xref: /openbmc/linux/drivers/crypto/atmel-sha.c (revision 2f828fb2)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44 #include "atmel-authenc.h"
45 
46 /* SHA flags */
47 #define SHA_FLAGS_BUSY			BIT(0)
48 #define	SHA_FLAGS_FINAL			BIT(1)
49 #define SHA_FLAGS_DMA_ACTIVE	BIT(2)
50 #define SHA_FLAGS_OUTPUT_READY	BIT(3)
51 #define SHA_FLAGS_INIT			BIT(4)
52 #define SHA_FLAGS_CPU			BIT(5)
53 #define SHA_FLAGS_DMA_READY		BIT(6)
54 #define SHA_FLAGS_DUMP_REG	BIT(7)
55 
56 /* bits[11:8] are reserved. */
57 
58 #define SHA_FLAGS_FINUP		BIT(16)
59 #define SHA_FLAGS_SG		BIT(17)
60 #define SHA_FLAGS_ERROR		BIT(23)
61 #define SHA_FLAGS_PAD		BIT(24)
62 #define SHA_FLAGS_RESTORE	BIT(25)
63 #define SHA_FLAGS_IDATAR0	BIT(26)
64 #define SHA_FLAGS_WAIT_DATARDY	BIT(27)
65 
66 #define SHA_OP_INIT	0
67 #define SHA_OP_UPDATE	1
68 #define SHA_OP_FINAL	2
69 #define SHA_OP_DIGEST	3
70 
71 #define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
72 
73 #define ATMEL_SHA_DMA_THRESHOLD		56
74 
75 struct atmel_sha_caps {
76 	bool	has_dma;
77 	bool	has_dualbuff;
78 	bool	has_sha224;
79 	bool	has_sha_384_512;
80 	bool	has_uihv;
81 	bool	has_hmac;
82 };
83 
84 struct atmel_sha_dev;
85 
86 /*
87  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
88  * tested by the ahash_prepare_alg() function.
89  */
90 struct atmel_sha_reqctx {
91 	struct atmel_sha_dev	*dd;
92 	unsigned long	flags;
93 	unsigned long	op;
94 
95 	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
96 	u64	digcnt[2];
97 	size_t	bufcnt;
98 	size_t	buflen;
99 	dma_addr_t	dma_addr;
100 
101 	/* walk state */
102 	struct scatterlist	*sg;
103 	unsigned int	offset;	/* offset in current sg */
104 	unsigned int	total;	/* total request */
105 
106 	size_t block_size;
107 	size_t hash_size;
108 
109 	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
110 };
111 
112 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
113 
114 struct atmel_sha_ctx {
115 	struct atmel_sha_dev	*dd;
116 	atmel_sha_fn_t		start;
117 
118 	unsigned long		flags;
119 };
120 
121 #define ATMEL_SHA_QUEUE_LENGTH	50
122 
123 struct atmel_sha_dma {
124 	struct dma_chan			*chan;
125 	struct dma_slave_config dma_conf;
126 	struct scatterlist	*sg;
127 	int			nents;
128 	unsigned int		last_sg_length;
129 };
130 
131 struct atmel_sha_dev {
132 	struct list_head	list;
133 	unsigned long		phys_base;
134 	struct device		*dev;
135 	struct clk			*iclk;
136 	int					irq;
137 	void __iomem		*io_base;
138 
139 	spinlock_t		lock;
140 	int			err;
141 	struct tasklet_struct	done_task;
142 	struct tasklet_struct	queue_task;
143 
144 	unsigned long		flags;
145 	struct crypto_queue	queue;
146 	struct ahash_request	*req;
147 	bool			is_async;
148 	bool			force_complete;
149 	atmel_sha_fn_t		resume;
150 	atmel_sha_fn_t		cpu_transfer_complete;
151 
152 	struct atmel_sha_dma	dma_lch_in;
153 
154 	struct atmel_sha_caps	caps;
155 
156 	struct scatterlist	tmp;
157 
158 	u32	hw_version;
159 };
160 
161 struct atmel_sha_drv {
162 	struct list_head	dev_list;
163 	spinlock_t		lock;
164 };
165 
166 static struct atmel_sha_drv atmel_sha = {
167 	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
168 	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
169 };
170 
171 #ifdef VERBOSE_DEBUG
172 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
173 {
174 	switch (offset) {
175 	case SHA_CR:
176 		return "CR";
177 
178 	case SHA_MR:
179 		return "MR";
180 
181 	case SHA_IER:
182 		return "IER";
183 
184 	case SHA_IDR:
185 		return "IDR";
186 
187 	case SHA_IMR:
188 		return "IMR";
189 
190 	case SHA_ISR:
191 		return "ISR";
192 
193 	case SHA_MSR:
194 		return "MSR";
195 
196 	case SHA_BCR:
197 		return "BCR";
198 
199 	case SHA_REG_DIN(0):
200 	case SHA_REG_DIN(1):
201 	case SHA_REG_DIN(2):
202 	case SHA_REG_DIN(3):
203 	case SHA_REG_DIN(4):
204 	case SHA_REG_DIN(5):
205 	case SHA_REG_DIN(6):
206 	case SHA_REG_DIN(7):
207 	case SHA_REG_DIN(8):
208 	case SHA_REG_DIN(9):
209 	case SHA_REG_DIN(10):
210 	case SHA_REG_DIN(11):
211 	case SHA_REG_DIN(12):
212 	case SHA_REG_DIN(13):
213 	case SHA_REG_DIN(14):
214 	case SHA_REG_DIN(15):
215 		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
216 		break;
217 
218 	case SHA_REG_DIGEST(0):
219 	case SHA_REG_DIGEST(1):
220 	case SHA_REG_DIGEST(2):
221 	case SHA_REG_DIGEST(3):
222 	case SHA_REG_DIGEST(4):
223 	case SHA_REG_DIGEST(5):
224 	case SHA_REG_DIGEST(6):
225 	case SHA_REG_DIGEST(7):
226 	case SHA_REG_DIGEST(8):
227 	case SHA_REG_DIGEST(9):
228 	case SHA_REG_DIGEST(10):
229 	case SHA_REG_DIGEST(11):
230 	case SHA_REG_DIGEST(12):
231 	case SHA_REG_DIGEST(13):
232 	case SHA_REG_DIGEST(14):
233 	case SHA_REG_DIGEST(15):
234 		if (wr)
235 			snprintf(tmp, sz, "IDATAR[%u]",
236 				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
237 		else
238 			snprintf(tmp, sz, "ODATAR[%u]",
239 				 (offset - SHA_REG_DIGEST(0)) >> 2);
240 		break;
241 
242 	case SHA_HW_VERSION:
243 		return "HWVER";
244 
245 	default:
246 		snprintf(tmp, sz, "0x%02x", offset);
247 		break;
248 	}
249 
250 	return tmp;
251 }
252 
253 #endif /* VERBOSE_DEBUG */
254 
255 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
256 {
257 	u32 value = readl_relaxed(dd->io_base + offset);
258 
259 #ifdef VERBOSE_DEBUG
260 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
261 		char tmp[16];
262 
263 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
264 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
265 	}
266 #endif /* VERBOSE_DEBUG */
267 
268 	return value;
269 }
270 
271 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
272 					u32 offset, u32 value)
273 {
274 #ifdef VERBOSE_DEBUG
275 	if (dd->flags & SHA_FLAGS_DUMP_REG) {
276 		char tmp[16];
277 
278 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
279 			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
280 	}
281 #endif /* VERBOSE_DEBUG */
282 
283 	writel_relaxed(value, dd->io_base + offset);
284 }
285 
286 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
287 {
288 	struct ahash_request *req = dd->req;
289 
290 	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
291 		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
292 		       SHA_FLAGS_DUMP_REG);
293 
294 	clk_disable(dd->iclk);
295 
296 	if ((dd->is_async || dd->force_complete) && req->base.complete)
297 		req->base.complete(&req->base, err);
298 
299 	/* handle new request */
300 	tasklet_schedule(&dd->queue_task);
301 
302 	return err;
303 }
304 
305 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
306 {
307 	size_t count;
308 
309 	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
310 		count = min(ctx->sg->length - ctx->offset, ctx->total);
311 		count = min(count, ctx->buflen - ctx->bufcnt);
312 
313 		if (count <= 0) {
314 			/*
315 			* Check if count <= 0 because the buffer is full or
316 			* because the sg length is 0. In the latest case,
317 			* check if there is another sg in the list, a 0 length
318 			* sg doesn't necessarily mean the end of the sg list.
319 			*/
320 			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
321 				ctx->sg = sg_next(ctx->sg);
322 				continue;
323 			} else {
324 				break;
325 			}
326 		}
327 
328 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
329 			ctx->offset, count, 0);
330 
331 		ctx->bufcnt += count;
332 		ctx->offset += count;
333 		ctx->total -= count;
334 
335 		if (ctx->offset == ctx->sg->length) {
336 			ctx->sg = sg_next(ctx->sg);
337 			if (ctx->sg)
338 				ctx->offset = 0;
339 			else
340 				ctx->total = 0;
341 		}
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * The purpose of this padding is to ensure that the padded message is a
349  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
350  * The bit "1" is appended at the end of the message followed by
351  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
352  * 128 bits block (SHA384/SHA512) equals to the message length in bits
353  * is appended.
