xref: /openbmc/linux/drivers/crypto/atmel-ecc.c (revision cc958441)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip / Atmel ECC (I2C) driver.
4  *
5  * Copyright (c) 2017, Microchip Technology Inc.
6  * Author: Tudor Ambarus
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/errno.h>
13 #include <linux/i2c.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 #include <linux/workqueue.h>
21 #include <crypto/internal/kpp.h>
22 #include <crypto/ecdh.h>
23 #include <crypto/kpp.h>
24 #include "atmel-i2c.h"
25 
26 static struct atmel_ecc_driver_data driver_data;
27 
28 /**
29  * struct atmel_ecdh_ctx - transformation context
30  * @client     : pointer to i2c client device
31  * @fallback   : used for unsupported curves or when user wants to use its own
32  *               private key.
33  * @public_key : generated when calling set_secret(). It's the responsibility
34  *               of the user to not call set_secret() while
35  *               generate_public_key() or compute_shared_secret() are in flight.
36  * @curve_id   : elliptic curve id
37  * @do_fallback: true when the device doesn't support the curve or when the user
38  *               wants to use its own private key.
39  */
40 struct atmel_ecdh_ctx {
41 	struct i2c_client *client;
42 	struct crypto_kpp *fallback;
43 	const u8 *public_key;
44 	unsigned int curve_id;
45 	bool do_fallback;
46 };
47 
48 static void atmel_ecdh_done(struct atmel_i2c_work_data *work_data, void *areq,
49 			    int status)
50 {
51 	struct kpp_request *req = areq;
52 	struct atmel_i2c_cmd *cmd = &work_data->cmd;
53 	size_t copied, n_sz;
54 
55 	if (status)
56 		goto free_work_data;
57 
58 	/* might want less than we've got */
59 	n_sz = min_t(size_t, ATMEL_ECC_NIST_P256_N_SIZE, req->dst_len);
60 
61 	/* copy the shared secret */
62 	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
63 				     &cmd->data[RSP_DATA_IDX], n_sz);
64 	if (copied != n_sz)
65 		status = -EINVAL;
66 
67 	/* fall through */
68 free_work_data:
69 	kfree_sensitive(work_data);
70 	kpp_request_complete(req, status);
71 }
72 
73 /*
74  * A random private key is generated and stored in the device. The device
75  * returns the pair public key.
76  */
77 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
78 				 unsigned int len)
79 {
80 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
81 	struct atmel_i2c_cmd *cmd;
82 	void *public_key;
83 	struct ecdh params;
84 	int ret = -ENOMEM;
85 
86 	/* free the old public key, if any */
87 	kfree(ctx->public_key);
88 	/* make sure you don't free the old public key twice */
89 	ctx->public_key = NULL;
90 
91 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
92 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
93 		return -EINVAL;
94 	}
95 
96 	if (params.key_size) {
97 		/* fallback to ecdh software implementation */
98 		ctx->do_fallback = true;
99 		return crypto_kpp_set_secret(ctx->fallback, buf, len);
100 	}
101 
102 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
103 	if (!cmd)
104 		return -ENOMEM;
105 
106 	/*
107 	 * The device only supports NIST P256 ECC keys. The public key size will
108 	 * always be the same. Use a macro for the key size to avoid unnecessary
109 	 * computations.
