1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Microchip / Atmel ECC (I2C) driver. 4 * 5 * Copyright (c) 2017, Microchip Technology Inc. 6 * Author: Tudor Ambarus <tudor.ambarus@microchip.com> 7 */ 8 9 #include <linux/bitrev.h> 10 #include <linux/crc16.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/i2c.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/of_device.h> 20 #include <linux/scatterlist.h> 21 #include <linux/slab.h> 22 #include <linux/workqueue.h> 23 #include <crypto/internal/kpp.h> 24 #include <crypto/ecdh.h> 25 #include <crypto/kpp.h> 26 #include "atmel-ecc.h" 27 28 /* Used for binding tfm objects to i2c clients. */ 29 struct atmel_ecc_driver_data { 30 struct list_head i2c_client_list; 31 spinlock_t i2c_list_lock; 32 } ____cacheline_aligned; 33 34 static struct atmel_ecc_driver_data driver_data; 35 36 /** 37 * atmel_ecc_i2c_client_priv - i2c_client private data 38 * @client : pointer to i2c client device 39 * @i2c_client_list_node: part of i2c_client_list 40 * @lock : lock for sending i2c commands 41 * @wake_token : wake token array of zeros 42 * @wake_token_sz : size in bytes of the wake_token 43 * @tfm_count : number of active crypto transformations on i2c client 44 * 45 * Reads and writes from/to the i2c client are sequential. The first byte 46 * transmitted to the device is treated as the byte size. Any attempt to send 47 * more than this number of bytes will cause the device to not ACK those bytes. 48 * After the host writes a single command byte to the input buffer, reads are 49 * prohibited until after the device completes command execution. Use a mutex 50 * when sending i2c commands. 51 */ 52 struct atmel_ecc_i2c_client_priv { 53 struct i2c_client *client; 54 struct list_head i2c_client_list_node; 55 struct mutex lock; 56 u8 wake_token[WAKE_TOKEN_MAX_SIZE]; 57 size_t wake_token_sz; 58 atomic_t tfm_count ____cacheline_aligned; 59 }; 60 61 /** 62 * atmel_ecdh_ctx - transformation context 63 * @client : pointer to i2c client device 64 * @fallback : used for unsupported curves or when user wants to use its own 65 * private key. 66 * @public_key : generated when calling set_secret(). It's the responsibility 67 * of the user to not call set_secret() while 68 * generate_public_key() or compute_shared_secret() are in flight. 69 * @curve_id : elliptic curve id 70 * @n_sz : size in bytes of the n prime 71 * @do_fallback: true when the device doesn't support the curve or when the user 72 * wants to use its own private key. 73 */ 74 struct atmel_ecdh_ctx { 75 struct i2c_client *client; 76 struct crypto_kpp *fallback; 77 const u8 *public_key; 78 unsigned int curve_id; 79 size_t n_sz; 80 bool do_fallback; 81 }; 82 83 /** 84 * atmel_ecc_work_data - data structure representing the work 85 * @ctx : transformation context. 86 * @cbk : pointer to a callback function to be invoked upon completion of this 87 * request. This has the form: 88 * callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status) 89 * where: 90 * @work_data: data structure representing the work 91 * @areq : optional pointer to an argument passed with the original 92 * request. 93 * @status : status returned from the i2c client device or i2c error. 94 * @areq: optional pointer to a user argument for use at callback time. 95 * @work: describes the task to be executed. 96 * @cmd : structure used for communicating with the device. 97 */ 98 struct atmel_ecc_work_data { 99 struct atmel_ecdh_ctx *ctx; 100 void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq, 101 int status); 102 void *areq; 103 struct work_struct work; 104 struct atmel_ecc_cmd cmd; 105 }; 106 107 static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len) 108 { 109 return cpu_to_le16(bitrev16(crc16(crc, buffer, len))); 110 } 111 112 /** 113 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC. 114 * CRC16 verification of the count, opcode, param1, param2 and data bytes. 