xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision bc5aa3a0)
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43 
44 #define ATMEL_AES_PRIORITY	300
45 
46 #define ATMEL_AES_BUFFER_ORDER	2
47 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48 
49 #define CFB8_BLOCK_SIZE		1
50 #define CFB16_BLOCK_SIZE	2
51 #define CFB32_BLOCK_SIZE	4
52 #define CFB64_BLOCK_SIZE	8
53 
54 #define SIZE_IN_WORDS(x)	((x) >> 2)
55 
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71 
72 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
73 				 AES_FLAGS_ENCRYPT |		\
74 				 AES_FLAGS_GTAGEN)
75 
76 #define AES_FLAGS_INIT		BIT(2)
77 #define AES_FLAGS_BUSY		BIT(3)
78 #define AES_FLAGS_DUMP_REG	BIT(4)
79 
80 #define AES_FLAGS_PERSISTENT	(AES_FLAGS_INIT | AES_FLAGS_BUSY)
81 
82 #define ATMEL_AES_QUEUE_LENGTH	50
83 
84 #define ATMEL_AES_DMA_THRESHOLD		256
85 
86 
87 struct atmel_aes_caps {
88 	bool			has_dualbuff;
89 	bool			has_cfb64;
90 	bool			has_ctr32;
91 	bool			has_gcm;
92 	u32			max_burst_size;
93 };
94 
95 struct atmel_aes_dev;
96 
97 
98 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
99 
100 
101 struct atmel_aes_base_ctx {
102 	struct atmel_aes_dev	*dd;
103 	atmel_aes_fn_t		start;
104 	int			keylen;
105 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
106 	u16			block_size;
107 };
108 
109 struct atmel_aes_ctx {
110 	struct atmel_aes_base_ctx	base;
111 };
112 
113 struct atmel_aes_ctr_ctx {
114 	struct atmel_aes_base_ctx	base;
115 
116 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
117 	size_t			offset;
118 	struct scatterlist	src[2];
119 	struct scatterlist	dst[2];
120 };
121 
122 struct atmel_aes_gcm_ctx {
123 	struct atmel_aes_base_ctx	base;
124 
125 	struct scatterlist	src[2];
126 	struct scatterlist	dst[2];
127 
128 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
129 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
130 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
131 	size_t			textlen;
132 
133 	const u32		*ghash_in;
134 	u32			*ghash_out;
135 	atmel_aes_fn_t		ghash_resume;
136 };
137 
138 struct atmel_aes_reqctx {
139 	unsigned long		mode;
140 };
141 
142 struct atmel_aes_dma {
143 	struct dma_chan		*chan;
144 	struct scatterlist	*sg;
145 	int			nents;
146 	unsigned int		remainder;
147 	unsigned int		sg_len;
148 };
149 
150 struct atmel_aes_dev {
151 	struct list_head	list;
152 	unsigned long		phys_base;
153 	void __iomem		*io_base;
154 
155 	struct crypto_async_request	*areq;
156 	struct atmel_aes_base_ctx	*ctx;
157 
158 	bool			is_async;
159 	atmel_aes_fn_t		resume;
160 	atmel_aes_fn_t		cpu_transfer_complete;
161 
162 	struct device		*dev;
163 	struct clk		*iclk;
164 	int			irq;
165 
166 	unsigned long		flags;
167 
168 	spinlock_t		lock;
169 	struct crypto_queue	queue;
170 
171 	struct tasklet_struct	done_task;
172 	struct tasklet_struct	queue_task;
173 
174 	size_t			total;
175 	size_t			datalen;
176 	u32			*data;
177 
178 	struct atmel_aes_dma	src;
179 	struct atmel_aes_dma	dst;
180 
181 	size_t			buflen;
182 	void			*buf;
183 	struct scatterlist	aligned_sg;
184 	struct scatterlist	*real_dst;
185 
186 	struct atmel_aes_caps	caps;
187 
188 	u32			hw_version;
189 };
190 
191 struct atmel_aes_drv {
192 	struct list_head	dev_list;
193 	spinlock_t		lock;
194 };
195 
196 static struct atmel_aes_drv atmel_aes = {
197 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
198 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
199 };
200 
201 #ifdef VERBOSE_DEBUG
202 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
203 {
204 	switch (offset) {
205 	case AES_CR:
206 		return "CR";
207 
208 	case AES_MR:
209 		return "MR";
210 
211 	case AES_ISR:
212 		return "ISR";
213 
214 	case AES_IMR:
215 		return "IMR";
216 
217 	case AES_IER:
218 		return "IER";
219 
220 	case AES_IDR:
221 		return "IDR";
222 
223 	case AES_KEYWR(0):
224 	case AES_KEYWR(1):
225 	case AES_KEYWR(2):
226 	case AES_KEYWR(3):
227 	case AES_KEYWR(4):
228 	case AES_KEYWR(5):
229 	case AES_KEYWR(6):
230 	case AES_KEYWR(7):
231 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
232 		break;
233 
234 	case AES_IDATAR(0):
235 	case AES_IDATAR(1):
236 	case AES_IDATAR(2):
237 	case AES_IDATAR(3):
238 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
239 		break;
240 
241 	case AES_ODATAR(0):
242 	case AES_ODATAR(1):
243 	case AES_ODATAR(2):
244 	case AES_ODATAR(3):
245 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
246 		break;
247 
248 	case AES_IVR(0):
249 	case AES_IVR(1):
250 	case AES_IVR(2):
251 	case AES_IVR(3):
252 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
