1 /* 2 * Microchip / Atmel ECC (I2C) driver. 3 * 4 * Copyright (c) 2017, Microchip Technology Inc. 5 * Author: Tudor Ambarus <tudor.ambarus@microchip.com> 6 * 7 * This software is licensed under the terms of the GNU General Public 8 * License version 2, as published by the Free Software Foundation, and 9 * may be copied, distributed, and modified under those terms. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 */ 17 18 #include <linux/bitrev.h> 19 #include <linux/crc16.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/err.h> 23 #include <linux/errno.h> 24 #include <linux/i2c.h> 25 #include <linux/init.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/of_device.h> 29 #include <linux/scatterlist.h> 30 #include <linux/slab.h> 31 #include <linux/workqueue.h> 32 #include <crypto/internal/kpp.h> 33 #include <crypto/ecdh.h> 34 #include <crypto/kpp.h> 35 #include "atmel-ecc.h" 36 37 /* Used for binding tfm objects to i2c clients. */ 38 struct atmel_ecc_driver_data { 39 struct list_head i2c_client_list; 40 spinlock_t i2c_list_lock; 41 } ____cacheline_aligned; 42 43 static struct atmel_ecc_driver_data driver_data; 44 45 /** 46 * atmel_ecc_i2c_client_priv - i2c_client private data 47 * @client : pointer to i2c client device 48 * @i2c_client_list_node: part of i2c_client_list 49 * @lock : lock for sending i2c commands 50 * @wake_token : wake token array of zeros 51 * @wake_token_sz : size in bytes of the wake_token 52 * @tfm_count : number of active crypto transformations on i2c client 53 * 54 * Reads and writes from/to the i2c client are sequential. The first byte 55 * transmitted to the device is treated as the byte size. Any attempt to send 56 * more than this number of bytes will cause the device to not ACK those bytes. 57 * After the host writes a single command byte to the input buffer, reads are 58 * prohibited until after the device completes command execution. Use a mutex 59 * when sending i2c commands. 60 */ 61 struct atmel_ecc_i2c_client_priv { 62 struct i2c_client *client; 63 struct list_head i2c_client_list_node; 64 struct mutex lock; 65 u8 wake_token[WAKE_TOKEN_MAX_SIZE]; 66 size_t wake_token_sz; 67 atomic_t tfm_count ____cacheline_aligned; 68 }; 69 70 /** 71 * atmel_ecdh_ctx - transformation context 72 * @client : pointer to i2c client device 73 * @fallback : used for unsupported curves or when user wants to use its own 74 * private key. 75 * @public_key : generated when calling set_secret(). It's the responsibility 76 * of the user to not call set_secret() while 77 * generate_public_key() or compute_shared_secret() are in flight. 78 * @curve_id : elliptic curve id 79 * @n_sz : size in bytes of the n prime 80 * @do_fallback: true when the device doesn't support the curve or when the user 81 * wants to use its own private key. 82 */ 83 struct atmel_ecdh_ctx { 84 struct i2c_client *client; 85 struct crypto_kpp *fallback; 86 const u8 *public_key; 87 unsigned int curve_id; 88 size_t n_sz; 89 bool do_fallback; 90 }; 91 92 /** 93 * atmel_ecc_work_data - data structure representing the work 94 * @ctx : transformation context. 95 * @cbk : pointer to a callback function to be invoked upon completion of this 96 * request. This has the form: 97 * callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status) 98 * where: 99 * @work_data: data structure representing the work 100 * @areq : optional pointer to an argument passed with the original 101 * request. 102 * @status : status returned from the i2c client device or i2c error. 103 * @areq: optional pointer to a user argument for use at callback time. 104 * @work: describes the task to be executed. 105 * @cmd : structure used for communicating with the device. 