xref: /openbmc/linux/drivers/crypto/atmel-ecc.c (revision e2c75e76)
1 /*
2  * Microchip / Atmel ECC (I2C) driver.
3  *
4  * Copyright (c) 2017, Microchip Technology Inc.
5  * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
6  *
7  * This software is licensed under the terms of the GNU General Public
8  * License version 2, as published by the Free Software Foundation, and
9  * may be copied, distributed, and modified under those terms.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  */
17 
18 #include <linux/bitrev.h>
19 #include <linux/crc16.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/errno.h>
24 #include <linux/i2c.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/workqueue.h>
32 #include <crypto/internal/kpp.h>
33 #include <crypto/ecdh.h>
34 #include <crypto/kpp.h>
35 #include "atmel-ecc.h"
36 
37 /* Used for binding tfm objects to i2c clients. */
38 struct atmel_ecc_driver_data {
39 	struct list_head i2c_client_list;
40 	spinlock_t i2c_list_lock;
41 } ____cacheline_aligned;
42 
43 static struct atmel_ecc_driver_data driver_data;
44 
45 /**
46  * atmel_ecc_i2c_client_priv - i2c_client private data
47  * @client              : pointer to i2c client device
48  * @i2c_client_list_node: part of i2c_client_list
49  * @lock                : lock for sending i2c commands
50  * @wake_token          : wake token array of zeros
51  * @wake_token_sz       : size in bytes of the wake_token
52  * @tfm_count           : number of active crypto transformations on i2c client
53  *
54  * Reads and writes from/to the i2c client are sequential. The first byte
55  * transmitted to the device is treated as the byte size. Any attempt to send
56  * more than this number of bytes will cause the device to not ACK those bytes.
57  * After the host writes a single command byte to the input buffer, reads are
58  * prohibited until after the device completes command execution. Use a mutex
59  * when sending i2c commands.
60  */
61 struct atmel_ecc_i2c_client_priv {
62 	struct i2c_client *client;
63 	struct list_head i2c_client_list_node;
64 	struct mutex lock;
65 	u8 wake_token[WAKE_TOKEN_MAX_SIZE];
66 	size_t wake_token_sz;
67 	atomic_t tfm_count ____cacheline_aligned;
68 };
69 
70 /**
71  * atmel_ecdh_ctx - transformation context
72  * @client     : pointer to i2c client device
73  * @fallback   : used for unsupported curves or when user wants to use its own
74  *               private key.
75  * @public_key : generated when calling set_secret(). It's the responsibility
76  *               of the user to not call set_secret() while
77  *               generate_public_key() or compute_shared_secret() are in flight.
78  * @curve_id   : elliptic curve id
79  * @n_sz       : size in bytes of the n prime
80  * @do_fallback: true when the device doesn't support the curve or when the user
81  *               wants to use its own private key.
82  */
83 struct atmel_ecdh_ctx {
84 	struct i2c_client *client;
85 	struct crypto_kpp *fallback;
86 	const u8 *public_key;
87 	unsigned int curve_id;
88 	size_t n_sz;
89 	bool do_fallback;
90 };
91 
92 /**
93  * atmel_ecc_work_data - data structure representing the work
94  * @ctx : transformation context.
95  * @cbk : pointer to a callback function to be invoked upon completion of this
96  *        request. This has the form:
97  *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
98  *        where:
99  *        @work_data: data structure representing the work
100  *        @areq     : optional pointer to an argument passed with the original
101  *                    request.
102  *        @status   : status returned from the i2c client device or i2c error.
103  * @areq: optional pointer to a user argument for use at callback time.
104  * @work: describes the task to be executed.
105  * @cmd : structure used for communicating with the device.
106  */
107 struct atmel_ecc_work_data {
108 	struct atmel_ecdh_ctx *ctx;
109 	void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
110 		    int status);
111 	void *areq;
112 	struct work_struct work;
113 	struct atmel_ecc_cmd cmd;
114 };
115 
116 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
117 {
118 	return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
119 }
120 
121 /**
122  * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
123  * CRC16 verification of the count, opcode, param1, param2 and data bytes.
