xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision e3b9f1e8)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/gcm.h>
40 #include <crypto/xts.h>
41 #include <crypto/internal/aead.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include <dt-bindings/dma/at91.h>
44 #include "atmel-aes-regs.h"
45 #include "atmel-authenc.h"
46 
47 #define ATMEL_AES_PRIORITY	300
48 
49 #define ATMEL_AES_BUFFER_ORDER	2
50 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
51 
52 #define CFB8_BLOCK_SIZE		1
53 #define CFB16_BLOCK_SIZE	2
54 #define CFB32_BLOCK_SIZE	4
55 #define CFB64_BLOCK_SIZE	8
56 
57 #define SIZE_IN_WORDS(x)	((x) >> 2)
58 
59 /* AES flags */
60 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
61 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
62 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
63 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
64 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
65 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
66 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
67 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
68 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
69 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
70 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
71 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
72 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
73 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
74 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
75 
76 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
77 				 AES_FLAGS_ENCRYPT |		\
78 				 AES_FLAGS_GTAGEN)
79 
80 #define AES_FLAGS_BUSY		BIT(3)
81 #define AES_FLAGS_DUMP_REG	BIT(4)
82 #define AES_FLAGS_OWN_SHA	BIT(5)
83 
84 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
85 
86 #define ATMEL_AES_QUEUE_LENGTH	50
87 
88 #define ATMEL_AES_DMA_THRESHOLD		256
89 
90 
91 struct atmel_aes_caps {
92 	bool			has_dualbuff;
93 	bool			has_cfb64;
94 	bool			has_ctr32;
95 	bool			has_gcm;
96 	bool			has_xts;
97 	bool			has_authenc;
98 	u32			max_burst_size;
99 };
100 
101 struct atmel_aes_dev;
102 
103 
104 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
105 
106 
107 struct atmel_aes_base_ctx {
108 	struct atmel_aes_dev	*dd;
109 	atmel_aes_fn_t		start;
110 	int			keylen;
111 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
112 	u16			block_size;
113 	bool			is_aead;
114 };
115 
116 struct atmel_aes_ctx {
117 	struct atmel_aes_base_ctx	base;
118 };
119 
120 struct atmel_aes_ctr_ctx {
121 	struct atmel_aes_base_ctx	base;
122 
123 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
124 	size_t			offset;
125 	struct scatterlist	src[2];
126 	struct scatterlist	dst[2];
127 };
128 
129 struct atmel_aes_gcm_ctx {
130 	struct atmel_aes_base_ctx	base;
131 
132 	struct scatterlist	src[2];
133 	struct scatterlist	dst[2];
134 
135 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
136 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
137 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
138 	size_t			textlen;
139 
140 	const u32		*ghash_in;
141 	u32			*ghash_out;
142 	atmel_aes_fn_t		ghash_resume;
143 };
144 
145 struct atmel_aes_xts_ctx {
146 	struct atmel_aes_base_ctx	base;
147 
148 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
149 };
150 
151 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
152 struct atmel_aes_authenc_ctx {
153 	struct atmel_aes_base_ctx	base;
154 	struct atmel_sha_authenc_ctx	*auth;
155 };
156 #endif
157 
158 struct atmel_aes_reqctx {
159 	unsigned long		mode;
160 	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
161 };
162 
163 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
164 struct atmel_aes_authenc_reqctx {
165 	struct atmel_aes_reqctx	base;
166 
167 	struct scatterlist	src[2];
168 	struct scatterlist	dst[2];
169 	size_t			textlen;
170 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
171 
172 	/* auth_req MUST be place last. */
173 	struct ahash_request	auth_req;
174 };
175 #endif
176 
177 struct atmel_aes_dma {
178 	struct dma_chan		*chan;
179 	struct scatterlist	*sg;
180 	int			nents;
181 	unsigned int		remainder;
182 	unsigned int		sg_len;
183 };
184 
185 struct atmel_aes_dev {
186 	struct list_head	list;
187 	unsigned long		phys_base;
188 	void __iomem		*io_base;
189 
190 	struct crypto_async_request	*areq;
191 	struct atmel_aes_base_ctx	*ctx;
192 
193 	bool			is_async;
194 	atmel_aes_fn_t		resume;
195 	atmel_aes_fn_t		cpu_transfer_complete;
196 
197 	struct device		*dev;
198 	struct clk		*iclk;
199 	int			irq;
200 
201 	unsigned long		flags;
202 
203 	spinlock_t		lock;
204 	struct crypto_queue	queue;
205 
206 	struct tasklet_struct	done_task;
207 	struct tasklet_struct	queue_task;
208 
209 	size_t			total;
210 	size_t			datalen;
211 	u32			*data;
212 
213 	struct atmel_aes_dma	src;
214 	struct atmel_aes_dma	dst;
215 
216 	size_t			buflen;
217 	void			*buf;
218 	struct scatterlist	aligned_sg;
219 	struct scatterlist	*real_dst;
220 
221 	struct atmel_aes_caps	caps;
222 
223 	u32			hw_version;
224 };
225 
226 struct atmel_aes_drv {
227 	struct list_head	dev_list;
228 	spinlock_t		lock;
229 };
230 
231 static struct atmel_aes_drv atmel_aes = {
232 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
233 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
234 };
235 
236 #ifdef VERBOSE_DEBUG
237 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
238 {
239 	switch (offset) {
240 	case AES_CR:
241 		return "CR";
242 
243 	case AES_MR:
244 		return "MR";
245 
246 	case AES_ISR:
247 		return "ISR";
248 
249 	case AES_IMR:
250 		return "IMR";
251 
252 	case AES_IER:
253 		return "IER";
254 
255 	case AES_IDR:
256 		return "IDR";
257 
258 	case AES_KEYWR(0):
259 	case AES_KEYWR(1):
260 	case AES_KEYWR(2):
261 	case AES_KEYWR(3):
262 	case AES_KEYWR(4):
263 	case AES_KEYWR(5):
264 	case AES_KEYWR(6):
265 	case AES_KEYWR(7):
266 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
267 		break;
268 
269 	case AES_IDATAR(0):
270 	case AES_IDATAR(1):
271 	case AES_IDATAR(2):
272 	case AES_IDATAR(3):
273 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
274 		break;
275 
276 	case AES_ODATAR(0):
277 	case AES_ODATAR(1):
278 	case AES_ODATAR(2):
279 	case AES_ODATAR(3):
280 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
281 		break;
282 
283 	case AES_IVR(0):
284 	case AES_IVR(1):
285 	case AES_IVR(2):
286 	case AES_IVR(3):
287 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
288 		break;
289 
290 	case AES_AADLENR:
291 		return "AADLENR";
292 
293 	case AES_CLENR:
294 		return "CLENR";
295 
296 	case AES_GHASHR(0):
297 	case AES_GHASHR(1):
298 	case AES_GHASHR(2):
299 	case AES_GHASHR(3):
300 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
301 		break;
302 
303 	case AES_TAGR(0):
304 	case AES_TAGR(1):
305 	case AES_TAGR(2):
306 	case AES_TAGR(3):
307 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
308 		break;
309 
310 	case AES_CTRR:
311 		return "CTRR";
312 
313 	case AES_GCMHR(0):
314 	case AES_GCMHR(1):
315 	case AES_GCMHR(2):
316 	case AES_GCMHR(3):
317 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
318 		break;
319 
320 	case AES_EMR:
321 		return "EMR";
322 
323 	case AES_TWR(0):
324 	case AES_TWR(1):
325 	case AES_TWR(2):
326 	case AES_TWR(3):
327 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
328 		break;
329 
330 	case AES_ALPHAR(0):
331 	case AES_ALPHAR(1):
332 	case AES_ALPHAR(2):
333 	case AES_ALPHAR(3):
334 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
335 		break;
336 
337 	default:
338 		snprintf(tmp, sz, "0x%02x", offset);
339 		break;
340 	}
341 
342 	return tmp;
343 }
344 #endif /* VERBOSE_DEBUG */
345 
346 /* Shared functions */
347 
348 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
349 {
350 	u32 value = readl_relaxed(dd->io_base + offset);
351 
352 #ifdef VERBOSE_DEBUG
353 	if (dd->flags & AES_FLAGS_DUMP_REG) {
354 		char tmp[16];
355 
356 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
357 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
358 	}
359 #endif /* VERBOSE_DEBUG */
360 
361 	return value;
362 }
363 
364 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
365 					u32 offset, u32 value)
366 {
367 #ifdef VERBOSE_DEBUG
368 	if (dd->flags & AES_FLAGS_DUMP_REG) {
369 		char tmp[16];
370 
371 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
372 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
373 	}
374 #endif /* VERBOSE_DEBUG */
375 
376 	writel_relaxed(value, dd->io_base + offset);
377 }
378 
379 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
380 					u32 *value, int count)
381 {
382 	for (; count--; value++, offset += 4)
383 		*value = atmel_aes_read(dd, offset);
384 }
385 
386 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
387 			      const u32 *value, int count)
388 {
