xref: /openbmc/linux/drivers/crypto/atmel-sha.c (revision 8c0b9ee8)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44 
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY			BIT(0)
47 #define	SHA_FLAGS_FINAL			BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE	BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY	BIT(3)
50 #define SHA_FLAGS_INIT			BIT(4)
51 #define SHA_FLAGS_CPU			BIT(5)
52 #define SHA_FLAGS_DMA_READY		BIT(6)
53 
54 #define SHA_FLAGS_FINUP		BIT(16)
55 #define SHA_FLAGS_SG		BIT(17)
56 #define SHA_FLAGS_SHA1		BIT(18)
57 #define SHA_FLAGS_SHA224	BIT(19)
58 #define SHA_FLAGS_SHA256	BIT(20)
59 #define SHA_FLAGS_SHA384	BIT(21)
60 #define SHA_FLAGS_SHA512	BIT(22)
61 #define SHA_FLAGS_ERROR		BIT(23)
62 #define SHA_FLAGS_PAD		BIT(24)
63 
64 #define SHA_OP_UPDATE	1
65 #define SHA_OP_FINAL	2
66 
67 #define SHA_BUFFER_LEN		PAGE_SIZE
68 
69 #define ATMEL_SHA_DMA_THRESHOLD		56
70 
71 struct atmel_sha_caps {
72 	bool	has_dma;
73 	bool	has_dualbuff;
74 	bool	has_sha224;
75 	bool	has_sha_384_512;
76 };
77 
78 struct atmel_sha_dev;
79 
80 struct atmel_sha_reqctx {
81 	struct atmel_sha_dev	*dd;
82 	unsigned long	flags;
83 	unsigned long	op;
84 
85 	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
86 	u64	digcnt[2];
87 	size_t	bufcnt;
88 	size_t	buflen;
89 	dma_addr_t	dma_addr;
90 
91 	/* walk state */
92 	struct scatterlist	*sg;
93 	unsigned int	offset;	/* offset in current sg */
94 	unsigned int	total;	/* total request */
95 
96 	size_t block_size;
97 
98 	u8	buffer[0] __aligned(sizeof(u32));
99 };
100 
101 struct atmel_sha_ctx {
102 	struct atmel_sha_dev	*dd;
103 
104 	unsigned long		flags;
105 };
106 
107 #define ATMEL_SHA_QUEUE_LENGTH	50
108 
109 struct atmel_sha_dma {
110 	struct dma_chan			*chan;
111 	struct dma_slave_config dma_conf;
112 };
113 
114 struct atmel_sha_dev {
115 	struct list_head	list;
116 	unsigned long		phys_base;
117 	struct device		*dev;
118 	struct clk			*iclk;
119 	int					irq;
120 	void __iomem		*io_base;
121 
122 	spinlock_t		lock;
123 	int			err;
124 	struct tasklet_struct	done_task;
125 
126 	unsigned long		flags;
127 	struct crypto_queue	queue;
128 	struct ahash_request	*req;
129 
130 	struct atmel_sha_dma	dma_lch_in;
131 
132 	struct atmel_sha_caps	caps;
133 
134 	u32	hw_version;
135 };
136 
137 struct atmel_sha_drv {
138 	struct list_head	dev_list;
139 	spinlock_t		lock;
140 };
141 
142 static struct atmel_sha_drv atmel_sha = {
143 	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
144 	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
145 };
146 
147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
148 {
149 	return readl_relaxed(dd->io_base + offset);
150 }
151 
152 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
153 					u32 offset, u32 value)
154 {
155 	writel_relaxed(value, dd->io_base + offset);
156 }
157 
158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
159 {
160 	size_t count;
161 
162 	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
163 		count = min(ctx->sg->length - ctx->offset, ctx->total);
164 		count = min(count, ctx->buflen - ctx->bufcnt);
165 
166 		if (count <= 0)
167 			break;
168 
169 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
170 			ctx->offset, count, 0);
171 
172 		ctx->bufcnt += count;
173 		ctx->offset += count;
174 		ctx->total -= count;
175 
176 		if (ctx->offset == ctx->sg->length) {
177 			ctx->sg = sg_next(ctx->sg);
178 			if (ctx->sg)
179 				ctx->offset = 0;
180 			else
181 				ctx->total = 0;
182 		}
183 	}
184 
185 	return 0;
186 }
187 
188 /*
189  * The purpose of this padding is to ensure that the padded message is a
190  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
191  * The bit "1" is appended at the end of the message followed by
192  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
193  * 128 bits block (SHA384/SHA512) equals to the message length in bits
194  * is appended.