106 */ 107 struct atmel_ecc_work_data { 108 struct atmel_ecdh_ctx *ctx; 109 void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq, 110 int status); 111 void *areq; 112 struct work_struct work; 113 struct atmel_ecc_cmd cmd; 114 }; 115 116 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len) 117 { 118 return cpu_to_le16(bitrev16(crc16(crc, buffer, len))); 119 } 120 121 /** 122 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC. 123 * CRC16 verification of the count, opcode, param1, param2 and data bytes. 124 * The checksum is saved in little-endian format in the least significant 125 * two bytes of the command. CRC polynomial is 0x8005 and the initial register 126 * value should be zero. 127 * 128 * @cmd : structure used for communicating with the device. 129 */ 130 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd) 131 { 132 u8 *data = &cmd->count; 133 size_t len = cmd->count - CRC_SIZE; 134 u16 *crc16 = (u16 *)(data + len); 135 136 *crc16 = atmel_ecc_crc16(0, data, len); 137 } 138 139 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd) 140 { 141 cmd->word_addr = COMMAND; 142 cmd->opcode = OPCODE_READ; 143 /* 144 * Read the word from Configuration zone that contains the lock bytes 145 * (UserExtra, Selector, LockValue, LockConfig). 146 */ 147 cmd->param1 = CONFIG_ZONE; 148 cmd->param2 = DEVICE_LOCK_ADDR; 149 cmd->count = READ_COUNT; 150 151 atmel_ecc_checksum(cmd); 152 153 cmd->msecs = MAX_EXEC_TIME_READ; 154 cmd->rxsize = READ_RSP_SIZE; 155 } 156 157 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid) 158 { 159 cmd->word_addr = COMMAND; 160 cmd->count = GENKEY_COUNT; 161 cmd->opcode = OPCODE_GENKEY; 162 cmd->param1 = GENKEY_MODE_PRIVATE; 163 /* a random private key will be generated and stored in slot keyID */ 164 cmd->param2 = cpu_to_le16(keyid); 165 166 atmel_ecc_checksum(cmd); 167 168 cmd->msecs = MAX_EXEC_TIME_GENKEY; 169 cmd->rxsize = GENKEY_RSP_SIZE; 170 } 171 172 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd, 173 struct scatterlist *pubkey) 174 { 175 size_t copied; 176 177 cmd->word_addr = COMMAND; 178 cmd->count = ECDH_COUNT; 179 cmd->opcode = OPCODE_ECDH; 180 cmd->param1 = ECDH_PREFIX_MODE; 181 /* private key slot */ 182 cmd->param2 = cpu_to_le16(DATA_SLOT_2); 183 184 /* 185 * The device only supports NIST P256 ECC keys. The public key size will 186 * always be the same. Use a macro for the key size to avoid unnecessary 187 * computations. 188 */ 189 copied = sg_copy_to_buffer(pubkey, 1, cmd->data, ATMEL_ECC_PUBKEY_SIZE); 190 if (copied != ATMEL_ECC_PUBKEY_SIZE) 191 return -EINVAL; 192 193 atmel_ecc_checksum(cmd); 194 195 cmd->msecs = MAX_EXEC_TIME_ECDH; 196 cmd->rxsize = ECDH_RSP_SIZE; 197 198 return 0; 199 } 200 201 /* 202 * After wake and after execution of a command, there will be error, status, or 203 * result bytes in the device's output register that can be retrieved by the 204 * system. When the length of that group is four bytes, the codes returned are 205 * detailed in error_list. 206 */ 207 static int atmel_ecc_status(struct device *dev, u8 *status) 208 { 209 size_t err_list_len = ARRAY_SIZE(error_list); 210 int i; 211 u8 err_id = status[1]; 212 213 if (*status != STATUS_SIZE) 214 return 0; 215 216 if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR) 217 return 0; 218 219 for (i = 0; i < err_list_len; i++) 220 if (error_list[i].value == err_id) 221 break; 222 223 /* if err_id is not in the error_list then ignore it */ 224 if (i != err_list_len) { 225 dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text); 226 return err_id; 227 } 228 229 return 0; 230 } 231 232 static int atmel_ecc_wakeup(struct i2c_client *client) 233 { 234 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 235 u8 status[STATUS_RSP_SIZE]; 236 int ret; 237 238 /* 239 * The device ignores any levels or transitions on the SCL pin when the 240 * device is idle, asleep or during waking up. Don't check for error 241 * when waking up the device. 