253 		break;
254 
255 	case AES_AADLENR:
256 		return "AADLENR";
257 
258 	case AES_CLENR:
259 		return "CLENR";
260 
261 	case AES_GHASHR(0):
262 	case AES_GHASHR(1):
263 	case AES_GHASHR(2):
264 	case AES_GHASHR(3):
265 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
266 		break;
267 
268 	case AES_TAGR(0):
269 	case AES_TAGR(1):
270 	case AES_TAGR(2):
271 	case AES_TAGR(3):
272 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
273 		break;
274 
275 	case AES_CTRR:
276 		return "CTRR";
277 
278 	case AES_GCMHR(0):
279 	case AES_GCMHR(1):
280 	case AES_GCMHR(2):
281 	case AES_GCMHR(3):
282 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
283 		break;
284 
285 	default:
286 		snprintf(tmp, sz, "0x%02x", offset);
287 		break;
288 	}
289 
290 	return tmp;
291 }
292 #endif /* VERBOSE_DEBUG */
293 
294 /* Shared functions */
295 
296 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
297 {
298 	u32 value = readl_relaxed(dd->io_base + offset);
299 
300 #ifdef VERBOSE_DEBUG
301 	if (dd->flags & AES_FLAGS_DUMP_REG) {
302 		char tmp[16];
303 
304 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
305 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
306 	}
307 #endif /* VERBOSE_DEBUG */
308 
309 	return value;
310 }
311 
312 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
313 					u32 offset, u32 value)
314 {
315 #ifdef VERBOSE_DEBUG
316 	if (dd->flags & AES_FLAGS_DUMP_REG) {
317 		char tmp[16];
318 
319 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
320 			 atmel_aes_reg_name(offset, tmp));
321 	}
322 #endif /* VERBOSE_DEBUG */
323 
324 	writel_relaxed(value, dd->io_base + offset);
325 }
326 
327 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
328 					u32 *value, int count)
329 {
330 	for (; count--; value++, offset += 4)
331 		*value = atmel_aes_read(dd, offset);
332 }
333 
334 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
335 			      const u32 *value, int count)
336 {
337 	for (; count--; value++, offset += 4)
338 		atmel_aes_write(dd, offset, *value);
339 }
340 
341 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
342 					u32 *value)
343 {
344 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
345 }
346 
347 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
348 					 const u32 *value)
349 {
350 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
351 }
352 
353 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
354 						atmel_aes_fn_t resume)
355 {
356 	u32 isr = atmel_aes_read(dd, AES_ISR);
357 
358 	if (unlikely(isr & AES_INT_DATARDY))
359 		return resume(dd);
360 
361 	dd->resume = resume;
362 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
363 	return -EINPROGRESS;
364 }
365 
366 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
367 {
368 	len &= block_size - 1;
369 	return len ? block_size - len : 0;
370 }
371 
372 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
373 {
374 	struct atmel_aes_dev *aes_dd = NULL;
375 	struct atmel_aes_dev *tmp;
376 
377 	spin_lock_bh(&atmel_aes.lock);
378 	if (!ctx->dd) {
379 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
380 			aes_dd = tmp;
381 			break;
382 		}
383 		ctx->dd = aes_dd;
384 	} else {
385 		aes_dd = ctx->dd;
386 	}
387 
388 	spin_unlock_bh(&atmel_aes.lock);
389 
390 	return aes_dd;
391 }
392 
393 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
394 {
395 	int err;
396 
397 	err = clk_enable(dd->iclk);
398 	if (err)
399 		return err;
400 
401 	if (!(dd->flags & AES_FLAGS_INIT)) {
402 		atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
403 		atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
404 		dd->flags |= AES_FLAGS_INIT;
405 	}
406 
407 	return 0;
408 }
409 
410 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
411 {
412 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
413 }
414 
415 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
416 {
417 	int err;
418 
419 	err = atmel_aes_hw_init(dd);
420 	if (err)
421 		return err;
422 
423 	dd->hw_version = atmel_aes_get_version(dd);
424 
425 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
426 
427 	clk_disable(dd->iclk);
428 	return 0;
429 }
430 
431 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
432 				      const struct atmel_aes_reqctx *rctx)
433 {
434 	/* Clear all but persistent flags and set request flags. */
435 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
436 }
437 
438 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
439 {
440 	return (dd->flags & AES_FLAGS_ENCRYPT);
441 }
442 
443 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
444 {