195  *
196  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
197  *  - if message length < 56 bytes then padlen = 56 - message length
198  *  - else padlen = 64 + 56 - message length
199  *
200  * For SHA384/SHA512, padlen is calculated as followed:
201  *  - if message length < 112 bytes then padlen = 112 - message length
202  *  - else padlen = 128 + 112 - message length
203  */
204 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
205 {
206 	unsigned int index, padlen;
207 	u64 bits[2];
208 	u64 size[2];
209 
210 	size[0] = ctx->digcnt[0];
211 	size[1] = ctx->digcnt[1];
212 
213 	size[0] += ctx->bufcnt;
214 	if (size[0] < ctx->bufcnt)
215 		size[1]++;
216 
217 	size[0] += length;
218 	if (size[0]  < length)
219 		size[1]++;
220 
221 	bits[1] = cpu_to_be64(size[0] << 3);
222 	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
223 
224 	if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
225 		index = ctx->bufcnt & 0x7f;
226 		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
227 		*(ctx->buffer + ctx->bufcnt) = 0x80;
228 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
229 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
230 		ctx->bufcnt += padlen + 16;
231 		ctx->flags |= SHA_FLAGS_PAD;
232 	} else {
233 		index = ctx->bufcnt & 0x3f;
234 		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
235 		*(ctx->buffer + ctx->bufcnt) = 0x80;
236 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
237 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
238 		ctx->bufcnt += padlen + 8;
239 		ctx->flags |= SHA_FLAGS_PAD;
240 	}
241 }
242 
243 static int atmel_sha_init(struct ahash_request *req)
244 {
245 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
246 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
247 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
248 	struct atmel_sha_dev *dd = NULL;
249 	struct atmel_sha_dev *tmp;
250 
251 	spin_lock_bh(&atmel_sha.lock);
252 	if (!tctx->dd) {
253 		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
254 			dd = tmp;
255 			break;
256 		}
257 		tctx->dd = dd;
258 	} else {
259 		dd = tctx->dd;
260 	}
261 
262 	spin_unlock_bh(&atmel_sha.lock);
263 
264 	ctx->dd = dd;
265 
266 	ctx->flags = 0;
267 
268 	dev_dbg(dd->dev, "init: digest size: %d\n",
269 		crypto_ahash_digestsize(tfm));
270 
271 	switch (crypto_ahash_digestsize(tfm)) {
272 	case SHA1_DIGEST_SIZE:
273 		ctx->flags |= SHA_FLAGS_SHA1;
274 		ctx->block_size = SHA1_BLOCK_SIZE;
275 		break;
276 	case SHA224_DIGEST_SIZE:
277 		ctx->flags |= SHA_FLAGS_SHA224;
278 		ctx->block_size = SHA224_BLOCK_SIZE;
279 		break;
280 	case SHA256_DIGEST_SIZE:
281 		ctx->flags |= SHA_FLAGS_SHA256;
282 		ctx->block_size = SHA256_BLOCK_SIZE;
283 		break;
284 	case SHA384_DIGEST_SIZE:
285 		ctx->flags |= SHA_FLAGS_SHA384;
286 		ctx->block_size = SHA384_BLOCK_SIZE;
287 		break;
288 	case SHA512_DIGEST_SIZE:
289 		ctx->flags |= SHA_FLAGS_SHA512;
290 		ctx->block_size = SHA512_BLOCK_SIZE;
291 		break;
292 	default:
293 		return -EINVAL;
294 		break;
295 	}
296 
297 	ctx->bufcnt = 0;
298 	ctx->digcnt[0] = 0;
299 	ctx->digcnt[1] = 0;
300 	ctx->buflen = SHA_BUFFER_LEN;
301 
302 	return 0;
303 }
304 
305 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
306 {
307 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
308 	u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
309 
310 	if (likely(dma)) {
311 		if (!dd->caps.has_dma)
312 			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
313 		valmr = SHA_MR_MODE_PDC;
314 		if (dd->caps.has_dualbuff)
315 			valmr |= SHA_MR_DUALBUFF;
316 	} else {
317 		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
318 	}
319 
320 	if (ctx->flags & SHA_FLAGS_SHA1)
321 		valmr |= SHA_MR_ALGO_SHA1;
322 	else if (ctx->flags & SHA_FLAGS_SHA224)
323 		valmr |= SHA_MR_ALGO_SHA224;
324 	else if (ctx->flags & SHA_FLAGS_SHA256)
325 		valmr |= SHA_MR_ALGO_SHA256;
326 	else if (ctx->flags & SHA_FLAGS_SHA384)
327 		valmr |= SHA_MR_ALGO_SHA384;
328 	else if (ctx->flags & SHA_FLAGS_SHA512)
329 		valmr |= SHA_MR_ALGO_SHA512;
330 
331 	/* Setting CR_FIRST only for the first iteration */
332 	if (!(ctx->digcnt[0] || ctx->digcnt[1]))
333 		valcr = SHA_CR_FIRST;
334 
335 	atmel_sha_write(dd, SHA_CR, valcr);
336 	atmel_sha_write(dd, SHA_MR, valmr);
337 }
338 
339 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
340 			      size_t length, int final)
341 {
342 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
343 	int count, len32;
344 	const u32 *buffer = (const u32 *)buf;
345 
346 	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
347 		ctx->digcnt[1], ctx->digcnt[0], length, final);
348 
349 	atmel_sha_write_ctrl(dd, 0);
350 
351 	/* should be non-zero before next lines to disable clocks later */
352 	ctx->digcnt[0] += length;
353 	if (ctx->digcnt[0] < length)
354 		ctx->digcnt[1]++;
355 
356 	if (final)
357 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
358 
359 	len32 = DIV_ROUND_UP(length, sizeof(u32));
360 
361 	dd->flags |= SHA_FLAGS_CPU;
362 
363 	for (count = 0; count < len32; count++)
364 		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
365 
366 	return -EINPROGRESS;
367 }
368 
369 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
370 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
371 {
372 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
373 	int len32;
374 
375 	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