354  *
355  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
356  *  - if message length < 56 bytes then padlen = 56 - message length
357  *  - else padlen = 64 + 56 - message length
358  *
359  * For SHA384/SHA512, padlen is calculated as followed:
360  *  - if message length < 112 bytes then padlen = 112 - message length
361  *  - else padlen = 128 + 112 - message length
362  */
363 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
364 {
365 	unsigned int index, padlen;
366 	u64 bits[2];
367 	u64 size[2];
368 
369 	size[0] = ctx->digcnt[0];
370 	size[1] = ctx->digcnt[1];
371 
372 	size[0] += ctx->bufcnt;
373 	if (size[0] < ctx->bufcnt)
374 		size[1]++;
375 
376 	size[0] += length;
377 	if (size[0]  < length)
378 		size[1]++;
379 
380 	bits[1] = cpu_to_be64(size[0] << 3);
381 	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
382 
383 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
384 	case SHA_FLAGS_SHA384:
385 	case SHA_FLAGS_SHA512:
386 		index = ctx->bufcnt & 0x7f;
387 		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
388 		*(ctx->buffer + ctx->bufcnt) = 0x80;
389 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
390 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
391 		ctx->bufcnt += padlen + 16;
392 		ctx->flags |= SHA_FLAGS_PAD;
393 		break;
394 
395 	default:
396 		index = ctx->bufcnt & 0x3f;
397 		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
398 		*(ctx->buffer + ctx->bufcnt) = 0x80;
399 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
400 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
401 		ctx->bufcnt += padlen + 8;
402 		ctx->flags |= SHA_FLAGS_PAD;
403 		break;
404 	}
405 }
406 
407 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
408 {
409 	struct atmel_sha_dev *dd = NULL;
410 	struct atmel_sha_dev *tmp;
411 
412 	spin_lock_bh(&atmel_sha.lock);
413 	if (!tctx->dd) {
414 		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
415 			dd = tmp;
416 			break;
417 		}
418 		tctx->dd = dd;
419 	} else {
420 		dd = tctx->dd;
421 	}
422 
423 	spin_unlock_bh(&atmel_sha.lock);
424 
425 	return dd;
426 }
427 
428 static int atmel_sha_init(struct ahash_request *req)
429 {
430 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
431 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
432 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
433 	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
434 
435 	ctx->dd = dd;
436 
437 	ctx->flags = 0;
438 
439 	dev_dbg(dd->dev, "init: digest size: %d\n",
440 		crypto_ahash_digestsize(tfm));
441 
442 	switch (crypto_ahash_digestsize(tfm)) {
443 	case SHA1_DIGEST_SIZE:
444 		ctx->flags |= SHA_FLAGS_SHA1;
445 		ctx->block_size = SHA1_BLOCK_SIZE;
446 		break;
447 	case SHA224_DIGEST_SIZE:
448 		ctx->flags |= SHA_FLAGS_SHA224;
449 		ctx->block_size = SHA224_BLOCK_SIZE;
450 		break;
451 	case SHA256_DIGEST_SIZE:
452 		ctx->flags |= SHA_FLAGS_SHA256;
453 		ctx->block_size = SHA256_BLOCK_SIZE;
454 		break;
455 	case SHA384_DIGEST_SIZE:
456 		ctx->flags |= SHA_FLAGS_SHA384;
457 		ctx->block_size = SHA384_BLOCK_SIZE;
458 		break;
459 	case SHA512_DIGEST_SIZE:
460 		ctx->flags |= SHA_FLAGS_SHA512;
461 		ctx->block_size = SHA512_BLOCK_SIZE;
462 		break;
463 	default:
464 		return -EINVAL;
465 		break;
466 	}
467 
468 	ctx->bufcnt = 0;
469 	ctx->digcnt[0] = 0;
470 	ctx->digcnt[1] = 0;
471 	ctx->buflen = SHA_BUFFER_LEN;
472 
473 	return 0;
474 }
475 
476 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
477 {
478 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
479 	u32 valmr = SHA_MR_MODE_AUTO;
480 	unsigned int i, hashsize = 0;
481 
482 	if (likely(dma)) {
483 		if (!dd->caps.has_dma)
484 			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
485 		valmr = SHA_MR_MODE_PDC;
486 		if (dd->caps.has_dualbuff)
487 			valmr |= SHA_MR_DUALBUFF;
488 	} else {
489 		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
490 	}
491 
492 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
493 	case SHA_FLAGS_SHA1:
494 		valmr |= SHA_MR_ALGO_SHA1;
495 		hashsize = SHA1_DIGEST_SIZE;
496 		break;
497 
498 	case SHA_FLAGS_SHA224:
499 		valmr |= SHA_MR_ALGO_SHA224;
500 		hashsize = SHA256_DIGEST_SIZE;
501 		break;
502 
503 	case SHA_FLAGS_SHA256:
504 		valmr |= SHA_MR_ALGO_SHA256;
505 		hashsize = SHA256_DIGEST_SIZE;
506 		break;
507 
508 	case SHA_FLAGS_SHA384:
509 		valmr |= SHA_MR_ALGO_SHA384;
510 		hashsize = SHA512_DIGEST_SIZE;
511 		break;
512 
513 	case SHA_FLAGS_SHA512:
514 		valmr |= SHA_MR_ALGO_SHA512;
515 		hashsize = SHA512_DIGEST_SIZE;
516 		break;
517 
518 	default:
519 		break;
520 	}
521 
522 	/* Setting CR_FIRST only for the first iteration */
523 	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
524 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
525 	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
526 		const u32 *hash = (const u32 *)ctx->digest;
527 
528 		/*
529 		 * Restore the hardware context: update the User Initialize
530 		 * Hash Value (UIHV) with the value saved when the latest
531 		 * 'update' operation completed on this very same crypto
532 		 * request.
533 		 */
534 		ctx->flags &= ~SHA_FLAGS_RESTORE;
535 		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
536 		for (i = 0; i < hashsize / sizeof(u32); ++i)
537 			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
538 		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
539 		valmr |= SHA_MR_UIHV;
540 	}
541 	/*
542 	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
543 	 * process concurrent requests: the internal registers used to store
544 	 * the hash/digest are still set to the partial digest output values
545 	 * computed during the latest round.
546 	 */
547 
548 	atmel_sha_write(dd, SHA_MR, valmr);
549 }
550 
551 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
552 						atmel_sha_fn_t resume)
553 {
554 	u32 isr = atmel_sha_read(dd, SHA_ISR);
555 
556 	if (unlikely(isr & SHA_INT_DATARDY))
557 		return resume(dd);
558 
559 	dd->resume = resume;
560 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
561 	return -EINPROGRESS;
562 }
563 
564 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
565 			      size_t length, int final)
566 {
567 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
568 	int count, len32;
569 	const u32 *buffer = (const u32 *)buf;
570 
571 	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
572 		ctx->digcnt[1], ctx->digcnt[0], length, final);
573 
574 	atmel_sha_write_ctrl(dd, 0);
575 
576 	/* should be non-zero before next lines to disable clocks later */
577 	ctx->digcnt[0] += length;
578 	if (ctx->digcnt[0] < length)
579 		ctx->digcnt[1]++;
580 
581 	if (final)
582 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
583 
584 	len32 = DIV_ROUND_UP(length, sizeof(u32));
585 
586 	dd->flags |= SHA_FLAGS_CPU;
587 
588 	for (count = 0; count < len32; count++)
589 		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
590 
591 	return -EINPROGRESS;
592 }
593 
594 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
595 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
596 {
597 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
598 	int len32;
599 
600 	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
601 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
602 
603 	len32 = DIV_ROUND_UP(length1, sizeof(u32));
604 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
605 	atmel_sha_write(dd, SHA_TPR, dma_addr1);
606 	atmel_sha_write(dd, SHA_TCR, len32);
607 
608 	len32 = DIV_ROUND_UP(length2, sizeof(u32));
609 	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
610 	atmel_sha_write(dd, SHA_TNCR, len32);
611 
612 	atmel_sha_write_ctrl(dd, 1);
613 
614 	/* should be non-zero before next lines to disable clocks later */
615 	ctx->digcnt[0] += length1;
616 	if (ctx->digcnt[0] < length1)
617 		ctx->digcnt[1]++;
618 
619 	if (final)
620 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
621 
622 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
623 
624 	/* Start DMA transfer */
625 	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
626 
627 	return -EINPROGRESS;
628 }
629 
630 static void atmel_sha_dma_callback(void *data)
631 {
632 	struct atmel_sha_dev *dd = data;
633 
634 	dd->is_async = true;
635 
636 	/* dma_lch_in - completed - wait DATRDY */
637 	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
638 }
639 
640 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
641 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
642 {
643 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
644 	struct dma_async_tx_descriptor	*in_desc;
645 	struct scatterlist sg[2];
646 
647 	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
648 		ctx->digcnt[1], ctx->digcnt[0], length1, final);
649 
650 	dd->dma_lch_in.dma_conf.src_maxburst = 16;
651 	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
652 
653 	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
654 
655 	if (length2) {
656 		sg_init_table(sg, 2);
657 		sg_dma_address(&sg[0]) = dma_addr1;
658 		sg_dma_len(&sg[0]) = length1;
659 		sg_dma_address(&sg[1]) = dma_addr2;
660 		sg_dma_len(&sg[1]) = length2;
661 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
662 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
663 	} else {
664 		sg_init_table(sg, 1);
665 		sg_dma_address(&sg[0]) = dma_addr1;
666 		sg_dma_len(&sg[0]) = length1;
667 		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
668 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
669 	}
670 	if (!in_desc)
671 		return atmel_sha_complete(dd, -EINVAL);
672 
673 	in_desc->callback = atmel_sha_dma_callback;
674 	in_desc->callback_param = dd;
675 
676 	atmel_sha_write_ctrl(dd, 1);
677 
678 	/* should be non-zero before next lines to disable clocks later */
679 	ctx->digcnt[0] += length1;
680 	if (ctx->digcnt[0] < length1)
681 		ctx->digcnt[1]++;
682 
683 	if (final)
684 		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
685 
686 	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
687 
688 	/* Start DMA transfer */
689 	dmaengine_submit(in_desc);
690 	dma_async_issue_pending(dd->dma_lch_in.chan);
691 
692 	return -EINPROGRESS;
693 }
694 
695 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
696 		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
697 {
698 	if (dd->caps.has_dma)
699 		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
700 				dma_addr2, length2, final);
701 	else
702 		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
703 				dma_addr2, length2, final);
704 }
705 
706 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
707 {
708 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
709 	int bufcnt;
710 
711 	atmel_sha_append_sg(ctx);
712 	atmel_sha_fill_padding(ctx, 0);
713 	bufcnt = ctx->bufcnt;
714 	ctx->bufcnt = 0;
715 
716 	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
717 }
718 
719 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
720 					struct atmel_sha_reqctx *ctx,
721 					size_t length, int final)
722 {
723 	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
724 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
725 	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
726 		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