124  * The checksum is saved in little-endian format in the least significant
125  * two bytes of the command. CRC polynomial is 0x8005 and the initial register
126  * value should be zero.
127  *
128  * @cmd : structure used for communicating with the device.
129  */
130 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
131 {
132 	u8 *data = &cmd->count;
133 	size_t len = cmd->count - CRC_SIZE;
134 	u16 *crc16 = (u16 *)(data + len);
135 
136 	*crc16 = atmel_ecc_crc16(0, data, len);
137 }
138 
139 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
140 {
141 	cmd->word_addr = COMMAND;
142 	cmd->opcode = OPCODE_READ;
143 	/*
144 	 * Read the word from Configuration zone that contains the lock bytes
145 	 * (UserExtra, Selector, LockValue, LockConfig).
146 	 */
147 	cmd->param1 = CONFIG_ZONE;
148 	cmd->param2 = DEVICE_LOCK_ADDR;
149 	cmd->count = READ_COUNT;
150 
151 	atmel_ecc_checksum(cmd);
152 
153 	cmd->msecs = MAX_EXEC_TIME_READ;
154 	cmd->rxsize = READ_RSP_SIZE;
155 }
156 
157 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
158 {
159 	cmd->word_addr = COMMAND;
160 	cmd->count = GENKEY_COUNT;
161 	cmd->opcode = OPCODE_GENKEY;
162 	cmd->param1 = GENKEY_MODE_PRIVATE;
163 	/* a random private key will be generated and stored in slot keyID */
164 	cmd->param2 = cpu_to_le16(keyid);
165 
166 	atmel_ecc_checksum(cmd);
167 
168 	cmd->msecs = MAX_EXEC_TIME_GENKEY;
169 	cmd->rxsize = GENKEY_RSP_SIZE;
170 }
171 
172 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
173 				   struct scatterlist *pubkey)
174 {
175 	size_t copied;
176 
177 	cmd->word_addr = COMMAND;
178 	cmd->count = ECDH_COUNT;
179 	cmd->opcode = OPCODE_ECDH;
180 	cmd->param1 = ECDH_PREFIX_MODE;
181 	/* private key slot */
182 	cmd->param2 = cpu_to_le16(DATA_SLOT_2);
183 
184 	/*
185 	 * The device only supports NIST P256 ECC keys. The public key size will
186 	 * always be the same. Use a macro for the key size to avoid unnecessary
187 	 * computations.
188 	 */
189 	copied = sg_copy_to_buffer(pubkey, 1, cmd->data, ATMEL_ECC_PUBKEY_SIZE);
190 	if (copied != ATMEL_ECC_PUBKEY_SIZE)
191 		return -EINVAL;
192 
193 	atmel_ecc_checksum(cmd);
194 
195 	cmd->msecs = MAX_EXEC_TIME_ECDH;
196 	cmd->rxsize = ECDH_RSP_SIZE;
197 
198 	return 0;
199 }
200 
201 /*
202  * After wake and after execution of a command, there will be error, status, or
203  * result bytes in the device's output register that can be retrieved by the
204  * system. When the length of that group is four bytes, the codes returned are
205  * detailed in error_list.
206  */
207 static int atmel_ecc_status(struct device *dev, u8 *status)
208 {
209 	size_t err_list_len = ARRAY_SIZE(error_list);
210 	int i;
211 	u8 err_id = status[1];
212 
213 	if (*status != STATUS_SIZE)
214 		return 0;
215 
216 	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
217 		return 0;
218 
219 	for (i = 0; i < err_list_len; i++)
220 		if (error_list[i].value == err_id)
221 			break;
222 
223 	/* if err_id is not in the error_list then ignore it */
224 	if (i != err_list_len) {
225 		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
226 		return err_id;
227 	}
228 
229 	return 0;
230 }
231 
232 static int atmel_ecc_wakeup(struct i2c_client *client)
233 {
234 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
235 	u8 status[STATUS_RSP_SIZE];
236 	int ret;
237 
238 	/*
239 	 * The device ignores any levels or transitions on the SCL pin when the
240 	 * device is idle, asleep or during waking up. Don't check for error
241 	 * when waking up the device.