376 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
377 
378 	len32 = DIV_ROUND_UP(length1, sizeof(u32));
379 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
380 	atmel_sha_write(dd, SHA_TPR, dma_addr1);
381 	atmel_sha_write(dd, SHA_TCR, len32);
382 
383 	len32 = DIV_ROUND_UP(length2, sizeof(u32));
384 	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
385 	atmel_sha_write(dd, SHA_TNCR, len32);
386 
387 	atmel_sha_write_ctrl(dd, 1);
388 
389 	/* should be non-zero before next lines to disable clocks later */
390 	ctx->digcnt[0] += length1;
391 	if (ctx->digcnt[0] < length1)
392 		ctx->digcnt[1]++;
393 
394 	if (final)
395 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
396 
397 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
398 
399 	/* Start DMA transfer */
400 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
401 
402 	return -EINPROGRESS;
403 }
404 
405 static void atmel_sha_dma_callback(void *data)
406 {
407 	struct atmel_sha_dev *dd = data;
408 
409 	/* dma_lch_in - completed - wait DATRDY */
410 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
411 }
412 
413 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
414 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
415 {
416 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
417 	struct dma_async_tx_descriptor	*in_desc;
418 	struct scatterlist sg[2];
419 
420 	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
421 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
422 
423 	if (ctx->flags & (SHA_FLAGS_SHA1 | SHA_FLAGS_SHA224 |
424 			SHA_FLAGS_SHA256)) {
425 		dd->dma_lch_in.dma_conf.src_maxburst = 16;
426 		dd->dma_lch_in.dma_conf.dst_maxburst = 16;
427 	} else {
428 		dd->dma_lch_in.dma_conf.src_maxburst = 32;
429 		dd->dma_lch_in.dma_conf.dst_maxburst = 32;
430 	}
431 
432 	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
433 
434 	if (length2) {
435 		sg_init_table(sg, 2);
436 		sg_dma_address(&sg[0]) = dma_addr1;
437 		sg_dma_len(&sg[0]) = length1;
438 		sg_dma_address(&sg[1]) = dma_addr2;
439 		sg_dma_len(&sg[1]) = length2;
440 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
441 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
442 	} else {
443 		sg_init_table(sg, 1);
444 		sg_dma_address(&sg[0]) = dma_addr1;
445 		sg_dma_len(&sg[0]) = length1;
446 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
447 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448 	}
449 	if (!in_desc)
450 		return -EINVAL;
451 
452 	in_desc->callback = atmel_sha_dma_callback;
453 	in_desc->callback_param = dd;
454 
455 	atmel_sha_write_ctrl(dd, 1);
456 
457 	/* should be non-zero before next lines to disable clocks later */
458 	ctx->digcnt[0] += length1;
459 	if (ctx->digcnt[0] < length1)
460 		ctx->digcnt[1]++;
461 
462 	if (final)
463 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
464 
465 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
466 
467 	/* Start DMA transfer */
468 	dmaengine_submit(in_desc);
469 	dma_async_issue_pending(dd->dma_lch_in.chan);
470 
471 	return -EINPROGRESS;
472 }
473 
474 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
475 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
476 {
477 	if (dd->caps.has_dma)
478 		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
479 				dma_addr2, length2, final);
480 	else
481 		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
482 				dma_addr2, length2, final);
483 }
484 
485 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
486 {
487 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
488 	int bufcnt;
489 
490 	atmel_sha_append_sg(ctx);
491 	atmel_sha_fill_padding(ctx, 0);
492 	bufcnt = ctx->bufcnt;
493 	ctx->bufcnt = 0;
494 
495 	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
496 }
497 
498 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
499 					struct atmel_sha_reqctx *ctx,
500 					size_t length, int final)
501 {
502 	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
503 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
504 	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
505 		dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
506 				ctx->block_size);
507 		return -EINVAL;
508 	}
509 
510 	ctx->flags &= ~SHA_FLAGS_SG;
511 
512 	/* next call does not fail... so no unmap in the case of error */
513 	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
514 }
515 
516 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
517 {
518 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
519 	unsigned int final;
520 	size_t count;
521 
522 	atmel_sha_append_sg(ctx);
523 
524 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
525 
526 	dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
527 		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
528 
529 	if (final)
530 		atmel_sha_fill_padding(ctx, 0);
531 
532 	if (final || (ctx->bufcnt == ctx->buflen && ctx->total)) {
533 		count = ctx->bufcnt;
534 		ctx->bufcnt = 0;
535 		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
536 	}
537 
538 	return 0;
539 }
540 
541 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
542 {
543 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
544 	unsigned int length, final, tail;
545 	struct scatterlist *sg;
546 	unsigned int count;
547 
548 	if (!ctx->total)
549 		return 0;
550 
551 	if (ctx->bufcnt || ctx->offset)
552 		return atmel_sha_update_dma_slow(dd);
553 