110 	 */
111 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
112 	if (!public_key)
113 		goto free_cmd;
114 
115 	ctx->do_fallback = false;
116 
117 	atmel_i2c_init_genkey_cmd(cmd, DATA_SLOT_2);
118 
119 	ret = atmel_i2c_send_receive(ctx->client, cmd);
120 	if (ret)
121 		goto free_public_key;
122 
123 	/* save the public key */
124 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
125 	ctx->public_key = public_key;
126 
127 	kfree(cmd);
128 	return 0;
129 
130 free_public_key:
131 	kfree(public_key);
132 free_cmd:
133 	kfree(cmd);
134 	return ret;
135 }
136 
137 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
138 {
139 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
140 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
141 	size_t copied, nbytes;
142 	int ret = 0;
143 
144 	if (ctx->do_fallback) {
145 		kpp_request_set_tfm(req, ctx->fallback);
146 		return crypto_kpp_generate_public_key(req);
147 	}
148 
149 	if (!ctx->public_key)
150 		return -EINVAL;
151 
152 	/* might want less than we've got */
153 	nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
154 
155 	/* public key was saved at private key generation */
156 	copied = sg_copy_from_buffer(req->dst,
157 				     sg_nents_for_len(req->dst, nbytes),
158 				     ctx->public_key, nbytes);
159 	if (copied != nbytes)
160 		ret = -EINVAL;
161 
162 	return ret;
163 }
164 
165 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
166 {
167 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
168 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
169 	struct atmel_i2c_work_data *work_data;
170 	gfp_t gfp;
171 	int ret;
172 
173 	if (ctx->do_fallback) {
174 		kpp_request_set_tfm(req, ctx->fallback);
175 		return crypto_kpp_compute_shared_secret(req);
176 	}
177 
178 	/* must have exactly two points to be on the curve */
179 	if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
180 		return -EINVAL;
181 
182 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
183 							     GFP_ATOMIC;
184 
185 	work_data = kmalloc(sizeof(*work_data), gfp);
186 	if (!work_data)
187 		return -ENOMEM;
188 
189 	work_data->ctx = ctx;
190 	work_data->client = ctx->client;
191 
192 	ret = atmel_i2c_init_ecdh_cmd(&work_data->cmd, req->src);
193 	if (ret)
194 		goto free_work_data;
195 
196 	atmel_i2c_enqueue(work_data, atmel_ecdh_done, req);
197 
198 	return -EINPROGRESS;
199 
200 free_work_data:
201 	kfree(work_data);
202 	return ret;
203 }
204 
205 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
206 {
207 	struct atmel_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
208 	struct i2c_client *client = ERR_PTR(-ENODEV);
209 	int min_tfm_cnt = INT_MAX;
210 	int tfm_cnt;
211 
212 	spin_lock(&driver_data.i2c_list_lock);
213 
214 	if (list_empty(&driver_data.i2c_client_list)) {
215 		spin_unlock(&driver_data.i2c_list_lock);
216 		return ERR_PTR(-ENODEV);
217 	}
218 
219 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
220 			    i2c_client_list_node) {
221 		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
222 		if (tfm_cnt < min_tfm_cnt) {
223 			min_tfm_cnt = tfm_cnt;
224 			min_i2c_priv = i2c_priv;
225 		}
226 		if (!min_tfm_cnt)
227 			break;
228 	}
229 
230 	if (min_i2c_priv) {
231 		atomic_inc(&min_i2c_priv->tfm_count);
232 		client = min_i2c_priv->client;
233 	}
234 
235 	spin_unlock(&driver_data.i2c_list_lock);
236 
237 	return client;
238 }
239 
240 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
241 {
242 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
243 
244 	atomic_dec(&i2c_priv->tfm_count);
245 }
246 
247 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
248 {
249 	const char *alg = kpp_alg_name(tfm);
250 	struct crypto_kpp *fallback;
251 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
252 
253 	ctx->curve_id = ECC_CURVE_NIST_P256;
254 	ctx->client = atmel_ecc_i2c_client_alloc();
255 	if (IS_ERR(ctx->client)) {
256 		pr_err("tfm - i2c_client binding failed\n");
257 		return PTR_ERR(ctx->client);
258 	}
259 
260 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
261 	if (IS_ERR(fallback)) {
262 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
263 			alg, PTR_ERR(fallback));
264 		return PTR_ERR(fallback);
265 	}
266 
267 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
268 	ctx->fallback = fallback;
269 
270 	return 0;
271 }
272 
273 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
274 {
275 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
276 
277 	kfree(ctx->public_key);
278 	crypto_free_kpp(ctx->fallback);
279 	atmel_ecc_i2c_client_free(ctx->client);
280 }
281 
282 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
283 {
284 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
285 
286 	if (ctx->fallback)
287 		return crypto_kpp_maxsize(ctx->fallback);
288 
289 	/*
290 	 * The device only supports NIST P256 ECC keys. The public key size will
291 	 * always be the same. Use a macro for the key size to avoid unnecessary
292 	 * computations.
