1 /* 2 * Cryptographic API. 3 * 4 * Support for ATMEL SHA1/SHA256 HW acceleration. 5 * 6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL 7 * Author: Nicolas Royer <nicolas@eukrea.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as published 11 * by the Free Software Foundation. 12 * 13 * Some ideas are from omap-sham.c drivers. 14 */ 15 16 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/err.h> 21 #include <linux/clk.h> 22 #include <linux/io.h> 23 #include <linux/hw_random.h> 24 #include <linux/platform_device.h> 25 26 #include <linux/device.h> 27 #include <linux/init.h> 28 #include <linux/errno.h> 29 #include <linux/interrupt.h> 30 #include <linux/irq.h> 31 #include <linux/scatterlist.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/of_device.h> 34 #include <linux/delay.h> 35 #include <linux/crypto.h> 36 #include <linux/cryptohash.h> 37 #include <crypto/scatterwalk.h> 38 #include <crypto/algapi.h> 39 #include <crypto/sha.h> 40 #include <crypto/hash.h> 41 #include <crypto/internal/hash.h> 42 #include <linux/platform_data/crypto-atmel.h> 43 #include "atmel-sha-regs.h" 44 45 /* SHA flags */ 46 #define SHA_FLAGS_BUSY BIT(0) 47 #define SHA_FLAGS_FINAL BIT(1) 48 #define SHA_FLAGS_DMA_ACTIVE BIT(2) 49 #define SHA_FLAGS_OUTPUT_READY BIT(3) 50 #define SHA_FLAGS_INIT BIT(4) 51 #define SHA_FLAGS_CPU BIT(5) 52 #define SHA_FLAGS_DMA_READY BIT(6) 53 54 #define SHA_FLAGS_FINUP BIT(16) 55 #define SHA_FLAGS_SG BIT(17) 56 #define SHA_FLAGS_SHA1 BIT(18) 57 #define SHA_FLAGS_SHA224 BIT(19) 58 #define SHA_FLAGS_SHA256 BIT(20) 59 #define SHA_FLAGS_SHA384 BIT(21) 60 #define SHA_FLAGS_SHA512 BIT(22) 61 #define SHA_FLAGS_ERROR BIT(23) 62 #define SHA_FLAGS_PAD BIT(24) 63 64 #define SHA_OP_UPDATE 1 65 #define SHA_OP_FINAL 2 66 67 #define SHA_BUFFER_LEN PAGE_SIZE 68 69 #define ATMEL_SHA_DMA_THRESHOLD 56 70 71 struct atmel_sha_caps { 72 bool has_dma; 73 bool has_dualbuff; 74 bool has_sha224; 75 bool has_sha_384_512; 76 }; 77 78 struct atmel_sha_dev; 79 80 struct atmel_sha_reqctx { 81 struct atmel_sha_dev *dd; 82 unsigned long flags; 83 unsigned long op; 84 85 u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32)); 86 u64 digcnt[2]; 87 size_t bufcnt; 88 size_t buflen; 89 dma_addr_t dma_addr; 90 91 /* walk state */ 92 struct scatterlist *sg; 93 unsigned int offset; /* offset in current sg */ 94 unsigned int total; /* total request */ 95 96 size_t block_size; 97 98 u8 buffer[0] __aligned(sizeof(u32)); 99 }; 100 101 struct atmel_sha_ctx { 102 struct atmel_sha_dev *dd; 103 104 unsigned long flags; 105 }; 106 107 #define ATMEL_SHA_QUEUE_LENGTH 50 108 109 struct atmel_sha_dma { 110 struct dma_chan *chan; 111 struct dma_slave_config dma_conf; 112 }; 113 114 struct atmel_sha_dev { 115 struct list_head list; 116 unsigned long phys_base; 117 struct device *dev; 118 struct clk *iclk; 119 int irq; 120 void __iomem *io_base; 121 122 spinlock_t lock; 123 int err; 124 struct tasklet_struct done_task; 125 126 unsigned long flags; 127 struct crypto_queue queue; 128 struct ahash_request *req; 129 130 struct atmel_sha_dma dma_lch_in; 131 132 struct atmel_sha_caps caps; 133 134 u32 hw_version; 135 }; 136 137 struct atmel_sha_drv { 138 struct list_head dev_list; 139 spinlock_t lock; 140 }; 141 142 static struct atmel_sha_drv atmel_sha = { 143 .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list), 144 .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock), 145 }; 146 147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset) 148 { 149 return readl_relaxed(dd->io_base + offset); 150 } 151 152 static inline void atmel_sha_write(struct atmel_sha_dev *dd, 153 u32 offset, u32 value) 154 { 155 writel_relaxed(value, dd->io_base + offset); 156 } 157 158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx) 159 { 160 size_t count; 161 162 while ((ctx->bufcnt < ctx->buflen) && ctx->total) { 163 count = min(ctx->sg->length - ctx->offset, ctx->total); 164 count = min(count, ctx->buflen - ctx->bufcnt); 165 166 if (count <= 0) { 167 /* 168 * Check if count <= 0 because the buffer is full or 169 * because the sg length is 0. In the latest case, 170 * check if there is another sg in the list, a 0 length 171 * sg doesn't necessarily mean the end of the sg list. 172 */ 173 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) { 174 ctx->sg = sg_next(ctx->sg); 175 continue; 176 } else { 177 break; 178 } 179 } 180 181 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg, 182 ctx->offset, count, 0); 183 184 ctx->bufcnt += count; 185 ctx->offset += count; 186 ctx->total -= count; 187 188 if (ctx->offset == ctx->sg->length) { 189 ctx->sg = sg_next(ctx->sg); 190 if (ctx->sg) 191 ctx->offset = 0; 192 else 193 ctx->total = 0; 194 } 195 } 196 197 return 0; 198 } 199 200 /* 201 * The purpose of this padding is to ensure that the padded message is a 202 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512). 203 * The bit "1" is appended at the end of the message followed by 204 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or 205 * 128 bits block (SHA384/SHA512) equals to the message length in bits 206 * is appended. 