242 	 */
243 	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
244 
245 	/*
246 	 * Wait to wake the device. Typical execution times for ecdh and genkey
247 	 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
248 	 */
249 	usleep_range(TWHI_MIN, TWHI_MAX);
250 
251 	ret = i2c_master_recv(client, status, STATUS_SIZE);
252 	if (ret < 0)
253 		return ret;
254 
255 	return atmel_ecc_status(&client->dev, status);
256 }
257 
258 static int atmel_ecc_sleep(struct i2c_client *client)
259 {
260 	u8 sleep = SLEEP_TOKEN;
261 
262 	return i2c_master_send(client, &sleep, 1);
263 }
264 
265 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
266 			    int status)
267 {
268 	struct kpp_request *req = areq;
269 	struct atmel_ecdh_ctx *ctx = work_data->ctx;
270 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
271 	size_t copied;
272 	size_t n_sz = ctx->n_sz;
273 
274 	if (status)
275 		goto free_work_data;
276 
277 	/* copy the shared secret */
278 	copied = sg_copy_from_buffer(req->dst, 1, &cmd->data[RSP_DATA_IDX],
279 				     n_sz);
280 	if (copied != n_sz)
281 		status = -EINVAL;
282 
283 	/* fall through */
284 free_work_data:
285 	kzfree(work_data);
286 	kpp_request_complete(req, status);
287 }
288 
289 /*
290  * atmel_ecc_send_receive() - send a command to the device and receive its
291  *                            response.
292  * @client: i2c client device
293  * @cmd   : structure used to communicate with the device
294  *
295  * After the device receives a Wake token, a watchdog counter starts within the
296  * device. After the watchdog timer expires, the device enters sleep mode
297  * regardless of whether some I/O transmission or command execution is in
298  * progress. If a command is attempted when insufficient time remains prior to
299  * watchdog timer execution, the device will return the watchdog timeout error
300  * code without attempting to execute the command. There is no way to reset the
301  * counter other than to put the device into sleep or idle mode and then
302  * wake it up again.
303  */
304 static int atmel_ecc_send_receive(struct i2c_client *client,
305 				  struct atmel_ecc_cmd *cmd)
306 {
307 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
308 	int ret;
309 
310 	mutex_lock(&i2c_priv->lock);
311 
312 	ret = atmel_ecc_wakeup(client);
313 	if (ret)
314 		goto err;
315 
316 	/* send the command */
317 	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
318 	if (ret < 0)
319 		goto err;
320 
321 	/* delay the appropriate amount of time for command to execute */
322 	msleep(cmd->msecs);
323 
324 	/* receive the response */
325 	ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
326 	if (ret < 0)
327 		goto err;
328 
329 	/* put the device into low-power mode */
330 	ret = atmel_ecc_sleep(client);
331 	if (ret < 0)
332 		goto err;
333 
334 	mutex_unlock(&i2c_priv->lock);
335 	return atmel_ecc_status(&client->dev, cmd->data);
336 err:
337 	mutex_unlock(&i2c_priv->lock);
338 	return ret;
339 }
340 
341 static void atmel_ecc_work_handler(struct work_struct *work)
342 {
343 	struct atmel_ecc_work_data *work_data =
344 			container_of(work, struct atmel_ecc_work_data, work);
345 	struct atmel_ecc_cmd *cmd = &work_data->cmd;
346 	struct i2c_client *client = work_data->ctx->client;
347 	int status;
348 
349 	status = atmel_ecc_send_receive(client, cmd);
350 	work_data->cbk(work_data, work_data->areq, status);
351 }
352 
353 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
354 			      void (*cbk)(struct atmel_ecc_work_data *work_data,
355 					  void *areq, int status),
356 			      void *areq)
357 {
358 	work_data->cbk = (void *)cbk;
359 	work_data->areq = areq;
360 
361 	INIT_WORK(&work_data->work, atmel_ecc_work_handler);
362 	schedule_work(&work_data->work);
363 }
364 
365 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
366 {
367 	if (curve_id == ECC_CURVE_NIST_P256)
368 		return ATMEL_ECC_NIST_P256_N_SIZE;
369 
370 	return 0;
371 }
372 
373 /*
374  * A random private key is generated and stored in the device. The device
375  * returns the pair public key.