242 */ 243 i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz); 244 245 /* 246 * Wait to wake the device. Typical execution times for ecdh and genkey 247 * are around tens of milliseconds. Delta is chosen to 50 microseconds. 248 */ 249 usleep_range(TWHI_MIN, TWHI_MAX); 250 251 ret = i2c_master_recv(client, status, STATUS_SIZE); 252 if (ret < 0) 253 return ret; 254 255 return atmel_ecc_status(&client->dev, status); 256 } 257 258 static int atmel_ecc_sleep(struct i2c_client *client) 259 { 260 u8 sleep = SLEEP_TOKEN; 261 262 return i2c_master_send(client, &sleep, 1); 263 } 264 265 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq, 266 int status) 267 { 268 struct kpp_request *req = areq; 269 struct atmel_ecdh_ctx *ctx = work_data->ctx; 270 struct atmel_ecc_cmd *cmd = &work_data->cmd; 271 size_t copied; 272 size_t n_sz = ctx->n_sz; 273 274 if (status) 275 goto free_work_data; 276 277 /* copy the shared secret */ 278 copied = sg_copy_from_buffer(req->dst, 1, &cmd->data[RSP_DATA_IDX], 279 n_sz); 280 if (copied != n_sz) 281 status = -EINVAL; 282 283 /* fall through */ 284 free_work_data: 285 kzfree(work_data); 286 kpp_request_complete(req, status); 287 } 288 289 /* 290 * atmel_ecc_send_receive() - send a command to the device and receive its 291 * response. 292 * @client: i2c client device 293 * @cmd : structure used to communicate with the device 294 * 295 * After the device receives a Wake token, a watchdog counter starts within the 296 * device. After the watchdog timer expires, the device enters sleep mode 297 * regardless of whether some I/O transmission or command execution is in 298 * progress. If a command is attempted when insufficient time remains prior to 299 * watchdog timer execution, the device will return the watchdog timeout error 300 * code without attempting to execute the command. There is no way to reset the 301 * counter other than to put the device into sleep or idle mode and then 302 * wake it up again. 303 */ 304 static int atmel_ecc_send_receive(struct i2c_client *client, 305 struct atmel_ecc_cmd *cmd) 306 { 307 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 308 int ret; 309 310 mutex_lock(&i2c_priv->lock); 311 312 ret = atmel_ecc_wakeup(client); 313 if (ret) 314 goto err; 315 316 /* send the command */ 317 ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE); 318 if (ret < 0) 319 goto err; 320 321 /* delay the appropriate amount of time for command to execute */ 322 msleep(cmd->msecs); 323 324 /* receive the response */ 325 ret = i2c_master_recv(client, cmd->data, cmd->rxsize); 326 if (ret < 0) 327 goto err; 328 329 /* put the device into low-power mode */ 330 ret = atmel_ecc_sleep(client); 331 if (ret < 0) 332 goto err; 333 334 mutex_unlock(&i2c_priv->lock); 335 return atmel_ecc_status(&client->dev, cmd->data); 336 err: 337 mutex_unlock(&i2c_priv->lock); 338 return ret; 339 } 340 341 static void atmel_ecc_work_handler(struct work_struct *work) 342 { 343 struct atmel_ecc_work_data *work_data = 344 container_of(work, struct atmel_ecc_work_data, work); 345 struct atmel_ecc_cmd *cmd = &work_data->cmd; 346 struct i2c_client *client = work_data->ctx->client; 347 int status; 348 349 status = atmel_ecc_send_receive(client, cmd); 350 work_data->cbk(work_data, work_data->areq, status); 351 } 352 353 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data, 354 void (*cbk)(struct atmel_ecc_work_data *work_data, 355 void *areq, int status), 356 void *areq) 357 { 358 work_data->cbk = (void *)cbk; 359 work_data->areq = areq; 360 361 INIT_WORK(&work_data->work, atmel_ecc_work_handler); 362 schedule_work(&work_data->work); 363 } 364 365 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id) 366 { 367 if (curve_id == ECC_CURVE_NIST_P256) 368 return ATMEL_ECC_NIST_P256_N_SIZE; 369 370 return 0; 371 } 372 373 /* 374 * A random private key is generated and stored in the device. The device 375 * returns the pair public key. 376 */ 377 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, 378 unsigned int len) 379 { 380 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 381 struct atmel_ecc_cmd *cmd; 382 void *public_key; 383 struct ecdh params; 384 int ret = -ENOMEM; 385 386 /* free the old public key, if any */ 387 kfree(ctx->public_key); 388 /* make sure you don't free the old public key twice */ 389 ctx->public_key = NULL; 390 391 if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { 392 dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n"); 393 return -EINVAL; 394 } 395 396 ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id); 397 if (!ctx->n_sz || params.key_size) { 398 /* fallback to ecdh software implementation */ 399 ctx->do_fallback = true; 400 return crypto_kpp_set_secret(ctx->fallback, buf, len); 401 } 402 403 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 404 if (!cmd) 405 return -ENOMEM; 406 407 /* 408 * The device only supports NIST P256 ECC keys. The public key size will 409 * always be the same. Use a macro for the key size to avoid unnecessary 410 * computations. 411 */ 412 public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL); 413 if (!public_key) 414 goto free_cmd; 415 416 ctx->do_fallback = false; 417 ctx->curve_id = params.curve_id; 418 419 atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2); 420 421 ret = atmel_ecc_send_receive(ctx->client, cmd); 422 if (ret) 423 goto free_public_key; 424 425 /* save the public key */ 426 memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE); 427 ctx->public_key = public_key; 428 429 kfree(cmd); 430 return 0; 431 432 free_public_key: 433 kfree(public_key); 434 free_cmd: 435 kfree(cmd); 436 return ret; 437 } 438 439 static int atmel_ecdh_generate_public_key(struct kpp_request *req) 440 { 441 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); 442 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 443 size_t copied; 444 int ret = 0; 445 446 if (ctx->do_fallback) { 447 kpp_request_set_tfm(req, ctx->fallback); 448 return crypto_kpp_generate_public_key(req); 449 } 450 451 /* public key was saved at private key generation */ 452 copied = sg_copy_from_buffer(req->dst, 1, ctx->public_key, 453 ATMEL_ECC_PUBKEY_SIZE); 454 if (copied != ATMEL_ECC_PUBKEY_SIZE) 455 ret = -EINVAL; 456 457 return ret; 458 } 459 460 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req) 461 { 462 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); 463 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 464 struct atmel_ecc_work_data *work_data; 465 gfp_t gfp; 466 int ret; 467 468 if (ctx->do_fallback) { 469 kpp_request_set_tfm(req, ctx->fallback); 470 return crypto_kpp_compute_shared_secret(req); 471 } 472 473 gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : 474 GFP_ATOMIC; 475 476 work_data = kmalloc(sizeof(*work_data), gfp); 477 if (!work_data) 478 return -ENOMEM; 479 480 work_data->ctx = ctx; 481 482 ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src); 483 if (ret) 484 goto free_work_data; 485 486 atmel_ecc_enqueue(work_data, atmel_ecdh_done, req); 487 488 return -EINPROGRESS; 489 490 free_work_data: 491 kfree(work_data); 492 return ret; 493 } 494 495 static struct i2c_client *atmel_ecc_i2c_client_alloc(void) 496 { 497 struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL; 498 struct i2c_client *client = ERR_PTR(-ENODEV); 499 int min_tfm_cnt = INT_MAX; 500 int tfm_cnt; 501 502 spin_lock(&driver_data.i2c_list_lock); 503 504 if (list_empty(&driver_data.i2c_client_list)) { 505 spin_unlock(&driver_data.i2c_list_lock); 506 return