554 	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
555 		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
556 
557 	sg = ctx->sg;
558 
559 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
560 		return atmel_sha_update_dma_slow(dd);
561 
562 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
563 		/* size is not ctx->block_size aligned */
564 		return atmel_sha_update_dma_slow(dd);
565 
566 	length = min(ctx->total, sg->length);
567 
568 	if (sg_is_last(sg)) {
569 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
570 			/* not last sg must be ctx->block_size aligned */
571 			tail = length & (ctx->block_size - 1);
572 			length -= tail;
573 		}
574 	}
575 
576 	ctx->total -= length;
577 	ctx->offset = length; /* offset where to start slow */
578 
579 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
580 
581 	/* Add padding */
582 	if (final) {
583 		tail = length & (ctx->block_size - 1);
584 		length -= tail;
585 		ctx->total += tail;
586 		ctx->offset = length; /* offset where to start slow */
587 
588 		sg = ctx->sg;
589 		atmel_sha_append_sg(ctx);
590 
591 		atmel_sha_fill_padding(ctx, length);
592 
593 		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
594 			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
595 		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
596 			dev_err(dd->dev, "dma %u bytes error\n",
597 				ctx->buflen + ctx->block_size);
598 			return -EINVAL;
599 		}
600 
601 		if (length == 0) {
602 			ctx->flags &= ~SHA_FLAGS_SG;
603 			count = ctx->bufcnt;
604 			ctx->bufcnt = 0;
605 			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
606 					0, final);
607 		} else {
608 			ctx->sg = sg;
609 			if (!dma_map_sg(dd->dev, ctx->sg, 1,
610 				DMA_TO_DEVICE)) {
611 					dev_err(dd->dev, "dma_map_sg  error\n");
612 					return -EINVAL;
613 			}
614 
615 			ctx->flags |= SHA_FLAGS_SG;
616 
617 			count = ctx->bufcnt;
618 			ctx->bufcnt = 0;
619 			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
620 					length, ctx->dma_addr, count, final);
621 		}
622 	}
623 
624 	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
625 		dev_err(dd->dev, "dma_map_sg  error\n");
626 		return -EINVAL;
627 	}
628 
629 	ctx->flags |= SHA_FLAGS_SG;
630 
631 	/* next call does not fail... so no unmap in the case of error */
632 	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
633 								0, final);
634 }
635 
636 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
637 {
638 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
639 
640 	if (ctx->flags & SHA_FLAGS_SG) {
641 		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
642 		if (ctx->sg->length == ctx->offset) {
643 			ctx->sg = sg_next(ctx->sg);
644 			if (ctx->sg)
645 				ctx->offset = 0;
646 		}
647 		if (ctx->flags & SHA_FLAGS_PAD) {
648 			dma_unmap_single(dd->dev, ctx->dma_addr,
649 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
650 		}
651 	} else {
652 		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
653 						ctx->block_size, DMA_TO_DEVICE);
654 	}
655 
656 	return 0;
657 }
658 
659 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
660 {
661 	struct ahash_request *req = dd->req;
662 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
663 	int err;
664 
665 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
666 		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
667 
668 	if (ctx->flags & SHA_FLAGS_CPU)
669 		err = atmel_sha_update_cpu(dd);
670 	else
671 		err = atmel_sha_update_dma_start(dd);
672 
673 	/* wait for dma completion before can take more data */
674 	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
675 			err, ctx->digcnt[1], ctx->digcnt[0]);
676 
677 	return err;
678 }
679 
680 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
681 {
682 	struct ahash_request *req = dd->req;
683 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
684 	int err = 0;
685 	int count;
686 
687 	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
688 		atmel_sha_fill_padding(ctx, 0);
689 		count = ctx->bufcnt;
690 		ctx->bufcnt = 0;
691 		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
692 	}
693 	/* faster to handle last block with cpu */
694 	else {
695 		atmel_sha_fill_padding(ctx, 0);
696 		count = ctx->bufcnt;
697 		ctx->bufcnt = 0;
698 		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
699 	}
700 
701 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
702 
703 	return err;
704 }
705 
706 static void atmel_sha_copy_hash(struct ahash_request *req)
707 {
708 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
709 	u32 *hash = (u32 *)ctx->digest;
710 	int i;
711 
712 	if (ctx->flags & SHA_FLAGS_SHA1)
713 		for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
714 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
715 	else if (ctx->flags & SHA_FLAGS_SHA224)
716 		for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
717 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
718 	else if (ctx->flags & SHA_FLAGS_SHA256)
719 		for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
720 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721 	else if (ctx->flags & SHA_FLAGS_SHA384)
722 		for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
723 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724 	else
725 		for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
726 			hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727 }