376  */
377 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
378 				 unsigned int len)
379 {
380 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
381 	struct atmel_ecc_cmd *cmd;
382 	void *public_key;
383 	struct ecdh params;
384 	int ret = -ENOMEM;
385 
386 	/* free the old public key, if any */
387 	kfree(ctx->public_key);
388 	/* make sure you don't free the old public key twice */
389 	ctx->public_key = NULL;
390 
391 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
392 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
393 		return -EINVAL;
394 	}
395 
396 	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
397 	if (!ctx->n_sz || params.key_size) {
398 		/* fallback to ecdh software implementation */
399 		ctx->do_fallback = true;
400 		return crypto_kpp_set_secret(ctx->fallback, buf, len);
401 	}
402 
403 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
404 	if (!cmd)
405 		return -ENOMEM;
406 
407 	/*
408 	 * The device only supports NIST P256 ECC keys. The public key size will
409 	 * always be the same. Use a macro for the key size to avoid unnecessary
410 	 * computations.
411 	 */
412 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
413 	if (!public_key)
414 		goto free_cmd;
415 
416 	ctx->do_fallback = false;
417 	ctx->curve_id = params.curve_id;
418 
419 	atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
420 
421 	ret = atmel_ecc_send_receive(ctx->client, cmd);
422 	if (ret)
423 		goto free_public_key;
424 
425 	/* save the public key */
426 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
427 	ctx->public_key = public_key;
428 
429 	kfree(cmd);
430 	return 0;
431 
432 free_public_key:
433 	kfree(public_key);
434 free_cmd:
435 	kfree(cmd);
436 	return ret;
437 }
438 
439 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
440 {
441 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
442 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
443 	size_t copied;
444 	int ret = 0;
445 
446 	if (ctx->do_fallback) {
447 		kpp_request_set_tfm(req, ctx->fallback);
448 		return crypto_kpp_generate_public_key(req);
449 	}
450 
451 	/* public key was saved at private key generation */
452 	copied = sg_copy_from_buffer(req->dst, 1, ctx->public_key,
453 				     ATMEL_ECC_PUBKEY_SIZE);
454 	if (copied != ATMEL_ECC_PUBKEY_SIZE)
455 		ret = -EINVAL;
456 
457 	return ret;
458 }
459 
460 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
461 {
462 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
463 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
464 	struct atmel_ecc_work_data *work_data;
465 	gfp_t gfp;
466 	int ret;
467 
468 	if (ctx->do_fallback) {
469 		kpp_request_set_tfm(req, ctx->fallback);
470 		return crypto_kpp_compute_shared_secret(req);
471 	}
472 
473 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
474 							     GFP_ATOMIC;
475 
476 	work_data = kmalloc(sizeof(*work_data), gfp);
477 	if (!work_data)
478 		return -ENOMEM;
479 
480 	work_data->ctx = ctx;
481 
482 	ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
483 	if (ret)
484 		goto free_work_data;
485 
486 	atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
487 
488 	return -EINPROGRESS;
489 
490 free_work_data:
491 	kfree(work_data);
492 	return ret;
493 }
494 
495 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
496 {
497 	struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
498 	struct i2c_client *client = ERR_PTR(-ENODEV);
499 	int min_tfm_cnt = INT_MAX;
500 	int tfm_cnt;
501 
502 	spin_lock(&driver_data.i2c_list_lock);
503 
504 	if (list_empty(&driver_data.i2c_client_list)) {
505 		spin_unlock(&driver_data.i2c_list_lock);
506 		return ERR_PTR(-ENODEV);
507 	}
508 