727 				ctx->block_size);
728 		return atmel_sha_complete(dd, -EINVAL);
729 	}
730 
731 	ctx->flags &= ~SHA_FLAGS_SG;
732 
733 	/* next call does not fail... so no unmap in the case of error */
734 	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
735 }
736 
737 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
738 {
739 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
740 	unsigned int final;
741 	size_t count;
742 
743 	atmel_sha_append_sg(ctx);
744 
745 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
746 
747 	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
748 		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
749 
750 	if (final)
751 		atmel_sha_fill_padding(ctx, 0);
752 
753 	if (final || (ctx->bufcnt == ctx->buflen)) {
754 		count = ctx->bufcnt;
755 		ctx->bufcnt = 0;
756 		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
757 	}
758 
759 	return 0;
760 }
761 
762 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
763 {
764 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
765 	unsigned int length, final, tail;
766 	struct scatterlist *sg;
767 	unsigned int count;
768 
769 	if (!ctx->total)
770 		return 0;
771 
772 	if (ctx->bufcnt || ctx->offset)
773 		return atmel_sha_update_dma_slow(dd);
774 
775 	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
776 		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
777 
778 	sg = ctx->sg;
779 
780 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
781 		return atmel_sha_update_dma_slow(dd);
782 
783 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
784 		/* size is not ctx->block_size aligned */
785 		return atmel_sha_update_dma_slow(dd);
786 
787 	length = min(ctx->total, sg->length);
788 
789 	if (sg_is_last(sg)) {
790 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
791 			/* not last sg must be ctx->block_size aligned */
792 			tail = length & (ctx->block_size - 1);
793 			length -= tail;
794 		}
795 	}
796 
797 	ctx->total -= length;
798 	ctx->offset = length; /* offset where to start slow */
799 
800 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
801 
802 	/* Add padding */
803 	if (final) {
804 		tail = length & (ctx->block_size - 1);
805 		length -= tail;
806 		ctx->total += tail;
807 		ctx->offset = length; /* offset where to start slow */
808 
809 		sg = ctx->sg;
810 		atmel_sha_append_sg(ctx);
811 
812 		atmel_sha_fill_padding(ctx, length);
813 
814 		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
815 			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
816 		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
817 			dev_err(dd->dev, "dma %zu bytes error\n",
818 				ctx->buflen + ctx->block_size);
819 			return atmel_sha_complete(dd, -EINVAL);
820 		}
821 
822 		if (length == 0) {
823 			ctx->flags &= ~SHA_FLAGS_SG;
824 			count = ctx->bufcnt;
825 			ctx->bufcnt = 0;
826 			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
827 					0, final);
828 		} else {
829 			ctx->sg = sg;
830 			if (!dma_map_sg(dd->dev, ctx->sg, 1,
831 				DMA_TO_DEVICE)) {
832 					dev_err(dd->dev, "dma_map_sg  error\n");
833 					return atmel_sha_complete(dd, -EINVAL);
834 			}
835 
836 			ctx->flags |= SHA_FLAGS_SG;
837 
838 			count = ctx->bufcnt;
839 			ctx->bufcnt = 0;
840 			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
841 					length, ctx->dma_addr, count, final);
842 		}
843 	}
844 
845 	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
846 		dev_err(dd->dev, "dma_map_sg  error\n");
847 		return atmel_sha_complete(dd, -EINVAL);
848 	}
849 
850 	ctx->flags |= SHA_FLAGS_SG;
851 
852 	/* next call does not fail... so no unmap in the case of error */
853 	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
854 								0, final);
855 }
856 
857 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
858 {
859 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
860 
861 	if (ctx->flags & SHA_FLAGS_SG) {
862 		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
863 		if (ctx->sg->length == ctx->offset) {
864 			ctx->sg = sg_next(ctx->sg);
865 			if (ctx->sg)
866 				ctx->offset = 0;
867 		}
868 		if (ctx->flags & SHA_FLAGS_PAD) {
869 			dma_unmap_single(dd->dev, ctx->dma_addr,
870 				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
871 		}
872 	} else {
873 		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
874 						ctx->block_size, DMA_TO_DEVICE);
875 	}
876 
877 	return 0;
878 }
879 
880 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
881 {
882 	struct ahash_request *req = dd->req;
883 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
884 	int err;
885 
886 	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
887 		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
888 
889 	if (ctx->flags & SHA_FLAGS_CPU)
890 		err = atmel_sha_update_cpu(dd);
891 	else
892 		err = atmel_sha_update_dma_start(dd);
893 
894 	/* wait for dma completion before can take more data */
895 	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
896 			err, ctx->digcnt[1], ctx->digcnt[0]);
897 
898 	return err;
899 }
900 
901 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
902 {
903 	struct ahash_request *req = dd->req;
904 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
905 	int err = 0;
906 	int count;
907 
908 	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
909 		atmel_sha_fill_padding(ctx, 0);
910 		count = ctx->bufcnt;
911 		ctx->bufcnt = 0;
912 		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
913 	}
914 	/* faster to handle last block with cpu */
915 	else {
916 		atmel_sha_fill_padding(ctx, 0);
917 		count = ctx->bufcnt;
918 		ctx->bufcnt = 0;
919 		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
920 	}
921 
922 	dev_dbg(dd->dev, "final_req: err: %d\n", err);
923 
924 	return err;
925 }
926 
927 static void atmel_sha_copy_hash(struct ahash_request *req)
928 {
929 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
930 	u32 *hash = (u32 *)ctx->digest;
931 	unsigned int i, hashsize;
932 
933 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
934 	case SHA_FLAGS_SHA1:
935 		hashsize = SHA1_DIGEST_SIZE;
936 		break;
937 
938 	case SHA_FLAGS_SHA224:
939 	case SHA_FLAGS_SHA256:
940 		hashsize = SHA256_DIGEST_SIZE;
941 		break;
942 
943 	case SHA_FLAGS_SHA384:
944 	case SHA_FLAGS_SHA512:
945 		hashsize = SHA512_DIGEST_SIZE;
946 		break;
947 
948 	default:
949 		/* Should not happen... */
950 		return;
951 	}
952 
953 	for (i = 0; i < hashsize / sizeof(u32); ++i)
954 		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
955 	ctx->flags |= SHA_FLAGS_RESTORE;
956 }
957 
958 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
959 {
960 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
961 
962 	if (!req->result)
963 		return;
964 
965 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
966 	default:
967 	case SHA_FLAGS_SHA1:
968 		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
969 		break;
970 
971 	case SHA_FLAGS_SHA224:
972 		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
973 		break;
974 
975 	case SHA_FLAGS_SHA256:
976 		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
977 		break;
978 
979 	case SHA_FLAGS_SHA384:
980 		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
981 		break;
982 
983 	case SHA_FLAGS_SHA512:
984 		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
985 		break;
986 	}
987 }
988 
989 static int atmel_sha_finish(struct ahash_request *req)
990 {
991 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
992 	struct atmel_sha_dev *dd = ctx->dd;
993 
994 	if (ctx->digcnt[0] || ctx->digcnt[1])
995 		atmel_sha_copy_ready_hash(req);
996 
997 	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
998 		ctx->digcnt[0], ctx->bufcnt);
999 
1000 	return 0;
1001 }
1002 
1003 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004 {
1005 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006 	struct atmel_sha_dev *dd = ctx->dd;
1007 
1008 	if (!err) {
1009 		atmel_sha_copy_hash(req);
1010 		if (SHA_FLAGS_FINAL & dd->flags)
1011 			err = atmel_sha_finish(req);
1012 	} else {
1013 		ctx->flags |= SHA_FLAGS_ERROR;
1014 	}
1015 
1016 	/* atomic operation is not needed here */
1017 	(void)atmel_sha_complete(dd, err);
1018 }
1019 
1020 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021 {
1022 	int err;
1023 
1024 	err = clk_enable(dd->iclk);
1025 	if (err)
1026 		return err;
1027 
1028 	if (!(SHA_FLAGS_INIT & dd->flags)) {
1029 		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030 		dd->flags |= SHA_FLAGS_INIT;
1031 		dd->err = 0;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038 {
1039 	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040 }
1041 
1042 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043 {
1044 	atmel_sha_hw_init(dd);
1045 
1046 	dd->hw_version = atmel_sha_get_version(dd);
1047 
1048 	dev_info(dd->dev,
1049 			"version: 0x%x\n", dd->hw_version);
1050 
1051 	clk_disable(dd->iclk);
1052 }
1053 
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055 				  struct ahash_request *req)
1056 {
1057 	struct crypto_async_request *async_req, *backlog;
1058 	struct atmel_sha_ctx *ctx;
1059 	unsigned long flags;
1060 	bool start_async;
1061 	int err = 0, ret = 0;
1062 
1063 	spin_lock_irqsave(&dd->lock, flags);
1064 	if (req)
1065 		ret = ahash_enqueue_request(&dd->queue, req);
1066 
1067 	if (SHA_FLAGS_BUSY & dd->flags) {
1068 		spin_unlock_irqrestore(&dd->lock, flags);
1069 		return ret;
1070 	}
1071 
1072 	backlog = crypto_get_backlog(&dd->queue);
1073 	async_req = crypto_dequeue_request(&dd->queue);
1074 	if (async_req)
1075 		dd->flags |= SHA_FLAGS_BUSY;
1076 
1077 	spin_unlock_irqrestore(&dd->lock, flags);
1078 
1079 	if (!async_req)
1080 		return ret;
1081 
1082 	if (backlog)
1083 		backlog->complete(backlog, -EINPROGRESS);
1084 
1085 	ctx = crypto_tfm_ctx(async_req->tfm);
1086 
1087 	dd->req = ahash_request_cast(async_req);
1088 	start_async = (dd->req != req);
1089 	dd->is_async = start_async;
1090 	dd->force_complete = false;
1091 
1092 	/* WARNING: ctx->start() MAY change dd->is_async. */
1093 	err = ctx->start(dd);
1094 	return (start_async) ? ret : err;
1095 }
1096 
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098 
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101 	struct ahash_request *req = dd->req;
1102 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103 	int err;
1104 
1105 	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106 						ctx->op, req->nbytes);
1107 
1108 	err = atmel_sha_hw_init(dd);
1109 	if (err)
1110 		return atmel_sha_complete(dd, err);
1111 
1112 	/*
1113 	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114 	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115 	 *                its job later in the done_task.
1116 	 *                This is the main path.
1117 	 *
1118 	 * 0: the SHA driver can continue its job then release the hardware
1119 	 *    later, if needed, with atmel_sha_finish_req().
1120 	 *    This is the alternate path.
1121 	 *
1122 	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123 	 *      been called, hence the hardware has been released.
1124 	 *      The SHA driver must stop its job without calling
1125 	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126 	 *      called a second time.