728 
729 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
730 {
731 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
732 
733 	if (!req->result)
734 		return;
735 
736 	if (ctx->flags & SHA_FLAGS_SHA1)
737 		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
738 	else if (ctx->flags & SHA_FLAGS_SHA224)
739 		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
740 	else if (ctx->flags & SHA_FLAGS_SHA256)
741 		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
742 	else if (ctx->flags & SHA_FLAGS_SHA384)
743 		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
744 	else
745 		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
746 }
747 
748 static int atmel_sha_finish(struct ahash_request *req)
749 {
750 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
751 	struct atmel_sha_dev *dd = ctx->dd;
752 	int err = 0;
753 
754 	if (ctx->digcnt[0] || ctx->digcnt[1])
755 		atmel_sha_copy_ready_hash(req);
756 
757 	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
758 		ctx->digcnt[0], ctx->bufcnt);
759 
760 	return err;
761 }
762 
763 static void atmel_sha_finish_req(struct ahash_request *req, int err)
764 {
765 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
766 	struct atmel_sha_dev *dd = ctx->dd;
767 
768 	if (!err) {
769 		atmel_sha_copy_hash(req);
770 		if (SHA_FLAGS_FINAL & dd->flags)
771 			err = atmel_sha_finish(req);
772 	} else {
773 		ctx->flags |= SHA_FLAGS_ERROR;
774 	}
775 
776 	/* atomic operation is not needed here */
777 	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
778 			SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
779 
780 	clk_disable_unprepare(dd->iclk);
781 
782 	if (req->base.complete)
783 		req->base.complete(&req->base, err);
784 
785 	/* handle new request */
786 	tasklet_schedule(&dd->done_task);
787 }
788 
789 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
790 {
791 	clk_prepare_enable(dd->iclk);
792 
793 	if (!(SHA_FLAGS_INIT & dd->flags)) {
794 		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
795 		dd->flags |= SHA_FLAGS_INIT;
796 		dd->err = 0;
797 	}
798 
799 	return 0;
800 }
801 
802 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
803 {
804 	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
805 }
806 
807 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
808 {
809 	atmel_sha_hw_init(dd);
810 
811 	dd->hw_version = atmel_sha_get_version(dd);
812 
813 	dev_info(dd->dev,
814 			"version: 0x%x\n", dd->hw_version);
815 
816 	clk_disable_unprepare(dd->iclk);
817 }
818 
819 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
820 				  struct ahash_request *req)
821 {
822 	struct crypto_async_request *async_req, *backlog;
823 	struct atmel_sha_reqctx *ctx;
824 	unsigned long flags;
825 	int err = 0, ret = 0;
826 
827 	spin_lock_irqsave(&dd->lock, flags);
828 	if (req)
829 		ret = ahash_enqueue_request(&dd->queue, req);
830 
831 	if (SHA_FLAGS_BUSY & dd->flags) {
832 		spin_unlock_irqrestore(&dd->lock, flags);
833 		return ret;
834 	}
835 
836 	backlog = crypto_get_backlog(&dd->queue);
837 	async_req = crypto_dequeue_request(&dd->queue);
838 	if (async_req)
839 		dd->flags |= SHA_FLAGS_BUSY;
840 
841 	spin_unlock_irqrestore(&dd->lock, flags);
842 
843 	if (!async_req)
844 		return ret;
845 
846 	if (backlog)
847 		backlog->complete(backlog, -EINPROGRESS);
848 
849 	req = ahash_request_cast(async_req);
850 	dd->req = req;
851 	ctx = ahash_request_ctx(req);
852 
853 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
854 						ctx->op, req->nbytes);
855 
856 	err = atmel_sha_hw_init(dd);
857 
858 	if (err)
859 		goto err1;
860 
861 	if (ctx->op == SHA_OP_UPDATE) {
862 		err = atmel_sha_update_req(dd);
863 		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
864 			/* no final() after finup() */
865 			err = atmel_sha_final_req(dd);
866 	} else if (ctx->op == SHA_OP_FINAL) {
867 		err = atmel_sha_final_req(dd);
868 	}
869 
870 err1:
871 	if (err != -EINPROGRESS)
872 		/* done_task will not finish it, so do it here */
873 		atmel_sha_finish_req(req, err);
874 
875 	dev_dbg(dd->dev, "exit, err: %d\n", err);
876 
877 	return ret;
878 }
879 
880 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
881 {
882 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
883 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
884 	struct atmel_sha_dev *dd = tctx->dd;
885 
886 	ctx->op = op;
887 
888 	return atmel_sha_handle_queue(dd, req);
889 }
890 
891 static int atmel_sha_update(struct ahash_request *req)
892 {
893 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
894 
895 	if (!req->nbytes)
896 		return 0;
897 
898 	ctx->total = req->nbytes;
899 	ctx->sg = req->src;
900 	ctx->offset = 0;
901 
902 	if (ctx->flags & SHA_FLAGS_FINUP) {
903 		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
904 			/* faster to use CPU for short transfers */
905 			ctx->flags |= SHA_FLAGS_CPU;
906 	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
907 		atmel_sha_append_sg(ctx);
908 		return 0;
909 	}
910 	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
911 }
912 
913 static int atmel_sha_final(struct ahash_request *req)
914 {
915 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
916 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
917 	struct atmel_sha_dev *dd = tctx->dd;
918 
919 	int err = 0;
920 
921 	ctx->flags |= SHA_FLAGS_FINUP;
922 
923 	if (ctx->flags & SHA_FLAGS_ERROR)
924 		return 0; /* uncompleted hash is not needed */