207 * 208 * For SHA1/SHA224/SHA256, padlen is calculated as followed: 209 * - if message length < 56 bytes then padlen = 56 - message length 210 * - else padlen = 64 + 56 - message length 211 * 212 * For SHA384/SHA512, padlen is calculated as followed: 213 * - if message length < 112 bytes then padlen = 112 - message length 214 * - else padlen = 128 + 112 - message length 215 */ 216 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length) 217 { 218 unsigned int index, padlen; 219 u64 bits[2]; 220 u64 size[2]; 221 222 size[0] = ctx->digcnt[0]; 223 size[1] = ctx->digcnt[1]; 224 225 size[0] += ctx->bufcnt; 226 if (size[0] < ctx->bufcnt) 227 size[1]++; 228 229 size[0] += length; 230 if (size[0] < length) 231 size[1]++; 232 233 bits[1] = cpu_to_be64(size[0] << 3); 234 bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61); 235 236 if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) { 237 index = ctx->bufcnt & 0x7f; 238 padlen = (index < 112) ? (112 - index) : ((128+112) - index); 239 *(ctx->buffer + ctx->bufcnt) = 0x80; 240 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); 241 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16); 242 ctx->bufcnt += padlen + 16; 243 ctx->flags |= SHA_FLAGS_PAD; 244 } else { 245 index = ctx->bufcnt & 0x3f; 246 padlen = (index < 56) ? (56 - index) : ((64+56) - index); 247 *(ctx->buffer + ctx->bufcnt) = 0x80; 248 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1); 249 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8); 250 ctx->bufcnt += padlen + 8; 251 ctx->flags |= SHA_FLAGS_PAD; 252 } 253 } 254 255 static int atmel_sha_init(struct ahash_request *req) 256 { 257 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 258 struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm); 259 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 260 struct atmel_sha_dev *dd = NULL; 261 struct atmel_sha_dev *tmp; 262 263 spin_lock_bh(&atmel_sha.lock); 264 if (!tctx->dd) { 265 list_for_each_entry(tmp, &atmel_sha.dev_list, list) { 266 dd = tmp; 267 break; 268 } 269 tctx->dd = dd; 270 } else { 271 dd = tctx->dd; 272 } 273 274 spin_unlock_bh(&atmel_sha.lock); 275 276 ctx->dd = dd; 277 278 ctx->flags = 0; 279 280 dev_dbg(dd->dev, "init: digest size: %d\n", 281 crypto_ahash_digestsize(tfm)); 282 283 switch (crypto_ahash_digestsize(tfm)) { 284 case SHA1_DIGEST_SIZE: 285 ctx->flags |= SHA_FLAGS_SHA1; 286 ctx->block_size = SHA1_BLOCK_SIZE; 287 break; 288 case SHA224_DIGEST_SIZE: 289 ctx->flags |= SHA_FLAGS_SHA224; 290 ctx->block_size = SHA224_BLOCK_SIZE; 291 break; 292 case SHA256_DIGEST_SIZE: 293 ctx->flags |= SHA_FLAGS_SHA256; 294 ctx->block_size = SHA256_BLOCK_SIZE; 295 break; 296 case SHA384_DIGEST_SIZE: 297 ctx->flags |= SHA_FLAGS_SHA384; 298 ctx->block_size = SHA384_BLOCK_SIZE; 299 break; 300 case SHA512_DIGEST_SIZE: 301 ctx->flags |= SHA_FLAGS_SHA512; 302 ctx->block_size = SHA512_BLOCK_SIZE; 303 break; 304 default: 305 return -EINVAL; 306 break; 307 } 308 309 ctx->bufcnt = 0; 310 ctx->digcnt[0] = 0; 311 ctx->digcnt[1] = 0; 312 ctx->buflen = SHA_BUFFER_LEN; 313 314 return 0; 315 } 316 317 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma) 318 { 319 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 320 u32 valcr = 0, valmr = SHA_MR_MODE_AUTO; 321 322 if (likely(dma)) { 323 if (!dd->caps.has_dma) 324 atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE); 325 valmr = SHA_MR_MODE_PDC; 326 if (dd->caps.has_dualbuff) 327 valmr |= SHA_MR_DUALBUFF; 328 } else { 329 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); 330 } 331 332 if (ctx->flags & SHA_FLAGS_SHA1) 333 valmr |= SHA_MR_ALGO_SHA1; 334 else if (ctx->flags & SHA_FLAGS_SHA224) 335 valmr |= SHA_MR_ALGO_SHA224; 336 else if (ctx->flags & SHA_FLAGS_SHA256) 337 valmr |= SHA_MR_ALGO_SHA256; 338 else if (ctx->flags & SHA_FLAGS_SHA384) 339 valmr |= SHA_MR_ALGO_SHA384; 340 else if (ctx->flags & SHA_FLAGS_SHA512) 341 valmr |= SHA_MR_ALGO_SHA512; 342 343 /* Setting CR_FIRST only for the first iteration */ 344 if (!(ctx->digcnt[0] || ctx->digcnt[1])) 345 valcr = SHA_CR_FIRST; 346 347 atmel_sha_write(dd, SHA_CR, valcr); 348 atmel_sha_write(dd, SHA_MR, valmr); 349 } 350 351 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf, 352 size_t length, int final) 353 { 354 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 355 int count, len32; 356 const u32 *buffer = (const u32 *)buf; 357 358 dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", 359 ctx->digcnt[1], ctx->digcnt[0], length, final); 360 361 atmel_sha_write_ctrl(dd, 0); 362 363 /* should be non-zero before next lines to disable clocks later */ 364 ctx->digcnt[0] += length; 365 if (ctx->digcnt[0] < length) 366 ctx->digcnt[1]++; 367 368 if (final) 369 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ 370 371 len32 = DIV_ROUND_UP(length, sizeof(u32)); 372 373 dd->flags |= SHA_FLAGS_CPU; 374 375 for (count = 0; count < len32; count++) 376 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]); 377 378 return -EINPROGRESS; 379 } 380 381 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, 382 size_t length1, dma_addr_t dma_addr2, size_t length2, int final) 383 { 384 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 385 int