1127 	 *
1128 	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129 	 */
1130 
1131 	dd->resume = atmel_sha_done;
1132 	if (ctx->op == SHA_OP_UPDATE) {
1133 		err = atmel_sha_update_req(dd);
1134 		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135 			/* no final() after finup() */
1136 			err = atmel_sha_final_req(dd);
1137 	} else if (ctx->op == SHA_OP_FINAL) {
1138 		err = atmel_sha_final_req(dd);
1139 	}
1140 
1141 	if (!err)
1142 		/* done_task will not finish it, so do it here */
1143 		atmel_sha_finish_req(req, err);
1144 
1145 	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146 
1147 	return err;
1148 }
1149 
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153 	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154 	struct atmel_sha_dev *dd = tctx->dd;
1155 
1156 	ctx->op = op;
1157 
1158 	return atmel_sha_handle_queue(dd, req);
1159 }
1160 
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164 
1165 	if (!req->nbytes)
1166 		return 0;
1167 
1168 	ctx->total = req->nbytes;
1169 	ctx->sg = req->src;
1170 	ctx->offset = 0;
1171 
1172 	if (ctx->flags & SHA_FLAGS_FINUP) {
1173 		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174 			/* faster to use CPU for short transfers */
1175 			ctx->flags |= SHA_FLAGS_CPU;
1176 	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177 		atmel_sha_append_sg(ctx);
1178 		return 0;
1179 	}
1180 	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182 
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186 
1187 	ctx->flags |= SHA_FLAGS_FINUP;
1188 
1189 	if (ctx->flags & SHA_FLAGS_ERROR)
1190 		return 0; /* uncompleted hash is not needed */
1191 
1192 	if (ctx->flags & SHA_FLAGS_PAD)
1193 		/* copy ready hash (+ finalize hmac) */
1194 		return atmel_sha_finish(req);
1195 
1196 	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198 
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202 	int err1, err2;
1203 
1204 	ctx->flags |= SHA_FLAGS_FINUP;
1205 
1206 	err1 = atmel_sha_update(req);
1207 	if (err1 == -EINPROGRESS ||
1208 	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209 				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210 		return err1;
1211 
1212 	/*
1213 	 * final() has to be always called to cleanup resources
1214 	 * even if udpate() failed, except EINPROGRESS
1215 	 */
1216 	err2 = atmel_sha_final(req);
1217 
1218 	return err1 ?: err2;
1219 }
1220 
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223 	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225 
1226 
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229 	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230 
1231 	memcpy(out, ctx, sizeof(*ctx));
1232 	return 0;
1233 }
1234 
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238 
1239 	memcpy(ctx, in, sizeof(*ctx));
1240 	return 0;
1241 }
1242 
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245 	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246 
1247 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248 				 sizeof(struct atmel_sha_reqctx));
1249 	ctx->start = atmel_sha_start;
1250 
1251 	return 0;
1252 }
1253 
1254 static struct ahash_alg sha_1_256_algs[] = {
1255 {
1256 	.init		= atmel_sha_init,
1257 	.update		= atmel_sha_update,
1258 	.final		= atmel_sha_final,
1259 	.finup		= atmel_sha_finup,
1260 	.digest		= atmel_sha_digest,
1261 	.export		= atmel_sha_export,
1262 	.import		= atmel_sha_import,
1263 	.halg = {
1264 		.digestsize	= SHA1_DIGEST_SIZE,
1265 		.statesize	= sizeof(struct atmel_sha_reqctx),
1266 		.base	= {
1267 			.cra_name		= "sha1",
1268 			.cra_driver_name	= "atmel-sha1",
1269 			.cra_priority		= 100,
1270 			.cra_flags		= CRYPTO_ALG_ASYNC,
1271 			.cra_blocksize		= SHA1_BLOCK_SIZE,
1272 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1273 			.cra_alignmask		= 0,
1274 			.cra_module		= THIS_MODULE,
1275 			.cra_init		= atmel_sha_cra_init,
1276 		}
1277 	}
1278 },
1279 {
1280 	.init		= atmel_sha_init,
1281 	.update		= atmel_sha_update,
1282 	.final		= atmel_sha_final,
1283 	.finup		= atmel_sha_finup,
1284 	.digest		= atmel_sha_digest,
1285 	.export		= atmel_sha_export,
1286 	.import		= atmel_sha_import,
1287 	.halg = {
1288 		.digestsize	= SHA256_DIGEST_SIZE,
1289 		.statesize	= sizeof(struct atmel_sha_reqctx),
1290 		.base	= {
1291 			.cra_name		= "sha256",
1292 			.cra_driver_name	= "atmel-sha256",
1293 			.cra_priority		= 100,
1294 			.cra_flags		= CRYPTO_ALG_ASYNC,
1295 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1296 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1297 			.cra_alignmask		= 0,
1298 			.cra_module		= THIS_MODULE,
1299 			.cra_init		= atmel_sha_cra_init,
1300 		}
1301 	}
1302 },
1303 };
1304 
1305 static struct ahash_alg sha_224_alg = {
1306 	.init		= atmel_sha_init,
1307 	.update		= atmel_sha_update,
1308 	.final		= atmel_sha_final,
1309 	.finup		= atmel_sha_finup,
1310 	.digest		= atmel_sha_digest,
1311 	.export		= atmel_sha_export,
1312 	.import		= atmel_sha_import,
1313 	.halg = {
1314 		.digestsize	= SHA224_DIGEST_SIZE,
1315 		.statesize	= sizeof(struct atmel_sha_reqctx),
1316 		.base	= {
1317 			.cra_name		= "sha224",
1318 			.cra_driver_name	= "atmel-sha224",
1319 			.cra_priority		= 100,
1320 			.cra_flags		= CRYPTO_ALG_ASYNC,
1321 			.cra_blocksize		= SHA224_BLOCK_SIZE,
1322 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1323 			.cra_alignmask		= 0,
1324 			.cra_module		= THIS_MODULE,
1325 			.cra_init		= atmel_sha_cra_init,
1326 		}
1327 	}
1328 };
1329 
1330 static struct ahash_alg sha_384_512_algs[] = {
1331 {
1332 	.init		= atmel_sha_init,
1333 	.update		= atmel_sha_update,
1334 	.final		= atmel_sha_final,
1335 	.finup		= atmel_sha_finup,
1336 	.digest		= atmel_sha_digest,
1337 	.export		= atmel_sha_export,
1338 	.import		= atmel_sha_import,
1339 	.halg = {
1340 		.digestsize	= SHA384_DIGEST_SIZE,
1341 		.statesize	= sizeof(struct atmel_sha_reqctx),
1342 		.base	= {
1343 			.cra_name		= "sha384",
1344 			.cra_driver_name	= "atmel-sha384",
1345 			.cra_priority		= 100,
1346 			.cra_flags		= CRYPTO_ALG_ASYNC,
1347 			.cra_blocksize		= SHA384_BLOCK_SIZE,
1348 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1349 			.cra_alignmask		= 0x3,
1350 			.cra_module		= THIS_MODULE,
1351 			.cra_init		= atmel_sha_cra_init,
1352 		}
1353 	}
1354 },
1355 {
1356 	.init		= atmel_sha_init,
1357 	.update		= atmel_sha_update,
1358 	.final		= atmel_sha_final,
1359 	.finup		= atmel_sha_finup,
1360 	.digest		= atmel_sha_digest,
1361 	.export		= atmel_sha_export,
1362 	.import		= atmel_sha_import,
1363 	.halg = {
1364 		.digestsize	= SHA512_DIGEST_SIZE,
1365 		.statesize	= sizeof(struct atmel_sha_reqctx),
1366 		.base	= {
1367 			.cra_name		= "sha512",
1368 			.cra_driver_name	= "atmel-sha512",
1369 			.cra_priority		= 100,
1370 			.cra_flags		= CRYPTO_ALG_ASYNC,
1371 			.cra_blocksize		= SHA512_BLOCK_SIZE,
1372 			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1373 			.cra_alignmask		= 0x3,
1374 			.cra_module		= THIS_MODULE,
1375 			.cra_init		= atmel_sha_cra_init,
1376 		}
1377 	}
1378 },
1379 };
1380 
1381 static void atmel_sha_queue_task(unsigned long data)
1382 {
1383 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384 
1385 	atmel_sha_handle_queue(dd, NULL);
1386 }
1387 
1388 static int atmel_sha_done(struct atmel_sha_dev *dd)
1389 {
1390 	int err = 0;
1391 
1392 	if (SHA_FLAGS_CPU & dd->flags) {
1393 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394 			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395 			goto finish;
1396 		}
1397 	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398 		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399 			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400 			atmel_sha_update_dma_stop(dd);
1401 			if (dd->err) {
1402 				err = dd->err;
1403 				goto finish;
1404 			}
1405 		}
1406 		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407 			/* hash or semi-hash ready */
1408 			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409 						SHA_FLAGS_OUTPUT_READY);
1410 			err = atmel_sha_update_dma_start(dd);
1411 			if (err != -EINPROGRESS)
1412 				goto finish;
1413 		}
1414 	}
1415 	return err;
1416 
1417 finish:
1418 	/* finish curent request */
1419 	atmel_sha_finish_req(dd->req, err);
1420 
1421 	return err;
1422 }
1423 
1424 static void atmel_sha_done_task(unsigned long data)
1425 {
1426 	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427 
1428 	dd->is_async = true;
1429 	(void)dd->resume(dd);
1430 }
1431 
1432 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433 {
1434 	struct atmel_sha_dev *sha_dd = dev_id;
1435 	u32 reg;
1436 
1437 	reg = atmel_sha_read(sha_dd, SHA_ISR);
1438 	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439 		atmel_sha_write(sha_dd, SHA_IDR, reg);
1440 		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441 			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442 			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443 				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444 			tasklet_schedule(&sha_dd->done_task);
1445 		} else {
1446 			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447 		}
1448 		return IRQ_HANDLED;
1449 	}
1450 
1451 	return IRQ_NONE;
1452 }
1453 
1454 
1455 /* DMA transfer functions */
1456 
1457 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458 					struct scatterlist *sg,
1459 					size_t len)
1460 {
1461 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462 	struct ahash_request *req = dd->req;
1463 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464 	size_t bs = ctx->block_size;
1465 	int nents;
1466 
1467 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469 			return false;
1470 
1471 		/*
1472 		 * This is the last sg, the only one that is allowed to
1473 		 * have an unaligned length.
1474 		 */
1475 		if (len <= sg->length) {
1476 			dma->nents = nents + 1;
1477 			dma->last_sg_length = sg->length;
1478 			sg->length = ALIGN(len, sizeof(u32));
1479 			return true;
1480 		}
1481 
1482 		/* All other sg lengths MUST be aligned to the block size. */
1483 		if (!IS_ALIGNED(sg->length, bs))
1484 			return false;
1485 
1486 		len -= sg->length;
1487 	}
1488 
1489 	return false;
1490 }
1491 
1492 static void atmel_sha_dma_callback2(void *data)
1493 {
1494 	struct atmel_sha_dev *dd = data;
1495 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496 	struct scatterlist *sg;
1497 	int nents;
1498 
1499 	dmaengine_terminate_all(dma->chan);
1500 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501 
1502 	sg = dma->sg;
1503 	for (nents = 0; nents < dma->nents - 1; ++nents)
1504 		sg = sg_next(sg);
1505 	sg->length = dma->last_sg_length;
1506 
1507 	dd->is_async = true;
1508 	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509 }
1510 
1511 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512 			       struct scatterlist *src,
1513 			       size_t len,
1514 			       atmel_sha_fn_t resume)
1515 {
1516 	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517 	struct dma_slave_config *config = &dma->dma_conf;
1518 	struct dma_chan *chan = dma->chan;
1519 	struct dma_async_tx_descriptor *desc;
1520 	dma_cookie_t cookie;
1521 	unsigned int sg_len;
1522 	int err;
1523 
1524 	dd->resume = resume;
1525 
1526 	/*
1527 	 * dma->nents has already been initialized by
1528 	 * atmel_sha_dma_check_aligned().