445 	clk_disable(dd->iclk);
446 	dd->flags &= ~AES_FLAGS_BUSY;
447 
448 	if (dd->is_async)
449 		dd->areq->complete(dd->areq, err);
450 
451 	tasklet_schedule(&dd->queue_task);
452 
453 	return err;
454 }
455 
456 static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
457 				 const u32 *iv)
458 {
459 	u32 valmr = 0;
460 
461 	/* MR register must be set before IV registers */
462 	if (dd->ctx->keylen == AES_KEYSIZE_128)
463 		valmr |= AES_MR_KEYSIZE_128;
464 	else if (dd->ctx->keylen == AES_KEYSIZE_192)
465 		valmr |= AES_MR_KEYSIZE_192;
466 	else
467 		valmr |= AES_MR_KEYSIZE_256;
468 
469 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
470 
471 	if (use_dma) {
472 		valmr |= AES_MR_SMOD_IDATAR0;
473 		if (dd->caps.has_dualbuff)
474 			valmr |= AES_MR_DUALBUFF;
475 	} else {
476 		valmr |= AES_MR_SMOD_AUTO;
477 	}
478 
479 	atmel_aes_write(dd, AES_MR, valmr);
480 
481 	atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
482 			  SIZE_IN_WORDS(dd->ctx->keylen));
483 
484 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
485 		atmel_aes_write_block(dd, AES_IVR(0), iv);
486 }
487 
488 
489 /* CPU transfer */
490 
491 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
492 {
493 	int err = 0;
494 	u32 isr;
495 
496 	for (;;) {
497 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
498 		dd->data += 4;
499 		dd->datalen -= AES_BLOCK_SIZE;
500 
501 		if (dd->datalen < AES_BLOCK_SIZE)
502 			break;
503 
504 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
505 
506 		isr = atmel_aes_read(dd, AES_ISR);
507 		if (!(isr & AES_INT_DATARDY)) {
508 			dd->resume = atmel_aes_cpu_transfer;
509 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
510 			return -EINPROGRESS;
511 		}
512 	}
513 
514 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
515 				 dd->buf, dd->total))
516 		err = -EINVAL;
517 
518 	if (err)
519 		return atmel_aes_complete(dd, err);
520 
521 	return dd->cpu_transfer_complete(dd);
522 }
523 
524 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
525 			       struct scatterlist *src,
526 			       struct scatterlist *dst,
527 			       size_t len,
528 			       atmel_aes_fn_t resume)
529 {
530 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
531 
532 	if (unlikely(len == 0))
533 		return -EINVAL;
534 
535 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
536 
537 	dd->total = len;
538 	dd->real_dst = dst;
539 	dd->cpu_transfer_complete = resume;
540 	dd->datalen = len + padlen;
541 	dd->data = (u32 *)dd->buf;
542 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
543 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
544 }
545 
546 
547 /* DMA transfer */
548 
549 static void atmel_aes_dma_callback(void *data);
550 
551 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
552 				    struct scatterlist *sg,
553 				    size_t len,
554 				    struct atmel_aes_dma *dma)
555 {
556 	int nents;
557 
558 	if (!IS_ALIGNED(len, dd->ctx->block_size))
559 		return false;
560 
561 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
562 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
563 			return false;
564 
565 		if (len <= sg->length) {
566 			if (!IS_ALIGNED(len, dd->ctx->block_size))
567 				return false;
568 
569 			dma->nents = nents+1;
570 			dma->remainder = sg->length - len;
571 			sg->length = len;
572 			return true;
573 		}
574 
575 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
576 			return false;
577 
578 		len -= sg->length;
579 	}
580 
581 	return false;
582 }
583 
584 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
585 {
586 	struct scatterlist *sg = dma->sg;
587 	int nents = dma->nents;
588 
589 	if (!dma->remainder)
590 		return;
591 
592 	while (--nents > 0 && sg)
593 		sg = sg_next(sg);
594 
595 	if (!sg)
596 		return;
597 
598 	sg->length += dma->remainder;
599 }
600 
601 static int atmel_aes_map(struct atmel_aes_dev *dd,
602 			 struct scatterlist *src,
603 			 struct scatterlist *dst,
604 			 size_t len)
605 {
606 	bool src_aligned, dst_aligned;
607 	size_t padlen;
608 
609 	dd->total = len;
610 	dd->src.sg = src;
611 	dd->dst.sg = dst;
612 	dd->real_dst = dst;
613 
614 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
615 	if (src == dst)
616 		dst_aligned = src_aligned;
617 	else
618 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
619 	if (!src_aligned || !dst_aligned) {
620 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
621 
622 		if (dd->buflen < len + padlen)
623 			return -ENOMEM;
624 
625 		if (!src_aligned) {
626 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
627 			dd->src.sg = &dd->aligned_sg;