389 	for (; count--; value++, offset += 4)
390 		atmel_aes_write(dd, offset, *value);
391 }
392 
393 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
394 					u32 *value)
395 {
396 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
397 }
398 
399 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
400 					 const u32 *value)
401 {
402 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
403 }
404 
405 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
406 						atmel_aes_fn_t resume)
407 {
408 	u32 isr = atmel_aes_read(dd, AES_ISR);
409 
410 	if (unlikely(isr & AES_INT_DATARDY))
411 		return resume(dd);
412 
413 	dd->resume = resume;
414 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
415 	return -EINPROGRESS;
416 }
417 
418 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
419 {
420 	len &= block_size - 1;
421 	return len ? block_size - len : 0;
422 }
423 
424 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
425 {
426 	struct atmel_aes_dev *aes_dd = NULL;
427 	struct atmel_aes_dev *tmp;
428 
429 	spin_lock_bh(&atmel_aes.lock);
430 	if (!ctx->dd) {
431 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
432 			aes_dd = tmp;
433 			break;
434 		}
435 		ctx->dd = aes_dd;
436 	} else {
437 		aes_dd = ctx->dd;
438 	}
439 
440 	spin_unlock_bh(&atmel_aes.lock);
441 
442 	return aes_dd;
443 }
444 
445 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
446 {
447 	int err;
448 
449 	err = clk_enable(dd->iclk);
450 	if (err)
451 		return err;
452 
453 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
454 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
455 
456 	return 0;
457 }
458 
459 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
460 {
461 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
462 }
463 
464 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
465 {
466 	int err;
467 
468 	err = atmel_aes_hw_init(dd);
469 	if (err)
470 		return err;
471 
472 	dd->hw_version = atmel_aes_get_version(dd);
473 
474 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
475 
476 	clk_disable(dd->iclk);
477 	return 0;
478 }
479 
480 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
481 				      const struct atmel_aes_reqctx *rctx)
482 {
483 	/* Clear all but persistent flags and set request flags. */
484 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
485 }
486 
487 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
488 {
489 	return (dd->flags & AES_FLAGS_ENCRYPT);
490 }
491 
492 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
493 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
494 #endif
495 
496 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
497 {
498 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
499 	if (dd->ctx->is_aead)
500 		atmel_aes_authenc_complete(dd, err);
501 #endif
502 
503 	clk_disable(dd->iclk);
504 	dd->flags &= ~AES_FLAGS_BUSY;
505 
506 	if (!dd->ctx->is_aead) {
507 		struct ablkcipher_request *req =
508 			ablkcipher_request_cast(dd->areq);
509 		struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
510 		struct crypto_ablkcipher *ablkcipher =
511 			crypto_ablkcipher_reqtfm(req);
512 		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
513 
514 		if (rctx->mode & AES_FLAGS_ENCRYPT) {
515 			scatterwalk_map_and_copy(req->info, req->dst,
516 				req->nbytes - ivsize, ivsize, 0);
517 		} else {
518 			if (req->src == req->dst) {
519 				memcpy(req->info, rctx->lastc, ivsize);
520 			} else {
521 				scatterwalk_map_and_copy(req->info, req->src,
522 					req->nbytes - ivsize, ivsize, 0);
523 			}
524 		}
525 	}
526 
527 	if (dd->is_async)
528 		dd->areq->complete(dd->areq, err);
529 
530 	tasklet_schedule(&dd->queue_task);
531 
532 	return err;
533 }
534 
535 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
536 				     const u32 *iv, const u32 *key, int keylen)
537 {
538 	u32 valmr = 0;
539 
540 	/* MR register must be set before IV registers */
541 	if (keylen == AES_KEYSIZE_128)
542 		valmr |= AES_MR_KEYSIZE_128;
543 	else if (keylen == AES_KEYSIZE_192)
544 		valmr |= AES_MR_KEYSIZE_192;
545 	else
546 		valmr |= AES_MR_KEYSIZE_256;
547 
548 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
549 
550 	if (use_dma) {
551 		valmr |= AES_MR_SMOD_IDATAR0;
552 		if (dd->caps.has_dualbuff)
553 			valmr |= AES_MR_DUALBUFF;
554 	} else {
555 		valmr |= AES_MR_SMOD_AUTO;
556 	}
557 
558 	atmel_aes_write(dd, AES_MR, valmr);
559 
560 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
561 
562 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
563 		atmel_aes_write_block(dd, AES_IVR(0), iv);
564 }
565 
566 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
567 					const u32 *iv)
568 
569 {
570 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
571 				 dd->ctx->key, dd->ctx->keylen);
572 }
573 
574 /* CPU transfer */
575 
576 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
577 {
578 	int err = 0;
579 	u32 isr;
580 
581 	for (;;) {
582 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
583 		dd->data += 4;
584 		dd->datalen -= AES_BLOCK_SIZE;
585 
586 		if (dd->datalen < AES_BLOCK_SIZE)
587 			break;
588 
589 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
590 
591 		isr = atmel_aes_read(dd, AES_ISR);
592 		if (!(isr & AES_INT_DATARDY)) {
593 			dd->resume = atmel_aes_cpu_transfer;
594 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
595 			return -EINPROGRESS;
596 		}
597 	}
598 
599 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
600 				 dd->buf, dd->total))
601 		err = -EINVAL;
602 
603 	if (err)
604 		return atmel_aes_complete(dd, err);
605 
606 	return dd->cpu_transfer_complete(dd);
607 }
608 
609 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
610 			       struct scatterlist *src,
611 			       struct scatterlist *dst,
612 			       size_t len,
613 			       atmel_aes_fn_t resume)
614 {
615 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
616 
617 	if (unlikely(len == 0))
618 		return -EINVAL;
619 
620 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
621 
622 	dd->total = len;
623 	dd->real_dst = dst;
624 	dd->cpu_transfer_complete = resume;
625 	dd->datalen = len + padlen;
626 	dd->data = (u32 *)dd->buf;
627 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
628 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
629 }
630 
631 
632 /* DMA transfer */
633 
634 static void atmel_aes_dma_callback(void *data);
635 
636 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
637 				    struct scatterlist *sg,
638 				    size_t len,
639 				    struct atmel_aes_dma *dma)
640 {
641 	int nents;
642 
643 	if (!IS_ALIGNED(len, dd->ctx->block_size))
644 		return false;
645 
646 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
647 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
648 			return false;
649 
650 		if (len <= sg->length) {
651 			if (!IS_ALIGNED(len, dd->ctx->block_size))
652 				return false;
653 
654 			dma->nents = nents+1;
655 			dma->remainder = sg->length - len;
656 			sg->length = len;
657 			return true;
658 		}
659 
660 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
661 			return false;
662 
663 		len -= sg->length;
664 	}
665 
666 	return false;
667 }
668 
669 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
670 {
671 	struct scatterlist *sg = dma->sg;
672 	int nents = dma->nents;
673 
674 	if (!dma->remainder)
675 		return;
676 
677 	while (--nents > 0 && sg)
678 		sg = sg_next(sg);
679 
680 	if (!sg)
681 		return;
682 
683 	sg->length += dma->remainder;
684 }
685 
686 static int atmel_aes_map(struct atmel_aes_dev *dd,
687 			 struct scatterlist *src,
688 			 struct scatterlist *dst,
689 			 size_t len)
690 {
691 	bool src_aligned, dst_aligned;
692 	size_t padlen;
693 
694 	dd->total = len;
695 	dd->src.sg = src;
696 	dd->dst.sg = dst;
697 	dd->real_dst = dst;
698 
699 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
700 	if (src == dst)
701 		dst_aligned = src_aligned;
702 	else
703 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
704 	if (!src_aligned || !dst_aligned) {
705 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
706 
707 		if (dd->buflen < len + padlen)
708 			return -ENOMEM;
709 
710 		if (!src_aligned) {
711 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
712 			dd->src.sg = &dd->aligned_sg;
713 			dd->src.nents = 1;
714 			dd->src.remainder = 0;
715 		}
716 
717 		if (!dst_aligned) {
718 			dd->dst.sg = &dd->aligned_sg;
719 			dd->dst.nents = 1;
720 			dd->dst.remainder = 0;
721 		}
722 
723 		sg_init_table(&dd->aligned_sg, 1);
724 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
725 	}
726 
727 	if (dd->src.sg == dd->dst.sg) {
728 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
729 					    DMA_BIDIRECTIONAL);
730 		dd->dst.sg_len = dd->src.sg_len;
731 		if (!dd->src.sg_len)
732 			return -EFAULT;
733 	} else {
