xref: /openbmc/linux/drivers/crypto/atmel-ecc.c (revision 32ced09d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip / Atmel ECC (I2C) driver.
4  *
5  * Copyright (c) 2017, Microchip Technology Inc.
6  * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
7  */
8 
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/errno.h>
13 #include <linux/i2c.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 #include <linux/workqueue.h>
21 #include <crypto/internal/kpp.h>
22 #include <crypto/ecdh.h>
23 #include <crypto/kpp.h>
24 #include "atmel-i2c.h"
25 
26 static struct atmel_ecc_driver_data driver_data;
27 
28 /**
29  * atmel_ecdh_ctx - transformation context
30  * @client     : pointer to i2c client device
31  * @fallback   : used for unsupported curves or when user wants to use its own
32  *               private key.
33  * @public_key : generated when calling set_secret(). It's the responsibility
34  *               of the user to not call set_secret() while
35  *               generate_public_key() or compute_shared_secret() are in flight.
36  * @curve_id   : elliptic curve id
37  * @n_sz       : size in bytes of the n prime
38  * @do_fallback: true when the device doesn't support the curve or when the user
39  *               wants to use its own private key.
40  */
41 struct atmel_ecdh_ctx {
42 	struct i2c_client *client;
43 	struct crypto_kpp *fallback;
44 	const u8 *public_key;
45 	unsigned int curve_id;
46 	size_t n_sz;
47 	bool do_fallback;
48 };
49 
50 static void atmel_ecdh_done(struct atmel_i2c_work_data *work_data, void *areq,
51 			    int status)
52 {
53 	struct kpp_request *req = areq;
54 	struct atmel_ecdh_ctx *ctx = work_data->ctx;
55 	struct atmel_i2c_cmd *cmd = &work_data->cmd;
56 	size_t copied, n_sz;
57 
58 	if (status)
59 		goto free_work_data;
60 
61 	/* might want less than we've got */
62 	n_sz = min_t(size_t, ctx->n_sz, req->dst_len);
63 
64 	/* copy the shared secret */
65 	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz),
66 				     &cmd->data[RSP_DATA_IDX], n_sz);
67 	if (copied != n_sz)
68 		status = -EINVAL;
69 
70 	/* fall through */
71 free_work_data:
72 	kzfree(work_data);
73 	kpp_request_complete(req, status);
74 }
75 
76 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
77 {
78 	if (curve_id == ECC_CURVE_NIST_P256)
79 		return ATMEL_ECC_NIST_P256_N_SIZE;
80 
81 	return 0;
82 }
83 
84 /*
85  * A random private key is generated and stored in the device. The device
86  * returns the pair public key.
87  */
88 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
89 				 unsigned int len)
90 {
91 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
92 	struct atmel_i2c_cmd *cmd;
93 	void *public_key;
94 	struct ecdh params;
95 	int ret = -ENOMEM;
96 
97 	/* free the old public key, if any */
98 	kfree(ctx->public_key);
99 	/* make sure you don't free the old public key twice */
100 	ctx->public_key = NULL;
101 
102 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
103 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
104 		return -EINVAL;
105 	}
106 
107 	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
108 	if (!ctx->n_sz || params.key_size) {
109 		/* fallback to ecdh software implementation */
110 		ctx->do_fallback = true;
111 		return crypto_kpp_set_secret(ctx->fallback, buf, len);
112 	}
113 
114 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
115 	if (!cmd)
116 		return -ENOMEM;
117 
118 	/*
119 	 * The device only supports NIST P256 ECC keys. The public key size will
120 	 * always be the same. Use a macro for the key size to avoid unnecessary
121 	 * computations.