628 			dd->src.nents = 1;
629 			dd->src.remainder = 0;
630 		}
631 
632 		if (!dst_aligned) {
633 			dd->dst.sg = &dd->aligned_sg;
634 			dd->dst.nents = 1;
635 			dd->dst.remainder = 0;
636 		}
637 
638 		sg_init_table(&dd->aligned_sg, 1);
639 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
640 	}
641 
642 	if (dd->src.sg == dd->dst.sg) {
643 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
644 					    DMA_BIDIRECTIONAL);
645 		dd->dst.sg_len = dd->src.sg_len;
646 		if (!dd->src.sg_len)
647 			return -EFAULT;
648 	} else {
649 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
650 					    DMA_TO_DEVICE);
651 		if (!dd->src.sg_len)
652 			return -EFAULT;
653 
654 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
655 					    DMA_FROM_DEVICE);
656 		if (!dd->dst.sg_len) {
657 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
658 				     DMA_TO_DEVICE);
659 			return -EFAULT;
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
667 {
668 	if (dd->src.sg == dd->dst.sg) {
669 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
670 			     DMA_BIDIRECTIONAL);
671 
672 		if (dd->src.sg != &dd->aligned_sg)
673 			atmel_aes_restore_sg(&dd->src);
674 	} else {
675 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
676 			     DMA_FROM_DEVICE);
677 
678 		if (dd->dst.sg != &dd->aligned_sg)
679 			atmel_aes_restore_sg(&dd->dst);
680 
681 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
682 			     DMA_TO_DEVICE);
683 
684 		if (dd->src.sg != &dd->aligned_sg)
685 			atmel_aes_restore_sg(&dd->src);
686 	}
687 
688 	if (dd->dst.sg == &dd->aligned_sg)
689 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
690 				    dd->buf, dd->total);
691 }
692 
693 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
694 					enum dma_slave_buswidth addr_width,
695 					enum dma_transfer_direction dir,
696 					u32 maxburst)
697 {
698 	struct dma_async_tx_descriptor *desc;
699 	struct dma_slave_config config;
700 	dma_async_tx_callback callback;
701 	struct atmel_aes_dma *dma;
702 	int err;
703 
704 	memset(&config, 0, sizeof(config));
705 	config.direction = dir;
706 	config.src_addr_width = addr_width;
707 	config.dst_addr_width = addr_width;
708 	config.src_maxburst = maxburst;
709 	config.dst_maxburst = maxburst;
710 
711 	switch (dir) {
712 	case DMA_MEM_TO_DEV:
713 		dma = &dd->src;
714 		callback = NULL;
715 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
716 		break;
717 
718 	case DMA_DEV_TO_MEM:
719 		dma = &dd->dst;
720 		callback = atmel_aes_dma_callback;
721 		config.src_addr = dd->phys_base + AES_ODATAR(0);
722 		break;
723 
724 	default:
725 		return -EINVAL;
726 	}
727 
728 	err = dmaengine_slave_config(dma->chan, &config);
729 	if (err)
730 		return err;
731 
732 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
733 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
734 	if (!desc)
735 		return -ENOMEM;
736 
737 	desc->callback = callback;
738 	desc->callback_param = dd;
739 	dmaengine_submit(desc);
740 	dma_async_issue_pending(dma->chan);
741 
742 	return 0;
743 }
744 
745 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
746 					enum dma_transfer_direction dir)
747 {
748 	struct atmel_aes_dma *dma;
749 
750 	switch (dir) {
751 	case DMA_MEM_TO_DEV:
752 		dma = &dd->src;
753 		break;
754 
755 	case DMA_DEV_TO_MEM:
756 		dma = &dd->dst;
757 		break;
758 
759 	default:
760 		return;
761 	}
762 
763 	dmaengine_terminate_all(dma->chan);
764 }
765 
766 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
767 			       struct scatterlist *src,
768 			       struct scatterlist *dst,
769 			       size_t len,
770 			       atmel_aes_fn_t resume)
771 {
772 	enum dma_slave_buswidth addr_width;
773 	u32 maxburst;
774 	int err;
775 
776 	switch (dd->ctx->block_size) {
777 	case CFB8_BLOCK_SIZE:
778 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
779 		maxburst = 1;
780 		break;
781 
782 	case CFB16_BLOCK_SIZE:
783 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
784 		maxburst = 1;
785 		break;
786 
787 	case CFB32_BLOCK_SIZE:
788 	case CFB64_BLOCK_SIZE:
789 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 		maxburst = 1;
791 		break;
792 
793 	case AES_BLOCK_SIZE:
794 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 		maxburst = dd->caps.max_burst_size;
796 		break;
797 
798 	default:
799 		err = -EINVAL;
800 		goto exit;
801 	}
802 
803 	err = atmel_aes_map(dd, src, dst, len);
804 	if (err)
805 		goto exit;
806 
807 	dd->resume = resume;
808 
809 	/* Set output DMA transfer first */
810 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