734 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
735 					    DMA_TO_DEVICE);
736 		if (!dd->src.sg_len)
737 			return -EFAULT;
738 
739 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
740 					    DMA_FROM_DEVICE);
741 		if (!dd->dst.sg_len) {
742 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
743 				     DMA_TO_DEVICE);
744 			return -EFAULT;
745 		}
746 	}
747 
748 	return 0;
749 }
750 
751 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
752 {
753 	if (dd->src.sg == dd->dst.sg) {
754 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
755 			     DMA_BIDIRECTIONAL);
756 
757 		if (dd->src.sg != &dd->aligned_sg)
758 			atmel_aes_restore_sg(&dd->src);
759 	} else {
760 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
761 			     DMA_FROM_DEVICE);
762 
763 		if (dd->dst.sg != &dd->aligned_sg)
764 			atmel_aes_restore_sg(&dd->dst);
765 
766 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
767 			     DMA_TO_DEVICE);
768 
769 		if (dd->src.sg != &dd->aligned_sg)
770 			atmel_aes_restore_sg(&dd->src);
771 	}
772 
773 	if (dd->dst.sg == &dd->aligned_sg)
774 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
775 				    dd->buf, dd->total);
776 }
777 
778 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
779 					enum dma_slave_buswidth addr_width,
780 					enum dma_transfer_direction dir,
781 					u32 maxburst)
782 {
783 	struct dma_async_tx_descriptor *desc;
784 	struct dma_slave_config config;
785 	dma_async_tx_callback callback;
786 	struct atmel_aes_dma *dma;
787 	int err;
788 
789 	memset(&config, 0, sizeof(config));
790 	config.direction = dir;
791 	config.src_addr_width = addr_width;
792 	config.dst_addr_width = addr_width;
793 	config.src_maxburst = maxburst;
794 	config.dst_maxburst = maxburst;
795 
796 	switch (dir) {
797 	case DMA_MEM_TO_DEV:
798 		dma = &dd->src;
799 		callback = NULL;
800 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
801 		break;
802 
803 	case DMA_DEV_TO_MEM:
804 		dma = &dd->dst;
805 		callback = atmel_aes_dma_callback;
806 		config.src_addr = dd->phys_base + AES_ODATAR(0);
807 		break;
808 
809 	default:
810 		return -EINVAL;
811 	}
812 
813 	err = dmaengine_slave_config(dma->chan, &config);
814 	if (err)
815 		return err;
816 
817 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
818 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
819 	if (!desc)
820 		return -ENOMEM;
821 
822 	desc->callback = callback;
823 	desc->callback_param = dd;
824 	dmaengine_submit(desc);
825 	dma_async_issue_pending(dma->chan);
826 
827 	return 0;
828 }
829 
830 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
831 					enum dma_transfer_direction dir)
832 {
833 	struct atmel_aes_dma *dma;
834 
835 	switch (dir) {
836 	case DMA_MEM_TO_DEV:
837 		dma = &dd->src;
838 		break;
839 
840 	case DMA_DEV_TO_MEM:
841 		dma = &dd->dst;
842 		break;
843 
844 	default:
845 		return;
846 	}
847 
848 	dmaengine_terminate_all(dma->chan);
849 }
850 
851 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
852 			       struct scatterlist *src,
853 			       struct scatterlist *dst,
854 			       size_t len,
855 			       atmel_aes_fn_t resume)
856 {
857 	enum dma_slave_buswidth addr_width;
858 	u32 maxburst;
859 	int err;
860 
861 	switch (dd->ctx->block_size) {
862 	case CFB8_BLOCK_SIZE:
863 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
864 		maxburst = 1;
865 		break;
866 
867 	case CFB16_BLOCK_SIZE:
868 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
869 		maxburst = 1;
870 		break;
871 
872 	case CFB32_BLOCK_SIZE:
873 	case CFB64_BLOCK_SIZE:
874 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
875 		maxburst = 1;
876 		break;
877 
878 	case AES_BLOCK_SIZE:
879 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
880 		maxburst = dd->caps.max_burst_size;
881 		break;
882 
883 	default:
884 		err = -EINVAL;
885 		goto exit;
886 	}
887 
888 	err = atmel_aes_map(dd, src, dst, len);
889 	if (err)
890 		goto exit;
891 
892 	dd->resume = resume;
893 
894 	/* Set output DMA transfer first */
895 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
896 					   maxburst);
897 	if (err)
898 		goto unmap;
899 
900 	/* Then set input DMA transfer */
901 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
902 					   maxburst);
903 	if (err)
904 		goto output_transfer_stop;
905 
906 	return -EINPROGRESS;
907 
908 output_transfer_stop:
909 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
910 unmap:
911 	atmel_aes_unmap(dd);
912 exit:
913 	return atmel_aes_complete(dd, err);
914 }
915 
916 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
917 {
918 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
919 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
920 	atmel_aes_unmap(dd);
921 }
922 
923 static void atmel_aes_dma_callback(void *data)
924 {
925 	struct atmel_aes_dev *dd = data;
926 
927 	atmel_aes_dma_stop(dd);
928 	dd->is_async = true;
929 	(void)dd->resume(dd);
930 }
931 
932 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
933 				  struct crypto_async_request *new_areq)
934 {
935 	struct crypto_async_request *areq, *backlog;
936 	struct atmel_aes_base_ctx *ctx;
937 	unsigned long flags;
938 	bool start_async;
939 	int err, ret = 0;
940 
941 	spin_lock_irqsave(&dd->lock, flags);
942 	if (new_areq)
943 		ret = crypto_enqueue_request(&dd->queue, new_areq);
944 	if (dd->flags & AES_FLAGS_BUSY) {
945 		spin_unlock_irqrestore(&dd->lock, flags);
946 		return ret;
947 	}
948 	backlog = crypto_get_backlog(&dd->queue);
949 	areq = crypto_dequeue_request(&dd->queue);
950 	if (areq)
951 		dd->flags |= AES_FLAGS_BUSY;
952 	spin_unlock_irqrestore(&dd->lock, flags);
953 
954 	if (!areq)
955 		return ret;
956 
957 	if (backlog)
958 		backlog->complete(backlog, -EINPROGRESS);
959 
960 	ctx = crypto_tfm_ctx(areq->tfm);
961 
962 	dd->areq = areq;
963 	dd->ctx = ctx;
964 	start_async = (areq != new_areq);
965 	dd->is_async = start_async;
966 
967 	/* WARNING: ctx->start() MAY change dd->is_async. */
968 	err = ctx->start(dd);
969 	return (start_async) ? ret : err;
970 }
971 
972 
973 /* AES async block ciphers */
974 
975 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
976 {
977 	return atmel_aes_complete(dd, 0);
978 }
979 
980 static int atmel_aes_start(struct atmel_aes_dev *dd)
981 {
982 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
983 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
984 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
985 			dd->ctx->block_size != AES_BLOCK_SIZE);
986 	int err;
987 
988 	atmel_aes_set_mode(dd, rctx);
989 
990 	err = atmel_aes_hw_init(dd);
991 	if (err)
992 		return atmel_aes_complete(dd, err);
993 
994 	atmel_aes_write_ctrl(dd, use_dma, req->info);
995 	if (use_dma)
996 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
997 					   atmel_aes_transfer_complete);
998 
999 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1000 				   atmel_aes_transfer_complete);
1001 }
1002 
1003 static inline struct atmel_aes_ctr_ctx *
1004 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1005 {
1006 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1007 }
1008 
1009 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1010 {
1011 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1012 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1013 	struct scatterlist *src, *dst;
1014 	u32 ctr, blocks;
1015 	size_t datalen;
1016 	bool use_dma, fragmented = false;
1017 
1018 	/* Check for transfer completion. */
1019 	ctx->offset += dd->total;
1020 	if (ctx->offset >= req->nbytes)
1021 		return atmel_aes_transfer_complete(dd);
1022 
1023 	/* Compute data length. */
1024 	datalen = req->nbytes - ctx->offset;
1025 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1026 	ctr = be32_to_cpu(ctx->iv[3]);
1027 	if (dd->caps.has_ctr32) {
1028 		/* Check 32bit counter overflow. */
1029 		u32 start = ctr;
1030 		u32 end = start + blocks - 1;
1031 
1032 		if (end < start) {
1033 			ctr |= 0xffffffff;
1034 			datalen = AES_BLOCK_SIZE * -start;
1035 			fragmented = true;
1036 		}
1037 	} else {
1038 		/* Check 16bit counter overflow. */
1039 		u16 start = ctr & 0xffff;
1040 		u16 end = start + (u16)blocks - 1;
1041 
1042 		if (blocks >> 16 || end < start) {
1043 			ctr |= 0xffff;
1044 			datalen = AES_BLOCK_SIZE * (0x10000-start);
1045 			fragmented = true;
1046 		}
1047 	}
1048 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1049 
1050 	/* Jump to offset. */
1051 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1052 	dst = ((req->src == req->dst) ? src :
1053 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1054 
1055 	/* Configure hardware. */
1056 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1057 	if (unlikely(fragmented)) {
1058 		/*
1059 		 * Increment the counter manually to cope with the hardware
1060 		 * counter overflow.
