xref: /openbmc/linux/drivers/crypto/atmel-sha.c (revision 884caada)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL SHA1/SHA256 HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-sham.c drivers.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <linux/cryptohash.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/sha.h>
37 #include <crypto/hash.h>
38 #include <crypto/internal/hash.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include "atmel-sha-regs.h"
41 #include "atmel-authenc.h"
42 
43 /* SHA flags */
44 #define SHA_FLAGS_BUSY			BIT(0)
45 #define	SHA_FLAGS_FINAL			BIT(1)
46 #define SHA_FLAGS_DMA_ACTIVE	BIT(2)
47 #define SHA_FLAGS_OUTPUT_READY	BIT(3)
48 #define SHA_FLAGS_INIT			BIT(4)
49 #define SHA_FLAGS_CPU			BIT(5)
50 #define SHA_FLAGS_DMA_READY		BIT(6)
51 #define SHA_FLAGS_DUMP_REG	BIT(7)
52 
53 /* bits[11:8] are reserved. */
54 
55 #define SHA_FLAGS_FINUP		BIT(16)
56 #define SHA_FLAGS_SG		BIT(17)
57 #define SHA_FLAGS_ERROR		BIT(23)
58 #define SHA_FLAGS_PAD		BIT(24)
59 #define SHA_FLAGS_RESTORE	BIT(25)
60 #define SHA_FLAGS_IDATAR0	BIT(26)
61 #define SHA_FLAGS_WAIT_DATARDY	BIT(27)
62 
63 #define SHA_OP_INIT	0
64 #define SHA_OP_UPDATE	1
65 #define SHA_OP_FINAL	2
66 #define SHA_OP_DIGEST	3
67 
68 #define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
69 
70 #define ATMEL_SHA_DMA_THRESHOLD		56
71 
72 struct atmel_sha_caps {
73 	bool	has_dma;
74 	bool	has_dualbuff;
75 	bool	has_sha224;
76 	bool	has_sha_384_512;
77 	bool	has_uihv;
78 	bool	has_hmac;
79 };
80 
81 struct atmel_sha_dev;
82 
83 /*
84  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
85  * tested by the ahash_prepare_alg() function.
86  */
87 struct atmel_sha_reqctx {
88 	struct atmel_sha_dev	*dd;
89 	unsigned long	flags;
90 	unsigned long	op;
91 
92 	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
93 	u64	digcnt[2];
94 	size_t	bufcnt;
95 	size_t	buflen;
96 	dma_addr_t	dma_addr;
97 
98 	/* walk state */
99 	struct scatterlist	*sg;
100 	unsigned int	offset;	/* offset in current sg */
101 	unsigned int	total;	/* total request */
102 
103 	size_t block_size;
104 	size_t hash_size;
105 
106 	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
107 };
108 
109 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
110 
111 struct atmel_sha_ctx {
112 	struct atmel_sha_dev	*dd;
113 	atmel_sha_fn_t		start;
114 
115 	unsigned long		flags;
116 };
117 
118 #define ATMEL_SHA_QUEUE_LENGTH	50
119 
120 struct atmel_sha_dma {
121 	struct dma_chan			*chan;
122 	struct dma_slave_config dma_conf;
123 	struct scatterlist	*sg;
124 	int			nents;
125 	unsigned int		last_sg_length;
126 };
127 
128 struct atmel_sha_dev {
129 	struct list_head	list;
130 	unsigned long		phys_base;
131 	struct device		*dev;
132 	struct clk			*iclk;
133 	int					irq;
134 	void __iomem		*io_base;
135 
136 	spinlock_t		lock;
137 	int			err;
138 	struct tasklet_struct	done_task;
139 	struct tasklet_struct	queue_task;
140 
141 	unsigned long		flags;
142 	struct crypto_queue	queue;
143 	struct ahash_request	*req;
144 	bool			is_async;
145 	bool			force_complete;
146 	atmel_sha_fn_t		resume;
147 	atmel_sha_fn_t		cpu_transfer_complete;
148 
149 	struct atmel_sha_dma	dma_lch_in;
150 
151 	struct atmel_sha_caps	caps;
152 
153 	struct scatterlist	tmp;
154 
155 	u32	hw_version;
156 };
157 
158 struct atmel_sha_drv {
159 	struct list_head	dev_list;
160 	spinlock_t		lock;
161 };
162 
163 static struct atmel_sha_drv atmel_sha = {
164 	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
165 	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
166 };
167 
168 #ifdef VERBOSE_DEBUG
169 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
170 {
171 	switch (offset) {
172 	case SHA_CR:
173 		return "CR";
174 
175 	case SHA_MR:
176 		return "MR";
177 
178 	case SHA_IER:
179 		return "IER";
180 
181 	case SHA_IDR:
182 		return "IDR";
183 
184 	case SHA_IMR:
185 		return "IMR";
186 
187 	case SHA_ISR:
188 		return "ISR";
189 
190 	case SHA_MSR:
191 		return "MSR";
192 
193 	case SHA_BCR:
194 		return "BCR";
195 
196 	case SHA_REG_DIN(0):
197 	case SHA_REG_DIN(1):
198 	case SHA_REG_DIN(2):
199 	case SHA_REG_DIN(3):
200 	case SHA_REG_DIN(4):
201 	case SHA_REG_DIN(5):
202 	case SHA_REG_DIN(6):
203 	case SHA_REG_DIN(7):
204 	case SHA_REG_DIN(8):
205 	case SHA_REG_DIN(9):
206 	case SHA_REG_DIN(10):
207 	case SHA_REG_DIN(11):
208 	case SHA_REG_DIN(12):
209 	case SHA_REG_DIN(13):
210 	case SHA_REG_DIN(14):
211 	case SHA_REG_DIN(15):
212 		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
213 		break;
214 
215 	case SHA_REG_DIGEST(0):
216 	case SHA_REG_DIGEST(1):
217 	case SHA_REG_DIGEST(2):
218 	case SHA_REG_DIGEST(3):
219 	case SHA_REG_DIGEST(4):
220 	case SHA_REG_DIGEST(5):
221 	case SHA_REG_DIGEST(6):
222 	case SHA_REG_DIGEST(7):
223 	case SHA_REG_DIGEST(8):
224 	case SHA_REG_DIGEST(9):
225 	case SHA_REG_DIGEST(10):
226 	case SHA_REG_DIGEST(11):
227 	case SHA_REG_DIGEST(12):
228 	case SHA_REG_DIGEST(13):
229 	case SHA_REG_DIGEST(14):
230 	case SHA_REG_DIGEST(15):
231 		if (wr)
232 			snprintf(tmp, sz, "IDATAR[%u]",
233 				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
234 		else
235 			snprintf(tmp, sz, "ODATAR[%u]",
236 				 (offset - SHA_REG_DIGEST(0)) >> 2);
237 		break;
238 
239 	case SHA_HW_VERSION:
240 		return "HWVER";
241 
242 	default:
243 		snprintf(tmp, sz, "0x%02x", offset);
244 		break;
245 	}
246 
247 	return tmp;
248 }
249 
250 #endif /* VERBOSE_DEBUG */
251 
252 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
253 {
254 	u32 value = readl_relaxed(dd->io_base + offset);
255 
256 #ifdef VERBOSE_DEBUG
257 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
258 		char tmp[16];
259 
260 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
261 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
262 	}
263 #endif /* VERBOSE_DEBUG */
264 
265 	return value;
266 }
267 
268 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
269 					u32 offset, u32 value)
270 {
271 #ifdef VERBOSE_DEBUG
272 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
273 		char tmp[16];
274 
275 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
276 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
277 	}
278 #endif /* VERBOSE_DEBUG */
279 
280 	writel_relaxed(value, dd->io_base + offset);
281 }
282 
283 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
284 {
285 	struct ahash_request *req = dd->req;
286 
287 	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
288 		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
289 		       SHA_FLAGS_DUMP_REG);
290 
291 	clk_disable(dd->iclk);
292 
293 	if ((dd->is_async || dd->force_complete) && req->base.complete)
294 		req->base.complete(&req->base, err);
295 
296 	/* handle new request */
297 	tasklet_schedule(&dd->queue_task);
298 
299 	return err;
300 }
301 
302 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
303 {
304 	size_t count;
305 
306 	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
307 		count = min(ctx->sg->length - ctx->offset, ctx->total);
308 		count = min(count, ctx->buflen - ctx->bufcnt);
309 
310 		if (count <= 0) {
311 			/*
312 			* Check if count <= 0 because the buffer is full or
313 			* because the sg length is 0. In the latest case,
314 			* check if there is another sg in the list, a 0 length
315 			* sg doesn't necessarily mean the end of the sg list.
316 			*/
317 			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
318 				ctx->sg = sg_next(ctx->sg);
319 				continue;
320 			} else {
321 				break;
322 			}
323 		}
324 
325 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
326 			ctx->offset, count, 0);
327 
328 		ctx->bufcnt += count;
329 		ctx->offset += count;
330 		ctx->total -= count;
331 
332 		if (ctx->offset == ctx->sg->length) {
333 			ctx->sg = sg_next(ctx->sg);
334 			if (ctx->sg)
335 				ctx->offset = 0;
336 			else
337 				ctx->total = 0;
338 		}
339 	}
340 
341 	return 0;
342 }
343 
344 /*
345  * The purpose of this padding is to ensure that the padded message is a
346  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
347  * The bit "1" is appended at the end of the message followed by
348  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
349  * 128 bits block (SHA384/SHA512) equals to the message length in bits
350  * is appended.