115 * The checksum is saved in little-endian format in the least significant 116 * two bytes of the command. CRC polynomial is 0x8005 and the initial register 117 * value should be zero. 118 * 119 * @cmd : structure used for communicating with the device. 120 */ 121 static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd) 122 { 123 u8 *data = &cmd->count; 124 size_t len = cmd->count - CRC_SIZE; 125 u16 *crc16 = (u16 *)(data + len); 126 127 *crc16 = atmel_ecc_crc16(0, data, len); 128 } 129 130 static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd) 131 { 132 cmd->word_addr = COMMAND; 133 cmd->opcode = OPCODE_READ; 134 /* 135 * Read the word from Configuration zone that contains the lock bytes 136 * (UserExtra, Selector, LockValue, LockConfig). 137 */ 138 cmd->param1 = CONFIG_ZONE; 139 cmd->param2 = DEVICE_LOCK_ADDR; 140 cmd->count = READ_COUNT; 141 142 atmel_ecc_checksum(cmd); 143 144 cmd->msecs = MAX_EXEC_TIME_READ; 145 cmd->rxsize = READ_RSP_SIZE; 146 } 147 148 static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid) 149 { 150 cmd->word_addr = COMMAND; 151 cmd->count = GENKEY_COUNT; 152 cmd->opcode = OPCODE_GENKEY; 153 cmd->param1 = GENKEY_MODE_PRIVATE; 154 /* a random private key will be generated and stored in slot keyID */ 155 cmd->param2 = cpu_to_le16(keyid); 156 157 atmel_ecc_checksum(cmd); 158 159 cmd->msecs = MAX_EXEC_TIME_GENKEY; 160 cmd->rxsize = GENKEY_RSP_SIZE; 161 } 162 163 static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd, 164 struct scatterlist *pubkey) 165 { 166 size_t copied; 167 168 cmd->word_addr = COMMAND; 169 cmd->count = ECDH_COUNT; 170 cmd->opcode = OPCODE_ECDH; 171 cmd->param1 = ECDH_PREFIX_MODE; 172 /* private key slot */ 173 cmd->param2 = cpu_to_le16(DATA_SLOT_2); 174 175 /* 176 * The device only supports NIST P256 ECC keys. The public key size will 177 * always be the same. Use a macro for the key size to avoid unnecessary 178 * computations. 179 */ 180 copied = sg_copy_to_buffer(pubkey, 181 sg_nents_for_len(pubkey, 182 ATMEL_ECC_PUBKEY_SIZE), 183 cmd->data, ATMEL_ECC_PUBKEY_SIZE); 184 if (copied != ATMEL_ECC_PUBKEY_SIZE) 185 return -EINVAL; 186 187 atmel_ecc_checksum(cmd); 188 189 cmd->msecs = MAX_EXEC_TIME_ECDH; 190 cmd->rxsize = ECDH_RSP_SIZE; 191 192 return 0; 193 } 194 195 /* 196 * After wake and after execution of a command, there will be error, status, or 197 * result bytes in the device's output register that can be retrieved by the 198 * system. When the length of that group is four bytes, the codes returned are 199 * detailed in error_list. 200 */ 201 static int atmel_ecc_status(struct device *dev, u8 *status) 202 { 203 size_t err_list_len = ARRAY_SIZE(error_list); 204 int i; 205 u8 err_id = status[1]; 206 207 if (*status != STATUS_SIZE) 208 return 0; 209 210 if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR) 211 return 0; 212 213 for (i = 0; i < err_list_len; i++) 214 if (error_list[i].value == err_id) 215 break; 216 217 /* if err_id is not in the error_list then ignore it */ 218 if (i != err_list_len) { 219 dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text); 220 return err_id; 221 } 222 223 return 0; 224 } 225 226 static int atmel_ecc_wakeup(struct i2c_client *client) 227 { 228 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 229 u8 status[STATUS_RSP_SIZE]; 230 int ret; 231 232 /* 233 * The device ignores any levels or transitions on the SCL pin when the 234 * device is idle, asleep or during waking up. Don't check for error 235 * when waking up the device. 236 */ 237 i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz); 238 239 /* 240 * Wait to wake the device. Typical execution times for ecdh and genkey 241 * are around tens of milliseconds. Delta is chosen to 50 microseconds. 