925 
926 	if (ctx->bufcnt) {
927 		return atmel_sha_enqueue(req, SHA_OP_FINAL);
928 	} else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
929 		err = atmel_sha_hw_init(dd);
930 		if (err)
931 			goto err1;
932 
933 		dd->flags |= SHA_FLAGS_BUSY;
934 		err = atmel_sha_final_req(dd);
935 	} else {
936 		/* copy ready hash (+ finalize hmac) */
937 		return atmel_sha_finish(req);
938 	}
939 
940 err1:
941 	if (err != -EINPROGRESS)
942 		/* done_task will not finish it, so do it here */
943 		atmel_sha_finish_req(req, err);
944 
945 	return err;
946 }
947 
948 static int atmel_sha_finup(struct ahash_request *req)
949 {
950 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
951 	int err1, err2;
952 
953 	ctx->flags |= SHA_FLAGS_FINUP;
954 
955 	err1 = atmel_sha_update(req);
956 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
957 		return err1;
958 
959 	/*
960 	 * final() has to be always called to cleanup resources
961 	 * even if udpate() failed, except EINPROGRESS
962 	 */
963 	err2 = atmel_sha_final(req);
964 
965 	return err1 ?: err2;
966 }
967 
968 static int atmel_sha_digest(struct ahash_request *req)
969 {
970 	return atmel_sha_init(req) ?: atmel_sha_finup(req);
971 }
972 
973 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
974 {
975 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
976 				 sizeof(struct atmel_sha_reqctx) +
977 				 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
978 
979 	return 0;
980 }
981 
982 static struct ahash_alg sha_1_256_algs[] = {
983 {
984 	.init		= atmel_sha_init,
985 	.update		= atmel_sha_update,
986 	.final		= atmel_sha_final,
987 	.finup		= atmel_sha_finup,
988 	.digest		= atmel_sha_digest,
989 	.halg = {
990 		.digestsize	= SHA1_DIGEST_SIZE,
991 		.base	= {
992 			.cra_name		= "sha1",
993 			.cra_driver_name	= "atmel-sha1",
994 			.cra_priority		= 100,
995 			.cra_flags		= CRYPTO_ALG_ASYNC,
996 			.cra_blocksize		= SHA1_BLOCK_SIZE,
997 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
998 			.cra_alignmask		= 0,
999 			.cra_module		= THIS_MODULE,
1000 			.cra_init		= atmel_sha_cra_init,
1001 		}
1002 	}
1003 },
1004 {
1005 	.init		= atmel_sha_init,
1006 	.update		= atmel_sha_update,
1007 	.final		= atmel_sha_final,
1008 	.finup		= atmel_sha_finup,
1009 	.digest		= atmel_sha_digest,
1010 	.halg = {
1011 		.digestsize	= SHA256_DIGEST_SIZE,
1012 		.base	= {
1013 			.cra_name		= "sha256",
1014 			.cra_driver_name	= "atmel-sha256",
1015 			.cra_priority		= 100,
1016 			.cra_flags		= CRYPTO_ALG_ASYNC,
1017 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1018 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1019 			.cra_alignmask		= 0,
1020 			.cra_module		= THIS_MODULE,
1021 			.cra_init		= atmel_sha_cra_init,
1022 		}
1023 	}
1024 },
1025 };
1026 
1027 static struct ahash_alg sha_224_alg = {
1028 	.init		= atmel_sha_init,
1029 	.update		= atmel_sha_update,
1030 	.final		= atmel_sha_final,
1031 	.finup		= atmel_sha_finup,
1032 	.digest		= atmel_sha_digest,
1033 	.halg = {
1034 		.digestsize	= SHA224_DIGEST_SIZE,
1035 		.base	= {
1036 			.cra_name		= "sha224",
1037 			.cra_driver_name	= "atmel-sha224",
1038 			.cra_priority		= 100,
1039 			.cra_flags		= CRYPTO_ALG_ASYNC,
1040 			.cra_blocksize		= SHA224_BLOCK_SIZE,
1041 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1042 			.cra_alignmask		= 0,
1043 			.cra_module		= THIS_MODULE,
1044 			.cra_init		= atmel_sha_cra_init,
1045 		}
1046 	}
1047 };
1048 
1049 static struct ahash_alg sha_384_512_algs[] = {
1050 {
1051 	.init		= atmel_sha_init,
1052 	.update		= atmel_sha_update,
1053 	.final		= atmel_sha_final,
1054 	.finup		= atmel_sha_finup,
1055 	.digest		= atmel_sha_digest,
1056 	.halg = {
1057 		.digestsize	= SHA384_DIGEST_SIZE,
1058 		.base	= {
1059 			.cra_name		= "sha384",
1060 			.cra_driver_name	= "atmel-sha384",
1061 			.cra_priority		= 100,
1062 			.cra_flags		= CRYPTO_ALG_ASYNC,
1063 			.cra_blocksize		= SHA384_BLOCK_SIZE,
1064 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1065 			.cra_alignmask		= 0x3,
1066 			.cra_module		= THIS_MODULE,
1067 			.cra_init		= atmel_sha_cra_init,
1068 		}
1069 	}
1070 },
1071 {
1072 	.init		= atmel_sha_init,
1073 	.update		= atmel_sha_update,
1074 	.final		= atmel_sha_final,
1075 	.finup		= atmel_sha_finup,
1076 	.digest		= atmel_sha_digest,
1077 	.halg = {
1078 		.digestsize	= SHA512_DIGEST_SIZE,
1079 		.base	= {
1080 			.cra_name		= "sha512",
1081 			.cra_driver_name	= "atmel-sha512",
1082 			.cra_priority		= 100,
1083 			.cra_flags		= CRYPTO_ALG_ASYNC,
1084 			.cra_blocksize		= SHA512_BLOCK_SIZE,
1085 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1086 			.cra_alignmask		= 0x3,
1087 			.cra_module		= THIS_MODULE,
1088 			.cra_init		= atmel_sha_cra_init,
1089 		}
1090 	}
1091 },
1092 };
1093 
1094 static void atmel_sha_done_task(unsigned long data)
1095 {
1096 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1097 	int err = 0;
1098 
1099 	if (!(SHA_FLAGS_BUSY & dd->flags)) {
1100 		atmel_sha_handle_queue(dd, NULL);
1101 		return;
1102 	}
1103 
1104 	if (SHA_FLAGS_CPU & dd->flags) {
1105 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1106 			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1107 			goto finish;
1108 		}
1109 	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1110 		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1111 			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1112 			atmel_sha_update_dma_stop(dd);