351  *
352  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
353  *  - if message length < 56 bytes then padlen = 56 - message length
354  *  - else padlen = 64 + 56 - message length
355  *
356  * For SHA384/SHA512, padlen is calculated as followed:
357  *  - if message length < 112 bytes then padlen = 112 - message length
358  *  - else padlen = 128 + 112 - message length
359  */
360 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
361 {
362 	unsigned int index, padlen;
363 	u64 bits[2];
364 	u64 size[2];
365 
366 	size[0] = ctx->digcnt[0];
367 	size[1] = ctx->digcnt[1];
368 
369 	size[0] += ctx->bufcnt;
370 	if (size[0] < ctx->bufcnt)
371 		size[1]++;
372 
373 	size[0] += length;
374 	if (size[0]  < length)
375 		size[1]++;
376 
377 	bits[1] = cpu_to_be64(size[0] << 3);
378 	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
379 
380 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
381 	case SHA_FLAGS_SHA384:
382 	case SHA_FLAGS_SHA512:
383 		index = ctx->bufcnt & 0x7f;
384 		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
385 		*(ctx->buffer + ctx->bufcnt) = 0x80;
386 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
387 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
388 		ctx->bufcnt += padlen + 16;
389 		ctx->flags |= SHA_FLAGS_PAD;
390 		break;
391 
392 	default:
393 		index = ctx->bufcnt & 0x3f;
394 		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
395 		*(ctx->buffer + ctx->bufcnt) = 0x80;
396 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
397 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
398 		ctx->bufcnt += padlen + 8;
399 		ctx->flags |= SHA_FLAGS_PAD;
400 		break;
401 	}
402 }
403 
404 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
405 {
406 	struct atmel_sha_dev *dd = NULL;
407 	struct atmel_sha_dev *tmp;
408 
409 	spin_lock_bh(&atmel_sha.lock);
410 	if (!tctx->dd) {
411 		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
412 			dd = tmp;
413 			break;
414 		}
415 		tctx->dd = dd;
416 	} else {
417 		dd = tctx->dd;
418 	}
419 
420 	spin_unlock_bh(&atmel_sha.lock);
421 
422 	return dd;
423 }
424 
425 static int atmel_sha_init(struct ahash_request *req)
426 {
427 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
428 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
429 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
430 	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
431 
432 	ctx->dd = dd;
433 
434 	ctx->flags = 0;
435 
436 	dev_dbg(dd->dev, "init: digest size: %d\n",
437 		crypto_ahash_digestsize(tfm));
438 
439 	switch (crypto_ahash_digestsize(tfm)) {
440 	case SHA1_DIGEST_SIZE:
441 		ctx->flags |= SHA_FLAGS_SHA1;
442 		ctx->block_size = SHA1_BLOCK_SIZE;
443 		break;
444 	case SHA224_DIGEST_SIZE:
445 		ctx->flags |= SHA_FLAGS_SHA224;
446 		ctx->block_size = SHA224_BLOCK_SIZE;
447 		break;
448 	case SHA256_DIGEST_SIZE:
449 		ctx->flags |= SHA_FLAGS_SHA256;
450 		ctx->block_size = SHA256_BLOCK_SIZE;
451 		break;
452 	case SHA384_DIGEST_SIZE:
453 		ctx->flags |= SHA_FLAGS_SHA384;
454 		ctx->block_size = SHA384_BLOCK_SIZE;
455 		break;
456 	case SHA512_DIGEST_SIZE:
457 		ctx->flags |= SHA_FLAGS_SHA512;
458 		ctx->block_size = SHA512_BLOCK_SIZE;
459 		break;
460 	default:
461 		return -EINVAL;
462 		break;
463 	}
464 
465 	ctx->bufcnt = 0;
466 	ctx->digcnt[0] = 0;
467 	ctx->digcnt[1] = 0;
468 	ctx->buflen = SHA_BUFFER_LEN;
469 
470 	return 0;
471 }
472 
473 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474 {
475 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476 	u32 valmr = SHA_MR_MODE_AUTO;
477 	unsigned int i, hashsize = 0;
478 
479 	if (likely(dma)) {
480 		if (!dd->caps.has_dma)
481 			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482 		valmr = SHA_MR_MODE_PDC;
483 		if (dd->caps.has_dualbuff)
484 			valmr |= SHA_MR_DUALBUFF;
485 	} else {
486 		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487 	}
488 
489 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490 	case SHA_FLAGS_SHA1:
491 		valmr |= SHA_MR_ALGO_SHA1;
492 		hashsize = SHA1_DIGEST_SIZE;
493 		break;
494 
495 	case SHA_FLAGS_SHA224:
496 		valmr |= SHA_MR_ALGO_SHA224;
497 		hashsize = SHA256_DIGEST_SIZE;
498 		break;
499 
500 	case SHA_FLAGS_SHA256:
501 		valmr |= SHA_MR_ALGO_SHA256;
502 		hashsize = SHA256_DIGEST_SIZE;
503 		break;
504 
505 	case SHA_FLAGS_SHA384:
506 		valmr |= SHA_MR_ALGO_SHA384;
507 		hashsize = SHA512_DIGEST_SIZE;
508 		break;
509 
510 	case SHA_FLAGS_SHA512:
511 		valmr |= SHA_MR_ALGO_SHA512;
512 		hashsize = SHA512_DIGEST_SIZE;
513 		break;
514 
515 	default:
516 		break;
517 	}
518 
519 	/* Setting CR_FIRST only for the first iteration */
520 	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522 	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523 		const u32 *hash = (const u32 *)ctx->digest;
524 
525 		/*
526 		 * Restore the hardware context: update the User Initialize
527 		 * Hash Value (UIHV) with the value saved when the latest
528 		 * 'update' operation completed on this very same crypto
529 		 * request.
530 		 */
531 		ctx->flags &= ~SHA_FLAGS_RESTORE;
532 		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533 		for (i = 0; i < hashsize / sizeof(u32); ++i)
534 			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536 		valmr |= SHA_MR_UIHV;
537 	}
538 	/*
539 	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540 	 * process concurrent requests: the internal registers used to store
541 	 * the hash/digest are still set to the partial digest output values
542 	 * computed during the latest round.
543 	 */
544 
545 	atmel_sha_write(dd, SHA_MR, valmr);
546 }
547 
548 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549 						atmel_sha_fn_t resume)
550 {
551 	u32 isr = atmel_sha_read(dd, SHA_ISR);
552 
553 	if (unlikely(isr & SHA_INT_DATARDY))
554 		return resume(dd);
555 
556 	dd->resume = resume;
557 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558 	return -EINPROGRESS;
559 }
560 
561 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562 			      size_t length, int final)
563 {
564 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565 	int count, len32;
566 	const u32 *buffer = (const u32 *)buf;
567 
568 	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569 		ctx->digcnt[1], ctx->digcnt[0], length, final);
570 
571 	atmel_sha_write_ctrl(dd, 0);
572 
573 	/* should be non-zero before next lines to disable clocks later */
574 	ctx->digcnt[0] += length;
575 	if (ctx->digcnt[0] < length)
576 		ctx->digcnt[1]++;
577 
578 	if (final)
579 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580 
581 	len32 = DIV_ROUND_UP(length, sizeof(u32));
582 
583 	dd->flags |= SHA_FLAGS_CPU;
584 
585 	for (count = 0; count < len32; count++)
586 		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587 
588 	return -EINPROGRESS;
589 }
590 
591 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593 {
594 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595 	int len32;
596 
597 	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
599 
600 	len32 = DIV_ROUND_UP(length1, sizeof(u32));
601 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602 	atmel_sha_write(dd, SHA_TPR, dma_addr1);
603 	atmel_sha_write(dd, SHA_TCR, len32);
604 
605 	len32 = DIV_ROUND_UP(length2, sizeof(u32));
606 	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607 	atmel_sha_write(dd, SHA_TNCR, len32);
608 
609 	atmel_sha_write_ctrl(dd, 1);
610 
611 	/* should be non-zero before next lines to disable clocks later */
612 	ctx->digcnt[0] += length1;
613 	if (ctx->digcnt[0] < length1)
614 		ctx->digcnt[1]++;
615 
616 	if (final)
617 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618 
619 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620 
621 	/* Start DMA transfer */
622 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623 
624 	return -EINPROGRESS;
625 }
626 
627 static void atmel_sha_dma_callback(void *data)
628 {
629 	struct atmel_sha_dev *dd = data;
630 
631 	dd->is_async = true;
632 
633 	/* dma_lch_in - completed - wait DATRDY */
634 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635 }
636 
637 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639 {
640 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641 	struct dma_async_tx_descriptor	*in_desc;
642 	struct scatterlist sg[2];
643 
644 	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
646 
647 	dd->dma_lch_in.dma_conf.src_maxburst = 16;
648 	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649 
650 	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651 
652 	if (length2) {
653 		sg_init_table(sg, 2);
654 		sg_dma_address(&sg[0]) = dma_addr1;
655 		sg_dma_len(&sg[0]) = length1;
656 		sg_dma_address(&sg[1]) = dma_addr2;
657 		sg_dma_len(&sg[1]) = length2;
658 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660 	} else {
661 		sg_init_table(sg, 1);
662 		sg_dma_address(&sg[0]) = dma_addr1;
663 		sg_dma_len(&sg[0]) = length1;
664 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666 	}
667 	if (!in_desc)
668 		return atmel_sha_complete(dd, -EINVAL);
669 
670 	in_desc->callback = atmel_sha_dma_callback;
671 	in_desc->callback_param = dd;
672 
673 	atmel_sha_write_ctrl(dd, 1);
674 
675 	/* should be non-zero before next lines to disable clocks later */
676 	ctx->digcnt[0] += length1;
677 	if (ctx->digcnt[0] < length1)
678 		ctx->digcnt[1]++;
679 
680 	if (final)
681 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682 
683 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684 
685 	/* Start DMA transfer */
686 	dmaengine_submit(in_desc);
687 	dma_async_issue_pending(dd->dma_lch_in.chan);
688 
689 	return -EINPROGRESS;
690 }
691 
692 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694 {
695 	if (dd->caps.has_dma)
696 		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697 				dma_addr2, length2, final);
698 	else
699 		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700 				dma_addr2, length2, final);
701 }
702 
703 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704 {
705 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706 	int bufcnt;
707 
708 	atmel_sha_append_sg(ctx);
709 	atmel_sha_fill_padding(ctx, 0);
710 	bufcnt = ctx->bufcnt;
711 	ctx->bufcnt = 0;
712 
713 	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714 }
715 
716 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717 					struct atmel_sha_reqctx *ctx,
718 					size_t length, int final)
719 {
720 	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722 	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723 		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724 				ctx->block_size);
725 		return atmel_sha_complete(dd, -EINVAL);
726 	}
727 
728 	ctx->flags &= ~SHA_FLAGS_SG;
729 
730 	/* next call does not fail... so no unmap in the case of error */
731 	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732 }
733 
734 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735 {
736 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737 	unsigned int final;