1529 	 */
1530 	dma->sg = src;
1531 	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532 	if (!sg_len) {
1533 		err = -ENOMEM;
1534 		goto exit;
1535 	}
1536 
1537 	config->src_maxburst = 16;
1538 	config->dst_maxburst = 16;
1539 	err = dmaengine_slave_config(chan, config);
1540 	if (err)
1541 		goto unmap_sg;
1542 
1543 	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545 	if (!desc) {
1546 		err = -ENOMEM;
1547 		goto unmap_sg;
1548 	}
1549 
1550 	desc->callback = atmel_sha_dma_callback2;
1551 	desc->callback_param = dd;
1552 	cookie = dmaengine_submit(desc);
1553 	err = dma_submit_error(cookie);
1554 	if (err)
1555 		goto unmap_sg;
1556 
1557 	dma_async_issue_pending(chan);
1558 
1559 	return -EINPROGRESS;
1560 
1561 unmap_sg:
1562 	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563 exit:
1564 	return atmel_sha_complete(dd, err);
1565 }
1566 
1567 
1568 /* CPU transfer functions */
1569 
1570 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571 {
1572 	struct ahash_request *req = dd->req;
1573 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574 	const u32 *words = (const u32 *)ctx->buffer;
1575 	size_t i, num_words;
1576 	u32 isr, din, din_inc;
1577 
1578 	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579 	for (;;) {
1580 		/* Write data into the Input Data Registers. */
1581 		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582 		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583 			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584 
1585 		ctx->offset += ctx->bufcnt;
1586 		ctx->total -= ctx->bufcnt;
1587 
1588 		if (!ctx->total)
1589 			break;
1590 
1591 		/*
1592 		 * Prepare next block:
1593 		 * Fill ctx->buffer now with the next data to be written into
1594 		 * IDATARx: it gives time for the SHA hardware to process
1595 		 * the current data so the SHA_INT_DATARDY flag might be set
1596 		 * in SHA_ISR when polling this register at the beginning of
1597 		 * the next loop.
1598 		 */
1599 		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600 		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601 					 ctx->offset, ctx->bufcnt, 0);
1602 
1603 		/* Wait for hardware to be ready again. */
1604 		isr = atmel_sha_read(dd, SHA_ISR);
1605 		if (!(isr & SHA_INT_DATARDY)) {
1606 			/* Not ready yet. */
1607 			dd->resume = atmel_sha_cpu_transfer;
1608 			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609 			return -EINPROGRESS;
1610 		}
1611 	}
1612 
1613 	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614 		return dd->cpu_transfer_complete(dd);
1615 
1616 	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617 }
1618 
1619 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620 			       struct scatterlist *sg,
1621 			       unsigned int len,
1622 			       bool idatar0_only,
1623 			       bool wait_data_ready,
1624 			       atmel_sha_fn_t resume)
1625 {
1626 	struct ahash_request *req = dd->req;
1627 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628 
1629 	if (!len)
1630 		return resume(dd);
1631 
1632 	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633 
1634 	if (idatar0_only)
1635 		ctx->flags |= SHA_FLAGS_IDATAR0;
1636 
1637 	if (wait_data_ready)
1638 		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639 
1640 	ctx->sg = sg;
1641 	ctx->total = len;
1642 	ctx->offset = 0;
1643 
1644 	/* Prepare the first block to be written. */
1645 	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646 	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647 				 ctx->offset, ctx->bufcnt, 0);
1648 
1649 	dd->cpu_transfer_complete = resume;
1650 	return atmel_sha_cpu_transfer(dd);
1651 }
1652 
1653 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654 			      const void *data, unsigned int datalen,
1655 			      bool auto_padding,
1656 			      atmel_sha_fn_t resume)
1657 {
1658 	struct ahash_request *req = dd->req;
1659 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660 	u32 msglen = (auto_padding) ? datalen : 0;
1661 	u32 mr = SHA_MR_MODE_AUTO;
1662 
1663 	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664 		return atmel_sha_complete(dd, -EINVAL);
1665 
1666 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667 	atmel_sha_write(dd, SHA_MR, mr);
1668 	atmel_sha_write(dd, SHA_MSR, msglen);
1669 	atmel_sha_write(dd, SHA_BCR, msglen);
1670 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671 
1672 	sg_init_one(&dd->tmp, data, datalen);
1673 	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674 }
1675 
1676 
1677 /* hmac functions */
1678 
1679 struct atmel_sha_hmac_key {
1680 	bool			valid;
1681 	unsigned int		keylen;
1682 	u8			buffer[SHA512_BLOCK_SIZE];
1683 	u8			*keydup;
1684 };
1685 
1686 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687 {
1688 	memset(hkey, 0, sizeof(*hkey));
1689 }
1690 
1691 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692 {
1693 	kfree(hkey->keydup);
1694 	memset(hkey, 0, sizeof(*hkey));
1695 }
1696 
1697 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698 					 const u8 *key,
1699 					 unsigned int keylen)
1700 {
1701 	atmel_sha_hmac_key_release(hkey);
1702 
1703 	if (keylen > sizeof(hkey->buffer)) {
1704 		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705 		if (!hkey->keydup)
1706 			return -ENOMEM;
1707 
1708 	} else {
1709 		memcpy(hkey->buffer, key, keylen);
1710 	}
1711 
1712 	hkey->valid = true;
1713 	hkey->keylen = keylen;
1714 	return 0;
1715 }
1716 
1717 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718 					  const u8 **key,
1719 					  unsigned int *keylen)
1720 {
1721 	if (!hkey->valid)
1722 		return false;
1723 
1724 	*keylen = hkey->keylen;
1725 	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726 	return true;
1727 }
1728 
1729 
1730 struct atmel_sha_hmac_ctx {
1731 	struct atmel_sha_ctx	base;
1732 
1733 	struct atmel_sha_hmac_key	hkey;
1734 	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735 	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736 	atmel_sha_fn_t		resume;
1737 };
1738 
1739 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740 				atmel_sha_fn_t resume);
1741 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742 				      const u8 *key, unsigned int keylen);
1743 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747 
1748 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752 
1753 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754 				atmel_sha_fn_t resume)
1755 {
1756 	struct ahash_request *req = dd->req;
1757 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760 	unsigned int keylen;
1761 	const u8 *key;
1762 	size_t bs;
1763 
1764 	hmac->resume = resume;
1765 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766 	case SHA_FLAGS_SHA1:
1767 		ctx->block_size = SHA1_BLOCK_SIZE;
1768 		ctx->hash_size = SHA1_DIGEST_SIZE;
1769 		break;
1770 
1771 	case SHA_FLAGS_SHA224:
1772 		ctx->block_size = SHA224_BLOCK_SIZE;
1773 		ctx->hash_size = SHA256_DIGEST_SIZE;
1774 		break;
1775 
1776 	case SHA_FLAGS_SHA256:
1777 		ctx->block_size = SHA256_BLOCK_SIZE;
1778 		ctx->hash_size = SHA256_DIGEST_SIZE;
1779 		break;
1780 
1781 	case SHA_FLAGS_SHA384:
1782 		ctx->block_size = SHA384_BLOCK_SIZE;
1783 		ctx->hash_size = SHA512_DIGEST_SIZE;
1784 		break;
1785 
1786 	case SHA_FLAGS_SHA512:
1787 		ctx->block_size = SHA512_BLOCK_SIZE;
1788 		ctx->hash_size = SHA512_DIGEST_SIZE;
1789 		break;
1790 
1791 	default:
1792 		return atmel_sha_complete(dd, -EINVAL);
1793 	}
1794 	bs = ctx->block_size;
1795 
1796 	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797 		return resume(dd);
1798 
1799 	/* Compute K' from K. */
1800 	if (unlikely(keylen > bs))
1801 		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802 
1803 	/* Prepare ipad. */
1804 	memcpy((u8 *)hmac->ipad, key, keylen);
1805 	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806 	return atmel_sha_hmac_compute_ipad_hash(dd);
1807 }
1808 
1809 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810 				      const u8 *key, unsigned int keylen)
1811 {
1812 	return atmel_sha_cpu_hash(dd, key, keylen, true,
1813 				  atmel_sha_hmac_prehash_key_done);
1814 }
1815 
1816 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817 {
1818 	struct ahash_request *req = dd->req;
1819 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822 	size_t ds = crypto_ahash_digestsize(tfm);
1823 	size_t bs = ctx->block_size;
1824 	size_t i, num_words = ds / sizeof(u32);
1825 
1826 	/* Prepare ipad. */
1827 	for (i = 0; i < num_words; ++i)
1828 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829 	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830 	return atmel_sha_hmac_compute_ipad_hash(dd);
1831 }
1832 
1833 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834 {
1835 	struct ahash_request *req = dd->req;
1836 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839 	size_t bs = ctx->block_size;
1840 	size_t i, num_words = bs / sizeof(u32);
1841 
1842 	memcpy(hmac->opad, hmac->ipad, bs);
1843 	for (i = 0; i < num_words; ++i) {
1844 		hmac->ipad[i] ^= 0x36363636;
1845 		hmac->opad[i] ^= 0x5c5c5c5c;
1846 	}
1847 
1848 	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849 				  atmel_sha_hmac_compute_opad_hash);
1850 }
1851 
1852 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853 {
1854 	struct ahash_request *req = dd->req;
1855 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858 	size_t bs = ctx->block_size;
1859 	size_t hs = ctx->hash_size;
1860 	size_t i, num_words = hs / sizeof(u32);
1861 
1862 	for (i = 0; i < num_words; ++i)
1863 		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864 	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865 				  atmel_sha_hmac_setup_done);
1866 }
1867 
1868 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869 {
1870 	struct ahash_request *req = dd->req;
1871 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874 	size_t hs = ctx->hash_size;
1875 	size_t i, num_words = hs / sizeof(u32);
1876 
1877 	for (i = 0; i < num_words; ++i)
1878 		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879 	atmel_sha_hmac_key_release(&hmac->hkey);
1880 	return hmac->resume(dd);
1881 }
1882 
1883 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884 {
1885 	struct ahash_request *req = dd->req;
1886 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887 	int err;
1888 
1889 	err = atmel_sha_hw_init(dd);
1890 	if (err)
1891 		return atmel_sha_complete(dd, err);
1892 
1893 	switch (ctx->op) {
1894 	case SHA_OP_INIT:
1895 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896 		break;
1897 
1898 	case SHA_OP_UPDATE:
1899 		dd->resume = atmel_sha_done;
1900 		err = atmel_sha_update_req(dd);
1901 		break;
1902 
1903 	case SHA_OP_FINAL:
1904 		dd->resume = atmel_sha_hmac_final;
1905 		err = atmel_sha_final_req(dd);
1906 		break;
1907 
1908 	case SHA_OP_DIGEST:
1909 		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910 		break;
1911 
1912 	default:
1913 		return atmel_sha_complete(dd, -EINVAL);
1914 	}
1915 
1916 	return err;
1917 }
1918 
1919 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920 				 unsigned int keylen)
1921 {
1922 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923 
1924 	if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925 		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926 		return -EINVAL;
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 static int atmel_sha_hmac_init(struct ahash_request *req)
1933 {
1934 	int err;
1935 
1936 	err = atmel_sha_init(req);
1937 	if (err)
1938 		return err;
1939 
1940 	return atmel_sha_enqueue(req, SHA_OP_INIT);
1941 }
1942 
1943 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944 {
1945 	struct ahash_request *req = dd->req;
1946 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949 	size_t bs = ctx->block_size;
1950 	size_t hs = ctx->hash_size;
1951 
1952 	ctx->bufcnt = 0;
1953 	ctx->digcnt[0] = bs;
1954 	ctx->digcnt[1] = 0;
1955 	ctx->flags |= SHA_FLAGS_RESTORE;
1956 	memcpy(ctx->digest, hmac->ipad, hs);
1957 	return atmel_sha_complete(dd, 0);
1958 }
1959 
1960 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961 {
1962 	struct ahash_request *req = dd->req;
1963 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966 	u32 *digest = (u32 *)ctx->digest;
1967 	size_t ds = crypto_ahash_digestsize(tfm);
1968 	size_t bs = ctx->block_size;
1969 	size_t hs = ctx->hash_size;
1970 	size_t i, num_words;
1971 	u32 mr;
1972 
1973 	/* Save d = SHA((K' + ipad) | msg). */
1974 	num_words = ds / sizeof(u32);
1975 	for (i = 0; i < num_words; ++i)
1976 		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977 
1978 	/* Restore context to finish computing SHA((K' + opad) | d). */
1979 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980 	num_words = hs / sizeof(u32);
1981 	for (i = 0; i < num_words; ++i)
1982 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983 
1984 	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985 	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986 	atmel_sha_write(dd, SHA_MR, mr);
1987 	atmel_sha_write(dd, SHA_MSR, bs + ds);
1988 	atmel_sha_write(dd, SHA_BCR, ds);
1989 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990 
1991 	sg_init_one(&dd->tmp, digest, ds);
1992 	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993 				   atmel_sha_hmac_final_done);
1994 }
1995 
1996 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997 {
1998 	/*
1999 	 * req->result might not be sizeof(u32) aligned, so copy the
2000 	 * digest into ctx->digest[] before memcpy() the data into
2001 	 * req->result.