len32; 386 387 dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", 388 ctx->digcnt[1], ctx->digcnt[0], length1, final); 389 390 len32 = DIV_ROUND_UP(length1, sizeof(u32)); 391 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS); 392 atmel_sha_write(dd, SHA_TPR, dma_addr1); 393 atmel_sha_write(dd, SHA_TCR, len32); 394 395 len32 = DIV_ROUND_UP(length2, sizeof(u32)); 396 atmel_sha_write(dd, SHA_TNPR, dma_addr2); 397 atmel_sha_write(dd, SHA_TNCR, len32); 398 399 atmel_sha_write_ctrl(dd, 1); 400 401 /* should be non-zero before next lines to disable clocks later */ 402 ctx->digcnt[0] += length1; 403 if (ctx->digcnt[0] < length1) 404 ctx->digcnt[1]++; 405 406 if (final) 407 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ 408 409 dd->flags |= SHA_FLAGS_DMA_ACTIVE; 410 411 /* Start DMA transfer */ 412 atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN); 413 414 return -EINPROGRESS; 415 } 416 417 static void atmel_sha_dma_callback(void *data) 418 { 419 struct atmel_sha_dev *dd = data; 420 421 /* dma_lch_in - completed - wait DATRDY */ 422 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY); 423 } 424 425 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, 426 size_t length1, dma_addr_t dma_addr2, size_t length2, int final) 427 { 428 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 429 struct dma_async_tx_descriptor *in_desc; 430 struct scatterlist sg[2]; 431 432 dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n", 433 ctx->digcnt[1], ctx->digcnt[0], length1, final); 434 435 dd->dma_lch_in.dma_conf.src_maxburst = 16; 436 dd->dma_lch_in.dma_conf.dst_maxburst = 16; 437 438 dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf); 439 440 if (length2) { 441 sg_init_table(sg, 2); 442 sg_dma_address(&sg[0]) = dma_addr1; 443 sg_dma_len(&sg[0]) = length1; 444 sg_dma_address(&sg[1]) = dma_addr2; 445 sg_dma_len(&sg[1]) = length2; 446 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2, 447 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 448 } else { 449 sg_init_table(sg, 1); 450 sg_dma_address(&sg[0]) = dma_addr1; 451 sg_dma_len(&sg[0]) = length1; 452 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1, 453 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 454 } 455 if (!in_desc) 456 return -EINVAL; 457 458 in_desc->callback = atmel_sha_dma_callback; 459 in_desc->callback_param = dd; 460 461 atmel_sha_write_ctrl(dd, 1); 462 463 /* should be non-zero before next lines to disable clocks later */ 464 ctx->digcnt[0] += length1; 465 if (ctx->digcnt[0] < length1) 466 ctx->digcnt[1]++; 467 468 if (final) 469 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */ 470 471 dd->flags |= SHA_FLAGS_DMA_ACTIVE; 472 473 /* Start DMA transfer */ 474 dmaengine_submit(in_desc); 475 dma_async_issue_pending(dd->dma_lch_in.chan); 476 477 return -EINPROGRESS; 478 } 479 480 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1, 481 size_t length1, dma_addr_t dma_addr2, size_t length2, int final) 482 { 483 if (dd->caps.has_dma) 484 return atmel_sha_xmit_dma(dd, dma_addr1, length1, 485 dma_addr2, length2, final); 486 else 487 return atmel_sha_xmit_pdc(dd, dma_addr1, length1, 488 dma_addr2, length2, final); 489 } 490 491 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd) 492 { 493 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 494 int bufcnt; 495 496 atmel_sha_append_sg(ctx); 497 atmel_sha_fill_padding(ctx, 0); 498 bufcnt = ctx->bufcnt; 499 ctx->bufcnt = 0; 500 501 return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1); 502 } 503 504 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd, 505 struct atmel_sha_reqctx *ctx, 506 size_t length, int final) 507 { 508 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, 509 ctx->buflen + ctx->block_size, DMA_TO_DEVICE); 510 if (dma_mapping_error(dd->dev, ctx->dma_addr)) { 511 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen + 512 ctx->block_size); 513 return -EINVAL; 514 } 515 516 ctx->flags &= ~SHA_FLAGS_SG; 517 518 /* next call does not fail... so no unmap in the case of error */ 519 return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final); 520 } 521 522 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd) 523 { 524 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 525 unsigned int final; 526 size_t count; 527 528 atmel_sha_append_sg(ctx); 529 530 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; 531 532 dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n", 533 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final); 534 535 if (final) 536 atmel_sha_fill_padding(ctx, 0); 537 538 if (final || (ctx->bufcnt == ctx->buflen)) { 539 count = ctx->bufcnt; 540 ctx->bufcnt = 0; 541 return atmel_sha_xmit_dma_map(dd, ctx, count, final); 542 } 543 544 return 0; 545 } 546 547 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd) 548 { 549 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 550 unsigned int length, final, tail; 551 struct scatterlist *sg; 552 unsigned int count; 553 554 if (!ctx->total) 555 return 0; 556 557 if (ctx->bufcnt || ctx->offset) 558 return atmel_sha_update_dma_slow(dd); 559 560 dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n", 561 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total); 562 563 sg = ctx->sg; 564 565 if (!IS_ALIGNED(sg->offset, sizeof(u32))) 566 return atmel_sha_update_dma_slow(dd); 567 568 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size)) 569 /* size is not ctx->block_size aligned */ 570 return atmel_sha_update_dma_slow(dd); 571 572 length = min(ctx->total, sg->length); 573 574 if (sg_is_last(sg)) { 575 if (!