738 	size_t count;
739 
740 	atmel_sha_append_sg(ctx);
741 
742 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743 
744 	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745 		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746 
747 	if (final)
748 		atmel_sha_fill_padding(ctx, 0);
749 
750 	if (final || (ctx->bufcnt == ctx->buflen)) {
751 		count = ctx->bufcnt;
752 		ctx->bufcnt = 0;
753 		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754 	}
755 
756 	return 0;
757 }
758 
759 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760 {
761 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762 	unsigned int length, final, tail;
763 	struct scatterlist *sg;
764 	unsigned int count;
765 
766 	if (!ctx->total)
767 		return 0;
768 
769 	if (ctx->bufcnt || ctx->offset)
770 		return atmel_sha_update_dma_slow(dd);
771 
772 	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773 		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774 
775 	sg = ctx->sg;
776 
777 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778 		return atmel_sha_update_dma_slow(dd);
779 
780 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781 		/* size is not ctx->block_size aligned */
782 		return atmel_sha_update_dma_slow(dd);
783 
784 	length = min(ctx->total, sg->length);
785 
786 	if (sg_is_last(sg)) {
787 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788 			/* not last sg must be ctx->block_size aligned */
789 			tail = length & (ctx->block_size - 1);
790 			length -= tail;
791 		}
792 	}
793 
794 	ctx->total -= length;
795 	ctx->offset = length; /* offset where to start slow */
796 
797 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798 
799 	/* Add padding */
800 	if (final) {
801 		tail = length & (ctx->block_size - 1);
802 		length -= tail;
803 		ctx->total += tail;
804 		ctx->offset = length; /* offset where to start slow */
805 
806 		sg = ctx->sg;
807 		atmel_sha_append_sg(ctx);
808 
809 		atmel_sha_fill_padding(ctx, length);
810 
811 		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812 			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813 		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814 			dev_err(dd->dev, "dma %zu bytes error\n",
815 				ctx->buflen + ctx->block_size);
816 			return atmel_sha_complete(dd, -EINVAL);
817 		}
818 
819 		if (length == 0) {
820 			ctx->flags &= ~SHA_FLAGS_SG;
821 			count = ctx->bufcnt;
822 			ctx->bufcnt = 0;
823 			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824 					0, final);
825 		} else {
826 			ctx->sg = sg;
827 			if (!dma_map_sg(dd->dev, ctx->sg, 1,
828 				DMA_TO_DEVICE)) {
829 					dev_err(dd->dev, "dma_map_sg  error\n");
830 					return atmel_sha_complete(dd, -EINVAL);
831 			}
832 
833 			ctx->flags |= SHA_FLAGS_SG;
834 
835 			count = ctx->bufcnt;
836 			ctx->bufcnt = 0;
837 			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838 					length, ctx->dma_addr, count, final);
839 		}
840 	}
841 
842 	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843 		dev_err(dd->dev, "dma_map_sg  error\n");
844 		return atmel_sha_complete(dd, -EINVAL);
845 	}
846 
847 	ctx->flags |= SHA_FLAGS_SG;
848 
849 	/* next call does not fail... so no unmap in the case of error */
850 	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851 								0, final);
852 }
853 
854 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855 {
856 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857 
858 	if (ctx->flags & SHA_FLAGS_SG) {
859 		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860 		if (ctx->sg->length == ctx->offset) {
861 			ctx->sg = sg_next(ctx->sg);
862 			if (ctx->sg)
863 				ctx->offset = 0;
864 		}
865 		if (ctx->flags & SHA_FLAGS_PAD) {
866 			dma_unmap_single(dd->dev, ctx->dma_addr,
867 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868 		}
869 	} else {
870 		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871 						ctx->block_size, DMA_TO_DEVICE);
872 	}
873 
874 	return 0;
875 }
876 
877 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
878 {
879 	struct ahash_request *req = dd->req;
880 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
881 	int err;
882 
883 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
884 		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
885 
886 	if (ctx->flags & SHA_FLAGS_CPU)
887 		err = atmel_sha_update_cpu(dd);
888 	else
889 		err = atmel_sha_update_dma_start(dd);
890 
891 	/* wait for dma completion before can take more data */
892 	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
893 			err, ctx->digcnt[1], ctx->digcnt[0]);
894 
895 	return err;
896 }
897 
898 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
899 {
900 	struct ahash_request *req = dd->req;
901 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
902 	int err = 0;
903 	int count;
904 
905 	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
906 		atmel_sha_fill_padding(ctx, 0);
907 		count = ctx->bufcnt;
908 		ctx->bufcnt = 0;
909 		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
910 	}
911 	/* faster to handle last block with cpu */
912 	else {
913 		atmel_sha_fill_padding(ctx, 0);
914 		count = ctx->bufcnt;
915 		ctx->bufcnt = 0;
916 		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
917 	}
918 
919 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
920 
921 	return err;
922 }
923 
924 static void atmel_sha_copy_hash(struct ahash_request *req)
925 {
926 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
927 	u32 *hash = (u32 *)ctx->digest;
928 	unsigned int i, hashsize;
929 
930 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
931 	case SHA_FLAGS_SHA1:
932 		hashsize = SHA1_DIGEST_SIZE;
933 		break;
934 
935 	case SHA_FLAGS_SHA224:
936 	case SHA_FLAGS_SHA256:
937 		hashsize = SHA256_DIGEST_SIZE;
938 		break;
939 
940 	case SHA_FLAGS_SHA384:
941 	case SHA_FLAGS_SHA512:
942 		hashsize = SHA512_DIGEST_SIZE;
943 		break;
944 
945 	default:
946 		/* Should not happen... */
947 		return;
948 	}
949 
950 	for (i = 0; i < hashsize / sizeof(u32); ++i)
951 		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
952 	ctx->flags |= SHA_FLAGS_RESTORE;
953 }
954 
955 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
956 {
957 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
958 
959 	if (!req->result)
960 		return;
961 
962 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
963 	default:
964 	case SHA_FLAGS_SHA1:
965 		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
966 		break;
967 
968 	case SHA_FLAGS_SHA224:
969 		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
970 		break;
971 
972 	case SHA_FLAGS_SHA256:
973 		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
974 		break;
975 
976 	case SHA_FLAGS_SHA384:
977 		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
978 		break;
979 
980 	case SHA_FLAGS_SHA512:
981 		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
982 		break;
983 	}
984 }
985 
986 static int atmel_sha_finish(struct ahash_request *req)
987 {
988 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
989 	struct atmel_sha_dev *dd = ctx->dd;
990 
991 	if (ctx->digcnt[0] || ctx->digcnt[1])
992 		atmel_sha_copy_ready_hash(req);
993 
994 	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
995 		ctx->digcnt[0], ctx->bufcnt);
996 
997 	return 0;
998 }
999 
1000 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1001 {
1002 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1003 	struct atmel_sha_dev *dd = ctx->dd;
1004 
1005 	if (!err) {
1006 		atmel_sha_copy_hash(req);
1007 		if (SHA_FLAGS_FINAL & dd->flags)
1008 			err = atmel_sha_finish(req);
1009 	} else {
1010 		ctx->flags |= SHA_FLAGS_ERROR;
1011 	}
1012 
1013 	/* atomic operation is not needed here */
1014 	(void)atmel_sha_complete(dd, err);
1015 }
1016 
1017 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1018 {
1019 	int err;
1020 
1021 	err = clk_enable(dd->iclk);
1022 	if (err)
1023 		return err;
1024 
1025 	if (!(SHA_FLAGS_INIT & dd->flags)) {
1026 		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1027 		dd->flags |= SHA_FLAGS_INIT;
1028 		dd->err = 0;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1035 {
1036 	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1037 }
1038 
1039 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1040 {
1041 	atmel_sha_hw_init(dd);
1042 
1043 	dd->hw_version = atmel_sha_get_version(dd);
1044 
1045 	dev_info(dd->dev,
1046 			"version: 0x%x\n", dd->hw_version);
1047 
1048 	clk_disable(dd->iclk);
1049 }
1050 
1051 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1052 				  struct ahash_request *req)
1053 {
1054 	struct crypto_async_request *async_req, *backlog;
1055 	struct atmel_sha_ctx *ctx;
1056 	unsigned long flags;
1057 	bool start_async;
1058 	int err = 0, ret = 0;
1059 
1060 	spin_lock_irqsave(&dd->lock, flags);
1061 	if (req)
1062 		ret = ahash_enqueue_request(&dd->queue, req);
1063 
1064 	if (SHA_FLAGS_BUSY & dd->flags) {
1065 		spin_unlock_irqrestore(&dd->lock, flags);
1066 		return ret;
1067 	}
1068 
1069 	backlog = crypto_get_backlog(&dd->queue);
1070 	async_req = crypto_dequeue_request(&dd->queue);
1071 	if (async_req)
1072 		dd->flags |= SHA_FLAGS_BUSY;
1073 
1074 	spin_unlock_irqrestore(&dd->lock, flags);
1075 
1076 	if (!async_req)
1077 		return ret;
1078 
1079 	if (backlog)
1080 		backlog->complete(backlog, -EINPROGRESS);
1081 
1082 	ctx = crypto_tfm_ctx(async_req->tfm);
1083 
1084 	dd->req = ahash_request_cast(async_req);
1085 	start_async = (dd->req != req);
1086 	dd->is_async = start_async;
1087 	dd->force_complete = false;
1088 
1089 	/* WARNING: ctx->start() MAY change dd->is_async. */
1090 	err = ctx->start(dd);
1091 	return (start_async) ? ret : err;
1092 }
1093 
1094 static int atmel_sha_done(struct atmel_sha_dev *dd);
1095 
1096 static int atmel_sha_start(struct atmel_sha_dev *dd)
1097 {
1098 	struct ahash_request *req = dd->req;
1099 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1100 	int err;
1101 
1102 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1103 						ctx->op, req->nbytes);
1104 
1105 	err = atmel_sha_hw_init(dd);
1106 	if (err)
1107 		return atmel_sha_complete(dd, err);
1108 
1109 	/*
1110 	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1111 	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1112 	 *                its job later in the done_task.
1113 	 *                This is the main path.
1114 	 *
1115 	 * 0: the SHA driver can continue its job then release the hardware
1116 	 *    later, if needed, with atmel_sha_finish_req().
1117 	 *    This is the alternate path.
1118 	 *
1119 	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1120 	 *      been called, hence the hardware has been released.
1121 	 *      The SHA driver must stop its job without calling
1122 	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1123 	 *      called a second time.
1124 	 *
1125 	 * Please note that currently, atmel_sha_final_req() never returns 0.
