1_256_algs[j]);
1244 
1245 	return err;
1246 }
1247 
1248 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1249 {
1250 	struct at_dma_slave	*sl = slave;
1251 
1252 	if (sl && sl->dma_dev == chan->device->dev) {
1253 		chan->private = sl;
1254 		return true;
1255 	} else {
1256 		return false;
1257 	}
1258 }
1259 
1260 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1261 				struct crypto_platform_data *pdata)
1262 {
1263 	int err = -ENOMEM;
1264 	dma_cap_mask_t mask_in;
1265 
1266 	if (pdata && pdata->dma_slave->rxdata.dma_dev) {
1267 		/* Try to grab DMA channel */
1268 		dma_cap_zero(mask_in);
1269 		dma_cap_set(DMA_SLAVE, mask_in);
1270 
1271 		dd->dma_lch_in.chan = dma_request_channel(mask_in,
1272 				atmel_sha_filter, &pdata->dma_slave->rxdata);
1273 
1274 		if (!dd->dma_lch_in.chan)
1275 			return err;
1276 
1277 		dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1278 		dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1279 			SHA_REG_DIN(0);
1280 		dd->dma_lch_in.dma_conf.src_maxburst = 1;
1281 		dd->dma_lch_in.dma_conf.src_addr_width =
1282 			DMA_SLAVE_BUSWIDTH_4_BYTES;
1283 		dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1284 		dd->dma_lch_in.dma_conf.dst_addr_width =
1285 			DMA_SLAVE_BUSWIDTH_4_BYTES;
1286 		dd->dma_lch_in.dma_conf.device_fc = false;
1287 
1288 		return 0;
1289 	}
1290 
1291 	return -ENODEV;
1292 }
1293 
1294 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1295 {
1296 	dma_release_channel(dd->dma_lch_in.chan);
1297 }
1298 
1299 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1300 {
1301 
1302 	dd->caps.has_dma = 0;
1303 	dd->caps.has_dualbuff = 0;
1304 	dd->caps.has_sha224 = 0;
1305 	dd->caps.has_sha_384_512 = 0;
1306 
1307 	/* keep only major version number */
1308 	switch (dd->hw_version & 0xff0) {
1309 	case 0x410:
1310 		dd->caps.has_dma = 1;
1311 		dd->caps.has_dualbuff = 1;
1312 		dd->caps.has_sha224 = 1;
1313 		dd->caps.has_sha_384_512 = 1;
1314 		break;
1315 	case 0x400:
1316 		dd->caps.has_dma = 1;
1317 		dd->caps.has_dualbuff = 1;
1318 		dd->caps.has_sha224 = 1;
1319 		break;
1320 	case 0x320:
1321 		break;
1322 	default:
1323 		dev_warn(dd->dev,
1324 				"Unmanaged sha version, set minimum capabilities\n");
1325 		break;
1326 	}
1327 }
1328 
1329 static int atmel_sha_probe(struct platform_device *pdev)
1330 {
1331 	struct atmel_sha_dev *sha_dd;
1332 	struct crypto_platform_data	*pdata;
1333 	struct device *dev = &pdev->dev;
1334 	struct resource *sha_res;
1335 	unsigned long sha_phys_size;
1336 	int err;
1337 
1338 	sha_dd = kzalloc(sizeof(struct atmel_sha_dev), GFP_KERNEL);
1339 	if (sha_dd == NULL) {
1340 		dev_err(dev, "unable to alloc data struct.\n");
1341 		err = -ENOMEM;
1342 		goto sha_dd_err;
1343 	}
1344 
1345 	sha_dd->dev = dev;
1346 
1347 	platform_set_drvdata(pdev, sha_dd);
1348 
1349 	INIT_LIST_HEAD(&sha_dd->list);
1350 
1351 	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1352 					(unsigned long)sha_dd);
1353 
1354 	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1355 
1356 	sha_dd->irq = -1;
1357 
1358 	/* Get the base address */
1359 	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1360 	if (!sha_res) {
1361 		dev_err(dev, "no MEM resource info\n");
1362 		err = -ENODEV;
1363 		goto res_err;
1364 	}