(ctx->flags & SHA_FLAGS_FINUP)) { 576 /* not last sg must be ctx->block_size aligned */ 577 tail = length & (ctx->block_size - 1); 578 length -= tail; 579 } 580 } 581 582 ctx->total -= length; 583 ctx->offset = length; /* offset where to start slow */ 584 585 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total; 586 587 /* Add padding */ 588 if (final) { 589 tail = length & (ctx->block_size - 1); 590 length -= tail; 591 ctx->total += tail; 592 ctx->offset = length; /* offset where to start slow */ 593 594 sg = ctx->sg; 595 atmel_sha_append_sg(ctx); 596 597 atmel_sha_fill_padding(ctx, length); 598 599 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer, 600 ctx->buflen + ctx->block_size, DMA_TO_DEVICE); 601 if (dma_mapping_error(dd->dev, ctx->dma_addr)) { 602 dev_err(dd->dev, "dma %u bytes error\n", 603 ctx->buflen + ctx->block_size); 604 return -EINVAL; 605 } 606 607 if (length == 0) { 608 ctx->flags &= ~SHA_FLAGS_SG; 609 count = ctx->bufcnt; 610 ctx->bufcnt = 0; 611 return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0, 612 0, final); 613 } else { 614 ctx->sg = sg; 615 if (!dma_map_sg(dd->dev, ctx->sg, 1, 616 DMA_TO_DEVICE)) { 617 dev_err(dd->dev, "dma_map_sg error\n"); 618 return -EINVAL; 619 } 620 621 ctx->flags |= SHA_FLAGS_SG; 622 623 count = ctx->bufcnt; 624 ctx->bufcnt = 0; 625 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), 626 length, ctx->dma_addr, count, final); 627 } 628 } 629 630 if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) { 631 dev_err(dd->dev, "dma_map_sg error\n"); 632 return -EINVAL; 633 } 634 635 ctx->flags |= SHA_FLAGS_SG; 636 637 /* next call does not fail... so no unmap in the case of error */ 638 return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0, 639 0, final); 640 } 641 642 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd) 643 { 644 struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req); 645 646 if (ctx->flags & SHA_FLAGS_SG) { 647 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE); 648 if (ctx->sg->length == ctx->offset) { 649 ctx->sg = sg_next(ctx->sg); 650 if (ctx->sg) 651 ctx->offset = 0; 652 } 653 if (ctx->flags & SHA_FLAGS_PAD) { 654 dma_unmap_single(dd->dev, ctx->dma_addr, 655 ctx->buflen + ctx->block_size, DMA_TO_DEVICE); 656 } 657 } else { 658 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen + 659 ctx->block_size, DMA_TO_DEVICE); 660 } 661 662 return 0; 663 } 664 665 static int atmel_sha_update_req(struct atmel_sha_dev *dd) 666 { 667 struct ahash_request *req = dd->req; 668 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 669 int err; 670 671 dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n", 672 ctx->total, ctx->digcnt[1], ctx->digcnt[0]); 673 674 if (ctx->flags & SHA_FLAGS_CPU) 675 err = atmel_sha_update_cpu(dd); 676 else 677 err = atmel_sha_update_dma_start(dd); 678 679 /* wait for dma completion before can take more data */ 680 dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n", 681 err, ctx->digcnt[1], ctx->digcnt[0]); 682 683 return err; 684 } 685 686 static int atmel_sha_final_req(struct atmel_sha_dev *dd) 687 { 688 struct ahash_request *req = dd->req; 689 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 690 int err = 0; 691 int count; 692 693 if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) { 694 atmel_sha_fill_padding(ctx, 0); 695 count = ctx->bufcnt; 696 ctx->bufcnt = 0; 697 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1); 698 } 699 /* faster to handle last block with cpu */ 700 else { 701 atmel_sha_fill_padding(ctx, 0); 702 count = ctx->bufcnt; 703 ctx->bufcnt = 0; 704 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1); 705 } 706 707 dev_dbg(dd->dev, "final_req: err: %d\n", err); 708 709 return err; 710 } 711 712 static void atmel_sha_copy_hash(struct ahash_request *req) 713 { 714 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 715 u32 *hash = (u32 *)ctx->digest; 716 int i; 717 718 if (ctx->flags & SHA_FLAGS_SHA1) 719 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) 720 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); 721 else if (ctx->flags & SHA_FLAGS_SHA224) 722 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++) 723 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); 724 else if (ctx->flags & SHA_FLAGS_SHA256) 725 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++) 726 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); 727 else if (ctx->flags & SHA_FLAGS_SHA384) 728 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++) 729 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); 730 else 731 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++) 732 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i)); 