1061 		 */
1062 		ctx->iv[3] = cpu_to_be32(ctr);
1063 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1064 	}
1065 
1066 	if (use_dma)
1067 		return atmel_aes_dma_start(dd, src, dst, datalen,
1068 					   atmel_aes_ctr_transfer);
1069 
1070 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1071 				   atmel_aes_ctr_transfer);
1072 }
1073 
1074 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1075 {
1076 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1077 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1078 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1079 	int err;
1080 
1081 	atmel_aes_set_mode(dd, rctx);
1082 
1083 	err = atmel_aes_hw_init(dd);
1084 	if (err)
1085 		return atmel_aes_complete(dd, err);
1086 
1087 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1088 	ctx->offset = 0;
1089 	dd->total = 0;
1090 	return atmel_aes_ctr_transfer(dd);
1091 }
1092 
1093 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1094 {
1095 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1096 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1097 	struct atmel_aes_reqctx *rctx;
1098 	struct atmel_aes_dev *dd;
1099 
1100 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1101 	case AES_FLAGS_CFB8:
1102 		ctx->block_size = CFB8_BLOCK_SIZE;
1103 		break;
1104 
1105 	case AES_FLAGS_CFB16:
1106 		ctx->block_size = CFB16_BLOCK_SIZE;
1107 		break;
1108 
1109 	case AES_FLAGS_CFB32:
1110 		ctx->block_size = CFB32_BLOCK_SIZE;
1111 		break;
1112 
1113 	case AES_FLAGS_CFB64:
1114 		ctx->block_size = CFB64_BLOCK_SIZE;
1115 		break;
1116 
1117 	default:
1118 		ctx->block_size = AES_BLOCK_SIZE;
1119 		break;
1120 	}
1121 	ctx->is_aead = false;
1122 
1123 	dd = atmel_aes_find_dev(ctx);
1124 	if (!dd)
1125 		return -ENODEV;
1126 
1127 	rctx = ablkcipher_request_ctx(req);
1128 	rctx->mode = mode;
1129 
1130 	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1131 		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1132 
1133 		scatterwalk_map_and_copy(rctx->lastc, req->src,
1134 			(req->nbytes - ivsize), ivsize, 0);
1135 	}
1136 
1137 	return atmel_aes_handle_queue(dd, &req->base);
1138 }
1139 
1140 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1141 			   unsigned int keylen)
1142 {
1143 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1144 
1145 	if (keylen != AES_KEYSIZE_128 &&
1146 	    keylen != AES_KEYSIZE_192 &&
1147 	    keylen != AES_KEYSIZE_256) {
1148 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1149 		return -EINVAL;
1150 	}
1151 
1152 	memcpy(ctx->key, key, keylen);
1153 	ctx->keylen = keylen;
1154 
1155 	return 0;
1156 }
1157 
1158 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1159 {
1160 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1161 }
1162 
1163 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1164 {
1165 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1166 }
1167 
1168 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1169 {
1170 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1171 }
1172 
1173 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1174 {
1175 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1176 }
1177 
1178 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1179 {
1180 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1181 }
1182 
1183 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1184 {
1185 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1186 }
1187 
1188 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1189 {
1190 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1191 }
1192 
1193 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1194 {
1195 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1196 }
1197 
1198 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1199 {
1200 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1201 }
1202 
1203 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1204 {
1205 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1206 }
1207 
1208 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1209 {
1210 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1211 }
1212 
1213 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1214 {
1215 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1216 }
1217 
1218 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1219 {
1220 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1221 }
1222 
1223 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1224 {
1225 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1226 }
1227 
1228 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1229 {
1230 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1231 }
1232 
1233 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1234 {
1235 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1236 }
1237 
1238 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1239 {
1240 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1241 }
1242 
1243 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1244 {
1245 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1246 }
1247 
1248 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1249 {
1250 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1251 
1252 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1253 	ctx->base.start = atmel_aes_start;
1254 
1255 	return 0;
1256 }
1257 
1258 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1259 {
1260 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1261 
1262 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1263 	ctx->base.start = atmel_aes_ctr_start;
1264 
1265 	return 0;
1266 }
1267 
1268 static struct crypto_alg aes_algs[] = {
1269 {
1270 	.cra_name		= "ecb(aes)",
1271 	.cra_driver_name	= "atmel-ecb-aes",
1272 	.cra_priority		= ATMEL_AES_PRIORITY,
1273 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1274 	.cra_blocksize		= AES_BLOCK_SIZE,
1275 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1276 	.cra_alignmask		= 0xf,
1277 	.cra_type		= &crypto_ablkcipher_type,
1278 	.cra_module		= THIS_MODULE,
1279 	.cra_init		= atmel_aes_cra_init,
1280 	.cra_u.ablkcipher = {
1281 		.min_keysize	= AES_MIN_KEY_SIZE,
1282 		.max_keysize	= AES_MAX_KEY_SIZE,
1283 		.setkey		= atmel_aes_setkey,
1284 		.encrypt	= atmel_aes_ecb_encrypt,
1285 		.decrypt	= atmel_aes_ecb_decrypt,
1286 	}
1287 },
1288 {
1289 	.cra_name		= "cbc(aes)",
1290 	.cra_driver_name	= "atmel-cbc-aes",
1291 	.cra_priority		= ATMEL_AES_PRIORITY,
1292 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1293 	.cra_blocksize		= AES_BLOCK_SIZE,
1294 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1295 	.cra_alignmask		= 0xf,
1296 	.cra_type		= &crypto_ablkcipher_type,
1297 	.cra_module		= THIS_MODULE,
1298 	.cra_init		= atmel_aes_cra_init,
1299 	.cra_u.ablkcipher = {
1300 		.min_keysize	= AES_MIN_KEY_SIZE,
1301 		.max_keysize	= AES_MAX_KEY_SIZE,
1302 		.ivsize		= AES_BLOCK_SIZE,
1303 		.setkey		= atmel_aes_setkey,
1304 		.encrypt	= atmel_aes_cbc_encrypt,
1305 		.decrypt	= atmel_aes_cbc_decrypt,
1306 	}
1307 },
1308 {
1309 	.cra_name		= "ofb(aes)",
1310 	.cra_driver_name	= "atmel-ofb-aes",
1311 	.cra_priority		= ATMEL_AES_PRIORITY,
1312 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1313 	.cra_blocksize		= AES_BLOCK_SIZE,
1314 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1315 	.cra_alignmask		= 0xf,
1316 	.cra_type		= &crypto_ablkcipher_type,
1317 	.cra_module		= THIS_MODULE,
1318 	.cra_init		= atmel_aes_cra_init,
1319 	.cra_u.ablkcipher = {
1320 		.min_keysize	= AES_MIN_KEY_SIZE,
1321 		.max_keysize	= AES_MAX_KEY_SIZE,
1322 		.ivsize		= AES_BLOCK_SIZE,
1323 		.setkey		= atmel_aes_setkey,
1324 		.encrypt	= atmel_aes_ofb_encrypt,
1325 		.decrypt	= atmel_aes_ofb_decrypt,
1326 	}
1327 },
1328 {
1329 	.cra_name		= "cfb(aes)",
1330 	.cra_driver_name	= "atmel-cfb-aes",
1331 	.cra_priority		= ATMEL_AES_PRIORITY,
1332 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1333 	.cra_blocksize		= AES_BLOCK_SIZE,
1334 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1335 	.cra_alignmask		= 0xf,
1336 	.cra_type		= &crypto_ablkcipher_type,
1337 	.cra_module		= THIS_MODULE,
1338 	.cra_init		= atmel_aes_cra_init,
1339 	.cra_u.ablkcipher = {
1340 		.min_keysize	= AES_MIN_KEY_SIZE,
1341 		.max_keysize	= AES_MAX_KEY_SIZE,
1342 		.ivsize		= AES_BLOCK_SIZE,
1343 		.setkey		= atmel_aes_setkey,
1344 		.encrypt	= atmel_aes_cfb_encrypt,
1345 		.decrypt	= atmel_aes_cfb_decrypt,
1346 	}
1347 },
1348 {
1349 	.cra_name		= "cfb32(aes)",
1350 	.cra_driver_name	= "atmel-cfb32-aes",
1351 	.cra_priority		= ATMEL_AES_PRIORITY,
1352 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1353 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1354 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1355 	.cra_alignmask		= 0x3,
1356 	.cra_type		= &crypto_ablkcipher_type,
1357 	.cra_module		= THIS_MODULE,
1358 	.cra_init		= atmel_aes_cra_init,
1359 	.cra_u.ablkcipher = {
1360 		.min_keysize	= AES_MIN_KEY_SIZE,
1361 		.max_keysize	= AES_MAX_KEY_SIZE,
1362 		.ivsize		= AES_BLOCK_SIZE,
1363 		.setkey		= atmel_aes_setkey,
1364 		.encrypt	= atmel_aes_cfb32_encrypt,
1365 		.decrypt	= atmel_aes_cfb32_decrypt,
1366 	}
1367 },
1368 {
1369 	.cra_name		= "cfb16(aes)",
1370 	.cra_driver_name	= "atmel-cfb16-aes",
1371 	.cra_priority		= ATMEL_AES_PRIORITY,
1372 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1373 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1374 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1375 	.cra_alignmask		= 0x1,
1376 	.cra_type		= &crypto_ablkcipher_type,
1377 	.cra_module		= THIS_MODULE,
1378 	.cra_init		= atmel_aes_cra_init,
1379 	.cra_u.ablkcipher = {
1380 		.min_keysize	= AES_MIN_KEY_SIZE,
1381 		.max_keysize	= AES_MAX_KEY_SIZE,
1382 		.ivsize		= AES_BLOCK_SIZE,
1383 		.setkey		= atmel_aes_setkey,
1384 		.encrypt	= atmel_aes_cfb16_encrypt,
1385 		.decrypt	= atmel_aes_cfb16_decrypt,
1386 	}
1387 },
1388 {
1389 	.cra_name		= "cfb8(aes)",
1390 	.cra_driver_name	= "atmel-cfb8-aes",
1391 	.cra_priority		= ATMEL_AES_PRIORITY,
1392 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1393 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1394 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1395 	.cra_alignmask		= 0x0,
1396 	.cra_type		= &crypto_ablkcipher_type,
1397 	.cra_module		= THIS_MODULE,
1398 	.cra_init		= atmel_aes_cra_init,
1399 	.cra_u.ablkcipher = {
1400 		.min_keysize	= AES_MIN_KEY_SIZE,
1401 		.max_keysize	= AES_MAX_KEY_SIZE,