1113 			if (dd->err) {
1114 				err = dd->err;
1115 				goto finish;
1116 			}
1117 		}
1118 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1119 			/* hash or semi-hash ready */
1120 			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1121 						SHA_FLAGS_OUTPUT_READY);
1122 			err = atmel_sha_update_dma_start(dd);
1123 			if (err != -EINPROGRESS)
1124 				goto finish;
1125 		}
1126 	}
1127 	return;
1128 
1129 finish:
1130 	/* finish curent request */
1131 	atmel_sha_finish_req(dd->req, err);
1132 }
1133 
1134 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1135 {
1136 	struct atmel_sha_dev *sha_dd = dev_id;
1137 	u32 reg;
1138 
1139 	reg = atmel_sha_read(sha_dd, SHA_ISR);
1140 	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1141 		atmel_sha_write(sha_dd, SHA_IDR, reg);
1142 		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1143 			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1144 			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1145 				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1146 			tasklet_schedule(&sha_dd->done_task);
1147 		} else {
1148 			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1149 		}
1150 		return IRQ_HANDLED;
1151 	}
1152 
1153 	return IRQ_NONE;
1154 }
1155 
1156 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1157 {
1158 	int i;
1159 
1160 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1161 		crypto_unregister_ahash(&sha_1_256_algs[i]);
1162 
1163 	if (dd->caps.has_sha224)
1164 		crypto_unregister_ahash(&sha_224_alg);
1165 
1166 	if (dd->caps.has_sha_384_512) {
1167 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1168 			crypto_unregister_ahash(&sha_384_512_algs[i]);
1169 	}
1170 }
1171 
1172 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1173 {
1174 	int err, i, j;
1175 
1176 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1177 		err = crypto_register_ahash(&sha_1_256_algs[i]);
1178 		if (err)
1179 			goto err_sha_1_256_algs;
1180 	}
1181 
1182 	if (dd->caps.has_sha224) {
1183 		err = crypto_register_ahash(&sha_224_alg);
1184 		if (err)
1185 			goto err_sha_224_algs;
1186 	}
1187 
1188 	if (dd->caps.has_sha_384_512) {
1189 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1190 			err = crypto_register_ahash(&sha_384_512_algs[i]);
1191 			if (err)
1192 				goto err_sha_384_512_algs;
1193 		}
1194 	}
1195 
1196 	return 0;
1197 
1198 err_sha_384_512_algs:
1199 	for (j = 0; j < i; j++)
1200 		crypto_unregister_ahash(&sha_384_512_algs[j]);
1201 	crypto_unregister_ahash(&sha_224_alg);
1202 err_sha_224_algs:
1203 	i = ARRAY_SIZE(sha_1_256_algs);
1204 err_sha_1_256_algs:
1205 	for (j = 0; j < i; j++)
1206 		crypto_unregister_ahash(&sha_1_256_algs[j]);
1207 
1208 	return err;
1209 }
1210 
1211 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1212 {
1213 	struct at_dma_slave	*sl = slave;
1214 
1215 	if (sl && sl->dma_dev == chan->device->dev) {
1216 		chan->private = sl;
1217 		return true;
1218 	} else {
1219 		return false;
1220 	}
1221 }
1222 
1223 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1224 				struct crypto_platform_data *pdata)
1225 {
1226 	int err = -ENOMEM;
1227 	dma_cap_mask_t mask_in;
1228 
1229 	/* Try to grab DMA channel */
1230 	dma_cap_zero(mask_in);
1231 	dma_cap_set(DMA_SLAVE, mask_in);
1232 
1233 	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1234 			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1235 	if (!dd->dma_lch_in.chan) {
1236 		dev_warn(dd->dev, "no DMA channel available\n");
1237 		return err;
1238 	}
1239 
1240 	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1241 	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1242 		SHA_REG_DIN(0);
1243 	dd->dma_lch_in.dma_conf.src_maxburst = 1;
1244 	dd->dma_lch_in.dma_conf.src_addr_width =
1245 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1246 	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1247 	dd->dma_lch_in.dma_conf.dst_addr_width =
1248 		DMA_SLAVE_BUSWIDTH_4_BYTES;
1249 	dd->dma_lch_in.dma_conf.device_fc = false;
1250 
1251 	return 0;
1252 }
1253 
1254 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1255 {
1256 	dma_release_channel(dd->dma_lch_in.chan);
1257 }
1258 
1259 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1260 {
1261 
1262 	dd->caps.has_dma = 0;
1263 	dd->caps.has_dualbuff = 0;
1264 	dd->caps.has_sha224 = 0;
1265 	dd->caps.has_sha_384_512 = 0;
1266 
1267 	/* keep only major version number */
1268 	switch (dd->hw_version & 0xff0) {
1269 	case 0x410:
1270 		dd->caps.has_dma = 1;
1271 		dd->caps.has_dualbuff = 1;
1272 		dd->caps.has_sha224 = 1;
1273 		dd->caps.has_sha_384_512 = 1;
1274 		break;
1275 	case 0x400:
1276 		dd->caps.has_dma = 1;
1277 		dd->caps.has_dualbuff = 1;
1278 		dd->caps.has_sha224 = 1;
1279 		break;
1280 	case 0x320:
1281 		break;
1282 	default:
1283 		dev_warn(dd->dev,
1284 				"Unmanaged sha version, set minimum capabilities\n");
1285 		break;
1286 	}
1287 }
1288 
1289 #if defined(CONFIG_OF)
1290 static const struct of_device_id atmel_sha_dt_ids[] = {
1291 	{ .compatible = "atmel,at91sam9g46-sha" },
1292 	{ /* sentinel */ }
1293 };
1294 
1295 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1296 
1297 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1298 {
1299 	struct device_node *np = pdev->dev.of_node;
1300 	struct crypto_platform_data *pdata;
1301 
1302 	if (!np) {