293 	 */
294 	return ATMEL_ECC_PUBKEY_SIZE;
295 }
296 
297 static struct kpp_alg atmel_ecdh_nist_p256 = {
298 	.set_secret = atmel_ecdh_set_secret,
299 	.generate_public_key = atmel_ecdh_generate_public_key,
300 	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
301 	.init = atmel_ecdh_init_tfm,
302 	.exit = atmel_ecdh_exit_tfm,
303 	.max_size = atmel_ecdh_max_size,
304 	.base = {
305 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
306 		.cra_name = "ecdh-nist-p256",
307 		.cra_driver_name = "atmel-ecdh",
308 		.cra_priority = ATMEL_ECC_PRIORITY,
309 		.cra_module = THIS_MODULE,
310 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
311 	},
312 };
313 
314 static int atmel_ecc_probe(struct i2c_client *client)
315 {
316 	struct atmel_i2c_client_priv *i2c_priv;
317 	int ret;
318 
319 	ret = atmel_i2c_probe(client);
320 	if (ret)
321 		return ret;
322 
323 	i2c_priv = i2c_get_clientdata(client);
324 
325 	spin_lock(&driver_data.i2c_list_lock);
326 	list_add_tail(&i2c_priv->i2c_client_list_node,
327 		      &driver_data.i2c_client_list);
328 	spin_unlock(&driver_data.i2c_list_lock);
329 
330 	ret = crypto_register_kpp(&atmel_ecdh_nist_p256);
331 	if (ret) {
332 		spin_lock(&driver_data.i2c_list_lock);
333 		list_del(&i2c_priv->i2c_client_list_node);
334 		spin_unlock(&driver_data.i2c_list_lock);
335 
336 		dev_err(&client->dev, "%s alg registration failed\n",
337 			atmel_ecdh_nist_p256.base.cra_driver_name);
338 	} else {
339 		dev_info(&client->dev, "atmel ecc algorithms registered in /proc/crypto\n");
340 	}
341 
342 	return ret;
343 }
344 
345 static void atmel_ecc_remove(struct i2c_client *client)
346 {
347 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
348 
349 	/* Return EBUSY if i2c client already allocated. */
350 	if (atomic_read(&i2c_priv->tfm_count)) {
351 		/*
352 		 * After we return here, the memory backing the device is freed.
353 		 * That happens no matter what the return value of this function
354 		 * is because in the Linux device model there is no error
355 		 * handling for unbinding a driver.
356 		 * If there is still some action pending, it probably involves
357 		 * accessing the freed memory.
358 		 */
359 		dev_emerg(&client->dev, "Device is busy, expect memory corruption.\n");
360 		return;
361 	}
362 
363 	crypto_unregister_kpp(&atmel_ecdh_nist_p256);
364 
365 	spin_lock(&driver_data.i2c_list_lock);
366 	list_del(&i2c_priv->i2c_client_list_node);
367 	spin_unlock(&driver_data.i2c_list_lock);
368 }
369 
370 #ifdef CONFIG_OF
371 static const struct of_device_id atmel_ecc_dt_ids[] = {
372 	{
373 		.compatible = "atmel,atecc508a",
374 	}, {
375 		/* sentinel */
376 	}
377 };
378 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
379 #endif
380 
381 static const struct i2c_device_id atmel_ecc_id[] = {
382 	{ "atecc508a", 0 },
383 	{ }
384 };
385 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
386 
387 static struct i2c_driver atmel_ecc_driver = {
388 	.driver = {
389 		.name	= "atmel-ecc",
390 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
391 	},
392 	.probe		= atmel_ecc_probe,
393 	.remove		= atmel_ecc_remove,
394 	.id_table	= atmel_ecc_id,
395 };
396 
397 static int __init atmel_ecc_init(void)
398 {
399 	spin_lock_init(&driver_data.i2c_list_lock);
400 	INIT_LIST_HEAD(&driver_data.i2c_client_list);
401 	return i2c_add_driver(&atmel_ecc_driver);
402 }
403 
404 static void __exit atmel_ecc_exit(void)
405 {
406 	atmel_i2c_flush_queue();
407 	i2c_del_driver(&atmel_ecc_driver);
408 }
409 
410 module_init(atmel_ecc_init);
411 module_exit(atmel_ecc_exit);
412 
413 MODULE_AUTHOR("Tudor Ambarus");
414 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
415 MODULE_LICENSE("GPL v2");
416