811 					   maxburst);
812 	if (err)
813 		goto unmap;
814 
815 	/* Then set input DMA transfer */
816 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
817 					   maxburst);
818 	if (err)
819 		goto output_transfer_stop;
820 
821 	return -EINPROGRESS;
822 
823 output_transfer_stop:
824 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
825 unmap:
826 	atmel_aes_unmap(dd);
827 exit:
828 	return atmel_aes_complete(dd, err);
829 }
830 
831 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
832 {
833 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
834 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
835 	atmel_aes_unmap(dd);
836 }
837 
838 static void atmel_aes_dma_callback(void *data)
839 {
840 	struct atmel_aes_dev *dd = data;
841 
842 	atmel_aes_dma_stop(dd);
843 	dd->is_async = true;
844 	(void)dd->resume(dd);
845 }
846 
847 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
848 				  struct crypto_async_request *new_areq)
849 {
850 	struct crypto_async_request *areq, *backlog;
851 	struct atmel_aes_base_ctx *ctx;
852 	unsigned long flags;
853 	int err, ret = 0;
854 
855 	spin_lock_irqsave(&dd->lock, flags);
856 	if (new_areq)
857 		ret = crypto_enqueue_request(&dd->queue, new_areq);
858 	if (dd->flags & AES_FLAGS_BUSY) {
859 		spin_unlock_irqrestore(&dd->lock, flags);
860 		return ret;
861 	}
862 	backlog = crypto_get_backlog(&dd->queue);
863 	areq = crypto_dequeue_request(&dd->queue);
864 	if (areq)
865 		dd->flags |= AES_FLAGS_BUSY;
866 	spin_unlock_irqrestore(&dd->lock, flags);
867 
868 	if (!areq)
869 		return ret;
870 
871 	if (backlog)
872 		backlog->complete(backlog, -EINPROGRESS);
873 
874 	ctx = crypto_tfm_ctx(areq->tfm);
875 
876 	dd->areq = areq;
877 	dd->ctx = ctx;
878 	dd->is_async = (areq != new_areq);
879 
880 	err = ctx->start(dd);
881 	return (dd->is_async) ? ret : err;
882 }
883 
884 
885 /* AES async block ciphers */
886 
887 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
888 {
889 	return atmel_aes_complete(dd, 0);
890 }
891 
892 static int atmel_aes_start(struct atmel_aes_dev *dd)
893 {
894 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
895 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
896 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
897 			dd->ctx->block_size != AES_BLOCK_SIZE);
898 	int err;
899 
900 	atmel_aes_set_mode(dd, rctx);
901 
902 	err = atmel_aes_hw_init(dd);
903 	if (err)
904 		return atmel_aes_complete(dd, err);
905 
906 	atmel_aes_write_ctrl(dd, use_dma, req->info);
907 	if (use_dma)
908 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
909 					   atmel_aes_transfer_complete);
910 
911 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
912 				   atmel_aes_transfer_complete);
913 }
914 
915 static inline struct atmel_aes_ctr_ctx *
916 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
917 {
918 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
919 }
920 
921 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
922 {
923 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
924 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
925 	struct scatterlist *src, *dst;
926 	u32 ctr, blocks;
927 	size_t datalen;
928 	bool use_dma, fragmented = false;
929 
930 	/* Check for transfer completion. */
931 	ctx->offset += dd->total;
932 	if (ctx->offset >= req->nbytes)
933 		return atmel_aes_transfer_complete(dd);
934 
935 	/* Compute data length. */
936 	datalen = req->nbytes - ctx->offset;
937 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
938 	ctr = be32_to_cpu(ctx->iv[3]);
939 	if (dd->caps.has_ctr32) {
940 		/* Check 32bit counter overflow. */
941 		u32 start = ctr;
942 		u32 end = start + blocks - 1;
943 
944 		if (end < start) {
945 			ctr |= 0xffffffff;
946 			datalen = AES_BLOCK_SIZE * -start;
947 			fragmented = true;
948 		}
949 	} else {
950 		/* Check 16bit counter overflow. */
951 		u16 start = ctr & 0xffff;
952 		u16 end = start + (u16)blocks - 1;
953 
954 		if (blocks >> 16 || end < start) {
955 			ctr |= 0xffff;
956 			datalen = AES_BLOCK_SIZE * (0x10000-start);
957 			fragmented = true;
958 		}
959 	}
960 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
961 
962 	/* Jump to offset. */
963 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
964 	dst = ((req->src == req->dst) ? src :
965 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
966 
967 	/* Configure hardware. */
968 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
969 	if (unlikely(fragmented)) {
970 		/*
971 		 * Increment the counter manually to cope with the hardware
972 		 * counter overflow.