1126 	 */
1127 
1128 	dd->resume = atmel_sha_done;
1129 	if (ctx->op == SHA_OP_UPDATE) {
1130 		err = atmel_sha_update_req(dd);
1131 		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1132 			/* no final() after finup() */
1133 			err = atmel_sha_final_req(dd);
1134 	} else if (ctx->op == SHA_OP_FINAL) {
1135 		err = atmel_sha_final_req(dd);
1136 	}
1137 
1138 	if (!err)
1139 		/* done_task will not finish it, so do it here */
1140 		atmel_sha_finish_req(req, err);
1141 
1142 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1143 
1144 	return err;
1145 }
1146 
1147 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1148 {
1149 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1150 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1151 	struct atmel_sha_dev *dd = tctx->dd;
1152 
1153 	ctx->op = op;
1154 
1155 	return atmel_sha_handle_queue(dd, req);
1156 }
1157 
1158 static int atmel_sha_update(struct ahash_request *req)
1159 {
1160 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1161 
1162 	if (!req->nbytes)
1163 		return 0;
1164 
1165 	ctx->total = req->nbytes;
1166 	ctx->sg = req->src;
1167 	ctx->offset = 0;
1168 
1169 	if (ctx->flags & SHA_FLAGS_FINUP) {
1170 		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1171 			/* faster to use CPU for short transfers */
1172 			ctx->flags |= SHA_FLAGS_CPU;
1173 	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1174 		atmel_sha_append_sg(ctx);
1175 		return 0;
1176 	}
1177 	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1178 }
1179 
1180 static int atmel_sha_final(struct ahash_request *req)
1181 {
1182 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1183 
1184 	ctx->flags |= SHA_FLAGS_FINUP;
1185 
1186 	if (ctx->flags & SHA_FLAGS_ERROR)
1187 		return 0; /* uncompleted hash is not needed */
1188 
1189 	if (ctx->flags & SHA_FLAGS_PAD)
1190 		/* copy ready hash (+ finalize hmac) */
1191 		return atmel_sha_finish(req);
1192 
1193 	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1194 }
1195 
1196 static int atmel_sha_finup(struct ahash_request *req)
1197 {
1198 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1199 	int err1, err2;
1200 
1201 	ctx->flags |= SHA_FLAGS_FINUP;
1202 
1203 	err1 = atmel_sha_update(req);
1204 	if (err1 == -EINPROGRESS ||
1205 	    (err1 == -EBUSY && (ahash_request_flags(req) &
1206 				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1207 		return err1;
1208 
1209 	/*
1210 	 * final() has to be always called to cleanup resources
1211 	 * even if udpate() failed, except EINPROGRESS
1212 	 */
1213 	err2 = atmel_sha_final(req);
1214 
1215 	return err1 ?: err2;
1216 }
1217 
1218 static int atmel_sha_digest(struct ahash_request *req)
1219 {
1220 	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1221 }
1222 
1223 
1224 static int atmel_sha_export(struct ahash_request *req, void *out)
1225 {
1226 	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1227 
1228 	memcpy(out, ctx, sizeof(*ctx));
1229 	return 0;
1230 }
1231 
1232 static int atmel_sha_import(struct ahash_request *req, const void *in)
1233 {
1234 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1235 
1236 	memcpy(ctx, in, sizeof(*ctx));
1237 	return 0;
1238 }
1239 
1240 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1241 {
1242 	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1243 
1244 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1245 				 sizeof(struct atmel_sha_reqctx));
1246 	ctx->start = atmel_sha_start;
1247 
1248 	return 0;
1249 }
1250 
1251 static struct ahash_alg sha_1_256_algs[] = {
1252 {
1253 	.init		= atmel_sha_init,
1254 	.update		= atmel_sha_update,
1255 	.final		= atmel_sha_final,
1256 	.finup		= atmel_sha_finup,
1257 	.digest		= atmel_sha_digest,
1258 	.export		= atmel_sha_export,
1259 	.import		= atmel_sha_import,
1260 	.halg = {
1261 		.digestsize	= SHA1_DIGEST_SIZE,
1262 		.statesize	= sizeof(struct atmel_sha_reqctx),
1263 		.base	= {
1264 			.cra_name		= "sha1",
1265 			.cra_driver_name	= "atmel-sha1",
1266 			.cra_priority		= 100,
1267 			.cra_flags		= CRYPTO_ALG_ASYNC,
1268 			.cra_blocksize		= SHA1_BLOCK_SIZE,
1269 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1270 			.cra_alignmask		= 0,
1271 			.cra_module		= THIS_MODULE,
1272 			.cra_init		= atmel_sha_cra_init,
1273 		}
1274 	}
1275 },
1276 {
1277 	.init		= atmel_sha_init,
1278 	.update		= atmel_sha_update,
1279 	.final		= atmel_sha_final,
1280 	.finup		= atmel_sha_finup,
1281 	.digest		= atmel_sha_digest,
1282 	.export		= atmel_sha_export,
1283 	.import		= atmel_sha_import,
1284 	.halg = {
1285 		.digestsize	= SHA256_DIGEST_SIZE,
1286 		.statesize	= sizeof(struct atmel_sha_reqctx),
1287 		.base	= {
1288 			.cra_name		= "sha256",
1289 			.cra_driver_name	= "atmel-sha256",
1290 			.cra_priority		= 100,
1291 			.cra_flags		= CRYPTO_ALG_ASYNC,
1292 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1293 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1294 			.cra_alignmask		= 0,
1295 			.cra_module		= THIS_MODULE,
1296 			.cra_init		= atmel_sha_cra_init,
1297 		}
1298 	}
1299 },
1300 };
1301 
1302 static struct ahash_alg sha_224_alg = {
1303 	.init		= atmel_sha_init,
1304 	.update		= atmel_sha_update,
1305 	.final		= atmel_sha_final,
1306 	.finup		= atmel_sha_finup,
1307 	.digest		= atmel_sha_digest,
1308 	.export		= atmel_sha_export,
1309 	.import		= atmel_sha_import,
1310 	.halg = {
1311 		.digestsize	= SHA224_DIGEST_SIZE,
1312 		.statesize	= sizeof(struct atmel_sha_reqctx),
1313 		.base	= {
1314 			.cra_name		= "sha224",
1315 			.cra_driver_name	= "atmel-sha224",
1316 			.cra_priority		= 100,
1317 			.cra_flags		= CRYPTO_ALG_ASYNC,
1318 			.cra_blocksize		= SHA224_BLOCK_SIZE,
1319 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1320 			.cra_alignmask		= 0,
1321 			.cra_module		= THIS_MODULE,
1322 			.cra_init		= atmel_sha_cra_init,
1323 		}
1324 	}
1325 };
1326 
1327 static struct ahash_alg sha_384_512_algs[] = {
1328 {
1329 	.init		= atmel_sha_init,
1330 	.update		= atmel_sha_update,
1331 	.final		= atmel_sha_final,
1332 	.finup		= atmel_sha_finup,
1333 	.digest		= atmel_sha_digest,
1334 	.export		= atmel_sha_export,
1335 	.import		= atmel_sha_import,
1336 	.halg = {
1337 		.digestsize	= SHA384_DIGEST_SIZE,
1338 		.statesize	= sizeof(struct atmel_sha_reqctx),
1339 		.base	= {
1340 			.cra_name		= "sha384",
1341 			.cra_driver_name	= "atmel-sha384",
1342 			.cra_priority		= 100,
1343 			.cra_flags		= CRYPTO_ALG_ASYNC,
1344 			.cra_blocksize		= SHA384_BLOCK_SIZE,
1345 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1346 			.cra_alignmask		= 0x3,
1347 			.cra_module		= THIS_MODULE,
1348 			.cra_init		= atmel_sha_cra_init,
1349 		}
1350 	}
1351 },
1352 {
1353 	.init		= atmel_sha_init,
1354 	.update		= atmel_sha_update,
1355 	.final		= atmel_sha_final,
1356 	.finup		= atmel_sha_finup,
1357 	.digest		= atmel_sha_digest,
1358 	.export		= atmel_sha_export,
1359 	.import		= atmel_sha_import,
1360 	.halg = {
1361 		.digestsize	= SHA512_DIGEST_SIZE,
1362 		.statesize	= sizeof(struct atmel_sha_reqctx),
1363 		.base	= {
1364 			.cra_name		= "sha512",
1365 			.cra_driver_name	= "atmel-sha512",
1366 			.cra_priority		= 100,
1367 			.cra_flags		= CRYPTO_ALG_ASYNC,
1368 			.cra_blocksize		= SHA512_BLOCK_SIZE,
1369 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1370 			.cra_alignmask		= 0x3,
1371 			.cra_module		= THIS_MODULE,
1372 			.cra_init		= atmel_sha_cra_init,
1373 		}
1374 	}
1375 },
1376 };
1377 
1378 static void atmel_sha_queue_task(unsigned long data)
1379 {
1380 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1381 
1382 	atmel_sha_handle_queue(dd, NULL);
1383 }
1384 
1385 static int atmel_sha_done(struct atmel_sha_dev *dd)
1386 {
1387 	int err = 0;
1388 
1389 	if (SHA_FLAGS_CPU & dd->flags) {
1390 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1391 			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1392 			goto finish;
1393 		}
1394 	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1395 		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1396 			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1397 			atmel_sha_update_dma_stop(dd);
1398 			if (dd->err) {
1399 				err = dd->err;
1400 				goto finish;
1401 			}
1402 		}
1403 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1404 			/* hash or semi-hash ready */
1405 			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1406 						SHA_FLAGS_OUTPUT_READY);
1407 			err = atmel_sha_update_dma_start(dd);
1408 			if (err != -EINPROGRESS)
1409 				goto finish;
1410 		}
1411 	}
1412 	return err;
1413 
1414 finish:
1415 	/* finish curent request */
1416 	atmel_sha_finish_req(dd->req, err);
1417 
1418 	return err;
1419 }
1420 
1421 static void atmel_sha_done_task(unsigned long data)
1422 {
1423 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1424 
1425 	dd->is_async = true;
1426 	(void)dd->resume(dd);
1427 }
1428 
1429 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1430 {
1431 	struct atmel_sha_dev *sha_dd = dev_id;
1432 	u32 reg;
1433 
1434 	reg = atmel_sha_read(sha_dd, SHA_ISR);
1435 	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1436 		atmel_sha_write(sha_dd, SHA_IDR, reg);
1437 		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1438 			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1439 			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1440 				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1441 			tasklet_schedule(&sha_dd->done_task);
1442 		} else {
1443 			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1444 		}
1445 		return IRQ_HANDLED;
1446 	}
1447 
1448 	return IRQ_NONE;
1449 }
1450 
1451 
1452 /* DMA transfer functions */
1453 
1454 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1455 					struct scatterlist *sg,
1456 					size_t len)
1457 {
1458 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1459 	struct ahash_request *req = dd->req;
1460 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1461 	size_t bs = ctx->block_size;
1462 	int nents;
1463 
1464 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1465 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1466 			return false;
1467 
1468 		/*
1469 		 * This is the last sg, the only one that is allowed to
1470 		 * have an unaligned length.
1471 		 */
1472 		if (len <= sg->length) {
1473 			dma->nents = nents + 1;
1474 			dma->last_sg_length = sg->length;
1475 			sg->length = ALIGN(len, sizeof(u32));
1476 			return true;
1477 		}
1478 
1479 		/* All other sg lengths MUST be aligned to the block size. */
1480 		if (!IS_ALIGNED(sg->length, bs))
1481 			return false;
1482 
1483 		len -= sg->length;
1484 	}
1485 
1486 	return false;
1487 }
1488 
1489 static void atmel_sha_dma_callback2(void *data)
1490 {
1491 	struct atmel_sha_dev *dd = data;
1492 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1493 	struct scatterlist *sg;
1494 	int nents;
1495 
1496 	dmaengine_terminate_all(dma->chan);
1497 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1498 
1499 	sg = dma->sg;
1500 	for (nents = 0; nents < dma->nents - 1; ++nents)
1501 		sg = sg_next(sg);
1502 	sg->length = dma->last_sg_length;
1503 
1504 	dd->is_async = true;
1505 	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1506 }
1507 
1508 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1509 			       struct scatterlist *src,
1510 			       size_t len,
1511 			       atmel_sha_fn_t resume)
1512 {
1513 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1514 	struct dma_slave_config *config = &dma->dma_conf;
1515 	struct dma_chan *chan = dma->chan;
1516 	struct dma_async_tx_descriptor *desc;
1517 	dma_cookie_t cookie;
1518 	unsigned int sg_len;
1519 	int err;
1520 
1521 	dd->resume = resume;
1522 
1523 	/*
1524 	 * dma->nents has already been initialized by
1525 	 * atmel_sha_dma_check_aligned().