242 */ 243 usleep_range(TWHI_MIN, TWHI_MAX); 244 245 ret = i2c_master_recv(client, status, STATUS_SIZE); 246 if (ret < 0) 247 return ret; 248 249 return atmel_ecc_status(&client->dev, status); 250 } 251 252 static int atmel_ecc_sleep(struct i2c_client *client) 253 { 254 u8 sleep = SLEEP_TOKEN; 255 256 return i2c_master_send(client, &sleep, 1); 257 } 258 259 static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq, 260 int status) 261 { 262 struct kpp_request *req = areq; 263 struct atmel_ecdh_ctx *ctx = work_data->ctx; 264 struct atmel_ecc_cmd *cmd = &work_data->cmd; 265 size_t copied, n_sz; 266 267 if (status) 268 goto free_work_data; 269 270 /* might want less than we've got */ 271 n_sz = min_t(size_t, ctx->n_sz, req->dst_len); 272 273 /* copy the shared secret */ 274 copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz), 275 &cmd->data[RSP_DATA_IDX], n_sz); 276 if (copied != n_sz) 277 status = -EINVAL; 278 279 /* fall through */ 280 free_work_data: 281 kzfree(work_data); 282 kpp_request_complete(req, status); 283 } 284 285 /* 286 * atmel_ecc_send_receive() - send a command to the device and receive its 287 * response. 288 * @client: i2c client device 289 * @cmd : structure used to communicate with the device 290 * 291 * After the device receives a Wake token, a watchdog counter starts within the 292 * device. After the watchdog timer expires, the device enters sleep mode 293 * regardless of whether some I/O transmission or command execution is in 294 * progress. If a command is attempted when insufficient time remains prior to 295 * watchdog timer execution, the device will return the watchdog timeout error 296 * code without attempting to execute the command. There is no way to reset the 297 * counter other than to put the device into sleep or idle mode and then 298 * wake it up again. 299 */ 300 static int atmel_ecc_send_receive(struct i2c_client *client, 301 struct atmel_ecc_cmd *cmd) 302 { 303 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 304 int ret; 305 306 mutex_lock(&i2c_priv->lock); 307 308 ret = atmel_ecc_wakeup(client); 309 if (ret) 310 goto err; 311 312 /* send the command */ 313 ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE); 314 if (ret < 0) 315 goto err; 316 317 /* delay the appropriate amount of time for command to execute */ 318 msleep(cmd->msecs); 319 320 /* receive the response */ 321 ret = i2c_master_recv(client, cmd->data, cmd->rxsize); 322 if (ret < 0) 323 goto err; 324 325 /* put the device into low-power mode */ 326 ret = atmel_ecc_sleep(client); 327 if (ret < 0) 328 goto err; 329 330 mutex_unlock(&i2c_priv->lock); 331 return atmel_ecc_status(&client->dev, cmd->data); 332 err: 333 mutex_unlock(&i2c_priv->lock); 334 return ret; 335 } 336 337 static void atmel_ecc_work_handler(struct work_struct *work) 338 { 339 struct atmel_ecc_work_data *work_data = 340 container_of(work, struct atmel_ecc_work_data, work); 341 struct atmel_ecc_cmd *cmd = &work_data->cmd; 342 struct i2c_client *client = work_data->ctx->client; 343 int status; 344 345 status = atmel_ecc_send_receive(client, cmd); 346 work_data->cbk(work_data, work_data->areq, status); 347 } 348 349 static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data, 350 void (*cbk)(struct atmel_ecc_work_data *work_data, 351 void *areq, int status), 352 void *areq) 353 { 354 work_data->cbk = (void *)cbk; 355 work_data->areq = areq; 356 357 INIT_WORK(&work_data->work, atmel_ecc_work_handler); 358 schedule_work(&work_data->work); 359 } 360 361 static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id) 362 { 363 if (curve_id == ECC_CURVE_NIST_P256) 364 return ATMEL_ECC_NIST_P256_N_SIZE; 365 366 return 0; 367 } 368 369 /* 370 * A random private key is