973 		 */
974 		ctx->iv[3] = cpu_to_be32(ctr);
975 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
976 	}
977 
978 	if (use_dma)
979 		return atmel_aes_dma_start(dd, src, dst, datalen,
980 					   atmel_aes_ctr_transfer);
981 
982 	return atmel_aes_cpu_start(dd, src, dst, datalen,
983 				   atmel_aes_ctr_transfer);
984 }
985 
986 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
987 {
988 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
989 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
990 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
991 	int err;
992 
993 	atmel_aes_set_mode(dd, rctx);
994 
995 	err = atmel_aes_hw_init(dd);
996 	if (err)
997 		return atmel_aes_complete(dd, err);
998 
999 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1000 	ctx->offset = 0;
1001 	dd->total = 0;
1002 	return atmel_aes_ctr_transfer(dd);
1003 }
1004 
1005 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1006 {
1007 	struct atmel_aes_base_ctx *ctx;
1008 	struct atmel_aes_reqctx *rctx;
1009 	struct atmel_aes_dev *dd;
1010 
1011 	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1012 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1013 	case AES_FLAGS_CFB8:
1014 		ctx->block_size = CFB8_BLOCK_SIZE;
1015 		break;
1016 
1017 	case AES_FLAGS_CFB16:
1018 		ctx->block_size = CFB16_BLOCK_SIZE;
1019 		break;
1020 
1021 	case AES_FLAGS_CFB32:
1022 		ctx->block_size = CFB32_BLOCK_SIZE;
1023 		break;
1024 
1025 	case AES_FLAGS_CFB64:
1026 		ctx->block_size = CFB64_BLOCK_SIZE;
1027 		break;
1028 
1029 	default:
1030 		ctx->block_size = AES_BLOCK_SIZE;
1031 		break;
1032 	}
1033 
1034 	dd = atmel_aes_find_dev(ctx);
1035 	if (!dd)
1036 		return -ENODEV;
1037 
1038 	rctx = ablkcipher_request_ctx(req);
1039 	rctx->mode = mode;
1040 
1041 	return atmel_aes_handle_queue(dd, &req->base);
1042 }
1043 
1044 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1045 			   unsigned int keylen)
1046 {
1047 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1048 
1049 	if (keylen != AES_KEYSIZE_128 &&
1050 	    keylen != AES_KEYSIZE_192 &&
1051 	    keylen != AES_KEYSIZE_256) {
1052 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1053 		return -EINVAL;
1054 	}
1055 
1056 	memcpy(ctx->key, key, keylen);
1057 	ctx->keylen = keylen;
1058 
1059 	return 0;
1060 }
1061 
1062 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1063 {
1064 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1065 }
1066 
1067 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1068 {
1069 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1070 }
1071 
1072 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1073 {
1074 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1075 }
1076 
1077 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1078 {
1079 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1080 }
1081 
1082 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1083 {
1084 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1085 }
1086 
1087 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1088 {
1089 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1090 }
1091 
1092 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1093 {
1094 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1095 }
1096 
1097 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1098 {
1099 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1100 }
1101 
1102 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1103 {
1104 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1105 }
1106 
1107 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1108 {
1109 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1110 }
1111 
1112 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1113 {
1114 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1115 }
1116 
1117 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1118 {
1119 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1120 }
1121 
1122 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1123 {
1124 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1125 }
1126 
1127 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1128 {
1129 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1130 }
1131 
1132 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1133 {
1134 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1135 }
1136 
1137 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1138 {
1139 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1140 }
1141 
1142 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1143 {
1144 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1145 }
1146 
1147 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1148 {
1149 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1150 }
1151 
1152 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1153 {