ERR_PTR(-ENODEV); 507 } 508 509 list_for_each_entry(i2c_priv, &driver_data.i2c_client_list, 510 i2c_client_list_node) { 511 tfm_cnt = atomic_read(&i2c_priv->tfm_count); 512 if (tfm_cnt < min_tfm_cnt) { 513 min_tfm_cnt = tfm_cnt; 514 min_i2c_priv = i2c_priv; 515 } 516 if (!min_tfm_cnt) 517 break; 518 } 519 520 if (min_i2c_priv) { 521 atomic_inc(&min_i2c_priv->tfm_count); 522 client = min_i2c_priv->client; 523 } 524 525 spin_unlock(&driver_data.i2c_list_lock); 526 527 return client; 528 } 529 530 static void atmel_ecc_i2c_client_free(struct i2c_client *client) 531 { 532 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 533 534 atomic_dec(&i2c_priv->tfm_count); 535 } 536 537 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm) 538 { 539 const char *alg = kpp_alg_name(tfm); 540 struct crypto_kpp *fallback; 541 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 542 543 ctx->client = atmel_ecc_i2c_client_alloc(); 544 if (IS_ERR(ctx->client)) { 545 pr_err("tfm - i2c_client binding failed\n"); 546 return PTR_ERR(ctx->client); 547 } 548 549 fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK); 550 if (IS_ERR(fallback)) { 551 dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n", 552 alg, PTR_ERR(fallback)); 553 return PTR_ERR(fallback); 554 } 555 556 crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm)); 557 558 dev_info(&ctx->client->dev, "Using '%s' as fallback implementation.\n", 559 crypto_tfm_alg_driver_name(crypto_kpp_tfm(fallback))); 560 561 ctx->fallback = fallback; 562 563 return 0; 564 } 565 566 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm) 567 { 568 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 569 570 kfree(ctx->public_key); 571 crypto_free_kpp(ctx->fallback); 572 atmel_ecc_i2c_client_free(ctx->client); 573 } 574 575 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm) 576 { 577 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 578 579 if (ctx->fallback) 580 return crypto_kpp_maxsize(ctx->fallback); 581 582 /* 583 * The device only supports NIST P256 ECC keys. The public key size will 584 * always be the same. Use a macro for the key size to avoid unnecessary 585 * computations. 586 */ 587 return ATMEL_ECC_PUBKEY_SIZE; 588 } 589 590 static struct kpp_alg atmel_ecdh = { 591 .set_secret = atmel_ecdh_set_secret, 592 .generate_public_key = atmel_ecdh_generate_public_key, 593 .compute_shared_secret = atmel_ecdh_compute_shared_secret, 594 .init = atmel_ecdh_init_tfm, 595 .exit = atmel_ecdh_exit_tfm, 596 .max_size = atmel_ecdh_max_size, 597 .base = { 598 .cra_flags = CRYPTO_ALG_NEED_FALLBACK, 599 .cra_name = "ecdh", 600 .cra_driver_name = "atmel-ecdh", 601 .cra_priority = ATMEL_ECC_PRIORITY, 602 .cra_module = THIS_MODULE, 603 .cra_ctxsize = sizeof(struct atmel_ecdh_ctx), 604 }, 605 }; 606 607 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate) 608 { 609 u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC); 610 611 /* return the size of the wake_token in bytes */ 612 return DIV_ROUND_UP(no_of_bits, 8); 613 } 614 615 static int device_sanity_check(struct i2c_client *client) 616 { 617 struct atmel_ecc_cmd *cmd; 618 int ret; 619 620 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 621 if (!cmd) 622 return -ENOMEM; 623 624 atmel_ecc_init_read_cmd(cmd); 625 626 ret = atmel_ecc_send_receive(client, cmd); 627 if (ret) 628 goto free_cmd; 629 630 /* 631 * It is vital that the Configuration, Data and OTP zones be locked 632 * prior to release into the field of the system containing the device. 633 * Failure to lock these zones may permit modification of any secret 634 * keys and may lead to other security problems. 