generated and stored in the device. The device 371 * returns the pair public key. 372 */ 373 static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, 374 unsigned int len) 375 { 376 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 377 struct atmel_ecc_cmd *cmd; 378 void *public_key; 379 struct ecdh params; 380 int ret = -ENOMEM; 381 382 /* free the old public key, if any */ 383 kfree(ctx->public_key); 384 /* make sure you don't free the old public key twice */ 385 ctx->public_key = NULL; 386 387 if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { 388 dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n"); 389 return -EINVAL; 390 } 391 392 ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id); 393 if (!ctx->n_sz || params.key_size) { 394 /* fallback to ecdh software implementation */ 395 ctx->do_fallback = true; 396 return crypto_kpp_set_secret(ctx->fallback, buf, len); 397 } 398 399 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 400 if (!cmd) 401 return -ENOMEM; 402 403 /* 404 * The device only supports NIST P256 ECC keys. The public key size will 405 * always be the same. Use a macro for the key size to avoid unnecessary 406 * computations. 407 */ 408 public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL); 409 if (!public_key) 410 goto free_cmd; 411 412 ctx->do_fallback = false; 413 ctx->curve_id = params.curve_id; 414 415 atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2); 416 417 ret = atmel_ecc_send_receive(ctx->client, cmd); 418 if (ret) 419 goto free_public_key; 420 421 /* save the public key */ 422 memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE); 423 ctx->public_key = public_key; 424 425 kfree(cmd); 426 return 0; 427 428 free_public_key: 429 kfree(public_key); 430 free_cmd: 431 kfree(cmd); 432 return ret; 433 } 434 435 static int atmel_ecdh_generate_public_key(struct kpp_request *req) 436 { 437 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); 438 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 439 size_t copied, nbytes; 440 int ret = 0; 441 442 if (ctx->do_fallback) { 443 kpp_request_set_tfm(req, ctx->fallback); 444 return crypto_kpp_generate_public_key(req); 445 } 446 447 /* might want less than we've got */ 448 nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len); 449 450 /* public key was saved at private key generation */ 451 copied = sg_copy_from_buffer(req->dst, 452 sg_nents_for_len(req->dst, nbytes), 453 ctx->public_key, nbytes); 454 if (copied != nbytes) 455 ret = -EINVAL; 456 457 return ret; 458 } 459 460 static int atmel_ecdh_compute_shared_secret(struct kpp_request *req) 461 { 462 struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); 463 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 464 struct atmel_ecc_work_data *work_data; 465 gfp_t gfp; 466 int ret; 467 468 if (ctx->do_fallback) { 469 kpp_request_set_tfm(req, ctx->fallback); 470 return crypto_kpp_compute_shared_secret(req); 471 } 472 473 /* must have exactly two points to be on the curve */ 474 if (req->src_len != ATMEL_ECC_PUBKEY_SIZE) 475 return -EINVAL; 476 477 gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : 478 GFP_ATOMIC; 479 480 work_data = kmalloc(sizeof(*work_data), gfp); 481 if (!work_data) 482 return -ENOMEM; 483 484 work_data->ctx = ctx; 485 486 ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src); 487 if (ret) 488 goto free_work_data; 489 490 atmel_ecc_enqueue(work_data, atmel_ecdh_done, req); 491 492 return -EINPROGRESS; 493 494 free_work_data: 495 kfree(work_data); 496 return ret; 497 } 498 499 static struct i2c_client *atmel_ecc_i2c_client_alloc(void) 500 { 501 struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL; 502 struct i2c_client *client = ERR_PTR(-ENODEV); 503 int min_tfm_cnt = INT_MAX; 504 int tfm_cnt; 505 506 