122 	 */
123 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
124 	if (!public_key)
125 		goto free_cmd;
126 
127 	ctx->do_fallback = false;
128 	ctx->curve_id = params.curve_id;
129 
130 	atmel_i2c_init_genkey_cmd(cmd, DATA_SLOT_2);
131 
132 	ret = atmel_i2c_send_receive(ctx->client, cmd);
133 	if (ret)
134 		goto free_public_key;
135 
136 	/* save the public key */
137 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
138 	ctx->public_key = public_key;
139 
140 	kfree(cmd);
141 	return 0;
142 
143 free_public_key:
144 	kfree(public_key);
145 free_cmd:
146 	kfree(cmd);
147 	return ret;
148 }
149 
150 static int atmel_ecdh_generate_public_key(struct kpp_request *req)
151 {
152 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
153 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
154 	size_t copied, nbytes;
155 	int ret = 0;
156 
157 	if (ctx->do_fallback) {
158 		kpp_request_set_tfm(req, ctx->fallback);
159 		return crypto_kpp_generate_public_key(req);
160 	}
161 
162 	if (!ctx->public_key)
163 		return -EINVAL;
164 
165 	/* might want less than we've got */
166 	nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len);
167 
168 	/* public key was saved at private key generation */
169 	copied = sg_copy_from_buffer(req->dst,
170 				     sg_nents_for_len(req->dst, nbytes),
171 				     ctx->public_key, nbytes);
172 	if (copied != nbytes)
173 		ret = -EINVAL;
174 
175 	return ret;
176 }
177 
178 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
179 {
180 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
181 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
182 	struct atmel_i2c_work_data *work_data;
183 	gfp_t gfp;
184 	int ret;
185 
186 	if (ctx->do_fallback) {
187 		kpp_request_set_tfm(req, ctx->fallback);
188 		return crypto_kpp_compute_shared_secret(req);
189 	}
190 
191 	/* must have exactly two points to be on the curve */
192 	if (req->src_len != ATMEL_ECC_PUBKEY_SIZE)
193 		return -EINVAL;
194 
195 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
196 							     GFP_ATOMIC;
197 
198 	work_data = kmalloc(sizeof(*work_data), gfp);
199 	if (!work_data)
200 		return -ENOMEM;
201 
202 	work_data->ctx = ctx;
203 	work_data->client = ctx->client;
204 
205 	ret = atmel_i2c_init_ecdh_cmd(&work_data->cmd, req->src);
206 	if (ret)
207 		goto free_work_data;
208 
209 	atmel_i2c_enqueue(work_data, atmel_ecdh_done, req);
210 
211 	return -EINPROGRESS;
212 
213 free_work_data:
214 	kfree(work_data);
215 	return ret;
216 }
217 
218 static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
219 {
220 	struct atmel_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
221 	struct i2c_client *client = ERR_PTR(-ENODEV);
222 	int min_tfm_cnt = INT_MAX;
223 	int tfm_cnt;
224 
225 	spin_lock(&driver_data.i2c_list_lock);
226 
227 	if (list_empty(&driver_data.i2c_client_list)) {
228 		spin_unlock(&driver_data.i2c_list_lock);
229 		return ERR_PTR(-ENODEV);
230 	}
231 
232 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
233 			    i2c_client_list_node) {
234 		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
235 		if (tfm_cnt < min_tfm_cnt) {
236 			min_tfm_cnt = tfm_cnt;
237 			min_i2c_priv = i2c_priv;
238 		}
239 		if (!min_tfm_cnt)
240 			break;
241 	}
242 
243 	if (min_i2c_priv) {
244 		atomic_inc(&min_i2c_priv->tfm_count);
245 		client = min_i2c_priv->client;
246 	}
247 
248 	spin_unlock(&driver_data.i2c_list_lock);
249 
250 	return client;
251 }
252 
253 static void atmel_ecc_i2c_client_free(struct i2c_client *client)
254 {
255 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
256 
257 	atomic_dec(&i2c_priv->tfm_count);
258 }
259 
260 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
261 {
262 	const char *alg = kpp_alg_name(tfm);
263 	struct crypto_kpp *fallback;
264 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
265 
266 	ctx->client = atmel_ecc_i2c_client_alloc();
267 	if (IS_ERR(ctx->client)) {
268 		pr_err("tfm - i2c_client binding failed\n");
269 		return PTR_ERR(ctx->client);
270 	}
271 
272 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
273 	if (IS_ERR(fallback)) {
274 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
275 			alg, PTR_ERR(fallback));
276 		return PTR_ERR(fallback);
277 	}
278 
279 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
280 	ctx->fallback = fallback;
281 
282 	return 0;
283 }
284 
285 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
286 {
287 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
288 
289 	kfree(ctx->public_key);
290 	crypto_free_kpp(ctx->fallback);
291 	atmel_ecc_i2c_client_free(ctx->client);
292 }
293 
294 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
295 {
296 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
297 
298 	if (ctx->fallback)
299 		return crypto_kpp_maxsize(ctx->fallback);
300 
301 	/*
302 	 * The device only supports NIST P256 ECC keys. The public key size will
303 	 * always be the same. Use a macro for the key size to avoid unnecessary
304 	 * computations.