1402 		.ivsize		= AES_BLOCK_SIZE,
1403 		.setkey		= atmel_aes_setkey,
1404 		.encrypt	= atmel_aes_cfb8_encrypt,
1405 		.decrypt	= atmel_aes_cfb8_decrypt,
1406 	}
1407 },
1408 {
1409 	.cra_name		= "ctr(aes)",
1410 	.cra_driver_name	= "atmel-ctr-aes",
1411 	.cra_priority		= ATMEL_AES_PRIORITY,
1412 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1413 	.cra_blocksize		= 1,
1414 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1415 	.cra_alignmask		= 0xf,
1416 	.cra_type		= &crypto_ablkcipher_type,
1417 	.cra_module		= THIS_MODULE,
1418 	.cra_init		= atmel_aes_ctr_cra_init,
1419 	.cra_u.ablkcipher = {
1420 		.min_keysize	= AES_MIN_KEY_SIZE,
1421 		.max_keysize	= AES_MAX_KEY_SIZE,
1422 		.ivsize		= AES_BLOCK_SIZE,
1423 		.setkey		= atmel_aes_setkey,
1424 		.encrypt	= atmel_aes_ctr_encrypt,
1425 		.decrypt	= atmel_aes_ctr_decrypt,
1426 	}
1427 },
1428 };
1429 
1430 static struct crypto_alg aes_cfb64_alg = {
1431 	.cra_name		= "cfb64(aes)",
1432 	.cra_driver_name	= "atmel-cfb64-aes",
1433 	.cra_priority		= ATMEL_AES_PRIORITY,
1434 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1435 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1436 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1437 	.cra_alignmask		= 0x7,
1438 	.cra_type		= &crypto_ablkcipher_type,
1439 	.cra_module		= THIS_MODULE,
1440 	.cra_init		= atmel_aes_cra_init,
1441 	.cra_u.ablkcipher = {
1442 		.min_keysize	= AES_MIN_KEY_SIZE,
1443 		.max_keysize	= AES_MAX_KEY_SIZE,
1444 		.ivsize		= AES_BLOCK_SIZE,
1445 		.setkey		= atmel_aes_setkey,
1446 		.encrypt	= atmel_aes_cfb64_encrypt,
1447 		.decrypt	= atmel_aes_cfb64_decrypt,
1448 	}
1449 };
1450 
1451 
1452 /* gcm aead functions */
1453 
1454 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1455 			       const u32 *data, size_t datalen,
1456 			       const u32 *ghash_in, u32 *ghash_out,
1457 			       atmel_aes_fn_t resume);
1458 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1459 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1460 
1461 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1462 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1464 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1465 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1466 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1467 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1468 
1469 static inline struct atmel_aes_gcm_ctx *
1470 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1471 {
1472 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1473 }
1474 
1475 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1476 			       const u32 *data, size_t datalen,
1477 			       const u32 *ghash_in, u32 *ghash_out,
1478 			       atmel_aes_fn_t resume)
1479 {
1480 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1481 
1482 	dd->data = (u32 *)data;
1483 	dd->datalen = datalen;
1484 	ctx->ghash_in = ghash_in;
1485 	ctx->ghash_out = ghash_out;
1486 	ctx->ghash_resume = resume;
1487 
1488 	atmel_aes_write_ctrl(dd, false, NULL);
1489 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1490 }
1491 
1492 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1493 {
1494 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1495 
1496 	/* Set the data length. */
1497 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1498 	atmel_aes_write(dd, AES_CLENR, 0);
1499 
1500 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1501 	if (ctx->ghash_in)
1502 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1503 
1504 	return atmel_aes_gcm_ghash_finalize(dd);
1505 }
1506 
1507 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1508 {
1509 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1510 	u32 isr;
1511 
1512 	/* Write data into the Input Data Registers. */
1513 	while (dd->datalen > 0) {
1514 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1515 		dd->data += 4;
1516 		dd->datalen -= AES_BLOCK_SIZE;
1517 
1518 		isr = atmel_aes_read(dd, AES_ISR);
1519 		if (!(isr & AES_INT_DATARDY)) {
1520 			dd->resume = atmel_aes_gcm_ghash_finalize;
1521 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1522 			return -EINPROGRESS;
1523 		}
1524 	}
1525 
1526 	/* Read the computed hash from GHASHRx. */
1527 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1528 
1529 	return ctx->ghash_resume(dd);
1530 }
1531 
1532 
1533 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1534 {
1535 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536 	struct aead_request *req = aead_request_cast(dd->areq);
1537 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1538 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1539 	size_t ivsize = crypto_aead_ivsize(tfm);
1540 	size_t datalen, padlen;
1541 	const void *iv = req->iv;
1542 	u8 *data = dd->buf;
1543 	int err;
1544 
1545 	atmel_aes_set_mode(dd, rctx);
1546 
1547 	err = atmel_aes_hw_init(dd);
1548 	if (err)
1549 		return atmel_aes_complete(dd, err);
1550 
1551 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1552 		memcpy(ctx->j0, iv, ivsize);
1553 		ctx->j0[3] = cpu_to_be32(1);
1554 		return atmel_aes_gcm_process(dd);
1555 	}
1556 
1557 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1558 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1559 	if (datalen > dd->buflen)
1560 		return atmel_aes_complete(dd, -EINVAL);
1561 
1562 	memcpy(data, iv, ivsize);
1563 	memset(data + ivsize, 0, padlen + sizeof(u64));
1564 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1565 
1566 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1567 				   NULL, ctx->j0, atmel_aes_gcm_process);
1568 }
1569 
1570 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1571 {
1572 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573 	struct aead_request *req = aead_request_cast(dd->areq);
1574 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1575 	bool enc = atmel_aes_is_encrypt(dd);
1576 	u32 authsize;
1577 
1578 	/* Compute text length. */
1579 	authsize = crypto_aead_authsize(tfm);
1580 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1581 
1582 	/*
1583 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1584 	 * fails when both the message and its associated data are empty.
1585 	 */
1586 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1587 		dd->flags |= AES_FLAGS_GTAGEN;
1588 
1589 	atmel_aes_write_ctrl(dd, false, NULL);
1590 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1591 }
1592 
1593 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1594 {
1595 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1596 	struct aead_request *req = aead_request_cast(dd->areq);
1597 	u32 j0_lsw, *j0 = ctx->j0;
1598 	size_t padlen;
1599 
1600 	/* Write incr32(J0) into IV. */
1601 	j0_lsw = j0[3];
1602 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1603 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1604 	j0[3] = j0_lsw;
1605 
1606 	/* Set aad and text lengths. */
1607 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1608 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1609 
1610 	/* Check whether AAD are present. */
1611 	if (unlikely(req->assoclen == 0)) {
1612 		dd->datalen = 0;
1613 		return atmel_aes_gcm_data(dd);
1614 	}
1615 
1616 	/* Copy assoc data and add padding. */
1617 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1618 	if (unlikely(req->assoclen + padlen > dd->buflen))
1619 		return atmel_aes_complete(dd, -EINVAL);
1620 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1621 
1622 	/* Write assoc data into the Input Data register. */
1623 	dd->data = (u32 *)dd->buf;
1624 	dd->datalen = req->assoclen + padlen;
1625 	return atmel_aes_gcm_data(dd);
1626 }
1627 
1628 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1629 {
1630 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1631 	struct aead_request *req = aead_request_cast(dd->areq);
1632 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1633 	struct scatterlist *src, *dst;
1634 	u32 isr, mr;
1635 
1636 	/* Write AAD first. */
1637 	while (dd->datalen > 0) {
1638 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1639 		dd->data += 4;
1640 		dd->datalen -= AES_BLOCK_SIZE;
1641 
1642 		isr = atmel_aes_read(dd, AES_ISR);
1643 		if (!(isr & AES_INT_DATARDY)) {
1644 			dd->resume = atmel_aes_gcm_data;
1645 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1646 			return -EINPROGRESS;
1647 		}
1648 	}
1649 
1650 	/* GMAC only. */
1651 	if (unlikely(ctx->textlen == 0))
1652 		return atmel_aes_gcm_tag_init(dd);
1653 
1654 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1655 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1656 	dst = ((req->src == req->dst) ? src :
1657 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1658 
1659 	if (use_dma) {
1660 		/* Update the Mode Register for DMA transfers. */
1661 		mr = atmel_aes_read(dd, AES_MR);
1662 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1663 		mr |= AES_MR_SMOD_IDATAR0;
1664 		if (dd->caps.has_dualbuff)
1665 			mr |= AES_MR_DUALBUFF;
1666 		atmel_aes_write(dd, AES_MR, mr);
1667 
1668 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1669 					   atmel_aes_gcm_tag_init);
1670 	}
1671 
1672 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1673 				   atmel_aes_gcm_tag_init);
1674 }
1675 
1676 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1677 {
1678 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1679 	struct aead_request *req = aead_request_cast(dd->areq);
1680 	u64 *data = dd->buf;
1681 
1682 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1683 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1684 			dd->resume = atmel_aes_gcm_tag_init;
1685 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1686 			return -EINPROGRESS;
1687 		}
1688 
1689 		return atmel_aes_gcm_finalize(dd);
1690 	}
1691 
1692 	/* Read the GCM Intermediate Hash Word Registers. */
1693 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1694 
1695 	data[0] = cpu_to_be64(req->assoclen * 8);
1696 	data[1] = cpu_to_be64(ctx->textlen * 8);
1697 
1698 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1699 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1700 }
1701 
1702 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1703 {
1704 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1705 	unsigned long flags;
1706 
1707 	/*
1708 	 * Change mode to CTR to complete the tag generation.
1709 	 * Use J0 as Initialization Vector.