spin_lock(&driver_data.i2c_list_lock); 507 508 if (list_empty(&driver_data.i2c_client_list)) { 509 spin_unlock(&driver_data.i2c_list_lock); 510 return ERR_PTR(-ENODEV); 511 } 512 513 list_for_each_entry(i2c_priv, &driver_data.i2c_client_list, 514 i2c_client_list_node) { 515 tfm_cnt = atomic_read(&i2c_priv->tfm_count); 516 if (tfm_cnt < min_tfm_cnt) { 517 min_tfm_cnt = tfm_cnt; 518 min_i2c_priv = i2c_priv; 519 } 520 if (!min_tfm_cnt) 521 break; 522 } 523 524 if (min_i2c_priv) { 525 atomic_inc(&min_i2c_priv->tfm_count); 526 client = min_i2c_priv->client; 527 } 528 529 spin_unlock(&driver_data.i2c_list_lock); 530 531 return client; 532 } 533 534 static void atmel_ecc_i2c_client_free(struct i2c_client *client) 535 { 536 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 537 538 atomic_dec(&i2c_priv->tfm_count); 539 } 540 541 static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm) 542 { 543 const char *alg = kpp_alg_name(tfm); 544 struct crypto_kpp *fallback; 545 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 546 547 ctx->client = atmel_ecc_i2c_client_alloc(); 548 if (IS_ERR(ctx->client)) { 549 pr_err("tfm - i2c_client binding failed\n"); 550 return PTR_ERR(ctx->client); 551 } 552 553 fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK); 554 if (IS_ERR(fallback)) { 555 dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n", 556 alg, PTR_ERR(fallback)); 557 return PTR_ERR(fallback); 558 } 559 560 crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm)); 561 ctx->fallback = fallback; 562 563 return 0; 564 } 565 566 static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm) 567 { 568 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 569 570 kfree(ctx->public_key); 571 crypto_free_kpp(ctx->fallback); 572 atmel_ecc_i2c_client_free(ctx->client); 573 } 574 575 static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm) 576 { 577 struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); 578 579 if (ctx->fallback) 580 return crypto_kpp_maxsize(ctx->fallback); 581 582 /* 583 * The device only supports NIST P256 ECC keys. The public key size will 584 * always be the same. Use a macro for the key size to avoid unnecessary 585 * computations. 586 */ 587 return ATMEL_ECC_PUBKEY_SIZE; 588 } 589 590 static struct kpp_alg atmel_ecdh = { 591 .set_secret = atmel_ecdh_set_secret, 592 .generate_public_key = atmel_ecdh_generate_public_key, 593 .compute_shared_secret = atmel_ecdh_compute_shared_secret, 594 .init = atmel_ecdh_init_tfm, 595 .exit = atmel_ecdh_exit_tfm, 596 .max_size = atmel_ecdh_max_size, 597 .base = { 598 .cra_flags = CRYPTO_ALG_NEED_FALLBACK, 599 .cra_name = "ecdh", 600 .cra_driver_name = "atmel-ecdh", 601 .cra_priority = ATMEL_ECC_PRIORITY, 602 .cra_module = THIS_MODULE, 603 .cra_ctxsize = sizeof(struct atmel_ecdh_ctx), 604 }, 605 }; 606 607 static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate) 608 { 609 u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC); 610 611 /* return the size of the wake_token in bytes */ 612 return DIV_ROUND_UP(no_of_bits, 8); 613 } 614 615 static int device_sanity_check(struct i2c_client *client) 616 { 617 struct atmel_ecc_cmd *cmd; 618 int ret; 619 620 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 621 if (!cmd) 622 return -ENOMEM; 623 624 atmel_ecc_init_read_cmd(cmd); 625 626 ret = atmel_ecc_send_receive(client, cmd); 627 if (ret) 628 goto free_cmd; 629 630 /* 631 * It is vital that the Configuration, Data and OTP zones be locked 632 * prior to release into the field of the system containing the device. 633 * Failure to lock these zones may permit modification of any secret 634 * keys and may lead to other security problems. 