1526 	 */
1527 	dma->sg = src;
1528 	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1529 	if (!sg_len) {
1530 		err = -ENOMEM;
1531 		goto exit;
1532 	}
1533 
1534 	config->src_maxburst = 16;
1535 	config->dst_maxburst = 16;
1536 	err = dmaengine_slave_config(chan, config);
1537 	if (err)
1538 		goto unmap_sg;
1539 
1540 	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1541 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1542 	if (!desc) {
1543 		err = -ENOMEM;
1544 		goto unmap_sg;
1545 	}
1546 
1547 	desc->callback = atmel_sha_dma_callback2;
1548 	desc->callback_param = dd;
1549 	cookie = dmaengine_submit(desc);
1550 	err = dma_submit_error(cookie);
1551 	if (err)
1552 		goto unmap_sg;
1553 
1554 	dma_async_issue_pending(chan);
1555 
1556 	return -EINPROGRESS;
1557 
1558 unmap_sg:
1559 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1560 exit:
1561 	return atmel_sha_complete(dd, err);
1562 }
1563 
1564 
1565 /* CPU transfer functions */
1566 
1567 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1568 {
1569 	struct ahash_request *req = dd->req;
1570 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1571 	const u32 *words = (const u32 *)ctx->buffer;
1572 	size_t i, num_words;
1573 	u32 isr, din, din_inc;
1574 
1575 	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1576 	for (;;) {
1577 		/* Write data into the Input Data Registers. */
1578 		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1579 		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1580 			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1581 
1582 		ctx->offset += ctx->bufcnt;
1583 		ctx->total -= ctx->bufcnt;
1584 
1585 		if (!ctx->total)
1586 			break;
1587 
1588 		/*
1589 		 * Prepare next block:
1590 		 * Fill ctx->buffer now with the next data to be written into
1591 		 * IDATARx: it gives time for the SHA hardware to process
1592 		 * the current data so the SHA_INT_DATARDY flag might be set
1593 		 * in SHA_ISR when polling this register at the beginning of
1594 		 * the next loop.
1595 		 */
1596 		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1597 		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1598 					 ctx->offset, ctx->bufcnt, 0);
1599 
1600 		/* Wait for hardware to be ready again. */
1601 		isr = atmel_sha_read(dd, SHA_ISR);
1602 		if (!(isr & SHA_INT_DATARDY)) {
1603 			/* Not ready yet. */
1604 			dd->resume = atmel_sha_cpu_transfer;
1605 			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1606 			return -EINPROGRESS;
1607 		}
1608 	}
1609 
1610 	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1611 		return dd->cpu_transfer_complete(dd);
1612 
1613 	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1614 }
1615 
1616 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1617 			       struct scatterlist *sg,
1618 			       unsigned int len,
1619 			       bool idatar0_only,
1620 			       bool wait_data_ready,
1621 			       atmel_sha_fn_t resume)
1622 {
1623 	struct ahash_request *req = dd->req;
1624 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1625 
1626 	if (!len)
1627 		return resume(dd);
1628 
1629 	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1630 
1631 	if (idatar0_only)
1632 		ctx->flags |= SHA_FLAGS_IDATAR0;
1633 
1634 	if (wait_data_ready)
1635 		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1636 
1637 	ctx->sg = sg;
1638 	ctx->total = len;
1639 	ctx->offset = 0;
1640 
1641 	/* Prepare the first block to be written. */
1642 	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1643 	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1644 				 ctx->offset, ctx->bufcnt, 0);
1645 
1646 	dd->cpu_transfer_complete = resume;
1647 	return atmel_sha_cpu_transfer(dd);
1648 }
1649 
1650 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1651 			      const void *data, unsigned int datalen,
1652 			      bool auto_padding,
1653 			      atmel_sha_fn_t resume)
1654 {
1655 	struct ahash_request *req = dd->req;
1656 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1657 	u32 msglen = (auto_padding) ? datalen : 0;
1658 	u32 mr = SHA_MR_MODE_AUTO;
1659 
1660 	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1661 		return atmel_sha_complete(dd, -EINVAL);
1662 
1663 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1664 	atmel_sha_write(dd, SHA_MR, mr);
1665 	atmel_sha_write(dd, SHA_MSR, msglen);
1666 	atmel_sha_write(dd, SHA_BCR, msglen);
1667 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1668 
1669 	sg_init_one(&dd->tmp, data, datalen);
1670 	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1671 }
1672 
1673 
1674 /* hmac functions */
1675 
1676 struct atmel_sha_hmac_key {
1677 	bool			valid;
1678 	unsigned int		keylen;
1679 	u8			buffer[SHA512_BLOCK_SIZE];
1680 	u8			*keydup;
1681 };
1682 
1683 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1684 {
1685 	memset(hkey, 0, sizeof(*hkey));
1686 }
1687 
1688 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1689 {
1690 	kfree(hkey->keydup);
1691 	memset(hkey, 0, sizeof(*hkey));
1692 }
1693 
1694 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1695 					 const u8 *key,
1696 					 unsigned int keylen)
1697 {
1698 	atmel_sha_hmac_key_release(hkey);
1699 
1700 	if (keylen > sizeof(hkey->buffer)) {
1701 		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1702 		if (!hkey->keydup)
1703 			return -ENOMEM;
1704 
1705 	} else {
1706 		memcpy(hkey->buffer, key, keylen);
1707 	}
1708 
1709 	hkey->valid = true;
1710 	hkey->keylen = keylen;
1711 	return 0;
1712 }
1713 
1714 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1715 					  const u8 **key,
1716 					  unsigned int *keylen)
1717 {
1718 	if (!hkey->valid)
1719 		return false;
1720 
1721 	*keylen = hkey->keylen;
1722 	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1723 	return true;
1724 }
1725 
1726 
1727 struct atmel_sha_hmac_ctx {
1728 	struct atmel_sha_ctx	base;
1729 
1730 	struct atmel_sha_hmac_key	hkey;
1731 	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1732 	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1733 	atmel_sha_fn_t		resume;
1734 };
1735 
1736 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1737 				atmel_sha_fn_t resume);
1738 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739 				      const u8 *key, unsigned int keylen);
1740 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1741 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1742 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1743 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1744 
1745 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1747 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1748 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1749 
1750 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1751 				atmel_sha_fn_t resume)
1752 {
1753 	struct ahash_request *req = dd->req;
1754 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1755 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1756 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1757 	unsigned int keylen;
1758 	const u8 *key;
1759 	size_t bs;
1760 
1761 	hmac->resume = resume;
1762 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1763 	case SHA_FLAGS_SHA1:
1764 		ctx->block_size = SHA1_BLOCK_SIZE;
1765 		ctx->hash_size = SHA1_DIGEST_SIZE;
1766 		break;
1767 
1768 	case SHA_FLAGS_SHA224:
1769 		ctx->block_size = SHA224_BLOCK_SIZE;
1770 		ctx->hash_size = SHA256_DIGEST_SIZE;
1771 		break;
1772 
1773 	case SHA_FLAGS_SHA256:
1774 		ctx->block_size = SHA256_BLOCK_SIZE;
1775 		ctx->hash_size = SHA256_DIGEST_SIZE;
1776 		break;
1777 
1778 	case SHA_FLAGS_SHA384:
1779 		ctx->block_size = SHA384_BLOCK_SIZE;
1780 		ctx->hash_size = SHA512_DIGEST_SIZE;
1781 		break;
1782 
1783 	case SHA_FLAGS_SHA512:
1784 		ctx->block_size = SHA512_BLOCK_SIZE;
1785 		ctx->hash_size = SHA512_DIGEST_SIZE;
1786 		break;
1787 
1788 	default:
1789 		return atmel_sha_complete(dd, -EINVAL);
1790 	}
1791 	bs = ctx->block_size;
1792 
1793 	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1794 		return resume(dd);
1795 
1796 	/* Compute K' from K. */
1797 	if (unlikely(keylen > bs))
1798 		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1799 
1800 	/* Prepare ipad. */
1801 	memcpy((u8 *)hmac->ipad, key, keylen);
1802 	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1803 	return atmel_sha_hmac_compute_ipad_hash(dd);
1804 }
1805 
1806 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1807 				      const u8 *key, unsigned int keylen)
1808 {
1809 	return atmel_sha_cpu_hash(dd, key, keylen, true,
1810 				  atmel_sha_hmac_prehash_key_done);
1811 }
1812 
1813 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1814 {
1815 	struct ahash_request *req = dd->req;
1816 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1817 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1818 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1819 	size_t ds = crypto_ahash_digestsize(tfm);
1820 	size_t bs = ctx->block_size;
1821 	size_t i, num_words = ds / sizeof(u32);
1822 
1823 	/* Prepare ipad. */
1824 	for (i = 0; i < num_words; ++i)
1825 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1826 	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1827 	return atmel_sha_hmac_compute_ipad_hash(dd);
1828 }
1829 
1830 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1831 {
1832 	struct ahash_request *req = dd->req;
1833 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1834 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1835 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1836 	size_t bs = ctx->block_size;
1837 	size_t i, num_words = bs / sizeof(u32);
1838 
1839 	memcpy(hmac->opad, hmac->ipad, bs);
1840 	for (i = 0; i < num_words; ++i) {
1841 		hmac->ipad[i] ^= 0x36363636;
1842 		hmac->opad[i] ^= 0x5c5c5c5c;
1843 	}
1844 
1845 	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1846 				  atmel_sha_hmac_compute_opad_hash);
1847 }
1848 
1849 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1850 {
1851 	struct ahash_request *req = dd->req;
1852 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1853 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1854 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1855 	size_t bs = ctx->block_size;
1856 	size_t hs = ctx->hash_size;
1857 	size_t i, num_words = hs / sizeof(u32);
1858 
1859 	for (i = 0; i < num_words; ++i)
1860 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1861 	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1862 				  atmel_sha_hmac_setup_done);
1863 }
1864 
1865 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1866 {
1867 	struct ahash_request *req = dd->req;
1868 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1869 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1870 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1871 	size_t hs = ctx->hash_size;
1872 	size_t i, num_words = hs / sizeof(u32);
1873 
1874 	for (i = 0; i < num_words; ++i)
1875 		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1876 	atmel_sha_hmac_key_release(&hmac->hkey);
1877 	return hmac->resume(dd);
1878 }
1879 
1880 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1881 {
1882 	struct ahash_request *req = dd->req;
1883 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1884 	int err;
1885 
1886 	err = atmel_sha_hw_init(dd);
1887 	if (err)
1888 		return atmel_sha_complete(dd, err);
1889 
1890 	switch (ctx->op) {
1891 	case SHA_OP_INIT:
1892 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1893 		break;
1894 
1895 	case SHA_OP_UPDATE:
1896 		dd->resume = atmel_sha_done;
1897 		err = atmel_sha_update_req(dd);
1898 		break;
1899 
1900 	case SHA_OP_FINAL:
1901 		dd->resume = atmel_sha_hmac_final;
1902 		err = atmel_sha_final_req(dd);
1903 		break;
1904 
1905 	case SHA_OP_DIGEST:
1906 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1907 		break;
1908 
1909 	default:
1910 		return atmel_sha_complete(dd, -EINVAL);
1911 	}
1912 
1913 	return err;
1914 }
1915 
1916 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1917 				 unsigned int keylen)
1918 {
1919 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1920 
1921 	if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1922 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1923 		return -EINVAL;
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static int atmel_sha_hmac_init(struct ahash_request *req)
1930 {
1931 	int err;
1932 
1933 	err = atmel_sha_init(req);
1934 	if (err)
1935 		return err;
1936 
1937 	return atmel_sha_enqueue(req, SHA_OP_INIT);
1938 }
1939 
1940 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1941 {
1942 	struct ahash_request *req = dd->req;
1943 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1944 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1945 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1946 	size_t bs = ctx->block_size;
1947 	size_t hs = ctx->hash_size;
1948 
1949 	ctx->bufcnt = 0;
1950 	ctx->digcnt[0] = bs;
1951 	ctx->digcnt[1] = 0;
1952 	ctx->flags |= SHA_FLAGS_RESTORE;
1953 	memcpy(ctx->digest, hmac->ipad, hs);
1954 	return atmel_sha_complete(dd, 0);
1955 }
1956 
1957 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1958 {
1959 	struct ahash_request *req = dd->req;
1960 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1961 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1962 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1963 	u32 *digest = (u32 *)ctx->digest;
1964 	size_t ds = crypto_ahash_digestsize(tfm);
1965 	size_t bs = ctx->block_size;
1966 	size_t hs = ctx->hash_size;
1967 	size_t i, num_words;
1968 	u32 mr;
1969 
1970 	/* Save d = SHA((K' + ipad) | msg). */
1971 	num_words = ds / sizeof(u32);
1972 	for (i = 0; i < num_words; ++i)
1973 		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1974 
1975 	/* Restore context to finish computing SHA((K' + opad) | d). */
1976 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1977 	num_words = hs / sizeof(u32);
1978 	for (i = 0; i < num_words; ++i)
1979 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1980 
1981 	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1982 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1983 	atmel_sha_write(dd, SHA_MR, mr);
1984 	atmel_sha_write(dd, SHA_MSR, bs + ds);
1985 	atmel_sha_write(dd, SHA_BCR, ds);
1986 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1987 
1988 	sg_init_one(&dd->tmp, digest, ds);
1989 	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1990 				   atmel_sha_hmac_final_done);
1991 }
1992 
1993 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1994 {
1995 	/*
1996 	 * req->result might not be sizeof(u32) aligned, so copy the
1997 	 * digest into ctx->digest[] before memcpy() the data into
1998 	 * req->result.