635 */ 636 if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) { 637 dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n"); 638 ret = -ENOTSUPP; 639 } 640 641 /* fall through */ 642 free_cmd: 643 kfree(cmd); 644 return ret; 645 } 646 647 static int atmel_ecc_probe(struct i2c_client *client, 648 const struct i2c_device_id *id) 649 { 650 struct atmel_ecc_i2c_client_priv *i2c_priv; 651 struct device *dev = &client->dev; 652 int ret; 653 u32 bus_clk_rate; 654 655 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 656 dev_err(dev, "I2C_FUNC_I2C not supported\n"); 657 return -ENODEV; 658 } 659 660 ret = of_property_read_u32(client->adapter->dev.of_node, 661 "clock-frequency", &bus_clk_rate); 662 if (ret) { 663 dev_err(dev, "of: failed to read clock-frequency property\n"); 664 return ret; 665 } 666 667 if (bus_clk_rate > 1000000L) { 668 dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n", 669 bus_clk_rate); 670 return -EINVAL; 671 } 672 673 i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL); 674 if (!i2c_priv) 675 return -ENOMEM; 676 677 i2c_priv->client = client; 678 mutex_init(&i2c_priv->lock); 679 680 /* 681 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate - 682 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz 683 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE. 684 */ 685 i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate); 686 687 memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token)); 688 689 atomic_set(&i2c_priv->tfm_count, 0); 690 691 i2c_set_clientdata(client, i2c_priv); 692 693 ret = device_sanity_check(client); 694 if (ret) 695 return ret; 696 697 spin_lock(&driver_data.i2c_list_lock); 698 list_add_tail(&i2c_priv->i2c_client_list_node, 699 &driver_data.i2c_client_list); 700 spin_unlock(&driver_data.i2c_list_lock); 701 702 ret = crypto_register_kpp(&atmel_ecdh); 703 if (ret) { 704 spin_lock(&driver_data.i2c_list_lock); 705 list_del(&i2c_priv->i2c_client_list_node); 706 spin_unlock(&driver_data.i2c_list_lock); 707 708 dev_err(dev, "%s alg registration failed\n", 709 atmel_ecdh.base.cra_driver_name); 710 } else { 711 dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n"); 712 } 713 714 return ret; 715 } 716 717 static int atmel_ecc_remove(struct i2c_client *client) 718 { 719 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 720 721 /* Return EBUSY if i2c client already allocated. */ 722 if (atomic_read(&i2c_priv->tfm_count)) { 723 dev_err(&client->dev, "Device is busy\n"); 724 return -EBUSY; 725 } 726 727 crypto_unregister_kpp(&atmel_ecdh); 728 729 spin_lock(&driver_data.i2c_list_lock); 730 list_del(&i2c_priv->i2c_client_list_node); 731 spin_unlock(&driver_data.i2c_list_lock); 732 733 return 0; 734 } 735 736 #ifdef CONFIG_OF 737 static const struct of_device_id atmel_ecc_dt_ids[] = { 738 { 739 .compatible = "atmel,atecc508a", 740 }, { 741 /* sentinel */ 742 } 743 }; 744 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids); 745 #endif 746 747 static const struct i2c_device_id atmel_ecc_id[] = { 748 { "atecc508a", 0 }, 749 { } 750 }; 751 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id); 752 753 static struct i2c_driver atmel_ecc_driver = { 754 .driver = { 755 .name = "atmel-ecc", 756 .of_match_table = of_match_ptr(atmel_ecc_dt_ids), 757 }, 758 .probe = atmel_ecc_probe, 759 .remove = atmel_ecc_remove, 760 .id_table = atmel_ecc_id, 761 }; 762 763 static int __init atmel_ecc_init(void) 764 { 765 spin_lock_init(&driver_data.i2c_list_lock); 766 INIT_LIST_HEAD(&driver_data.i2c_client_list); 767 return i2c_add_driver(&atmel_ecc_driver); 768 } 769 770 static void __exit atmel_ecc_exit(void) 771 { 772 flush_scheduled_work(); 773 i2c_del_driver(&atmel_ecc_driver); 774 } 775 776 module_init(atmel_ecc_init); 777 module_exit(atmel_ecc_exit); 778 779 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); 780 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); 781 MODULE_LICENSE("GPL v2"); 782