1710 	 */
1711 	flags = dd->flags;
1712 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1713 	dd->flags |= AES_FLAGS_CTR;
1714 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1715 	dd->flags = flags;
1716 
1717 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1718 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1719 }
1720 
1721 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1722 {
1723 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1724 	struct aead_request *req = aead_request_cast(dd->areq);
1725 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1726 	bool enc = atmel_aes_is_encrypt(dd);
1727 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1728 	int err;
1729 
1730 	/* Read the computed tag. */
1731 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1732 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1733 	else
1734 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1735 
1736 	offset = req->assoclen + ctx->textlen;
1737 	authsize = crypto_aead_authsize(tfm);
1738 	if (enc) {
1739 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1740 		err = 0;
1741 	} else {
1742 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1743 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1744 	}
1745 
1746 	return atmel_aes_complete(dd, err);
1747 }
1748 
1749 static int atmel_aes_gcm_crypt(struct aead_request *req,
1750 			       unsigned long mode)
1751 {
1752 	struct atmel_aes_base_ctx *ctx;
1753 	struct atmel_aes_reqctx *rctx;
1754 	struct atmel_aes_dev *dd;
1755 
1756 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1757 	ctx->block_size = AES_BLOCK_SIZE;
1758 	ctx->is_aead = true;
1759 
1760 	dd = atmel_aes_find_dev(ctx);
1761 	if (!dd)
1762 		return -ENODEV;
1763 
1764 	rctx = aead_request_ctx(req);
1765 	rctx->mode = AES_FLAGS_GCM | mode;
1766 
1767 	return atmel_aes_handle_queue(dd, &req->base);
1768 }
1769 
1770 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1771 				unsigned int keylen)
1772 {
1773 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1774 
1775 	if (keylen != AES_KEYSIZE_256 &&
1776 	    keylen != AES_KEYSIZE_192 &&
1777 	    keylen != AES_KEYSIZE_128) {
1778 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1779 		return -EINVAL;
1780 	}
1781 
1782 	memcpy(ctx->key, key, keylen);
1783 	ctx->keylen = keylen;
1784 
1785 	return 0;
1786 }
1787 
1788 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1789 				     unsigned int authsize)
1790 {
1791 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1792 	switch (authsize) {
1793 	case 4:
1794 	case 8:
1795 	case 12:
1796 	case 13:
1797 	case 14:
1798 	case 15:
1799 	case 16:
1800 		break;
1801 	default:
1802 		return -EINVAL;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1809 {
1810 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1811 }
1812 
1813 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1814 {
1815 	return atmel_aes_gcm_crypt(req, 0);
1816 }
1817 
1818 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1819 {
1820 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1821 
1822 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1823 	ctx->base.start = atmel_aes_gcm_start;
1824 
1825 	return 0;
1826 }
1827 
1828 static struct aead_alg aes_gcm_alg = {
1829 	.setkey		= atmel_aes_gcm_setkey,
1830 	.setauthsize	= atmel_aes_gcm_setauthsize,
1831 	.encrypt	= atmel_aes_gcm_encrypt,
1832 	.decrypt	= atmel_aes_gcm_decrypt,
1833 	.init		= atmel_aes_gcm_init,
1834 	.ivsize		= GCM_AES_IV_SIZE,
1835 	.maxauthsize	= AES_BLOCK_SIZE,
1836 
1837 	.base = {
1838 		.cra_name		= "gcm(aes)",
1839 		.cra_driver_name	= "atmel-gcm-aes",
1840 		.cra_priority		= ATMEL_AES_PRIORITY,
1841 		.cra_flags		= CRYPTO_ALG_ASYNC,
1842 		.cra_blocksize		= 1,
1843 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1844 		.cra_alignmask		= 0xf,
1845 		.cra_module		= THIS_MODULE,
1846 	},
1847 };
1848 
1849 
1850 /* xts functions */
1851 
1852 static inline struct atmel_aes_xts_ctx *
1853 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1854 {
1855 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1856 }
1857 
1858 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1859 
1860 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1861 {
1862 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1863 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1864 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1865 	unsigned long flags;
1866 	int err;
1867 
1868 	atmel_aes_set_mode(dd, rctx);
1869 
1870 	err = atmel_aes_hw_init(dd);
1871 	if (err)
1872 		return atmel_aes_complete(dd, err);
1873 
1874 	/* Compute the tweak value from req->info with ecb(aes). */
1875 	flags = dd->flags;
1876 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1877 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1878 	atmel_aes_write_ctrl_key(dd, false, NULL,
1879 				 ctx->key2, ctx->base.keylen);
1880 	dd->flags = flags;
1881 
1882 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1883 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1884 }
1885 
1886 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1887 {
1888 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1889 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1890 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1891 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1892 	u8 *tweak_bytes = (u8 *)tweak;
1893 	int i;
1894 
1895 	/* Read the computed ciphered tweak value. */
1896 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1897 	/*
1898 	 * Hardware quirk:
1899 	 * the order of the ciphered tweak bytes need to be reversed before
1900 	 * writing them into the ODATARx registers.
1901 	 */
1902 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1903 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1904 
1905 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1906 		tweak_bytes[i] = tmp;
1907 	}
1908 
1909 	/* Process the data. */
1910 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1911 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1912 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1913 	if (use_dma)
1914 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1915 					   atmel_aes_transfer_complete);
1916 
1917 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1918 				   atmel_aes_transfer_complete);
1919 }
1920 
1921 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1922 				unsigned int keylen)
1923 {
1924 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1925 	int err;
1926 
1927 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1928 	if (err)
1929 		return err;
1930 
1931 	memcpy(ctx->base.key, key, keylen/2);
1932 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1933 	ctx->base.keylen = keylen/2;
1934 
1935 	return 0;
1936 }
1937 
1938 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1939 {
1940 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1941 }
1942 
1943 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1944 {
1945 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1946 }
1947 
1948 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1949 {
1950 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1951 
1952 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1953 	ctx->base.start = atmel_aes_xts_start;
1954 
1955 	return 0;
1956 }
1957 
1958 static struct crypto_alg aes_xts_alg = {
1959 	.cra_name		= "xts(aes)",
1960 	.cra_driver_name	= "atmel-xts-aes",
1961 	.cra_priority		= ATMEL_AES_PRIORITY,
1962 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1963 	.cra_blocksize		= AES_BLOCK_SIZE,
1964 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1965 	.cra_alignmask		= 0xf,
1966 	.cra_type		= &crypto_ablkcipher_type,
1967 	.cra_module		= THIS_MODULE,
1968 	.cra_init		= atmel_aes_xts_cra_init,
1969 	.cra_u.ablkcipher = {
1970 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1971 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1972 		.ivsize		= AES_BLOCK_SIZE,
1973 		.setkey		= atmel_aes_xts_setkey,
1974 		.encrypt	= atmel_aes_xts_encrypt,
1975 		.decrypt	= atmel_aes_xts_decrypt,
1976 	}
1977 };
1978 
1979 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1980 /* authenc aead functions */
1981 
1982 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1983 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1984 				  bool is_async);
1985 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1986 				      bool is_async);
1987 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1988 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1989 				   bool is_async);
1990 
1991 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1992 {
1993 	struct aead_request *req = aead_request_cast(dd->areq);
1994 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1995 
1996 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1997 		atmel_sha_authenc_abort(&rctx->auth_req);
1998 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1999 }
2000 
2001 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
2002 {
2003 	struct aead_request *req = aead_request_cast(dd->areq);
2004 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2005 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2006 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2007 	int err;
2008 
2009 	atmel_aes_set_mode(dd, &rctx->base);
2010 
2011 	err = atmel_aes_hw_init(dd);
2012 	if (err)
2013 		return atmel_aes_complete(dd, err);
2014 
2015 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2016 					  atmel_aes_authenc_init, dd);
2017 }
2018 
2019 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2020 				  bool is_async)
2021 {
2022 	struct aead_request *req = aead_request_cast(dd->areq);
2023 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2024 
2025 	if (is_async)
2026 		dd->is_async = true;
2027 	if (err)
2028 		return atmel_aes_complete(dd, err);
2029 
2030 	/* If here, we've got the ownership of the SHA device. */
2031 	dd->flags |= AES_FLAGS_OWN_SHA;
2032 
2033 	/* Configure the SHA device. */
2034 	return atmel_sha_authenc_init(&rctx->auth_req,
2035 				      req->src, req->assoclen,
2036 				      rctx->textlen,
2037 				      atmel_aes_authenc_transfer, dd);
2038 }
2039 
2040 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2041 				      bool is_async)
2042 {
2043 	struct aead_request *req = aead_request_cast(dd->areq);
2044 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2045 	bool enc = atmel_aes_is_encrypt(dd);
2046 	struct scatterlist *src, *dst;
2047 	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2048 	u32 emr;
2049 
2050 	if (is_async)
2051 		dd->is_async = true;
2052 	if (err)
2053 		return atmel_aes_complete(dd, err);
2054 
2055 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2056 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2057 	dst = src;
2058 
2059 	if (req->src != req->dst)
2060 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2061 
2062 	/* Configure the AES device. */
2063 	memcpy(iv, req->iv, sizeof(iv));
2064 
2065 	/*
2066 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2067 	 * 'true' even if the data transfer is actually performed by the CPU (so
2068 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2069 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2070 	 * must be set to *_MR_SMOD_IDATAR0.
2071 	 */
2072 	atmel_aes_write_ctrl(dd, true, iv);
2073 	emr = AES_EMR_PLIPEN;
2074 	if (!enc)
2075 		emr |= AES_EMR_PLIPD;
2076 	atmel_aes_write(dd, AES_EMR, emr);
2077 
2078 	/* Transfer data. */
2079 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2080 				   atmel_aes_authenc_digest);
2081 }
2082 
2083 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2084 {
2085 	struct aead_request *req = aead_request_cast(dd->areq);
2086 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2087 
2088 	/* atmel_sha_authenc_final() releases the SHA device. */
2089 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2090 	return atmel_sha_authenc_final(&rctx->auth_req,
2091 				       rctx->digest, sizeof(rctx->digest),
2092 				       atmel_aes_authenc_final, dd);
2093 }
2094 
2095 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2096 				   bool is_async)
2097 {
2098 	struct aead_request *req = aead_request_cast(dd->areq);
2099 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2100 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2101 	bool enc = atmel_aes_is_encrypt(dd);
2102 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2103 	u32 offs, authsize;
2104 
2105 	if (is_async)
2106 		dd->is_async = true;
2107 	if (err)
2108 		goto complete;
2109 
2110 	offs = req->assoclen + rctx->textlen;
2111 	authsize = crypto_aead_authsize(tfm);
2112 	if (enc) {
2113 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2114 	} else {
2115 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2116 		if (crypto_memneq(idigest, odigest, authsize))
2117 			err = -EBADMSG;
2118 	}
2119 
2120 complete:
2121 	return atmel_aes_complete(dd, err);
2122 }
2123 
2124 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2125 				    unsigned int keylen)
2126 {
2127 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2128 	struct crypto_authenc_keys keys;
2129 	u32 flags;
2130 	int err;
2131 
2132 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2133 		goto badkey;
2134 
2135 	if (keys.enckeylen > sizeof(ctx->base.key))
2136 		goto badkey;
2137 
2138 	/* Save auth key. */
2139 	flags = crypto_aead_get_flags(tfm);
2140 	err = atmel_sha_authenc_setkey(ctx->auth,
2141 				       keys.authkey, keys.authkeylen,
2142 				       &flags);
2143 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2144 	if (err) {
2145 		memzero_explicit(&keys, sizeof(keys));
2146 		return err;
2147 	}
2148 
2149 	/* Save enc key. */
2150 	ctx->base.keylen = keys.enckeylen;
2151 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2152 
2153 	memzero_explicit(&keys, sizeof(keys));
2154 	return 0;
2155 
2156 badkey:
2157 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2158 	memzero_explicit(&key, sizeof(keys));
2159 	return -EINVAL;
2160 }
2161 
2162 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2163 				      unsigned long auth_mode)
2164 {
2165 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2166 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2167 
2168 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2169 	if (IS_ERR(ctx->auth))
2170 		return PTR_ERR(ctx->auth);
2171 
2172 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2173 				      auth_reqsize));
2174 	ctx->base.start = atmel_aes_authenc_start;
2175 
2176 	return 0;
2177 }
2178 
2179 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2180 {
2181 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2182 }
2183 
2184 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2185 {
2186 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2187 }
2188 
2189 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2190 {
2191 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2192 }
2193 
2194 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2195 {
2196 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2197 }
2198 
2199 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2200 {
2201 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2202 }
2203 
2204 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2205 {
2206 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2207 
2208 	atmel_sha_authenc_free(ctx->auth);
2209 }
2210 
2211 static int atmel_aes_authenc_crypt(struct aead_request *req,
2212 				   unsigned long mode)
2213 {
2214 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2215 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2216 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2217 	u32 authsize = crypto_aead_authsize(tfm);
2218 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2219 	struct atmel_aes_dev *dd;
2220 
2221 	/* Compute text length. */
2222 	if (!enc && req->cryptlen < authsize)
2223 		return -EINVAL;
2224 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2225 
2226 	/*
2227 	 * Currently, empty messages are not supported yet:
2228 	 * the SHA auto-padding can be used only on non-empty messages.