509 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
510 			    i2c_client_list_node) {
511 		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
512 		if (tfm_cnt < min_tfm_cnt) {
513 			min_tfm_cnt = tfm_cnt;
514 			min_i2c_priv = i2c_priv;
515 		}
516 		if (!min_tfm_cnt)
517 			break;
518 	}
519 
520 	if (min_i2c_priv) {
521 		atomic_inc(&min_i2c_priv->tfm_count);
522 		client = min_i2c_priv->client;
523 	}
524 
525 	spin_unlock(&driver_data.i2c_list_lock);
526 
527 	return client;
528 }
529 
530 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
531 {
532 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
533 
534 	atomic_dec(&i2c_priv->tfm_count);
535 }
536 
537 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
538 {
539 	const char *alg = kpp_alg_name(tfm);
540 	struct crypto_kpp *fallback;
541 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
542 
543 	ctx->client = atmel_ecc_i2c_client_alloc();
544 	if (IS_ERR(ctx->client)) {
545 		pr_err("tfm - i2c_client binding failed\n");
546 		return PTR_ERR(ctx->client);
547 	}
548 
549 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
550 	if (IS_ERR(fallback)) {
551 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
552 			alg, PTR_ERR(fallback));
553 		return PTR_ERR(fallback);
554 	}
555 
556 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
557 
558 	dev_info(&ctx->client->dev, "Using '%s' as fallback implementation.\n",
559 		 crypto_tfm_alg_driver_name(crypto_kpp_tfm(fallback)));
560 
561 	ctx->fallback = fallback;
562 
563 	return 0;
564 }
565 
566 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
567 {
568 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
569 
570 	kfree(ctx->public_key);
571 	crypto_free_kpp(ctx->fallback);
572 	atmel_ecc_i2c_client_free(ctx->client);
573 }
574 
575 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
576 {
577 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
578 
579 	if (ctx->fallback)
580 		return crypto_kpp_maxsize(ctx->fallback);
581 
582 	/*
583 	 * The device only supports NIST P256 ECC keys. The public key size will
584 	 * always be the same. Use a macro for the key size to avoid unnecessary
585 	 * computations.
586 	 */
587 	return ATMEL_ECC_PUBKEY_SIZE;
588 }
589 
590 static struct kpp_alg atmel_ecdh = {
591 	.set_secret = atmel_ecdh_set_secret,
592 	.generate_public_key = atmel_ecdh_generate_public_key,
593 	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
594 	.init = atmel_ecdh_init_tfm,
595 	.exit = atmel_ecdh_exit_tfm,
596 	.max_size = atmel_ecdh_max_size,
597 	.base = {
598 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
599 		.cra_name = "ecdh",
600 		.cra_driver_name = "atmel-ecdh",
601 		.cra_priority = ATMEL_ECC_PRIORITY,
602 		.cra_module = THIS_MODULE,
603 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
604 	},
605 };
606 
607 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
608 {
609 	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
610 
611 	/* return the size of the wake_token in bytes */
612 	return DIV_ROUND_UP(no_of_bits, 8);
613 }
614 
615 static int device_sanity_check(struct i2c_client *client)
616 {
617 	struct atmel_ecc_cmd *cmd;
618 	int ret;
619 
620 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
621 	if (!cmd)
622 		return -ENOMEM;
623 
624 	atmel_ecc_init_read_cmd(cmd);
625 
626 	ret = atmel_ecc_send_receive(client, cmd);
627 	if (ret)
628 		goto free_cmd;
629 
630 	/*
631 	 * It is vital that the Configuration, Data and OTP zones be locked
632 	 * prior to release into the field of the system containing the device.
633 	 * Failure to lock these zones may permit modification of any secret
634 	 * keys and may lead to other security problems.