2002 	 */
2003 	atmel_sha_copy_hash(dd->req);
2004 	atmel_sha_copy_ready_hash(dd->req);
2005 	return atmel_sha_complete(dd, 0);
2006 }
2007 
2008 static int atmel_sha_hmac_digest(struct ahash_request *req)
2009 {
2010 	int err;
2011 
2012 	err = atmel_sha_init(req);
2013 	if (err)
2014 		return err;
2015 
2016 	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017 }
2018 
2019 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020 {
2021 	struct ahash_request *req = dd->req;
2022 	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2025 	size_t hs = ctx->hash_size;
2026 	size_t i, num_words = hs / sizeof(u32);
2027 	bool use_dma = false;
2028 	u32 mr;
2029 
2030 	/* Special case for empty message. */
2031 	if (!req->nbytes)
2032 		return atmel_sha_complete(dd, -EINVAL); // TODO:
2033 
2034 	/* Check DMA threshold and alignment. */
2035 	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036 	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037 		use_dma = true;
2038 
2039 	/* Write both initial hash values to compute a HMAC. */
2040 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041 	for (i = 0; i < num_words; ++i)
2042 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043 
2044 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045 	for (i = 0; i < num_words; ++i)
2046 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047 
2048 	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049 	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051 	if (use_dma)
2052 		mr |= SHA_MR_MODE_IDATAR0;
2053 	else
2054 		mr |= SHA_MR_MODE_AUTO;
2055 	atmel_sha_write(dd, SHA_MR, mr);
2056 
2057 	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058 	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059 
2060 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061 
2062 	/* Process data. */
2063 	if (use_dma)
2064 		return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065 					   atmel_sha_hmac_final_done);
2066 
2067 	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068 				   atmel_sha_hmac_final_done);
2069 }
2070 
2071 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072 {
2073 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074 
2075 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076 				 sizeof(struct atmel_sha_reqctx));
2077 	hmac->base.start = atmel_sha_hmac_start;
2078 	atmel_sha_hmac_key_init(&hmac->hkey);
2079 
2080 	return 0;
2081 }
2082 
2083 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084 {
2085 	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086 
2087 	atmel_sha_hmac_key_release(&hmac->hkey);
2088 }
2089 
2090 static struct ahash_alg sha_hmac_algs[] = {
2091 {
2092 	.init		= atmel_sha_hmac_init,
2093 	.update		= atmel_sha_update,
2094 	.final		= atmel_sha_final,
2095 	.digest		= atmel_sha_hmac_digest,
2096 	.setkey		= atmel_sha_hmac_setkey,
2097 	.export		= atmel_sha_export,
2098 	.import		= atmel_sha_import,
2099 	.halg = {
2100 		.digestsize	= SHA1_DIGEST_SIZE,
2101 		.statesize	= sizeof(struct atmel_sha_reqctx),
2102 		.base	= {
2103 			.cra_name		= "hmac(sha1)",
2104 			.cra_driver_name	= "atmel-hmac-sha1",
2105 			.cra_priority		= 100,
2106 			.cra_flags		= CRYPTO_ALG_ASYNC,
2107 			.cra_blocksize		= SHA1_BLOCK_SIZE,
2108 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2109 			.cra_alignmask		= 0,
2110 			.cra_module		= THIS_MODULE,
2111 			.cra_init		= atmel_sha_hmac_cra_init,
2112 			.cra_exit		= atmel_sha_hmac_cra_exit,
2113 		}
2114 	}
2115 },
2116 {
2117 	.init		= atmel_sha_hmac_init,
2118 	.update		= atmel_sha_update,
2119 	.final		= atmel_sha_final,
2120 	.digest		= atmel_sha_hmac_digest,
2121 	.setkey		= atmel_sha_hmac_setkey,
2122 	.export		= atmel_sha_export,
2123 	.import		= atmel_sha_import,
2124 	.halg = {
2125 		.digestsize	= SHA224_DIGEST_SIZE,
2126 		.statesize	= sizeof(struct atmel_sha_reqctx),
2127 		.base	= {
2128 			.cra_name		= "hmac(sha224)",
2129 			.cra_driver_name	= "atmel-hmac-sha224",
2130 			.cra_priority		= 100,
2131 			.cra_flags		= CRYPTO_ALG_ASYNC,
2132 			.cra_blocksize		= SHA224_BLOCK_SIZE,
2133 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2134 			.cra_alignmask		= 0,
2135 			.cra_module		= THIS_MODULE,
2136 			.cra_init		= atmel_sha_hmac_cra_init,
2137 			.cra_exit		= atmel_sha_hmac_cra_exit,
2138 		}
2139 	}
2140 },
2141 {
2142 	.init		= atmel_sha_hmac_init,
2143 	.update		= atmel_sha_update,
2144 	.final		= atmel_sha_final,
2145 	.digest		= atmel_sha_hmac_digest,
2146 	.setkey		= atmel_sha_hmac_setkey,
2147 	.export		= atmel_sha_export,
2148 	.import		= atmel_sha_import,
2149 	.halg = {
2150 		.digestsize	= SHA256_DIGEST_SIZE,
2151 		.statesize	= sizeof(struct atmel_sha_reqctx),
2152 		.base	= {
2153 			.cra_name		= "hmac(sha256)",
2154 			.cra_driver_name	= "atmel-hmac-sha256",
2155 			.cra_priority		= 100,
2156 			.cra_flags		= CRYPTO_ALG_ASYNC,
2157 			.cra_blocksize		= SHA256_BLOCK_SIZE,
2158 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2159 			.cra_alignmask		= 0,
2160 			.cra_module		= THIS_MODULE,
2161 			.cra_init		= atmel_sha_hmac_cra_init,
2162 			.cra_exit		= atmel_sha_hmac_cra_exit,
2163 		}
2164 	}
2165 },
2166 {
2167 	.init		= atmel_sha_hmac_init,
2168 	.update		= atmel_sha_update,
2169 	.final		= atmel_sha_final,
2170 	.digest		= atmel_sha_hmac_digest,
2171 	.setkey		= atmel_sha_hmac_setkey,
2172 	.export		= atmel_sha_export,
2173 	.import		= atmel_sha_import,
2174 	.halg = {
2175 		.digestsize	= SHA384_DIGEST_SIZE,
2176 		.statesize	= sizeof(struct atmel_sha_reqctx),
2177 		.base	= {
2178 			.cra_name		= "hmac(sha384)",
2179 			.cra_driver_name	= "atmel-hmac-sha384",
2180 			.cra_priority		= 100,
2181 			.cra_flags		= CRYPTO_ALG_ASYNC,
2182 			.cra_blocksize		= SHA384_BLOCK_SIZE,
2183 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2184 			.cra_alignmask		= 0,
2185 			.cra_module		= THIS_MODULE,
2186 			.cra_init		= atmel_sha_hmac_cra_init,
2187 			.cra_exit		= atmel_sha_hmac_cra_exit,
2188 		}
2189 	}
2190 },
2191 {
2192 	.init		= atmel_sha_hmac_init,
2193 	.update		= atmel_sha_update,
2194 	.final		= atmel_sha_final,
2195 	.digest		= atmel_sha_hmac_digest,
2196 	.setkey		= atmel_sha_hmac_setkey,
2197 	.export		= atmel_sha_export,
2198 	.import		= atmel_sha_import,
2199 	.halg = {
2200 		.digestsize	= SHA512_DIGEST_SIZE,
2201 		.statesize	= sizeof(struct atmel_sha_reqctx),
2202 		.base	= {
2203 			.cra_name		= "hmac(sha512)",
2204 			.cra_driver_name	= "atmel-hmac-sha512",
2205 			.cra_priority		= 100,
2206 			.cra_flags		= CRYPTO_ALG_ASYNC,
2207 			.cra_blocksize		= SHA512_BLOCK_SIZE,
2208 			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2209 			.cra_alignmask		= 0,
2210 			.cra_module		= THIS_MODULE,
2211 			.cra_init		= atmel_sha_hmac_cra_init,
2212 			.cra_exit		= atmel_sha_hmac_cra_exit,
2213 		}
2214 	}
2215 },
2216 };
2217 
2218 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219 /* authenc functions */
2220 
2221 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224 
2225 
2226 struct atmel_sha_authenc_ctx {
2227 	struct crypto_ahash	*tfm;
2228 };
2229 
2230 struct atmel_sha_authenc_reqctx {
2231 	struct atmel_sha_reqctx	base;
2232 
2233 	atmel_aes_authenc_fn_t	cb;
2234 	struct atmel_aes_dev	*aes_dev;
2235 
2236 	/* _init() parameters. */
2237 	struct scatterlist	*assoc;
2238 	u32			assoclen;
2239 	u32			textlen;
2240 
2241 	/* _final() parameters. */
2242 	u32			*digest;
2243 	unsigned int		digestlen;
2244 };
2245 
2246 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247 				       int err)
2248 {
2249 	struct ahash_request *req = areq->data;
2250 	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2251 
2252 	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253 }
2254 
2255 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256 {
2257 	struct ahash_request *req = dd->req;
2258 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259 	int err;
2260 
2261 	/*
2262 	 * Force atmel_sha_complete() to call req->base.complete(), ie
2263 	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264 	 */
2265 	dd->force_complete = true;
2266 
2267 	err = atmel_sha_hw_init(dd);
2268 	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269 }
2270 
2271 bool atmel_sha_authenc_is_ready(void)
2272 {
2273 	struct atmel_sha_ctx dummy;
2274 
2275 	dummy.dd = NULL;
2276 	return (atmel_sha_find_dev(&dummy) != NULL);
2277 }
2278 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279 
2280 unsigned int atmel_sha_authenc_get_reqsize(void)
2281 {
2282 	return sizeof(struct atmel_sha_authenc_reqctx);
2283 }
2284 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285 
2286 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287 {
2288 	struct atmel_sha_authenc_ctx *auth;
2289 	struct crypto_ahash *tfm;
2290 	struct atmel_sha_ctx *tctx;
2291 	const char *name;
2292 	int err = -EINVAL;
2293 
2294 	switch (mode & SHA_FLAGS_MODE_MASK) {
2295 	case SHA_FLAGS_HMAC_SHA1:
2296 		name = "atmel-hmac-sha1";
2297 		break;
2298 
2299 	case SHA_FLAGS_HMAC_SHA224:
2300 		name = "atmel-hmac-sha224";