2229 	 * Hence a special case needs to be implemented for empty message.
2230 	 */
2231 	if (!rctx->textlen && !req->assoclen)
2232 		return -EINVAL;
2233 
2234 	rctx->base.mode = mode;
2235 	ctx->block_size = AES_BLOCK_SIZE;
2236 	ctx->is_aead = true;
2237 
2238 	dd = atmel_aes_find_dev(ctx);
2239 	if (!dd)
2240 		return -ENODEV;
2241 
2242 	return atmel_aes_handle_queue(dd, &req->base);
2243 }
2244 
2245 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2246 {
2247 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2248 }
2249 
2250 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2251 {
2252 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2253 }
2254 
2255 static struct aead_alg aes_authenc_algs[] = {
2256 {
2257 	.setkey		= atmel_aes_authenc_setkey,
2258 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2259 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2260 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2261 	.exit		= atmel_aes_authenc_exit_tfm,
2262 	.ivsize		= AES_BLOCK_SIZE,
2263 	.maxauthsize	= SHA1_DIGEST_SIZE,
2264 
2265 	.base = {
2266 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2267 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2268 		.cra_priority		= ATMEL_AES_PRIORITY,
2269 		.cra_flags		= CRYPTO_ALG_ASYNC,
2270 		.cra_blocksize		= AES_BLOCK_SIZE,
2271 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2272 		.cra_alignmask		= 0xf,
2273 		.cra_module		= THIS_MODULE,
2274 	},
2275 },
2276 {
2277 	.setkey		= atmel_aes_authenc_setkey,
2278 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2279 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2280 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2281 	.exit		= atmel_aes_authenc_exit_tfm,
2282 	.ivsize		= AES_BLOCK_SIZE,
2283 	.maxauthsize	= SHA224_DIGEST_SIZE,
2284 
2285 	.base = {
2286 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2287 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2288 		.cra_priority		= ATMEL_AES_PRIORITY,
2289 		.cra_flags		= CRYPTO_ALG_ASYNC,
2290 		.cra_blocksize		= AES_BLOCK_SIZE,
2291 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2292 		.cra_alignmask		= 0xf,
2293 		.cra_module		= THIS_MODULE,
2294 	},
2295 },
2296 {
2297 	.setkey		= atmel_aes_authenc_setkey,
2298 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2299 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2300 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2301 	.exit		= atmel_aes_authenc_exit_tfm,
2302 	.ivsize		= AES_BLOCK_SIZE,
2303 	.maxauthsize	= SHA256_DIGEST_SIZE,
2304 
2305 	.base = {
2306 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2307 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2308 		.cra_priority		= ATMEL_AES_PRIORITY,
2309 		.cra_flags		= CRYPTO_ALG_ASYNC,
2310 		.cra_blocksize		= AES_BLOCK_SIZE,
2311 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2312 		.cra_alignmask		= 0xf,
2313 		.cra_module		= THIS_MODULE,
2314 	},
2315 },
2316 {
2317 	.setkey		= atmel_aes_authenc_setkey,
2318 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2319 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2320 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2321 	.exit		= atmel_aes_authenc_exit_tfm,
2322 	.ivsize		= AES_BLOCK_SIZE,
2323 	.maxauthsize	= SHA384_DIGEST_SIZE,
2324 
2325 	.base = {
2326 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2327 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2328 		.cra_priority		= ATMEL_AES_PRIORITY,
2329 		.cra_flags		= CRYPTO_ALG_ASYNC,
2330 		.cra_blocksize		= AES_BLOCK_SIZE,
2331 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2332 		.cra_alignmask		= 0xf,
2333 		.cra_module		= THIS_MODULE,
2334 	},
2335 },
2336 {
2337 	.setkey		= atmel_aes_authenc_setkey,
2338 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2339 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2340 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2341 	.exit		= atmel_aes_authenc_exit_tfm,
2342 	.ivsize		= AES_BLOCK_SIZE,
2343 	.maxauthsize	= SHA512_DIGEST_SIZE,
2344 
2345 	.base = {
2346 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2347 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2348 		.cra_priority		= ATMEL_AES_PRIORITY,
2349 		.cra_flags		= CRYPTO_ALG_ASYNC,
2350 		.cra_blocksize		= AES_BLOCK_SIZE,
2351 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2352 		.cra_alignmask		= 0xf,
2353 		.cra_module		= THIS_MODULE,
2354 	},
2355 },
2356 };
2357 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2358 
2359 /* Probe functions */
2360 
2361 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2362 {
2363 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2364 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2365 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2366 
2367 	if (!dd->buf) {
2368 		dev_err(dd->dev, "unable to alloc pages.\n");
2369 		return -ENOMEM;
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2376 {
2377 	free_page((unsigned long)dd->buf);
2378 }
2379 
2380 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2381 {
2382 	struct at_dma_slave	*sl = slave;
2383 
2384 	if (sl && sl->dma_dev == chan->device->dev) {
2385 		chan->private = sl;
2386 		return true;
2387 	} else {
2388 		return false;
2389 	}
2390 }
2391 
2392 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2393 			      struct crypto_platform_data *pdata)
2394 {
2395 	struct at_dma_slave *slave;
2396 	dma_cap_mask_t mask;
2397 
2398 	dma_cap_zero(mask);
2399 	dma_cap_set(DMA_SLAVE, mask);
2400 
2401 	/* Try to grab 2 DMA channels */
2402 	slave = &pdata->dma_slave->rxdata;
2403 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2404 							slave, dd->dev, "tx");
2405 	if (!dd->src.chan)
2406 		goto err_dma_in;
2407 
2408 	slave = &pdata->dma_slave->txdata;
2409 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2410 							slave, dd->dev, "rx");
2411 	if (!dd->dst.chan)
2412 		goto err_dma_out;
2413 
2414 	return 0;
2415 
2416 err_dma_out:
2417 	dma_release_channel(dd->src.chan);
2418 err_dma_in:
2419 	dev_warn(dd->dev, "no DMA channel available\n");
2420 	return -ENODEV;
2421 }
2422 
2423 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2424 {
2425 	dma_release_channel(dd->dst.chan);
2426 	dma_release_channel(dd->src.chan);
2427 }
2428 
2429 static void atmel_aes_queue_task(unsigned long data)
2430 {
2431 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2432 
2433 	atmel_aes_handle_queue(dd, NULL);
2434 }
2435 
2436 static void atmel_aes_done_task(unsigned long data)
2437 {
2438 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2439 
2440 	dd->is_async = true;
2441 	(void)dd->resume(dd);
2442 }
2443 
2444 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2445 {
2446 	struct atmel_aes_dev *aes_dd = dev_id;
2447 	u32 reg;
2448 
2449 	reg = atmel_aes_read(aes_dd, AES_ISR);
2450 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2451 		atmel_aes_write(aes_dd, AES_IDR, reg);
2452 		if (AES_FLAGS_BUSY & aes_dd->flags)
2453 			tasklet_schedule(&aes_dd->done_task);
2454 		else
2455 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2456 		return IRQ_HANDLED;
2457 	}
2458 
2459 	return IRQ_NONE;
2460 }
2461 
2462 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2463 {
2464 	int i;
2465 
2466 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2467 	if (dd->caps.has_authenc)
2468 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2469 			crypto_unregister_aead(&aes_authenc_algs[i]);
2470 #endif
2471 
2472 	if (dd->caps.has_xts)
2473 		crypto_unregister_alg(&aes_xts_alg);
2474 
2475 	if (dd->caps.has_gcm)
2476 		crypto_unregister_aead(&aes_gcm_alg);
2477 
2478 	if (dd->caps.has_cfb64)
2479 		crypto_unregister_alg(&aes_cfb64_alg);
2480 
2481 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2482 		crypto_unregister_alg(&aes_algs[i]);
2483 }
2484 
2485 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2486 {
2487 	int err, i, j;
2488 
2489 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2490 		err = crypto_register_alg(&aes_algs[i]);
2491 		if (err)
2492 			goto err_aes_algs;
2493 	}
2494 
2495 	if (dd->caps.has_cfb64) {
2496 		err = crypto_register_alg(&aes_cfb64_alg);
2497 		if (err)
2498 			goto err_aes_cfb64_alg;
2499 	}
2500 
2501 	if (dd->caps.has_gcm) {