733 } 734 735 static void atmel_sha_copy_ready_hash(struct ahash_request *req) 736 { 737 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 738 739 if (!req->result) 740 return; 741 742 if (ctx->flags & SHA_FLAGS_SHA1) 743 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE); 744 else if (ctx->flags & SHA_FLAGS_SHA224) 745 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE); 746 else if (ctx->flags & SHA_FLAGS_SHA256) 747 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE); 748 else if (ctx->flags & SHA_FLAGS_SHA384) 749 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE); 750 else 751 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE); 752 } 753 754 static int atmel_sha_finish(struct ahash_request *req) 755 { 756 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 757 struct atmel_sha_dev *dd = ctx->dd; 758 759 if (ctx->digcnt[0] || ctx->digcnt[1]) 760 atmel_sha_copy_ready_hash(req); 761 762 dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1], 763 ctx->digcnt[0], ctx->bufcnt); 764 765 return 0; 766 } 767 768 static void atmel_sha_finish_req(struct ahash_request *req, int err) 769 { 770 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 771 struct atmel_sha_dev *dd = ctx->dd; 772 773 if (!err) { 774 atmel_sha_copy_hash(req); 775 if (SHA_FLAGS_FINAL & dd->flags) 776 err = atmel_sha_finish(req); 777 } else { 778 ctx->flags |= SHA_FLAGS_ERROR; 779 } 780 781 /* atomic operation is not needed here */ 782 dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU | 783 SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY); 784 785 clk_disable(dd->iclk); 786 787 if (req->base.complete) 788 req->base.complete(&req->base, err); 789 790 /* handle new request */ 791 tasklet_schedule(&dd->done_task); 792 } 793 794 static int atmel_sha_hw_init(struct atmel_sha_dev *dd) 795 { 796 int err; 797 798 err = clk_enable(dd->iclk); 799 if (err) 800 return err; 801 802 if (!(SHA_FLAGS_INIT & dd->flags)) { 803 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST); 804 dd->flags |= SHA_FLAGS_INIT; 805 dd->err = 0; 806 } 807 808 return 0; 809 } 810 811 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd) 812 { 813 return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff; 814 } 815 816 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd) 817 { 818 atmel_sha_hw_init(dd); 819 820 dd->hw_version = atmel_sha_get_version(dd); 821 822 dev_info(dd->dev, 823 "version: 0x%x\n", dd->hw_version); 824 825 clk_disable(dd->iclk); 826 } 827 828 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd, 829 struct ahash_request *req) 830 { 831 struct crypto_async_request *async_req, *backlog; 832 struct atmel_sha_reqctx *ctx; 833 unsigned long flags; 834 int err = 0, ret = 0; 835 836 spin_lock_irqsave(&dd->lock, flags); 837 if (req) 838 ret = ahash_enqueue_request(&dd->queue, req); 839 840 if (SHA_FLAGS_BUSY & dd->flags) { 841 spin_unlock_irqrestore(&dd->lock, flags); 842 return ret; 843 } 844 845 backlog = crypto_get_backlog(&dd->queue); 846 async_req = crypto_dequeue_request(&dd->queue); 847 if (async_req) 848 dd->flags |= SHA_FLAGS_BUSY; 849 850 spin_unlock_irqrestore(&dd->lock, flags); 851 852 if (!async_req) 853 return ret; 854 855 if (backlog) 856 backlog->complete(backlog, -EINPROGRESS); 857 858 req = ahash_request_cast(async_req); 859 dd->req = req; 860 ctx = ahash_request_ctx(req); 861 862 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", 863 ctx->op, req->nbytes); 864 865 err = atmel_sha_hw_init(dd); 866 867 if (err) 868 goto err1; 869 870 if (ctx->op == SHA_OP_UPDATE) { 871 err = atmel_sha_update_req(dd); 872 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP)) 873 /* no final() after finup() */ 874 err = atmel_sha_final_req(dd); 875 } else if (ctx->op == SHA_OP_FINAL) { 876 err = atmel_sha_final_req(dd); 877 } 878 879 err1: 880 if (err != -EINPROGRESS) 881 /* done_task will not finish it, so do it here */ 882 atmel_sha_finish_req(req, err); 883 884 dev_dbg(dd->dev, "exit, err: %d\n", err); 885 886 return ret; 887 } 888 889 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op) 890 { 891 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 892 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 893 struct atmel_sha_dev *dd = tctx->dd; 894 895 ctx->op = op; 896 897 return atmel_sha_handle_queue(dd, req); 898 } 899 900 static int atmel_sha_update(struct ahash_request *req) 901 { 902 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 903 904 if (!req->nbytes) 905 return 0; 906 907 ctx->total = req->nbytes; 908 ctx->sg = req->src; 909 ctx->offset = 0; 910 911 if (ctx->flags & SHA_FLAGS_FINUP) { 912 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD) 913 /* faster to use CPU for short transfers */ 914 ctx->flags |= SHA_FLAGS_CPU; 915 } else if (ctx->bufcnt + ctx->total < ctx->buflen) { 916 atmel_sha_append_sg(ctx); 917 return 0; 918 } 919 return atmel_sha_enqueue(req, SHA_OP_UPDATE); 920 } 921 922 static int atmel_sha_final(struct ahash_request *req) 923 { 924 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 925 struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 926 struct atmel_sha_dev *dd = tctx->dd; 927 928 int err = 0; 929 930 ctx->flags |= SHA_FLAGS_FINUP; 931 932 if (ctx->flags & SHA_FLAGS_ERROR) 933 return 0; /* uncompleted hash is not needed */ 934 935 if (ctx->bufcnt) { 936 return atmel_sha_enqueue(req, SHA_OP_FINAL); 937 } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */ 938 err = atmel_sha_hw_init(dd); 939 if (err) 940 goto err1; 941 942 dd->flags |= SHA_FLAGS_BUSY; 943 err = atmel_sha_final_req(dd); 944 } else { 945 /* copy ready hash (+ finalize hmac) */ 946 return atmel_sha_finish(req); 947 } 948 949 err1: 950 if (err != -EINPROGRESS) 951 /* done_task will not finish it, so do it here */ 952 atmel_sha_finish_req(req, err); 953 954 return err; 955 } 956 957 static int atmel_sha_finup(struct ahash_request *req) 958 { 959 struct atmel_sha_reqctx *ctx = ahash_request_ctx(req); 960 int err1, err2; 961 962 ctx->flags |= SHA_FLAGS_FINUP; 963 964 err1 = atmel_sha_update(req); 965 if (err1 == -EINPROGRESS || err1 == -EBUSY) 966 return err1; 967 968 /* 969 * final() has to be always called to cleanup resources 970 * even if udpate() failed, except EINPROGRESS 971 */ 972 err2 = atmel_sha_final(req); 973 974 return err1 ?: err2; 975 } 976 977 static int atmel_sha_digest(struct ahash_request *req) 978 { 979 return atmel_sha_init(req) ?: atmel_sha_finup(req); 980 } 981 982 static int atmel_sha_cra_init(struct crypto_tfm *tfm) 983 { 984 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 985 sizeof(struct atmel_sha_reqctx) + 986 SHA_BUFFER_LEN + SHA512_BLOCK_SIZE); 987 988 return 0; 989 } 990 991 static struct ahash_alg sha_1_256_algs[] = { 992 { 993 .init = atmel_sha_init, 994 .update = atmel_sha_update, 995 .final = atmel_sha_final, 996 .finup = atmel_sha_finup, 997 .digest = atmel_sha_digest, 998 .halg = { 999 .digestsize = SHA1_DIGEST_SIZE, 1000 .base = { 1001 .cra_name = "sha1", 1002 .cra_driver_name = "atmel-sha1", 1003 .cra_priority = 100, 1004 .cra_flags = CRYPTO_ALG_ASYNC, 1005 .cra_blocksize = SHA1_BLOCK_SIZE, 1006 .cra_ctxsize = sizeof(struct atmel_sha_ctx), 1007 .cra_alignmask = 0, 1008 .cra_module = THIS_MODULE, 1009 .cra_init = atmel_sha_cra_init, 1010 } 1011 } 1012 }, 1013 { 1014 .init = atmel_sha_init, 1015 .update = atmel_sha_update, 1016 .final = atmel_sha_final, 1017 .finup = atmel_sha_finup, 1018 .digest = atmel_sha_digest, 1019 .halg = { 1020 .digestsize = SHA256_DIGEST_SIZE, 1021 .base = { 1022 .cra_name = "sha256", 1023 .cra_driver_name = "atmel-sha256", 1024 .cra_priority = 100, 1025 .cra_flags = CRYPTO_ALG_ASYNC, 1026 .cra_blocksize = SHA256_BLOCK_SIZE, 1027 .cra_ctxsize = sizeof(struct atmel_sha_ctx), 1028 .cra_alignmask = 0, 1029 .cra_module = THIS_MODULE, 1030 .cra_init = atmel_sha_cra_init, 1031 } 1032 } 1033 }, 1034 }; 1035 1036 static struct ahash_alg sha_224_alg = { 1037 .init = atmel_sha_init, 1038 .update = atmel_sha_update, 1039 .final = atmel_sha_final, 1040 .finup = atmel_sha_finup, 1041 .digest = atmel_sha_digest, 1042 .halg = { 1043 .digestsize = SHA224_DIGEST_SIZE, 1044 .base = { 1045 .cra_name = "sha224", 1046 .cra_driver_name = "atmel-sha224", 1047 .cra_priority = 100, 1048 .cra_flags = CRYPTO_ALG_ASYNC, 1049 .cra_blocksize = SHA224_BLOCK_SIZE, 1050 .cra_ctxsize = sizeof(struct atmel_sha_ctx), 1051 .cra_alignmask = 0, 1052 .cra_module = THIS_MODULE, 1053 .cra_init = atmel_sha_cra_init, 1054 } 1055 } 1056 }; 1057 1058 static struct ahash_alg sha_384_512_algs[] = { 1059 { 1060 .init = atmel_sha_init, 1061 .update = atmel_sha_update, 1062 .final = atmel_sha_final, 1063 .finup = atmel_sha_finup, 1064 .digest = atmel_sha_digest, 1065 .halg = { 1066 .digestsize = SHA384_DIGEST_SIZE, 1067 .base = { 1068 .cra_name = "sha384", 1069 .cra_driver_name = "atmel-sha384", 1070 .cra_priority = 100, 1071 .cra_flags = CRYPTO_ALG_ASYNC, 1072 .cra_blocksize = SHA384_BLOCK_SIZE, 1073 .cra_ctxsize = sizeof(struct atmel_sha_ctx), 1074 .cra_alignmask = 0x3, 1075 .cra_module = THIS_MODULE, 1076 .cra_init = atmel_sha_cra_init, 1077 } 1078 } 1079 }, 1080 { 1081 .init = atmel_sha_init, 1082 .update = atmel_sha_update, 1083 .final = atmel_sha_final, 1084 .finup = atmel_sha_finup, 1085 .digest = atmel_sha_digest, 1086 .halg = { 1087 .digestsize = SHA512_DIGEST_SIZE, 1088 .base = { 1089 .cra_name = "sha512", 1090 .cra_driver_name = "atmel-sha512", 1091 .cra_priority = 100, 1092 .cra_flags = CRYPTO_ALG_ASYNC, 1093 .cra_blocksize = SHA512_BLOCK_SIZE, 1094 .cra_ctxsize = sizeof(struct atmel_sha_ctx), 1095 .cra_alignmask = 0x3, 1096 .cra_module = THIS_MODULE, 1097 .cra_init = atmel_sha_cra_init, 1098 } 1099 } 1100 }, 1101 }; 1102 1103 static void atmel_sha_done_task(unsigned long data) 1104 { 1105 struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data; 1106 int err = 0; 1107 1108 if (!