635 	 */
636 	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
637 		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
638 		ret = -ENOTSUPP;
639 	}
640 
641 	/* fall through */
642 free_cmd:
643 	kfree(cmd);
644 	return ret;
645 }
646 
647 static int atmel_ecc_probe(struct i2c_client *client,
648 			   const struct i2c_device_id *id)
649 {
650 	struct atmel_ecc_i2c_client_priv *i2c_priv;
651 	struct device *dev = &client->dev;
652 	int ret;
653 	u32 bus_clk_rate;
654 
655 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
656 		dev_err(dev, "I2C_FUNC_I2C not supported\n");
657 		return -ENODEV;
658 	}
659 
660 	ret = of_property_read_u32(client->adapter->dev.of_node,
661 				   "clock-frequency", &bus_clk_rate);
662 	if (ret) {
663 		dev_err(dev, "of: failed to read clock-frequency property\n");
664 		return ret;
665 	}
666 
667 	if (bus_clk_rate > 1000000L) {
668 		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
669 			bus_clk_rate);
670 		return -EINVAL;
671 	}
672 
673 	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
674 	if (!i2c_priv)
675 		return -ENOMEM;
676 
677 	i2c_priv->client = client;
678 	mutex_init(&i2c_priv->lock);
679 
680 	/*
681 	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
682 	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
683 	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
684 	 */
685 	i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
686 
687 	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
688 
689 	atomic_set(&i2c_priv->tfm_count, 0);
690 
691 	i2c_set_clientdata(client, i2c_priv);
692 
693 	ret = device_sanity_check(client);
694 	if (ret)
695 		return ret;
696 
697 	spin_lock(&driver_data.i2c_list_lock);
698 	list_add_tail(&i2c_priv->i2c_client_list_node,
699 		      &driver_data.i2c_client_list);
700 	spin_unlock(&driver_data.i2c_list_lock);
701 
702 	ret = crypto_register_kpp(&atmel_ecdh);
703 	if (ret) {
704 		spin_lock(&driver_data.i2c_list_lock);
705 		list_del(&i2c_priv->i2c_client_list_node);
706 		spin_unlock(&driver_data.i2c_list_lock);
707 
708 		dev_err(dev, "%s alg registration failed\n",
709 			atmel_ecdh.base.cra_driver_name);
710 	} else {
711 		dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
712 	}
713 
714 	return ret;
715 }
716 
717 static int atmel_ecc_remove(struct i2c_client *client)
718 {
719 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
720 
721 	/* Return EBUSY if i2c client already allocated. */
722 	if (atomic_read(&i2c_priv->tfm_count)) {
723 		dev_err(&client->dev, "Device is busy\n");
724 		return -EBUSY;
725 	}
726 
727 	crypto_unregister_kpp(&atmel_ecdh);
728 
729 	spin_lock(&driver_data.i2c_list_lock);
730 	list_del(&i2c_priv->i2c_client_list_node);
731 	spin_unlock(&driver_data.i2c_list_lock);
732 
733 	return 0;
734 }
735 
736 #ifdef CONFIG_OF
737 static const struct of_device_id atmel_ecc_dt_ids[] = {
738 	{
739 		.compatible = "atmel,atecc508a",
740 	}, {
741 		/* sentinel */
742 	}
743 };
744 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
745 #endif
746 
747 static const struct i2c_device_id atmel_ecc_id[] = {
748 	{ "atecc508a", 0 },
749 	{ }
750 };
751 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
752 
753 static struct i2c_driver atmel_ecc_driver = {
754 	.driver = {
755 		.name	= "atmel-ecc",
756 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
757 	},
758 	.probe		= atmel_ecc_probe,
759 	.remove		= atmel_ecc_remove,
760 	.id_table	= atmel_ecc_id,
761 };
762 
763 static int __init atmel_ecc_init(void)
764 {
765 	spin_lock_init(&driver_data.i2c_list_lock);
766 	INIT_LIST_HEAD(&driver_data.i2c_client_list);
767 	return i2c_add_driver(&atmel_ecc_driver);
768 }
769 
770 static void __exit atmel_ecc_exit(void)
771 {
772 	flush_scheduled_work();
773 	i2c_del_driver(&atmel_ecc_driver);
774 }
775 
776 module_init(atmel_ecc_init);
777 module_exit(atmel_ecc_exit);
778 
779 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
780 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
781 MODULE_LICENSE("GPL v2");
782