2502 		err = crypto_register_aead(&aes_gcm_alg);
2503 		if (err)
2504 			goto err_aes_gcm_alg;
2505 	}
2506 
2507 	if (dd->caps.has_xts) {
2508 		err = crypto_register_alg(&aes_xts_alg);
2509 		if (err)
2510 			goto err_aes_xts_alg;
2511 	}
2512 
2513 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2514 	if (dd->caps.has_authenc) {
2515 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2516 			err = crypto_register_aead(&aes_authenc_algs[i]);
2517 			if (err)
2518 				goto err_aes_authenc_alg;
2519 		}
2520 	}
2521 #endif
2522 
2523 	return 0;
2524 
2525 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2526 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2527 err_aes_authenc_alg:
2528 	for (j = 0; j < i; j++)
2529 		crypto_unregister_aead(&aes_authenc_algs[j]);
2530 	crypto_unregister_alg(&aes_xts_alg);
2531 #endif
2532 err_aes_xts_alg:
2533 	crypto_unregister_aead(&aes_gcm_alg);
2534 err_aes_gcm_alg:
2535 	crypto_unregister_alg(&aes_cfb64_alg);
2536 err_aes_cfb64_alg:
2537 	i = ARRAY_SIZE(aes_algs);
2538 err_aes_algs:
2539 	for (j = 0; j < i; j++)
2540 		crypto_unregister_alg(&aes_algs[j]);
2541 
2542 	return err;
2543 }
2544 
2545 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2546 {
2547 	dd->caps.has_dualbuff = 0;
2548 	dd->caps.has_cfb64 = 0;
2549 	dd->caps.has_ctr32 = 0;
2550 	dd->caps.has_gcm = 0;
2551 	dd->caps.has_xts = 0;
2552 	dd->caps.has_authenc = 0;
2553 	dd->caps.max_burst_size = 1;
2554 
2555 	/* keep only major version number */
2556 	switch (dd->hw_version & 0xff0) {
2557 	case 0x500:
2558 		dd->caps.has_dualbuff = 1;
2559 		dd->caps.has_cfb64 = 1;
2560 		dd->caps.has_ctr32 = 1;
2561 		dd->caps.has_gcm = 1;
2562 		dd->caps.has_xts = 1;
2563 		dd->caps.has_authenc = 1;
2564 		dd->caps.max_burst_size = 4;
2565 		break;
2566 	case 0x200:
2567 		dd->caps.has_dualbuff = 1;
2568 		dd->caps.has_cfb64 = 1;
2569 		dd->caps.has_ctr32 = 1;
2570 		dd->caps.has_gcm = 1;
2571 		dd->caps.max_burst_size = 4;
2572 		break;
2573 	case 0x130:
2574 		dd->caps.has_dualbuff = 1;
2575 		dd->caps.has_cfb64 = 1;
2576 		dd->caps.max_burst_size = 4;
2577 		break;
2578 	case 0x120:
2579 		break;
2580 	default:
2581 		dev_warn(dd->dev,
2582 				"Unmanaged aes version, set minimum capabilities\n");
2583 		break;
2584 	}
2585 }
2586 
2587 #if defined(CONFIG_OF)
2588 static const struct of_device_id atmel_aes_dt_ids[] = {
2589 	{ .compatible = "atmel,at91sam9g46-aes" },
2590 	{ /* sentinel */ }
2591 };
2592 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2593 
2594 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2595 {
2596 	struct device_node *np = pdev->dev.of_node;
2597 	struct crypto_platform_data *pdata;
2598 
2599 	if (!np) {
2600 		dev_err(&pdev->dev, "device node not found\n");
2601 		return ERR_PTR(-EINVAL);
2602 	}
2603 
2604 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2605 	if (!pdata) {
2606 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2607 		return ERR_PTR(-ENOMEM);
2608 	}
2609 
2610 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2611 					sizeof(*(pdata->dma_slave)),
2612 					GFP_KERNEL);
2613 	if (!pdata->dma_slave) {
2614 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2615 		devm_kfree(&pdev->dev, pdata);
2616 		return ERR_PTR(-ENOMEM);
2617 	}
2618 
2619 	return pdata;
2620 }
2621 #else
2622 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2623 {
2624 	return ERR_PTR(-EINVAL);
2625 }
2626 #endif
2627 
2628 static int atmel_aes_probe(struct platform_device *pdev)
2629 {
2630 	struct atmel_aes_dev *aes_dd;
2631 	struct crypto_platform_data *pdata;
2632 	struct device *dev = &pdev->dev;
2633 	struct resource *aes_res;
2634 	int err;
2635 
2636 	pdata = pdev->dev.platform_data;
2637 	if (!pdata) {
2638 		pdata = atmel_aes_of_init(pdev);
2639 		if (IS_ERR(pdata)) {
2640 			err = PTR_ERR(pdata);
2641 			goto aes_dd_err;
2642 		}
2643 	}
2644 
2645 	if (!pdata->dma_slave) {
2646 		err = -ENXIO;
2647 		goto aes_dd_err;
2648 	}
2649 
2650 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2651 	if (aes_dd == NULL) {
2652 		dev_err(dev, "unable to alloc data struct.\n");
2653 		err = -ENOMEM;
2654 		goto aes_dd_err;
2655 	}
2656 
2657 	aes_dd->dev = dev;
2658 
2659 	platform_set_drvdata(pdev, aes_dd);
2660 
2661 	INIT_LIST_HEAD(&aes_dd->list);
2662 	spin_lock_init(&aes_dd->lock);
2663 
2664 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2665 					(unsigned long)aes_dd);
2666 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2667 					(unsigned long)aes_dd);
2668 
2669 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2670 
2671 	/* Get the base address */
2672 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2673 	if (!aes_res) {
2674 		dev_err(dev, "no MEM resource info\n");
2675 		err = -ENODEV;
2676 		goto res_err;
2677 	}
2678 	aes_dd->phys_base = aes_res->start;
2679 
2680 	/* Get the IRQ */
2681 	aes_dd->irq = platform_get_irq(pdev,  0);
2682 	if (aes_dd->irq < 0) {
2683 		dev_err(dev, "no IRQ resource info\n");
2684 		err = aes_dd->irq;
2685 		goto res_err;
2686 	}
2687 
2688 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2689 			       IRQF_SHARED, "atmel-aes", aes_dd);
2690 	if (err) {
2691 		dev_err(dev, "unable to request aes irq.\n");
2692 		goto res_err;
2693 	}
2694 
2695 	/* Initializing the clock */
2696 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2697 	if (IS_ERR(aes_dd->iclk)) {
2698 		dev_err(dev, "clock initialization failed.\n");
2699 		err = PTR_ERR(aes_dd->iclk);
2700 		goto res_err;
2701 	}
2702 
2703 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2704 	if (IS_ERR(aes_dd->io_base)) {
2705 		dev_err(dev, "can't ioremap\n");
2706 		err = PTR_ERR(aes_dd->io_base);
2707 		goto res_err;
2708 	}
2709 
2710 	err = clk_prepare(aes_dd->iclk);
2711 	if (err)
2712 		goto res_err;
2713 
2714 	err = atmel_aes_hw_version_init(aes_dd);
2715 	if (err)
2716 		goto iclk_unprepare;
2717 
2718 	atmel_aes_get_cap(aes_dd);
2719 
2720 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2721 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2722 		err = -EPROBE_DEFER;
2723 		goto iclk_unprepare;
2724 	}
2725 #endif
2726 
2727 	err = atmel_aes_buff_init(aes_dd);
2728 	if (err)
2729 		goto err_aes_buff;
2730 
2731 	err = atmel_aes_dma_init(aes_dd, pdata);
2732 	if (err)
2733 		goto err_aes_dma;
2734 
2735 	spin_lock(&atmel_aes.lock);
2736 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2737 	spin_unlock(&atmel_aes.lock);
2738 
2739 	err = atmel_aes_register_algs(aes_dd);
2740 	if (err)
2741 		goto err_algs;
2742 
2743 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2744 			dma_chan_name(aes_dd->src.chan),
2745 			dma_chan_name(aes_dd->dst.chan));
2746 
2747 	return 0;
2748 
2749 err_algs:
2750 	spin_lock(&atmel_aes.lock);
2751 	list_del(&aes_dd->list);
2752 	spin_unlock(&atmel_aes.lock);
2753 	atmel_aes_dma_cleanup(aes_dd);
2754 err_aes_dma:
2755 	atmel_aes_buff_cleanup(aes_dd);
2756 err_aes_buff:
2757 iclk_unprepare:
2758 	clk_unprepare(aes_dd->iclk);
2759 res_err:
2760 	tasklet_kill(&aes_dd->done_task);
2761 	tasklet_kill(&aes_dd->queue_task);
2762 aes_dd_err:
2763 	if (err != -EPROBE_DEFER)
2764 		dev_err(dev, "initialization failed.\n");
2765 
2766 	return err;
2767 }
2768 
2769 static int atmel_aes_remove(struct platform_device *pdev)
2770 {
2771 	struct atmel_aes_dev *aes_dd;
2772 
2773 	aes_dd = platform_get_drvdata(pdev);
2774 	if (!aes_dd)
2775 		return -ENODEV;
2776 	spin_lock(&atmel_aes.lock);
2777 	list_del(&aes_dd->list);
2778 	spin_unlock(&atmel_aes.lock);
2779 
2780 	atmel_aes_unregister_algs(aes_dd);
2781 
2782 	tasklet_kill(&aes_dd->done_task);
2783 	tasklet_kill(&aes_dd->queue_task);
2784 
2785 	atmel_aes_dma_cleanup(aes_dd);
2786 	atmel_aes_buff_cleanup(aes_dd);
2787 
2788 	clk_unprepare(aes_dd->iclk);
2789 
2790 	return 0;
2791 }
2792 
2793 static struct platform_driver atmel_aes_driver = {
2794 	.probe		= atmel_aes_probe,
2795 	.remove		= atmel_aes_remove,
2796 	.driver		= {
2797 		.name	= "atmel_aes",
2798 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2799 	},
2800 };
2801 
2802 module_platform_driver(atmel_aes_driver);
2803 
2804 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2805 MODULE_LICENSE("GPL v2");
2806 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2807