635 */ 636 if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) { 637 dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n"); 638 ret = -ENOTSUPP; 639 } 640 641 /* fall through */ 642 free_cmd: 643 kfree(cmd); 644 return ret; 645 } 646 647 static int atmel_ecc_probe(struct i2c_client *client, 648 const struct i2c_device_id *id) 649 { 650 struct atmel_ecc_i2c_client_priv *i2c_priv; 651 struct device *dev = &client->dev; 652 int ret; 653 u32 bus_clk_rate; 654 655 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 656 dev_err(dev, "I2C_FUNC_I2C not supported\n"); 657 return -ENODEV; 658 } 659 660 ret = of_property_read_u32(client->adapter->dev.of_node, 661 "clock-frequency", &bus_clk_rate); 662 if (ret) { 663 dev_err(dev, "of: failed to read clock-frequency property\n"); 664 return ret; 665 } 666 667 if (bus_clk_rate > 1000000L) { 668 dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n", 669 bus_clk_rate); 670 return -EINVAL; 671 } 672 673 i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL); 674 if (!i2c_priv) 675 return -ENOMEM; 676 677 i2c_priv->client = client; 678 mutex_init(&i2c_priv->lock); 679 680 /* 681 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate - 682 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz 683 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE. 684 */ 685 i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate); 686 687 memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token)); 688 689 atomic_set(&i2c_priv->tfm_count, 0); 690 691 i2c_set_clientdata(client, i2c_priv); 692 693 ret = device_sanity_check(client); 694 if (ret) 695 return ret; 696 697 spin_lock(&driver_data.i2c_list_lock); 698 list_add_tail(&i2c_priv->i2c_client_list_node, 699 &driver_data.i2c_client_list); 700 spin_unlock(&driver_data.i2c_list_lock); 701 702 ret = crypto_register_kpp(&atmel_ecdh); 703 if (ret) { 704 spin_lock(&driver_data.i2c_list_lock); 705 list_del(&i2c_priv->i2c_client_list_node); 706 spin_unlock(&driver_data.i2c_list_lock); 707 708 dev_err(dev, "%s alg registration failed\n", 709 atmel_ecdh.base.cra_driver_name); 710 } else { 711 dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n"); 712 } 713 714 return ret; 715 } 716 717 static int atmel_ecc_remove(struct i2c_client *client) 718 { 719 struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); 720 721 /* Return EBUSY if i2c client already allocated. */ 722 if (atomic_read(&i2c_priv->tfm_count)) { 723 dev_err(&client->dev, "Device is busy\n"); 724 return -EBUSY; 725 } 726 727 crypto_unregister_kpp(&atmel_ecdh); 728 729 spin_lock(&driver_data.i2c_list_lock); 730 list_del(&i2c_priv->i2c_client_list_node); 731 spin_unlock(&driver_data.i2c_list_lock); 732 733 return 0; 734 } 735 736 #ifdef CONFIG_OF 737 static const struct of_device_id atmel_ecc_dt_ids[] = { 738 { 739 .compatible = "atmel,atecc508a", 740 }, { 741 /* sentinel */ 742 } 743 }; 744 MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids); 745 #endif 746 747 static const struct i2c_device_id atmel_ecc_id[] = { 748 { "atecc508a", 0 }, 749 { } 750 }; 751 MODULE_DEVICE_TABLE(i2c, atmel_ecc_id); 752 753 static struct i2c_driver atmel_ecc_driver = { 754 .driver = { 755 .name = "atmel-ecc", 756 .of_match_table = of_match_ptr(atmel_ecc_dt_ids), 757 }, 758 .probe = atmel_ecc_probe, 759 .remove = atmel_ecc_remove, 760 .id_table = atmel_ecc_id, 761 }; 762 763 static int __init atmel_ecc_init(void) 764 { 765 spin_lock_init(&driver_data.i2c_list_lock); 766 INIT_LIST_HEAD(&driver_data.i2c_client_list); 767 return i2c_add_driver(&atmel_ecc_driver); 768 } 769 770 static void __exit atmel_ecc_exit(void) 771 { 772 flush_scheduled_work(); 773 i2c_del_driver(&atmel_ecc_driver); 774 } 775 776 module_init(atmel_ecc_init); 777 module_exit(atmel_ecc_exit); 778 779 MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); 780 MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); 781 MODULE_LICENSE("GPL v2"); 782