1303 		dev_err(&pdev->dev, "device node not found\n");
1304 		return ERR_PTR(-EINVAL);
1305 	}
1306 
1307 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1308 	if (!pdata) {
1309 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1310 		return ERR_PTR(-ENOMEM);
1311 	}
1312 
1313 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
1314 					sizeof(*(pdata->dma_slave)),
1315 					GFP_KERNEL);
1316 	if (!pdata->dma_slave) {
1317 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1318 		return ERR_PTR(-ENOMEM);
1319 	}
1320 
1321 	return pdata;
1322 }
1323 #else /* CONFIG_OF */
1324 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1325 {
1326 	return ERR_PTR(-EINVAL);
1327 }
1328 #endif
1329 
1330 static int atmel_sha_probe(struct platform_device *pdev)
1331 {
1332 	struct atmel_sha_dev *sha_dd;
1333 	struct crypto_platform_data	*pdata;
1334 	struct device *dev = &pdev->dev;
1335 	struct resource *sha_res;
1336 	unsigned long sha_phys_size;
1337 	int err;
1338 
1339 	sha_dd = devm_kzalloc(&pdev->dev, sizeof(struct atmel_sha_dev),
1340 				GFP_KERNEL);
1341 	if (sha_dd == NULL) {
1342 		dev_err(dev, "unable to alloc data struct.\n");
1343 		err = -ENOMEM;
1344 		goto sha_dd_err;
1345 	}
1346 
1347 	sha_dd->dev = dev;
1348 
1349 	platform_set_drvdata(pdev, sha_dd);
1350 
1351 	INIT_LIST_HEAD(&sha_dd->list);
1352 
1353 	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1354 					(unsigned long)sha_dd);
1355 
1356 	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1357 
1358 	sha_dd->irq = -1;
1359 
1360 	/* Get the base address */
1361 	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1362 	if (!sha_res) {
1363 		dev_err(dev, "no MEM resource info\n");
1364 		err = -ENODEV;
1365 		goto res_err;
1366 	}
1367 	sha_dd->phys_base = sha_res->start;
1368 	sha_phys_size = resource_size(sha_res);
1369 
1370 	/* Get the IRQ */
1371 	sha_dd->irq = platform_get_irq(pdev,  0);
1372 	if (sha_dd->irq < 0) {
1373 		dev_err(dev, "no IRQ resource info\n");
1374 		err = sha_dd->irq;
1375 		goto res_err;
1376 	}
1377 
1378 	err = request_irq(sha_dd->irq, atmel_sha_irq, IRQF_SHARED, "atmel-sha",
1379 						sha_dd);
1380 	if (err) {
1381 		dev_err(dev, "unable to request sha irq.\n");
1382 		goto res_err;
1383 	}
1384 
1385 	/* Initializing the clock */
1386 	sha_dd->iclk = clk_get(&pdev->dev, "sha_clk");
1387 	if (IS_ERR(sha_dd->iclk)) {
1388 		dev_err(dev, "clock intialization failed.\n");
1389 		err = PTR_ERR(sha_dd->iclk);
1390 		goto clk_err;
1391 	}
1392 
1393 	sha_dd->io_base = ioremap(sha_dd->phys_base, sha_phys_size);
1394 	if (!sha_dd->io_base) {
1395 		dev_err(dev, "can't ioremap\n");
1396 		err = -ENOMEM;
1397 		goto sha_io_err;
1398 	}
1399 
1400 	atmel_sha_hw_version_init(sha_dd);
1401 
1402 	atmel_sha_get_cap(sha_dd);
1403 
1404 	if (sha_dd->caps.has_dma) {
1405 		pdata = pdev->dev.platform_data;
1406 		if (!pdata) {
1407 			pdata = atmel_sha_of_init(pdev);
1408 			if (IS_ERR(pdata)) {
1409 				dev_err(&pdev->dev, "platform data not available\n");
1410 				err = PTR_ERR(pdata);
1411 				goto err_pdata;
1412 			}
1413 		}
1414 		if (!pdata->dma_slave) {
1415 			err = -ENXIO;
1416 			goto err_pdata;
1417 		}
1418 		err = atmel_sha_dma_init(sha_dd, pdata);
1419 		if (err)
1420 			goto err_sha_dma;
1421 
1422 		dev_info(dev, "using %s for DMA transfers\n",
1423 				dma_chan_name(sha_dd->dma_lch_in.chan));
1424 	}
1425 
1426 	spin_lock(&atmel_sha.lock);
1427 	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1428 	spin_unlock(&atmel_sha.lock);
1429 
1430 	err = atmel_sha_register_algs(sha_dd);
1431 	if (err)
1432 		goto err_algs;
1433 
1434 	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1435 			sha_dd->caps.has_sha224 ? "/SHA224" : "",
1436 			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1437 
1438 	return 0;
1439 
1440 err_algs:
1441 	spin_lock(&atmel_sha.lock);
1442 	list_del(&sha_dd->list);
1443 	spin_unlock(&atmel_sha.lock);
1444 	if (sha_dd->caps.has_dma)
1445 		atmel_sha_dma_cleanup(sha_dd);
1446 err_sha_dma:
1447 err_pdata:
1448 	iounmap(sha_dd->io_base);
1449 sha_io_err:
1450 	clk_put(sha_dd->iclk);
1451 clk_err:
1452 	free_irq(sha_dd->irq, sha_dd);
1453 res_err:
1454 	tasklet_kill(&sha_dd->done_task);
1455 sha_dd_err:
1456 	dev_err(dev, "initialization failed.\n");
1457 
1458 	return err;
1459 }
1460 
1461 static int atmel_sha_remove(struct platform_device *pdev)
1462 {
1463 	static struct atmel_sha_dev *sha_dd;
1464 
1465 	sha_dd = platform_get_drvdata(pdev);
1466 	if (!sha_dd)
1467 		return -ENODEV;
1468 	spin_lock(&atmel_sha.lock);
1469 	list_del(&sha_dd->list);
1470 	spin_unlock(&atmel_sha.lock);
1471 
1472 	atmel_sha_unregister_algs(sha_dd);
1473 
1474 	tasklet_kill(&sha_dd->done_task);
1475 
1476 	if (sha_dd->caps.has_dma)
1477 		atmel_sha_dma_cleanup(sha_dd);
1478 
1479 	iounmap(sha_dd->io_base);
1480 
1481 	clk_put(sha_dd->iclk);
1482 
1483 	if (sha_dd->irq >= 0)
1484 		free_irq(sha_dd->irq, sha_dd);
1485 
1486 	return 0;
1487 }
1488 
1489 static struct platform_driver atmel_sha_driver = {
1490 	.probe		= atmel_sha_probe,
1491 	.remove		= atmel_sha_remove,
1492 	.driver		= {
1493 		.name	= "atmel_sha",
1494 		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
1495 	},
1496 };
1497 
1498 module_platform_driver(atmel_sha_driver);
1499 
1500 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1501 MODULE_LICENSE("GPL v2");
1502 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
1503