2301 		break;
2302 
2303 	case SHA_FLAGS_HMAC_SHA256:
2304 		name = "atmel-hmac-sha256";
2305 		break;
2306 
2307 	case SHA_FLAGS_HMAC_SHA384:
2308 		name = "atmel-hmac-sha384";
2309 		break;
2310 
2311 	case SHA_FLAGS_HMAC_SHA512:
2312 		name = "atmel-hmac-sha512";
2313 		break;
2314 
2315 	default:
2316 		goto error;
2317 	}
2318 
2319 	tfm = crypto_alloc_ahash(name,
2320 				 CRYPTO_ALG_TYPE_AHASH,
2321 				 CRYPTO_ALG_TYPE_AHASH_MASK);
2322 	if (IS_ERR(tfm)) {
2323 		err = PTR_ERR(tfm);
2324 		goto error;
2325 	}
2326 	tctx = crypto_ahash_ctx(tfm);
2327 	tctx->start = atmel_sha_authenc_start;
2328 	tctx->flags = mode;
2329 
2330 	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331 	if (!auth) {
2332 		err = -ENOMEM;
2333 		goto err_free_ahash;
2334 	}
2335 	auth->tfm = tfm;
2336 
2337 	return auth;
2338 
2339 err_free_ahash:
2340 	crypto_free_ahash(tfm);
2341 error:
2342 	return ERR_PTR(err);
2343 }
2344 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345 
2346 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347 {
2348 	if (auth)
2349 		crypto_free_ahash(auth->tfm);
2350 	kfree(auth);
2351 }
2352 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353 
2354 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355 			     const u8 *key, unsigned int keylen,
2356 			     u32 *flags)
2357 {
2358 	struct crypto_ahash *tfm = auth->tfm;
2359 	int err;
2360 
2361 	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362 	crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363 	err = crypto_ahash_setkey(tfm, key, keylen);
2364 	*flags = crypto_ahash_get_flags(tfm);
2365 
2366 	return err;
2367 }
2368 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369 
2370 int atmel_sha_authenc_schedule(struct ahash_request *req,
2371 			       struct atmel_sha_authenc_ctx *auth,
2372 			       atmel_aes_authenc_fn_t cb,
2373 			       struct atmel_aes_dev *aes_dev)
2374 {
2375 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376 	struct atmel_sha_reqctx *ctx = &authctx->base;
2377 	struct crypto_ahash *tfm = auth->tfm;
2378 	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379 	struct atmel_sha_dev *dd;
2380 
2381 	/* Reset request context (MUST be done first). */
2382 	memset(authctx, 0, sizeof(*authctx));
2383 
2384 	/* Get SHA device. */
2385 	dd = atmel_sha_find_dev(tctx);
2386 	if (!dd)
2387 		return cb(aes_dev, -ENODEV, false);
2388 
2389 	/* Init request context. */
2390 	ctx->dd = dd;
2391 	ctx->buflen = SHA_BUFFER_LEN;
2392 	authctx->cb = cb;
2393 	authctx->aes_dev = aes_dev;
2394 	ahash_request_set_tfm(req, tfm);
2395 	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396 
2397 	return atmel_sha_handle_queue(dd, req);
2398 }
2399 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400 
2401 int atmel_sha_authenc_init(struct ahash_request *req,
2402 			   struct scatterlist *assoc, unsigned int assoclen,
2403 			   unsigned int textlen,
2404 			   atmel_aes_authenc_fn_t cb,
2405 			   struct atmel_aes_dev *aes_dev)
2406 {
2407 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408 	struct atmel_sha_reqctx *ctx = &authctx->base;
2409 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411 	struct atmel_sha_dev *dd = ctx->dd;
2412 
2413 	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414 		return atmel_sha_complete(dd, -EINVAL);
2415 
2416 	authctx->cb = cb;
2417 	authctx->aes_dev = aes_dev;
2418 	authctx->assoc = assoc;
2419 	authctx->assoclen = assoclen;
2420 	authctx->textlen = textlen;
2421 
2422 	ctx->flags = hmac->base.flags;
2423 	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424 }
2425 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426 
2427 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428 {
2429 	struct ahash_request *req = dd->req;
2430 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431 	struct atmel_sha_reqctx *ctx = &authctx->base;
2432 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433 	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434 	size_t hs = ctx->hash_size;
2435 	size_t i, num_words = hs / sizeof(u32);
2436 	u32 mr, msg_size;
2437 
2438 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439 	for (i = 0; i < num_words; ++i)
2440 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441 
2442 	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443 	for (i = 0; i < num_words; ++i)
2444 		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445 
2446 	mr = (SHA_MR_MODE_IDATAR0 |
2447 	      SHA_MR_HMAC |
2448 	      SHA_MR_DUALBUFF);
2449 	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450 	atmel_sha_write(dd, SHA_MR, mr);
2451 
2452 	msg_size = authctx->assoclen + authctx->textlen;
2453 	atmel_sha_write(dd, SHA_MSR, msg_size);
2454 	atmel_sha_write(dd, SHA_BCR, msg_size);
2455 
2456 	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457 
2458 	/* Process assoc data. */
2459 	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460 				   true, false,
2461 				   atmel_sha_authenc_init_done);
2462 }
2463 
2464 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465 {
2466 	struct ahash_request *req = dd->req;
2467 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468 
2469 	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470 }
2471 
2472 int atmel_sha_authenc_final(struct ahash_request *req,
2473 			    u32 *digest, unsigned int digestlen,
2474 			    atmel_aes_authenc_fn_t cb,
2475 			    struct atmel_aes_dev *aes_dev)
2476 {
2477 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478 	struct atmel_sha_reqctx *ctx = &authctx->base;
2479 	struct atmel_sha_dev *dd = ctx->dd;
2480 
2481 	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482 	case SHA_FLAGS_SHA1:
2483 		authctx->digestlen = SHA1_DIGEST_SIZE;
2484 		break;
2485 
2486 	case SHA_FLAGS_SHA224:
2487 		authctx->digestlen = SHA224_DIGEST_SIZE;
2488 		break;
2489 
2490 	case SHA_FLAGS_SHA256:
2491 		authctx->digestlen = SHA256_DIGEST_SIZE;
2492 		break;
2493 
2494 	case SHA_FLAGS_SHA384:
2495 		authctx->digestlen = SHA384_DIGEST_SIZE;
2496 		break;
2497 
2498 	case SHA_FLAGS_SHA512:
2499 		authctx->digestlen = SHA512_DIGEST_SIZE;
2500 		break;
2501 
2502 	default:
2503 		return atmel_sha_complete(dd, -EINVAL);
2504 	}
2505 	if (authctx->digestlen > digestlen)
2506 		authctx->digestlen = digestlen;
2507 
2508 	authctx->cb = cb;
2509 	authctx->aes_dev = aes_dev;
2510 	authctx->digest = digest;
2511 	return atmel_sha_wait_for_data_ready(dd,
2512 					     atmel_sha_authenc_final_done);
2513 }
2514 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515 
2516 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517 {
2518 	struct ahash_request *req = dd->req;
2519 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520 	size_t i, num_words = authctx->digestlen / sizeof(u32);
2521 
2522 	for (i = 0; i < num_words; ++i)
2523 		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524 
2525 	return atmel_sha_complete(dd, 0);
2526 }
2527 
2528 void atmel_sha_authenc_abort(struct ahash_request *req)
2529 {
2530 	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531 	struct atmel_sha_reqctx *ctx = &authctx->base;
2532 	struct atmel_sha_dev *dd = ctx->dd;
2533 
2534 	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535 	dd->is_async = false;
2536 	dd->force_complete = false;
2537 	(void)atmel_sha_complete(dd, 0);
2538 }
2539 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540 
2541 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542 
2543 
2544 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545 {
2546 	int i;
2547 
2548 	if (dd->caps.has_hmac)
2549 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550 			crypto_unregister_ahash(&sha_hmac_algs[i]);
2551 
2552 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553 		crypto_unregister_ahash(&sha_1_256_algs[i]);
2554 
2555 	if (dd->caps.has_sha224)
2556 		crypto_unregister_ahash(&sha_224_alg);
2557 
2558 	if (dd->caps.has_sha_384_512) {
2559 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560 			crypto_unregister_ahash(&sha_384_512_algs[i]);
2561 	}
2562 }
2563 
2564 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565 {
2566 	int err, i, j;
2567 
2568 	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2569 		err = crypto_register_ahash(&sha_1_256_algs[i]);
2570 		if (err)
2571 			goto err_sha_1_256_algs;
2572 	}
2573 
2574 	if (dd->caps.has_sha224) {
2575 		err = crypto_register_ahash(&sha_224_alg);
2576 		if (err)
2577 			goto err_sha_224_algs;
2578 	}
2579 
2580 	if (dd->caps.has_sha_384_512) {
2581 		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2582 			err = crypto_register_ahash(&sha_384_512_algs[i]);
2583 			if (err)
2584 				goto err_sha_384_512_algs;
2585 		}
2586 	}
2587 
2588 	if (dd->caps.has_hmac) {
2589 		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2590 			err = crypto_register_ahash(&sha_hmac_algs[i]);
2591 			if (err)
2592 				goto err_sha_hmac_algs;
2593 		}
2594 	}
2595 
2596 	return 0;
2597 
2598 	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2599 err_sha_hmac_algs:
2600 	for (j = 0; j < i; j++)
2601 		crypto_unregister_ahash(&sha_hmac_algs[j]);
2602 	i = ARRAY_SIZE(sha_384_512_algs);
2603 err_sha_384_512_algs:
2604 	for (j = 0; j < i; j++)
2605 		crypto_unregister_ahash(&sha_384_512_algs[j]);
2606 	crypto_unregister_ahash(&sha_224_alg);
2607 err_sha_224_algs:
2608 	i = ARRAY_SIZE(sha_1_256_algs);
2609 err_sha_1_256_algs:
2610 	for (j = 0; j < i; j++)
2611 		crypto_unregister_ahash(&sha_1_256_algs[j]);
2612 
2613 	return err;
2614 }
2615 
2616 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617 {
2618 	struct at_dma_slave	*sl = slave;
2619 
2620 	if (sl && sl->dma_dev == chan->device->dev) {
2621 		chan->private = sl;
2622 		return true;
2623 	} else {
2624 		return false;
2625 	}
2626 }
2627 
2628 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629 				struct crypto_platform_data *pdata)
2630 {
2631 	dma_cap_mask_t mask_in;
2632 
2633 	/* Try to grab DMA channel */
2634 	dma_cap_zero(mask_in);
2635 	dma_cap_set(DMA_SLAVE, mask_in);
2636 
2637 	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2638 			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2639 	if (!dd->dma_lch_in.chan) {
2640 		dev_warn(dd->dev, "no DMA channel available\n");
2641 		return -ENODEV;
2642 	}
2643 
2644 	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2645 	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2646 		SHA_REG_DIN(0);
2647 	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2648 	dd->dma_lch_in.dma_conf.src_addr_width =
2649 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2650 	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2651 	dd->dma_lch_in.dma_conf.dst_addr_width =
2652 		DMA_SLAVE_BUSWIDTH_4_BYTES;
2653 	dd->dma_lch_in.dma_conf.device_fc = false;
2654 
2655 	return 0;
2656 }
2657 
2658 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2659 {
2660 	dma_release_channel(dd->dma_lch_in.chan);
2661 }
2662 
2663 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2664 {
2665 
2666 	dd->caps.has_dma = 0;
2667 	dd->caps.has_dualbuff = 0;
2668 	dd->caps.has_sha224 = 0;
2669 	dd->caps.has_sha_384_512 = 0;
2670 	dd->caps.has_uihv = 0;
2671 	dd->caps.has_hmac = 0;
2672 
2673 	/* keep only major version number */
2674 	switch (dd->hw_version & 0xff0) {
2675 	case 0x510:
2676 		dd->caps.has_dma = 1;
2677 		dd->caps.has_dualbuff = 1;
2678 		dd->caps.has_sha224 = 1;
2679 		dd->caps.has_sha_384_512 = 1;
2680 		dd->caps.has_uihv = 1;
2681 		dd->caps.has_hmac = 1;
2682 		break;
2683 	case 0x420:
2684 		dd->caps.has_dma = 1;
2685 		dd->caps.has_dualbuff = 1;
2686 		dd->caps.has_sha224 = 1;
2687 		dd->caps.has_sha_384_512 = 1;
2688 		dd->caps.has_uihv = 1;
2689 		break;
2690 	case 0x410:
2691 		dd->caps.has_dma = 1;
2692 		dd->caps.has_dualbuff = 1;
2693 		dd->caps.has_sha224 = 1;
2694 		dd->caps.has_sha_384_512 = 1;
2695 		break;
2696 	case 0x400:
2697 		dd->caps.has_dma = 1;
2698 		dd->caps.has_dualbuff = 1;
2699 		dd->caps.has_sha224 = 1;
2700 		break;
2701 	case 0x320:
2702 		break;
2703 	default:
2704 		dev_warn(dd->dev,
2705 				"Unmanaged sha version, set minimum capabilities\n");
2706 		break;
2707 	}
2708 }
2709 
2710 #if defined(CONFIG_OF)
2711 static const struct of_device_id atmel_sha_dt_ids[] = {
2712 	{ .compatible = "atmel,at91sam9g46-sha" },
2713 	{ /* sentinel */ }
2714 };
2715 
2716 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2717 
2718 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2719 {
2720 	struct device_node *np = pdev->dev.of_node;
2721 	struct crypto_platform_data *pdata;
2722 
2723 	if (!np) {
2724 		dev_err(&pdev->dev, "device node not found\n");
2725 		return ERR_PTR(-EINVAL);
2726 	}
2727 
2728 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2729 	if (!pdata) {
2730 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2731 		return ERR_PTR(-ENOMEM);
2732 	}
2733 
2734 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2735 					sizeof(*(pdata->dma_slave)),
2736 					GFP_KERNEL);
2737 	if (!pdata->dma_slave) {
2738 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2739 		return ERR_PTR(-ENOMEM);
2740 	}
2741 
2742 	return pdata;
2743 }
2744 #else /* CONFIG_OF */
2745 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2746 {
2747 	return ERR_PTR(-EINVAL);
2748 }
2749 #endif
2750 
2751 static int atmel_sha_probe(struct platform_device *pdev)
2752 {
2753 	struct atmel_sha_dev *sha_dd;
2754 	struct crypto_platform_data	*pdata;
2755 	struct device *dev = &pdev->dev;
2756 	struct resource *sha_res;
2757 	int err;
2758 
2759 	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2760 	if (sha_dd == NULL) {
2761 		dev_err(dev, "unable to alloc data struct.\n");
2762 		err = -ENOMEM;
2763 		goto sha_dd_err;
2764 	}
2765 
2766 	sha_dd->dev = dev;
2767 
2768 	platform_set_drvdata(pdev, sha_dd);
2769 
2770 	INIT_LIST_HEAD(&sha_dd->list);
2771 	spin_lock_init(&sha_dd->lock);
2772 
2773 	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2774 					(unsigned long)sha_dd);
2775 	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2776 					(unsigned long)sha_dd);
2777 
2778 	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2779 
2780 	/* Get the base address */
2781 	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2782 	if (!sha_res) {
2783 		dev_err(dev, "no MEM resource info\n");
2784 		err = -ENODEV;
2785 		goto res_err;
2786 	}
2787 	sha_dd->phys_base = sha_res->start;
2788 
2789 	/* Get the IRQ */
2790 	sha_dd->irq = platform_get_irq(pdev,  0);
2791 	if (sha_dd->irq < 0) {
2792 		dev_err(dev, "no IRQ resource info\n");
2793 		err = sha_dd->irq;
2794 		goto res_err;
2795 	}
2796 
2797 	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2798 			       IRQF_SHARED, "atmel-sha", sha_dd);
2799 	if (err) {
2800 		dev_err(dev, "unable to request sha irq.\n");
2801 		goto res_err;
2802 	}
2803 
2804 	/* Initializing the clock */
2805 	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2806 	if (IS_ERR(sha_dd->iclk)) {
2807 		dev_err(dev, "clock initialization failed.\n");
2808 		err = PTR_ERR(sha_dd->iclk);
2809 		goto res_err;
2810 	}
2811 
2812 	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2813 	if (IS_ERR(sha_dd->io_base)) {
2814 		dev_err(dev, "can't ioremap\n");
2815 		err = PTR_ERR(sha_dd->io_base);
2816 		goto res_err;
2817 	}
2818 
2819 	err = clk_prepare(sha_dd->iclk);
2820 	if (err)
2821 		goto res_err;
2822 
2823 	atmel_sha_hw_version_init(sha_dd);
2824 
2825 	atmel_sha_get_cap(sha_dd);
2826 
2827 	if (sha_dd->caps.has_dma) {
2828 		pdata = pdev->dev.platform_data;
2829 		if (!pdata) {
2830 			pdata = atmel_sha_of_init(pdev);
2831 			if (IS_ERR(pdata)) {
2832 				dev_err(&pdev->dev, "platform data not available\n");
2833 				err = PTR_ERR(pdata);
2834 				goto iclk_unprepare;
2835 			}
2836 		}
2837 		if (!pdata->dma_slave) {
2838 			err = -ENXIO;
2839 			goto iclk_unprepare;
2840 		}
2841 		err = atmel_sha_dma_init(sha_dd, pdata);
2842 		if (err)
2843 			goto err_sha_dma;
2844 
2845 		dev_info(dev, "using %s for DMA transfers\n",
2846 				dma_chan_name(sha_dd->dma_lch_in.chan));
2847 	}
2848 
2849 	spin_lock(&atmel_sha.lock);
2850 	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2851 	spin_unlock(&atmel_sha.lock);
2852 
2853 	err = atmel_sha_register_algs(sha_dd);
2854 	if (err)
2855 		goto err_algs;
2856 
2857 	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2858 			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2859 			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2860 
2861 	return 0;
2862 
2863 err_algs:
2864 	spin_lock(&atmel_sha.lock);
2865 	list_del(&sha_dd->list);
2866 	spin_unlock(&atmel_sha.lock);
2867 	if (sha_dd->caps.has_dma)
2868 		atmel_sha_dma_cleanup(sha_dd);
2869 err_sha_dma:
2870 iclk_unprepare:
2871 	clk_unprepare(sha_dd->iclk);
2872 res_err:
2873 	tasklet_kill(&sha_dd->queue_task);
2874 	tasklet_kill(&sha_dd->done_task);
2875 sha_dd_err:
2876 	dev_err(dev, "initialization failed.\n");
2877 
2878 	return err;
2879 }
2880 
2881 static int atmel_sha_remove(struct platform_device *pdev)
2882 {
2883 	struct atmel_sha_dev *sha_dd;
2884 
2885 	sha_dd = platform_get_drvdata(pdev);
2886 	if (!sha_dd)
2887 		return -ENODEV;
2888 	spin_lock(&atmel_sha.lock);
2889 	list_del(&sha_dd->list);
2890 	spin_unlock(&atmel_sha.lock);
2891 
2892 	atmel_sha_unregister_algs(sha_dd);
2893 
2894 	tasklet_kill(&sha_dd->queue_task);
2895 	tasklet_kill(&sha_dd->done_task);
2896 
2897 	if (sha_dd->caps.has_dma)
2898 		atmel_sha_dma_cleanup(sha_dd);
2899 
2900 	clk_unprepare(sha_dd->iclk);
2901 
2902 	return 0;
2903 }
2904 
2905 static struct platform_driver atmel_sha_driver = {
2906 	.probe		= atmel_sha_probe,
2907 	.remove		= atmel_sha_remove,
2908 	.driver		= {
2909 		.name	= "atmel_sha",
2910 		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2911 	},
2912 };
2913 
2914 module_platform_driver(atmel_sha_driver);
2915 
2916 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2917 MODULE_LICENSE("GPL v2");
2918 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2919