1365 	sha_dd->phys_base = sha_res->start;
1366 	sha_phys_size = resource_size(sha_res);
1367 
1368 	/* Get the IRQ */
1369 	sha_dd->irq = platform_get_irq(pdev,  0);
1370 	if (sha_dd->irq < 0) {
1371 		dev_err(dev, "no IRQ resource info\n");
1372 		err = sha_dd->irq;
1373 		goto res_err;
1374 	}
1375 
1376 	err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1377 						sha_dd);
1378 	if (err) {
1379 		dev_err(dev, "unable to request sha irq.\n");
1380 		goto res_err;
1381 	}
1382 
1383 	/* Initializing the clock */
1384 	sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1385 	if (IS_ERR(sha_dd->iclk)) {
1386 		dev_err(dev, "clock intialization failed.\n");
1387 		err = PTR_ERR(sha_dd->iclk);
1388 		goto clk_err;
1389 	}
1390 
1391 	sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1392 	if (!sha_dd->io_base) {
1393 		dev_err(dev, "can't ioremap\n");
1394 		err = -ENOMEM;
1395 		goto sha_io_err;
1396 	}
1397 
1398 	atmel_sha_hw_version_init(sha_dd);
1399 
1400 	atmel_sha_get_cap(sha_dd);
1401 
1402 	if (sha_dd->caps.has_dma) {
1403 		pdata = pdev->dev.platform_data;
1404 		if (!pdata) {
1405 			dev_err(&pdev->dev, "platform data not available\n");
1406 			err = -ENXIO;
1407 			goto err_pdata;
1408 		}
1409 		err = atmel_sha_dma_init(sha_dd, pdata);
1410 		if (err)
1411 			goto err_sha_dma;
1412 	}
1413 
1414 	spin_lock(&atmel_sha.lock);
1415 	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1416 	spin_unlock(&atmel_sha.lock);
1417 
1418 	err = atmel_sha_register_algs(sha_dd);
1419 	if (err)
1420 		goto err_algs;
1421 
1422 	dev_info(dev, "Atmel SHA1/SHA256\n");
1423 
1424 	return 0;
1425 
1426 err_algs:
1427 	spin_lock(&atmel_sha.lock);
1428 	list_del(&sha_dd->list);
1429 	spin_unlock(&atmel_sha.lock);
1430 	if (sha_dd->caps.has_dma)
1431 		atmel_sha_dma_cleanup(sha_dd);
1432 err_sha_dma:
1433 err_pdata:
1434 	iounmap(sha_dd->io_base);
1435 sha_io_err:
1436 	clk_put(sha_dd->iclk);
1437 clk_err:
1438 	free_irq(sha_dd->irq, sha_dd);
1439 res_err:
1440 	tasklet_kill(&sha_dd->done_task);
1441 	kfree(sha_dd);
1442 	sha_dd = NULL;
1443 sha_dd_err:
1444 	dev_err(dev, "initialization failed.\n");
1445 
1446 	return err;
1447 }
1448 
1449 static int atmel_sha_remove(struct platform_device *pdev)
1450 {
1451 	static struct atmel_sha_dev *sha_dd;
1452 
1453 	sha_dd = platform_get_drvdata(pdev);
1454 	if (!sha_dd)
1455 		return -ENODEV;
1456 	spin_lock(&atmel_sha.lock);
1457 	list_del(&sha_dd->list);
1458 	spin_unlock(&atmel_sha.lock);
1459 
1460 	atmel_sha_unregister_algs(sha_dd);
1461 
1462 	tasklet_kill(&sha_dd->done_task);
1463 
1464 	if (sha_dd->caps.has_dma)
1465 		atmel_sha_dma_cleanup(sha_dd);
1466 
1467 	iounmap(sha_dd->io_base);
1468 
1469 	clk_put(sha_dd->iclk);
1470 
1471 	if (sha_dd->irq >= 0)
1472 		free_irq(sha_dd->irq, sha_dd);
1473 
1474 	kfree(sha_dd);
1475 	sha_dd = NULL;
1476 
1477 	return 0;
1478 }
1479 
1480 static struct platform_driver atmel_sha_driver = {
1481 	.probe		= atmel_sha_probe,
1482 	.remove		= atmel_sha_remove,
1483 	.driver		= {
1484 		.name	= "atmel_sha",
1485 		.owner	= THIS_MODULE,
1486 	},
1487 };
1488 
1489 module_platform_driver(atmel_sha_driver);
1490 
1491 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1492 MODULE_LICENSE("GPL v2");
1493 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
1494