(SHA_FLAGS_BUSY & dd->flags)) { 1109 atmel_sha_handle_queue(dd, NULL); 1110 return; 1111 } 1112 1113 if (SHA_FLAGS_CPU & dd->flags) { 1114 if (SHA_FLAGS_OUTPUT_READY & dd->flags) { 1115 dd->flags &= ~SHA_FLAGS_OUTPUT_READY; 1116 goto finish; 1117 } 1118 } else if (SHA_FLAGS_DMA_READY & dd->flags) { 1119 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) { 1120 dd->flags &= ~SHA_FLAGS_DMA_ACTIVE; 1121 atmel_sha_update_dma_stop(dd); 1122 if (dd->err) { 1123 err = dd->err; 1124 goto finish; 1125 } 1126 } 1127 if (SHA_FLAGS_OUTPUT_READY & dd->flags) { 1128 /* hash or semi-hash ready */ 1129 dd->flags &= ~(SHA_FLAGS_DMA_READY | 1130 SHA_FLAGS_OUTPUT_READY); 1131 err = atmel_sha_update_dma_start(dd); 1132 if (err != -EINPROGRESS) 1133 goto finish; 1134 } 1135 } 1136 return; 1137 1138 finish: 1139 /* finish curent request */ 1140 atmel_sha_finish_req(dd->req, err); 1141 } 1142 1143 static irqreturn_t atmel_sha_irq(int irq, void *dev_id) 1144 { 1145 struct atmel_sha_dev *sha_dd = dev_id; 1146 u32 reg; 1147 1148 reg = atmel_sha_read(sha_dd, SHA_ISR); 1149 if (reg & atmel_sha_read(sha_dd, SHA_IMR)) { 1150 atmel_sha_write(sha_dd, SHA_IDR, reg); 1151 if (SHA_FLAGS_BUSY & sha_dd->flags) { 1152 sha_dd->flags |= SHA_FLAGS_OUTPUT_READY; 1153 if (!(SHA_FLAGS_CPU & sha_dd->flags)) 1154 sha_dd->flags |= SHA_FLAGS_DMA_READY; 1155 tasklet_schedule(&sha_dd->done_task); 1156 } else { 1157 dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n"); 1158 } 1159 return IRQ_HANDLED; 1160 } 1161 1162 return IRQ_NONE; 1163 } 1164 1165 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd) 1166 { 1167 int i; 1168 1169 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) 1170 crypto_unregister_ahash(&sha_1_256_algs[i]); 1171 1172 if (dd->caps.has_sha224) 1173 crypto_unregister_ahash(&sha_224_alg); 1174 1175 if (dd->caps.has_sha_384_512) { 1176 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) 1177 crypto_unregister_ahash(&sha_384_512_algs[i]); 1178 } 1179 } 1180 1181 static int atmel_sha_register_algs(struct atmel_sha_dev *dd) 1182 { 1183 int err, i, j; 1184 1185 for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) { 1186 err = crypto_register_ahash(&sha_1_256_algs[i]); 1187 if (err) 1188 goto err_sha_1_256_algs; 1189 } 1190 1191 if (dd->caps.has_sha224) { 1192 err = crypto_register_ahash(&sha_224_alg); 1193 if (err) 1194 goto err_sha_224_algs; 1195 } 1196 1197 if (dd->caps.has_sha_384_512) { 1198 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) { 1199 err = crypto_register_ahash(&sha_384_512_algs[i]); 1200 if (err) 1201 goto err_sha_384_512_algs; 1202 } 1203 } 1204 1205 return 0; 1206 1207 err_sha_384_512_algs: 1208 for (j = 0; j < i; j++) 1209 crypto_unregister_ahash(&sha_384_512_algs[j]); 1210 crypto_unregister_ahash(&sha_224_alg); 1211 err_sha_224_algs: 1212 i = ARRAY_SIZE(sha_1_256_algs); 1213 err_sha_1_256_algs: 1214 for (j = 0; j < i; j++) 1215 crypto_unregister_ahash(&sha_1_256_algs[j]); 1216 1217 return err; 1218 } 1219 1220 static bool atmel_sha_filter(struct dma_chan *chan, void *slave) 1221 { 1222 struct at_dma_slave *sl = slave; 1223 1224 if (sl && sl->dma_dev == chan->device->dev) { 1225 chan->private = sl; 1226 return true; 1227 } else { 1228 return false; 1229 } 1230 } 1231 1232 static int atmel_sha_dma_init(struct atmel_sha_dev *dd, 1233 struct crypto_platform_data *pdata) 1234 { 1235 int err = -ENOMEM; 1236 dma_cap_mask_t mask_in; 1237 1238 /* Try to grab DMA channel */ 1239 dma_cap_zero(mask_in); 1240 dma_cap_set(DMA_SLAVE, mask_in); 1241 1242 dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in, 1243 atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx"); 1244 if (!dd->dma_lch_in.chan) { 1245 dev_warn(dd->dev, "no DMA channel available\n"); 1246 return err; 1247 } 1248 1249 dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV; 1250 dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base + 1251 SHA_REG_DIN(0); 1252 dd->dma_lch_in.dma_conf.src_maxburst = 1; 1253 dd->dma_lch_in.dma_conf.src_addr_width = 1254 DMA_SLAVE_BUSWIDTH_4_BYTES; 1255 dd->dma_lch_in.dma_conf.dst_maxburst = 1; 1256 dd->dma_lch_in.dma_conf.dst_addr_width = 1257 DMA_SLAVE_BUSWIDTH_4_BYTES; 1258 dd->dma_lch_in.dma_conf.device_fc = false; 1259 1260 return 0; 1261 } 1262 1263 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd) 1264 { 1265 dma_release_channel(dd->dma_lch_in.chan); 1266 } 1267 1268 static void atmel_sha_get_cap(struct atmel_sha_dev *dd) 1269 { 1270 1271 dd->caps.has_dma = 0; 1272 dd->caps.has_dualbuff = 0; 1273 dd->caps.has_sha224 = 0; 1274 dd->caps.has_sha_384_512 = 0; 1275 1276 /* keep only major version number */ 1277 switch (dd->hw_version & 0xff0) { 1278 case 0x420: 1279 dd->caps.has_dma = 1; 1280 dd->caps.has_dualbuff = 1; 1281 dd->caps.has_sha224 = 1; 1282 dd->caps.has_sha_384_512 = 1; 1283 break; 1284 case 0x410: 1285 dd->caps.has_dma = 1; 1286 dd->caps.has_dualbuff = 1; 1287 dd->caps.has_sha224 = 1; 1288 dd->caps.has_sha_384_512 = 1; 1289 break; 1290 case 0x400: 1291 dd->caps.has_dma = 1; 1292 dd->caps.has_dualbuff = 1; 1293 dd->caps.has_sha224 = 1; 1294 break; 1295 case 0x320: 1296 break; 1297 default: 1298 dev_warn(dd->dev, 1299 "Unmanaged sha version, set minimum capabilities\n"); 1300 break; 1301 } 1302 } 1303 1304 #if defined(CONFIG_OF) 1305 static const struct of_device_id atmel_sha_dt_ids[] = { 1306 { .compatible = "atmel,at91sam9g46-sha" }, 1307 { /* sentinel */ } 1308 }; 1309 1310 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids); 1311 1312 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev) 1313 { 1314 struct device_node *np = pdev->dev.of_node; 1315 struct crypto_platform_data *pdata; 1316 1317 if (!np) { 1318 dev_err(&pdev->dev, "device node not found\n"); 1319 return ERR_PTR(-EINVAL); 1320 } 1321 1322 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1323 if (!pdata) { 1324 dev_err(&pdev->dev, "could not allocate memory for pdata\n"); 1325 return ERR_PTR(-ENOMEM); 1326 } 1327 1328 pdata->dma_slave = devm_kzalloc(&pdev->dev, 1329 sizeof(*(pdata->dma_slave)), 1330 GFP_KERNEL); 1331 if (!pdata->dma_slave) { 1332 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n"); 1333 return ERR_PTR(-ENOMEM); 1334 } 1335 1336 return pdata; 1337 } 1338 #else /* CONFIG_OF */ 1339 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev) 1340 { 1341 return ERR_PTR(-EINVAL); 1342 } 1343 #endif 1344 1345 static int atmel_sha_probe(struct platform_device *pdev) 1346 { 1347 struct atmel_sha_dev *sha_dd; 1348 struct crypto_platform_data *pdata; 1349 struct device *dev = &pdev->dev; 1350 struct resource *sha_res; 1351 int err; 1352 1353 sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL); 1354 if (sha_dd == NULL) { 1355 dev_err(dev, "unable to alloc data struct.\n"); 1356 err = -ENOMEM; 1357 goto sha_dd_err; 1358 } 1359 1360 sha_dd->dev = dev; 1361 1362 platform_set_drvdata(pdev, sha_dd); 1363 1364 INIT_LIST_HEAD(&sha_dd->list); 1365 spin_lock_init(&sha_dd->lock); 1366 1367 tasklet_init(&sha_dd->done_task, atmel_sha_done_task, 1368 (unsigned long)sha_dd); 1369 1370 crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH); 1371 1372 sha_dd->irq = -1; 1373 1374 /* Get the base address */ 1375 sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1376 if (!sha_res) { 1377 dev_err(dev, "no MEM resource info\n"); 1378 err = -ENODEV; 1379 goto res_err; 1380 } 1381 sha_dd->phys_base = sha_res->start; 1382 1383 /* Get the IRQ */ 1384 sha_dd->irq = platform_get_irq(pdev, 0); 1385 if (sha_dd->irq < 0) { 1386 dev_err(dev, "no IRQ resource info\n"); 1387 err = sha_dd->irq; 1388 goto res_err; 1389 } 1390 1391 err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq, 1392 IRQF_SHARED, "atmel-sha", sha_dd); 1393 if (err) { 1394 dev_err(dev, "unable to request sha irq.\n"); 1395 goto res_err; 1396 } 1397 1398 /* Initializing the clock */ 1399 sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk"); 1400 if (IS_ERR(sha_dd->iclk)) { 1401 dev_err(dev, "clock initialization failed.\n"); 1402 err = PTR_ERR(sha_dd->iclk); 1403 goto res_err; 1404 } 1405 1406 sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res); 1407 if (!sha_dd->io_base) { 1408 dev_err(dev, "can't ioremap\n"); 1409 err = -ENOMEM; 1410 goto res_err; 1411 } 1412 1413 err = clk_prepare(sha_dd->iclk); 1414 if (err) 1415 goto res_err; 1416 1417 atmel_sha_hw_version_init(sha_dd); 1418 1419 atmel_sha_get_cap(sha_dd); 1420 1421 if (sha_dd->caps.has_dma) { 1422 pdata = pdev->dev.platform_data; 1423 if (!pdata) { 1424 pdata = atmel_sha_of_init(pdev); 1425 if (IS_ERR(pdata)) { 1426 dev_err(&pdev->dev, "platform data not available\n"); 1427 err = PTR_ERR(pdata); 1428 goto iclk_unprepare; 1429 } 1430 } 1431 if (!pdata->dma_slave) { 1432 err = -ENXIO; 1433 goto iclk_unprepare; 1434 } 1435 err = atmel_sha_dma_init(sha_dd, pdata); 1436 if (err) 1437 goto err_sha_dma; 1438 1439 dev_info(dev, "using %s for DMA transfers\n", 1440 dma_chan_name(sha_dd->dma_lch_in.chan)); 1441 } 1442 1443 spin_lock(&atmel_sha.lock); 1444 list_add_tail(&sha_dd->list, &atmel_sha.dev_list); 1445 spin_unlock(&atmel_sha.lock); 1446 1447 err = atmel_sha_register_algs(sha_dd); 1448 if (err) 1449 goto err_algs; 1450 1451 dev_info(dev, "Atmel SHA1/SHA256%s%s\n", 1452 sha_dd->caps.has_sha224 ? "/SHA224" : "", 1453 sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : ""); 1454 1455 return 0; 1456 1457 err_algs: 1458 spin_lock(&atmel_sha.lock); 1459 list_del(&sha_dd->list); 1460 spin_unlock(&atmel_sha.lock); 1461 if (sha_dd->caps.has_dma) 1462 atmel_sha_dma_cleanup(sha_dd); 1463 err_sha_dma: 1464 iclk_unprepare: 1465 clk_unprepare(sha_dd->iclk); 1466 res_err: 1467 tasklet_kill(&sha_dd->done_task); 1468 sha_dd_err: 1469 dev_err(dev, "initialization failed.\n"); 1470 1471 return err; 1472 } 1473 1474 static int atmel_sha_remove(struct platform_device *pdev) 1475 { 1476 static struct atmel_sha_dev *sha_dd; 1477 1478 sha_dd = platform_get_drvdata(pdev); 1479 if (!sha_dd) 1480 return -ENODEV; 1481 spin_lock(&atmel_sha.lock); 1482 list_del(&sha_dd->list); 1483 spin_unlock(&atmel_sha.lock); 1484 1485 atmel_sha_unregister_algs(sha_dd); 1486 1487 tasklet_kill(&sha_dd->done_task); 1488 1489 if (sha_dd->caps.has_dma) 1490 atmel_sha_dma_cleanup(sha_dd); 1491 1492 clk_unprepare(sha_dd->iclk); 1493 1494 return 0; 1495 } 1496 1497 static struct platform_driver atmel_sha_driver = { 1498 .probe = atmel_sha_probe, 1499 .remove = atmel_sha_remove, 1500 .driver = { 1501 .name = "atmel_sha", 1502 .of_match_table = of_match_ptr(atmel_sha_dt_ids), 1503 }, 1504 }; 1505 1506 module_platform_driver(atmel_sha_driver); 1507 1508 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support."); 1509 MODULE_LICENSE("GPL v2"); 1510 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique"); 1511