305 	 */
306 	return ATMEL_ECC_PUBKEY_SIZE;
307 }
308 
309 static struct kpp_alg atmel_ecdh = {
310 	.set_secret = atmel_ecdh_set_secret,
311 	.generate_public_key = atmel_ecdh_generate_public_key,
312 	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
313 	.init = atmel_ecdh_init_tfm,
314 	.exit = atmel_ecdh_exit_tfm,
315 	.max_size = atmel_ecdh_max_size,
316 	.base = {
317 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
318 		.cra_name = "ecdh",
319 		.cra_driver_name = "atmel-ecdh",
320 		.cra_priority = ATMEL_ECC_PRIORITY,
321 		.cra_module = THIS_MODULE,
322 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
323 	},
324 };
325 
326 static int atmel_ecc_probe(struct i2c_client *client,
327 			   const struct i2c_device_id *id)
328 {
329 	struct atmel_i2c_client_priv *i2c_priv;
330 	int ret;
331 
332 	ret = atmel_i2c_probe(client, id);
333 	if (ret)
334 		return ret;
335 
336 	i2c_priv = i2c_get_clientdata(client);
337 
338 	spin_lock(&driver_data.i2c_list_lock);
339 	list_add_tail(&i2c_priv->i2c_client_list_node,
340 		      &driver_data.i2c_client_list);
341 	spin_unlock(&driver_data.i2c_list_lock);
342 
343 	ret = crypto_register_kpp(&atmel_ecdh);
344 	if (ret) {
345 		spin_lock(&driver_data.i2c_list_lock);
346 		list_del(&i2c_priv->i2c_client_list_node);
347 		spin_unlock(&driver_data.i2c_list_lock);
348 
349 		dev_err(&client->dev, "%s alg registration failed\n",
350 			atmel_ecdh.base.cra_driver_name);
351 	} else {
352 		dev_info(&client->dev, "atmel ecc algorithms registered in /proc/crypto\n");
353 	}
354 
355 	return ret;
356 }
357 
358 static int atmel_ecc_remove(struct i2c_client *client)
359 {
360 	struct atmel_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
361 
362 	/* Return EBUSY if i2c client already allocated. */
363 	if (atomic_read(&i2c_priv->tfm_count)) {
364 		dev_err(&client->dev, "Device is busy\n");
365 		return -EBUSY;
366 	}
367 
368 	crypto_unregister_kpp(&atmel_ecdh);
369 
370 	spin_lock(&driver_data.i2c_list_lock);
371 	list_del(&i2c_priv->i2c_client_list_node);
372 	spin_unlock(&driver_data.i2c_list_lock);
373 
374 	return 0;
375 }
376 
377 #ifdef CONFIG_OF
378 static const struct of_device_id atmel_ecc_dt_ids[] = {
379 	{
380 		.compatible = "atmel,atecc508a",
381 	}, {
382 		/* sentinel */
383 	}
384 };
385 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
386 #endif
387 
388 static const struct i2c_device_id atmel_ecc_id[] = {
389 	{ "atecc508a", 0 },
390 	{ }
391 };
392 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
393 
394 static struct i2c_driver atmel_ecc_driver = {
395 	.driver = {
396 		.name	= "atmel-ecc",
397 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
398 	},
399 	.probe		= atmel_ecc_probe,
400 	.remove		= atmel_ecc_remove,
401 	.id_table	= atmel_ecc_id,
402 };
403 
404 static int __init atmel_ecc_init(void)
405 {
406 	spin_lock_init(&driver_data.i2c_list_lock);
407 	INIT_LIST_HEAD(&driver_data.i2c_client_list);
408 	return i2c_add_driver(&atmel_ecc_driver);
409 }
410 
411 static void __exit atmel_ecc_exit(void)
412 {
413 	flush_scheduled_work();
414 	i2c_del_driver(&atmel_ecc_driver);
415 }
416 
417 module_init(atmel_ecc_init);
418 module_exit(atmel_ecc_exit);
419 
420 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
421 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
422 MODULE_LICENSE("GPL v2");
423