1154 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1155 
1156 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1157 	ctx->base.start = atmel_aes_start;
1158 
1159 	return 0;
1160 }
1161 
1162 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1163 {
1164 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1165 
1166 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1167 	ctx->base.start = atmel_aes_ctr_start;
1168 
1169 	return 0;
1170 }
1171 
1172 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1173 {
1174 }
1175 
1176 static struct crypto_alg aes_algs[] = {
1177 {
1178 	.cra_name		= "ecb(aes)",
1179 	.cra_driver_name	= "atmel-ecb-aes",
1180 	.cra_priority		= ATMEL_AES_PRIORITY,
1181 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1182 	.cra_blocksize		= AES_BLOCK_SIZE,
1183 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1184 	.cra_alignmask		= 0xf,
1185 	.cra_type		= &crypto_ablkcipher_type,
1186 	.cra_module		= THIS_MODULE,
1187 	.cra_init		= atmel_aes_cra_init,
1188 	.cra_exit		= atmel_aes_cra_exit,
1189 	.cra_u.ablkcipher = {
1190 		.min_keysize	= AES_MIN_KEY_SIZE,
1191 		.max_keysize	= AES_MAX_KEY_SIZE,
1192 		.setkey		= atmel_aes_setkey,
1193 		.encrypt	= atmel_aes_ecb_encrypt,
1194 		.decrypt	= atmel_aes_ecb_decrypt,
1195 	}
1196 },
1197 {
1198 	.cra_name		= "cbc(aes)",
1199 	.cra_driver_name	= "atmel-cbc-aes",
1200 	.cra_priority		= ATMEL_AES_PRIORITY,
1201 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1202 	.cra_blocksize		= AES_BLOCK_SIZE,
1203 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1204 	.cra_alignmask		= 0xf,
1205 	.cra_type		= &crypto_ablkcipher_type,
1206 	.cra_module		= THIS_MODULE,
1207 	.cra_init		= atmel_aes_cra_init,
1208 	.cra_exit		= atmel_aes_cra_exit,
1209 	.cra_u.ablkcipher = {
1210 		.min_keysize	= AES_MIN_KEY_SIZE,
1211 		.max_keysize	= AES_MAX_KEY_SIZE,
1212 		.ivsize		= AES_BLOCK_SIZE,
1213 		.setkey		= atmel_aes_setkey,
1214 		.encrypt	= atmel_aes_cbc_encrypt,
1215 		.decrypt	= atmel_aes_cbc_decrypt,
1216 	}
1217 },
1218 {
1219 	.cra_name		= "ofb(aes)",
1220 	.cra_driver_name	= "atmel-ofb-aes",
1221 	.cra_priority		= ATMEL_AES_PRIORITY,
1222 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1223 	.cra_blocksize		= AES_BLOCK_SIZE,
1224 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1225 	.cra_alignmask		= 0xf,
1226 	.cra_type		= &crypto_ablkcipher_type,
1227 	.cra_module		= THIS_MODULE,
1228 	.cra_init		= atmel_aes_cra_init,
1229 	.cra_exit		= atmel_aes_cra_exit,
1230 	.cra_u.ablkcipher = {
1231 		.min_keysize	= AES_MIN_KEY_SIZE,
1232 		.max_keysize	= AES_MAX_KEY_SIZE,
1233 		.ivsize		= AES_BLOCK_SIZE,
1234 		.setkey		= atmel_aes_setkey,
1235 		.encrypt	= atmel_aes_ofb_encrypt,
1236 		.decrypt	= atmel_aes_ofb_decrypt,
1237 	}
1238 },
1239 {
1240 	.cra_name		= "cfb(aes)",
1241 	.cra_driver_name	= "atmel-cfb-aes",
1242 	.cra_priority		= ATMEL_AES_PRIORITY,
1243 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1244 	.cra_blocksize		= AES_BLOCK_SIZE,
1245 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1246 	.cra_alignmask		= 0xf,
1247 	.cra_type		= &crypto_ablkcipher_type,
1248 	.cra_module		= THIS_MODULE,
1249 	.cra_init		= atmel_aes_cra_init,
1250 	.cra_exit		= atmel_aes_cra_exit,
1251 	.cra_u.ablkcipher = {
1252 		.min_keysize	= AES_MIN_KEY_SIZE,
1253 		.max_keysize	= AES_MAX_KEY_SIZE,
1254 		.ivsize		= AES_BLOCK_SIZE,
1255 		.setkey		= atmel_aes_setkey,
1256 		.encrypt	= atmel_aes_cfb_encrypt,
1257 		.decrypt	= atmel_aes_cfb_decrypt,
1258 	}
1259 },
1260 {
1261 	.cra_name		= "cfb32(aes)",
1262 	.cra_driver_name	= "atmel-cfb32-aes",
1263 	.cra_priority		= ATMEL_AES_PRIORITY,
1264 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1265 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1266 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1267 	.cra_alignmask		= 0x3,
1268 	.cra_type		= &crypto_ablkcipher_type,
1269 	.cra_module		= THIS_MODULE,
1270 	.cra_init		= atmel_aes_cra_init,
1271 	.cra_exit		= atmel_aes_cra_exit,
1272 	.cra_u.ablkcipher = {
1273 		.min_keysize	= AES_MIN_KEY_SIZE,
1274 		.max_keysize	= AES_MAX_KEY_SIZE,
1275 		.ivsize		= AES_BLOCK_SIZE,
1276 		.setkey		= atmel_aes_setkey,
1277 		.encrypt	= atmel_aes_cfb32_encrypt,
1278 		.decrypt	= atmel_aes_cfb32_decrypt,
1279 	}
1280 },
1281 {
1282 	.cra_name		= "cfb16(aes)",
1283 	.cra_driver_name	= "atmel-cfb16-aes",
1284 	.cra_priority		= ATMEL_AES_PRIORITY,
1285 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1286 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1287 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1288 	.cra_alignmask		= 0x1,
1289 	.cra_type		= &crypto_ablkcipher_type,
1290 	.cra_module		= THIS_MODULE,
1291 	.cra_init		= atmel_aes_cra_init,
1292 	.cra_exit		= atmel_aes_cra_exit,
1293 	.cra_u.ablkcipher = {
1294 		.min_keysize	= AES_MIN_KEY_SIZE,