1999 	 */
2000 	atmel_sha_copy_hash(dd->req);
2001 	atmel_sha_copy_ready_hash(dd->req);
2002 	return atmel_sha_complete(dd, 0);
2003 }
2004 
2005 static int atmel_sha_hmac_digest(struct ahash_request *req)
2006 {
2007 	int err;
2008 
2009 	err = atmel_sha_init(req);
2010 	if (err)
2011 		return err;
2012 
2013 	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2014 }
2015 
2016 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2017 {
2018 	struct ahash_request *req = dd->req;
2019 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2020 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2021 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2022 	size_t hs = ctx->hash_size;
2023 	size_t i, num_words = hs / sizeof(u32);
2024 	bool use_dma = false;
2025 	u32 mr;
2026 
2027 	/* Special case for empty message. */
2028 	if (!req->nbytes)
2029 		return atmel_sha_complete(dd, -EINVAL); // TODO:
2030 
2031 	/* Check DMA threshold and alignment. */
2032 	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2033 	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2034 		use_dma = true;
2035 
2036 	/* Write both initial hash values to compute a HMAC. */
2037 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2038 	for (i = 0; i < num_words; ++i)
2039 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2040 
2041 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2042 	for (i = 0; i < num_words; ++i)
2043 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2044 
2045 	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
2046 	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2047 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2048 	if (use_dma)
2049 		mr |= SHA_MR_MODE_IDATAR0;
2050 	else
2051 		mr |= SHA_MR_MODE_AUTO;
2052 	atmel_sha_write(dd, SHA_MR, mr);
2053 
2054 	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2055 	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2056 
2057 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2058 
2059 	/* Process data. */
2060 	if (use_dma)
2061 		return atmel_sha_dma_start(dd, req->src, req->nbytes,
2062 					   atmel_sha_hmac_final_done);
2063 
2064 	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2065 				   atmel_sha_hmac_final_done);
2066 }
2067 
2068 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2069 {
2070 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2071 
2072 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2073 				 sizeof(struct atmel_sha_reqctx));
2074 	hmac->base.start = atmel_sha_hmac_start;
2075 	atmel_sha_hmac_key_init(&hmac->hkey);
2076 
2077 	return 0;
2078 }
2079 
2080 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2081 {
2082 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2083 
2084 	atmel_sha_hmac_key_release(&hmac->hkey);
2085 }
2086 
2087 static struct ahash_alg sha_hmac_algs[] = {
2088 {
2089 	.init		= atmel_sha_hmac_init,
2090 	.update		= atmel_sha_update,
2091 	.final		= atmel_sha_final,
2092 	.digest		= atmel_sha_hmac_digest,
2093 	.setkey		= atmel_sha_hmac_setkey,
2094 	.export		= atmel_sha_export,
2095 	.import		= atmel_sha_import,
2096 	.halg = {
2097 		.digestsize	= SHA1_DIGEST_SIZE,
2098 		.statesize	= sizeof(struct atmel_sha_reqctx),
2099 		.base	= {
2100 			.cra_name		= "hmac(sha1)",
2101 			.cra_driver_name	= "atmel-hmac-sha1",
2102 			.cra_priority		= 100,
2103 			.cra_flags		= CRYPTO_ALG_ASYNC,
2104 			.cra_blocksize		= SHA1_BLOCK_SIZE,
2105 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2106 			.cra_alignmask		= 0,
2107 			.cra_module		= THIS_MODULE,
2108 			.cra_init		= atmel_sha_hmac_cra_init,
2109 			.cra_exit		= atmel_sha_hmac_cra_exit,
2110 		}
2111 	}
2112 },
2113 {
2114 	.init		= atmel_sha_hmac_init,
2115 	.update		= atmel_sha_update,
2116 	.final		= atmel_sha_final,
2117 	.digest		= atmel_sha_hmac_digest,
2118 	.setkey		= atmel_sha_hmac_setkey,
2119 	.export		= atmel_sha_export,
2120 	.import		= atmel_sha_import,
2121 	.halg = {
2122 		.digestsize	= SHA224_DIGEST_SIZE,
2123 		.statesize	= sizeof(struct atmel_sha_reqctx),
2124 		.base	= {
2125 			.cra_name		= "hmac(sha224)",
2126 			.cra_driver_name	= "atmel-hmac-sha224",
2127 			.cra_priority		= 100,
2128 			.cra_flags		= CRYPTO_ALG_ASYNC,
2129 			.cra_blocksize		= SHA224_BLOCK_SIZE,
2130 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2131 			.cra_alignmask		= 0,
2132 			.cra_module		= THIS_MODULE,
2133 			.cra_init		= atmel_sha_hmac_cra_init,
2134 			.cra_exit		= atmel_sha_hmac_cra_exit,
2135 		}
2136 	}
2137 },
2138 {
2139 	.init		= atmel_sha_hmac_init,
2140 	.update		= atmel_sha_update,
2141 	.final		= atmel_sha_final,
2142 	.digest		= atmel_sha_hmac_digest,
2143 	.setkey		= atmel_sha_hmac_setkey,
2144 	.export		= atmel_sha_export,
2145 	.import		= atmel_sha_import,
2146 	.halg = {
2147 		.digestsize	= SHA256_DIGEST_SIZE,
2148 		.statesize	= sizeof(struct atmel_sha_reqctx),
2149 		.base	= {
2150 			.cra_name		= "hmac(sha256)",
2151 			.cra_driver_name	= "atmel-hmac-sha256",
2152 			.cra_priority		= 100,
2153 			.cra_flags		= CRYPTO_ALG_ASYNC,
2154 			.cra_blocksize		= SHA256_BLOCK_SIZE,
2155 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2156 			.cra_alignmask		= 0,
2157 			.cra_module		= THIS_MODULE,
2158 			.cra_init		= atmel_sha_hmac_cra_init,
2159 			.cra_exit		= atmel_sha_hmac_cra_exit,
2160 		}
2161 	}
2162 },
2163 {
2164 	.init		= atmel_sha_hmac_init,
2165 	.update		= atmel_sha_update,
2166 	.final		= atmel_sha_final,
2167 	.digest		= atmel_sha_hmac_digest,
2168 	.setkey		= atmel_sha_hmac_setkey,
2169 	.export		= atmel_sha_export,
2170 	.import		= atmel_sha_import,
2171 	.halg = {
2172 		.digestsize	= SHA384_DIGEST_SIZE,
2173 		.statesize	= sizeof(struct atmel_sha_reqctx),
2174 		.base	= {
2175 			.cra_name		= "hmac(sha384)",
2176 			.cra_driver_name	= "atmel-hmac-sha384",
2177 			.cra_priority		= 100,
2178 			.cra_flags		= CRYPTO_ALG_ASYNC,
2179 			.cra_blocksize		= SHA384_BLOCK_SIZE,
2180 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2181 			.cra_alignmask		= 0,
2182 			.cra_module		= THIS_MODULE,
2183 			.cra_init		= atmel_sha_hmac_cra_init,
2184 			.cra_exit		= atmel_sha_hmac_cra_exit,
2185 		}
2186 	}
2187 },
2188 {
2189 	.init		= atmel_sha_hmac_init,
2190 	.update		= atmel_sha_update,
2191 	.final		= atmel_sha_final,
2192 	.digest		= atmel_sha_hmac_digest,
2193 	.setkey		= atmel_sha_hmac_setkey,
2194 	.export		= atmel_sha_export,
2195 	.import		= atmel_sha_import,
2196 	.halg = {
2197 		.digestsize	= SHA512_DIGEST_SIZE,
2198 		.statesize	= sizeof(struct atmel_sha_reqctx),
2199 		.base	= {
2200 			.cra_name		= "hmac(sha512)",
2201 			.cra_driver_name	= "atmel-hmac-sha512",
2202 			.cra_priority		= 100,
2203 			.cra_flags		= CRYPTO_ALG_ASYNC,
2204 			.cra_blocksize		= SHA512_BLOCK_SIZE,
2205 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2206 			.cra_alignmask		= 0,
2207 			.cra_module		= THIS_MODULE,
2208 			.cra_init		= atmel_sha_hmac_cra_init,
2209 			.cra_exit		= atmel_sha_hmac_cra_exit,
2210 		}
2211 	}
2212 },
2213 };
2214 
2215 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2216 /* authenc functions */
2217 
2218 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2219 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2220 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2221 
2222 
2223 struct atmel_sha_authenc_ctx {
2224 	struct crypto_ahash	*tfm;
2225 };
2226 
2227 struct atmel_sha_authenc_reqctx {
2228 	struct atmel_sha_reqctx	base;
2229 
2230 	atmel_aes_authenc_fn_t	cb;
2231 	struct atmel_aes_dev	*aes_dev;
2232 
2233 	/* _init() parameters. */
2234 	struct scatterlist	*assoc;
2235 	u32			assoclen;
2236 	u32			textlen;
2237 
2238 	/* _final() parameters. */
2239 	u32			*digest;
2240 	unsigned int		digestlen;
2241 };
2242 
2243 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2244 				       int err)
2245 {
2246 	struct ahash_request *req = areq->data;
2247 	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2248 
2249 	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2250 }
2251 
2252 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2253 {
2254 	struct ahash_request *req = dd->req;
2255 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2256 	int err;
2257 
2258 	/*
2259 	 * Force atmel_sha_complete() to call req->base.complete(), ie
2260 	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2261 	 */
2262 	dd->force_complete = true;
2263 
2264 	err = atmel_sha_hw_init(dd);
2265 	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2266 }
2267 
2268 bool atmel_sha_authenc_is_ready(void)
2269 {
2270 	struct atmel_sha_ctx dummy;
2271 
2272 	dummy.dd = NULL;
2273 	return (atmel_sha_find_dev(&dummy) != NULL);
2274 }
2275 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2276 
2277 unsigned int atmel_sha_authenc_get_reqsize(void)
2278 {
2279 	return sizeof(struct atmel_sha_authenc_reqctx);
2280 }
2281 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2282 
2283 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2284 {
2285 	struct atmel_sha_authenc_ctx *auth;
2286 	struct crypto_ahash *tfm;
2287 	struct atmel_sha_ctx *tctx;
2288 	const char *name;
2289 	int err = -EINVAL;
2290 
2291 	switch (mode & SHA_FLAGS_MODE_MASK) {
2292 	case SHA_FLAGS_HMAC_SHA1:
2293 		name = "atmel-hmac-sha1";
2294 		break;
2295 
2296 	case SHA_FLAGS_HMAC_SHA224:
2297 		name = "atmel-hmac-sha224";
2298 		break;
2299 
2300 	case SHA_FLAGS_HMAC_SHA256:
2301 		name = "atmel-hmac-sha256";
2302 		break;
2303 
2304 	case SHA_FLAGS_HMAC_SHA384:
2305 		name = "atmel-hmac-sha384";
2306 		break;
2307 
2308 	case SHA_FLAGS_HMAC_SHA512:
2309 		name = "atmel-hmac-sha512";
2310 		break;
2311 
2312 	default:
2313 		goto error;
2314 	}
2315 
2316 	tfm = crypto_alloc_ahash(name, 0, 0);
2317 	if (IS_ERR(tfm)) {
2318 		err = PTR_ERR(tfm);
2319 		goto error;
2320 	}
2321 	tctx = crypto_ahash_ctx(tfm);
2322 	tctx->start = atmel_sha_authenc_start;
2323 	tctx->flags = mode;
2324 
2325 	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2326 	if (!auth) {
2327 		err = -ENOMEM;
2328 		goto err_free_ahash;
2329 	}
2330 	auth->tfm = tfm;
2331 
2332 	return auth;
2333 
2334 err_free_ahash:
2335 	crypto_free_ahash(tfm);
2336 error:
2337 	return ERR_PTR(err);
2338 }
2339 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2340 
2341 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2342 {
2343 	if (auth)
2344 		crypto_free_ahash(auth->tfm);
2345 	kfree(auth);
2346 }
2347 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2348 
2349 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2350 			     const u8 *key, unsigned int keylen,
2351 			     u32 *flags)
2352 {
2353 	struct crypto_ahash *tfm = auth->tfm;
2354 	int err;
2355 
2356 	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2357 	crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2358 	err = crypto_ahash_setkey(tfm, key, keylen);
2359 	*flags = crypto_ahash_get_flags(tfm);
2360 
2361 	return err;
2362 }
2363 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2364 
2365 int atmel_sha_authenc_schedule(struct ahash_request *req,
2366 			       struct atmel_sha_authenc_ctx *auth,
2367 			       atmel_aes_authenc_fn_t cb,
2368 			       struct atmel_aes_dev *aes_dev)
2369 {
2370 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2371 	struct atmel_sha_reqctx *ctx = &authctx->base;
2372 	struct crypto_ahash *tfm = auth->tfm;
2373 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2374 	struct atmel_sha_dev *dd;
2375 
2376 	/* Reset request context (MUST be done first). */
2377 	memset(authctx, 0, sizeof(*authctx));
2378 
2379 	/* Get SHA device. */
2380 	dd = atmel_sha_find_dev(tctx);
2381 	if (!dd)
2382 		return cb(aes_dev, -ENODEV, false);
2383 
2384 	/* Init request context. */
2385 	ctx->dd = dd;
2386 	ctx->buflen = SHA_BUFFER_LEN;
2387 	authctx->cb = cb;
2388 	authctx->aes_dev = aes_dev;
2389 	ahash_request_set_tfm(req, tfm);
2390 	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2391 
2392 	return atmel_sha_handle_queue(dd, req);
2393 }
2394 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2395 
2396 int atmel_sha_authenc_init(struct ahash_request *req,
2397 			   struct scatterlist *assoc, unsigned int assoclen,
2398 			   unsigned int textlen,
2399 			   atmel_aes_authenc_fn_t cb,
2400 			   struct atmel_aes_dev *aes_dev)
2401 {
2402 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2403 	struct atmel_sha_reqctx *ctx = &authctx->base;
2404 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2405 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2406 	struct atmel_sha_dev *dd = ctx->dd;
2407 
2408 	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2409 		return atmel_sha_complete(dd, -EINVAL);
2410 
2411 	authctx->cb = cb;
2412 	authctx->aes_dev = aes_dev;
2413 	authctx->assoc = assoc;
2414 	authctx->assoclen = assoclen;
2415 	authctx->textlen = textlen;
2416 
2417 	ctx->flags = hmac->base.flags;
2418 	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2419 }
2420 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2421 
2422 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2423 {
2424 	struct ahash_request *req = dd->req;
2425 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2426 	struct atmel_sha_reqctx *ctx = &authctx->base;
2427 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2428 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2429 	size_t hs = ctx->hash_size;
2430 	size_t i, num_words = hs / sizeof(u32);
2431 	u32 mr, msg_size;
2432 
2433 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2434 	for (i = 0; i < num_words; ++i)
2435 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2436 
2437 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2438 	for (i = 0; i < num_words; ++i)
2439 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2440 
2441 	mr = (SHA_MR_MODE_IDATAR0 |
2442 	      SHA_MR_HMAC |
2443 	      SHA_MR_DUALBUFF);
2444 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2445 	atmel_sha_write(dd, SHA_MR, mr);
2446 
2447 	msg_size = authctx->assoclen + authctx->textlen;
2448 	atmel_sha_write(dd, SHA_MSR, msg_size);
2449 	atmel_sha_write(dd, SHA_BCR, msg_size);
2450 
2451 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2452 
2453 	/* Process assoc data. */
2454 	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2455 				   true, false,
2456 				   atmel_sha_authenc_init_done);
2457 }
2458 
2459 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2460 {
2461 	struct ahash_request *req = dd->req;
2462 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2463 
2464 	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2465 }
2466 
2467 int atmel_sha_authenc_final(struct ahash_request *req,
2468 			    u32 *digest, unsigned int digestlen,
2469 			    atmel_aes_authenc_fn_t cb,
2470 			    struct atmel_aes_dev *aes_dev)
2471 {
2472 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2473 	struct atmel_sha_reqctx *ctx = &authctx->base;
2474 	struct atmel_sha_dev *dd = ctx->dd;
2475 
2476 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2477 	case SHA_FLAGS_SHA1:
2478 		authctx->digestlen = SHA1_DIGEST_SIZE;
2479 		break;
2480 
2481 	case SHA_FLAGS_SHA224:
2482 		authctx->digestlen = SHA224_DIGEST_SIZE;
2483 		break;
2484 
2485 	case SHA_FLAGS_SHA256:
2486 		authctx->digestlen = SHA256_DIGEST_SIZE;
2487 		break;
2488 
2489 	case SHA_FLAGS_SHA384:
2490 		authctx->digestlen = SHA384_DIGEST_SIZE;
2491 		break;
2492 
2493 	case SHA_FLAGS_SHA512:
2494 		authctx->digestlen = SHA512_DIGEST_SIZE;
2495 		break;
2496 
2497 	default:
2498 		return atmel_sha_complete(dd, -EINVAL);
2499 	}
2500 	if (authctx->digestlen > digestlen)
2501 		authctx->digestlen = digestlen;
2502 
2503 	authctx->cb = cb;
2504 	authctx->aes_dev = aes_dev;
2505 	authctx->digest = digest;
2506 	return atmel_sha_wait_for_data_ready(dd,
2507 					     atmel_sha_authenc_final_done);
2508 }
2509 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2510 
2511 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2512 {
2513 	struct ahash_request *req = dd->req;
2514 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2515 	size_t i, num_words = authctx->digestlen / sizeof(u32);
2516 
2517 	for (i = 0; i < num_words; ++i)
2518 		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2519 
2520 	return atmel_sha_complete(dd, 0);
2521 }
2522 
2523 void atmel_sha_authenc_abort(struct ahash_request *req)
2524 {
2525 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2526 	struct atmel_sha_reqctx *ctx = &authctx->base;
2527 	struct atmel_sha_dev *dd = ctx->dd;
2528 
2529 	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2530 	dd->is_async = false;
2531 	dd->force_complete = false;
2532 	(void)atmel_sha_complete(dd, 0);
2533 }
2534 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2535 
2536 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2537 
2538 
2539 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2540 {
2541 	int i;
2542 
2543 	if (dd->caps.has_hmac)
2544 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2545 			crypto_unregister_ahash(&sha_hmac_algs[i]);
2546 
2547 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2548 		crypto_unregister_ahash(&sha_1_256_algs[i]);
2549 
2550 	if (dd->caps.has_sha224)
2551 		crypto_unregister_ahash(&sha_224_alg);
2552 
2553 	if (dd->caps.has_sha_384_512) {
2554 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2555 			crypto_unregister_ahash(&sha_384_512_algs[i]);
2556 	}
2557 }
2558 
2559 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2560 {
2561 	int err, i, j;
2562 
2563 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2564 		err = crypto_register_ahash(&sha_1_256_algs[i]);
2565 		if (err)
2566 			goto err_sha_1_256_algs;
2567 	}
2568 
2569 	if (dd->caps.has_sha224) {
2570 		err = crypto_register_ahash(&sha_224_alg);
2571 		if (err)
2572 			goto err_sha_224_algs;
2573 	}
2574 
2575 	if (dd->caps.has_sha_384_512) {
2576 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2577 			err = crypto_register_ahash(&sha_384_512_algs[i]);
2578 			if (err)
2579 				goto err_sha_384_512_algs;
2580 		}
2581 	}
2582 
2583 	if (dd->caps.has_hmac) {
2584 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2585 			err = crypto_register_ahash(&sha_hmac_algs[i]);
2586 			if (err)
2587 				goto err_sha_hmac_algs;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 
2593 	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2594 err_sha_hmac_algs:
2595 	for (j = 0; j < i; j++)
2596 		crypto_unregister_ahash(&sha_hmac_algs[j]);
2597 	i = ARRAY_SIZE(sha_384_512_algs);
2598 err_sha_384_512_algs:
2599 	for (j = 0; j < i; j++)
2600 		crypto_unregister_ahash(&sha_384_512_algs[j]);
2601 	crypto_unregister_ahash(&sha_224_alg);
2602 err_sha_224_algs:
2603 	i = ARRAY_SIZE(sha_1_256_algs);
2604 err_sha_1_256_algs:
2605 	for (j = 0; j < i; j++)
2606 		crypto_unregister_ahash(&sha_1_256_algs[j]);
2607 
2608 	return err;
2609 }
2610 
2611 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2612 {
2613 	struct at_dma_slave	*sl = slave;
2614 
2615 	if (sl && sl->dma_dev == chan->device->dev) {
2616 		chan->private = sl;
2617 		return true;
2618 	} else {
2619 		return false;
2620 	}
2621 }
2622 
2623 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2624 				struct crypto_platform_data *pdata)
2625 {
2626 	dma_cap_mask_t mask_in;
2627 
2628 	/* Try to grab DMA channel */
2629 	dma_cap_zero(mask_in);
2630 	dma_cap_set(DMA_SLAVE, mask_in);
2631 
2632 	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2633 			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2634 	if (!dd->dma_lch_in.chan) {
2635 		dev_warn(dd->dev, "no DMA channel available\n");
2636 		return -ENODEV;
2637 	}
2638 
2639 	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2640 	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2641 		SHA_REG_DIN(0);
2642 	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2643 	dd->dma_lch_in.dma_conf.src_addr_width =
2644 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2645 	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2646 	dd->dma_lch_in.dma_conf.dst_addr_width =
2647 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2648 	dd->dma_lch_in.dma_conf.device_fc = false;
2649 
2650 	return 0;
2651 }
2652 
2653 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2654 {
2655 	dma_release_channel(dd->dma_lch_in.chan);
2656 }
2657 
2658 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2659 {
2660 
2661 	dd->caps.has_dma = 0;
2662 	dd->caps.has_dualbuff = 0;
2663 	dd->caps.has_sha224 = 0;
2664 	dd->caps.has_sha_384_512 = 0;
2665 	dd->caps.has_uihv = 0;
2666 	dd->caps.has_hmac = 0;
2667 
2668 	/* keep only major version number */
2669 	switch (dd->hw_version & 0xff0) {
2670 	case 0x510:
2671 		dd->caps.has_dma = 1;
2672 		dd->caps.has_dualbuff = 1;
2673 		dd->caps.has_sha224 = 1;
2674 		dd->caps.has_sha_384_512 = 1;
2675 		dd->caps.has_uihv = 1;
2676 		dd->caps.has_hmac = 1;
2677 		break;
2678 	case 0x420:
2679 		dd->caps.has_dma = 1;
2680 		dd->caps.has_dualbuff = 1;
2681 		dd->caps.has_sha224 = 1;
2682 		dd->caps.has_sha_384_512 = 1;
2683 		dd->caps.has_uihv = 1;
2684 		break;
2685 	case 0x410:
2686 		dd->caps.has_dma = 1;
2687 		dd->caps.has_dualbuff = 1;
2688 		dd->caps.has_sha224 = 1;
2689 		dd->caps.has_sha_384_512 = 1;
2690 		break;
2691 	case 0x400:
2692 		dd->caps.has_dma = 1;
2693 		dd->caps.has_dualbuff = 1;
2694 		dd->caps.has_sha224 = 1;
2695 		break;
2696 	case 0x320:
2697 		break;
2698 	default:
2699 		dev_warn(dd->dev,
2700 				"Unmanaged sha version, set minimum capabilities\n");
2701 		break;
2702 	}
2703 }
2704 
2705 #if defined(CONFIG_OF)
2706 static const struct of_device_id atmel_sha_dt_ids[] = {
2707 	{ .compatible = "atmel,at91sam9g46-sha" },
2708 	{ /* sentinel */ }
2709 };
2710 
2711 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2712 
2713 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2714 {
2715 	struct device_node *np = pdev->dev.of_node;
2716 	struct crypto_platform_data *pdata;
2717 
2718 	if (!np) {
2719 		dev_err(&pdev->dev, "device node not found\n");
2720 		return ERR_PTR(-EINVAL);
2721 	}
2722 
2723 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2724 	if (!pdata)
2725 		return ERR_PTR(-ENOMEM);
2726 
2727 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2728 					sizeof(*(pdata->dma_slave)),
2729 					GFP_KERNEL);
2730 	if (!pdata->dma_slave)
2731 		return ERR_PTR(-ENOMEM);
2732 
2733 	return pdata;
2734 }
2735 #else /* CONFIG_OF */
2736 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2737 {
2738 	return ERR_PTR(-EINVAL);
2739 }
2740 #endif
2741 
2742 static int atmel_sha_probe(struct platform_device *pdev)
2743 {
2744 	struct atmel_sha_dev *sha_dd;
2745 	struct crypto_platform_data	*pdata;
2746 	struct device *dev = &pdev->dev;
2747 	struct resource *sha_res;
2748 	int err;
2749 
2750 	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2751 	if (sha_dd == NULL) {
2752 		err = -ENOMEM;
2753 		goto sha_dd_err;
2754 	}
2755 
2756 	sha_dd->dev = dev;
2757 
2758 	platform_set_drvdata(pdev, sha_dd);
2759 
2760 	INIT_LIST_HEAD(&sha_dd->list);
2761 	spin_lock_init(&sha_dd->lock);
2762 
2763 	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2764 					(unsigned long)sha_dd);
2765 	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2766 					(unsigned long)sha_dd);
2767 
2768 	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2769 
2770 	/* Get the base address */
2771 	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772 	if (!sha_res) {
2773 		dev_err(dev, "no MEM resource info\n");
2774 		err = -ENODEV;
2775 		goto res_err;
2776 	}
2777 	sha_dd->phys_base = sha_res->start;
2778 
2779 	/* Get the IRQ */
2780 	sha_dd->irq = platform_get_irq(pdev,  0);
2781 	if (sha_dd->irq < 0) {
2782 		err = sha_dd->irq;
2783 		goto res_err;
2784 	}
2785 
2786 	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2787 			       IRQF_SHARED, "atmel-sha", sha_dd);
2788 	if (err) {
2789 		dev_err(dev, "unable to request sha irq.\n");
2790 		goto res_err;
2791 	}
2792 
2793 	/* Initializing the clock */
2794 	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2795 	if (IS_ERR(sha_dd->iclk)) {
2796 		dev_err(dev, "clock initialization failed.\n");
2797 		err = PTR_ERR(sha_dd->iclk);
2798 		goto res_err;
2799 	}
2800 
2801 	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2802 	if (IS_ERR(sha_dd->io_base)) {
2803 		dev_err(dev, "can't ioremap\n");
2804 		err = PTR_ERR(sha_dd->io_base);
2805 		goto res_err;
2806 	}
2807 
2808 	err = clk_prepare(sha_dd->iclk);
2809 	if (err)
2810 		goto res_err;
2811 
2812 	atmel_sha_hw_version_init(sha_dd);
2813 
2814 	atmel_sha_get_cap(sha_dd);
2815 
2816 	if (sha_dd->caps.has_dma) {
2817 		pdata = pdev->dev.platform_data;
2818 		if (!pdata) {
2819 			pdata = atmel_sha_of_init(pdev);
2820 			if (IS_ERR(pdata)) {
2821 				dev_err(&pdev->dev, "platform data not available\n");
2822 				err = PTR_ERR(pdata);
2823 				goto iclk_unprepare;
2824 			}
2825 		}
2826 		if (!pdata->dma_slave) {
2827 			err = -ENXIO;
2828 			goto iclk_unprepare;
2829 		}
2830 		err = atmel_sha_dma_init(sha_dd, pdata);
2831 		if (err)
2832 			goto err_sha_dma;
2833 
2834 		dev_info(dev, "using %s for DMA transfers\n",
2835 				dma_chan_name(sha_dd->dma_lch_in.chan));
2836 	}
2837 
2838 	spin_lock(&atmel_sha.lock);
2839 	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2840 	spin_unlock(&atmel_sha.lock);
2841 
2842 	err = atmel_sha_register_algs(sha_dd);
2843 	if (err)
2844 		goto err_algs;
2845 
2846 	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2847 			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2848 			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2849 
2850 	return 0;
2851 
2852 err_algs:
2853 	spin_lock(&atmel_sha.lock);
2854 	list_del(&sha_dd->list);
2855 	spin_unlock(&atmel_sha.lock);
2856 	if (sha_dd->caps.has_dma)
2857 		atmel_sha_dma_cleanup(sha_dd);
2858 err_sha_dma:
2859 iclk_unprepare:
2860 	clk_unprepare(sha_dd->iclk);
2861 res_err:
2862 	tasklet_kill(&sha_dd->queue_task);
2863 	tasklet_kill(&sha_dd->done_task);
2864 sha_dd_err:
2865 	dev_err(dev, "initialization failed.\n");
2866 
2867 	return err;
2868 }
2869 
2870 static int atmel_sha_remove(struct platform_device *pdev)
2871 {
2872 	struct atmel_sha_dev *sha_dd;
2873 
2874 	sha_dd = platform_get_drvdata(pdev);
2875 	if (!sha_dd)
2876 		return -ENODEV;
2877 	spin_lock(&atmel_sha.lock);
2878 	list_del(&sha_dd->list);
2879 	spin_unlock(&atmel_sha.lock);
2880 
2881 	atmel_sha_unregister_algs(sha_dd);
2882 
2883 	tasklet_kill(&sha_dd->queue_task);
2884 	tasklet_kill(&sha_dd->done_task);
2885 
2886 	if (sha_dd->caps.has_dma)
2887 		atmel_sha_dma_cleanup(sha_dd);
2888 
2889 	clk_unprepare(sha_dd->iclk);
2890 
2891 	return 0;
2892 }
2893 
2894 static struct platform_driver atmel_sha_driver = {
2895 	.probe		= atmel_sha_probe,
2896 	.remove		= atmel_sha_remove,
2897 	.driver		= {
2898 		.name	= "atmel_sha",
2899 		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2900 	},
2901 };
2902 
2903 module_platform_driver(atmel_sha_driver);
2904 
2905 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2906 MODULE_LICENSE("GPL v2");
2907 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2908