1295 		.max_keysize	= AES_MAX_KEY_SIZE,
1296 		.ivsize		= AES_BLOCK_SIZE,
1297 		.setkey		= atmel_aes_setkey,
1298 		.encrypt	= atmel_aes_cfb16_encrypt,
1299 		.decrypt	= atmel_aes_cfb16_decrypt,
1300 	}
1301 },
1302 {
1303 	.cra_name		= "cfb8(aes)",
1304 	.cra_driver_name	= "atmel-cfb8-aes",
1305 	.cra_priority		= ATMEL_AES_PRIORITY,
1306 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1307 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1308 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1309 	.cra_alignmask		= 0x0,
1310 	.cra_type		= &crypto_ablkcipher_type,
1311 	.cra_module		= THIS_MODULE,
1312 	.cra_init		= atmel_aes_cra_init,
1313 	.cra_exit		= atmel_aes_cra_exit,
1314 	.cra_u.ablkcipher = {
1315 		.min_keysize	= AES_MIN_KEY_SIZE,
1316 		.max_keysize	= AES_MAX_KEY_SIZE,
1317 		.ivsize		= AES_BLOCK_SIZE,
1318 		.setkey		= atmel_aes_setkey,
1319 		.encrypt	= atmel_aes_cfb8_encrypt,
1320 		.decrypt	= atmel_aes_cfb8_decrypt,
1321 	}
1322 },
1323 {
1324 	.cra_name		= "ctr(aes)",
1325 	.cra_driver_name	= "atmel-ctr-aes",
1326 	.cra_priority		= ATMEL_AES_PRIORITY,
1327 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1328 	.cra_blocksize		= 1,
1329 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1330 	.cra_alignmask		= 0xf,
1331 	.cra_type		= &crypto_ablkcipher_type,
1332 	.cra_module		= THIS_MODULE,
1333 	.cra_init		= atmel_aes_ctr_cra_init,
1334 	.cra_exit		= atmel_aes_cra_exit,
1335 	.cra_u.ablkcipher = {
1336 		.min_keysize	= AES_MIN_KEY_SIZE,
1337 		.max_keysize	= AES_MAX_KEY_SIZE,
1338 		.ivsize		= AES_BLOCK_SIZE,
1339 		.setkey		= atmel_aes_setkey,
1340 		.encrypt	= atmel_aes_ctr_encrypt,
1341 		.decrypt	= atmel_aes_ctr_decrypt,
1342 	}
1343 },
1344 };
1345 
1346 static struct crypto_alg aes_cfb64_alg = {
1347 	.cra_name		= "cfb64(aes)",
1348 	.cra_driver_name	= "atmel-cfb64-aes",
1349 	.cra_priority		= ATMEL_AES_PRIORITY,
1350 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1351 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1352 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1353 	.cra_alignmask		= 0x7,
1354 	.cra_type		= &crypto_ablkcipher_type,
1355 	.cra_module		= THIS_MODULE,
1356 	.cra_init		= atmel_aes_cra_init,
1357 	.cra_exit		= atmel_aes_cra_exit,
1358 	.cra_u.ablkcipher = {
1359 		.min_keysize	= AES_MIN_KEY_SIZE,
1360 		.max_keysize	= AES_MAX_KEY_SIZE,
1361 		.ivsize		= AES_BLOCK_SIZE,
1362 		.setkey		= atmel_aes_setkey,
1363 		.encrypt	= atmel_aes_cfb64_encrypt,
1364 		.decrypt	= atmel_aes_cfb64_decrypt,
1365 	}
1366 };
1367 
1368 
1369 /* gcm aead functions */
1370 
1371 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1372 			       const u32 *data, size_t datalen,
1373 			       const u32 *ghash_in, u32 *ghash_out,
1374 			       atmel_aes_fn_t resume);
1375 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1376 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1377 
1378 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1379 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1380 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1381 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1382 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1383 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1384 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1385 
1386 static inline struct atmel_aes_gcm_ctx *
1387 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1388 {
1389 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1390 }
1391 
1392 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1393 			       const u32 *data, size_t datalen,
1394 			       const u32 *ghash_in, u32 *ghash_out,
1395 			       atmel_aes_fn_t resume)
1396 {
1397 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1398 
1399 	dd->data = (u32 *)data;
1400 	dd->datalen = datalen;
1401 	ctx->ghash_in = ghash_in;
1402 	ctx->ghash_out = ghash_out;
1403 	ctx->ghash_resume = resume;
1404 
1405 	atmel_aes_write_ctrl(dd, false, NULL);
1406 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1407 }
1408 
1409 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1410 {
1411 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1412 
1413 	/* Set the data length. */
1414 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1415 	atmel_aes_write(dd, AES_CLENR, 0);
1416 
1417 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1418 	if (ctx->ghash_in)
1419 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1420 
1421 	return atmel_aes_gcm_ghash_finalize(dd);
1422 }
1423 
1424 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1425 {
1426 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1427 	u32 isr;
1428 
1429 	/* Write data into the Input Data Registers. */
1430 	while (dd->datalen > 0) {
1431 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1432 		dd->data += 4;
1433 		dd->datalen -= AES_BLOCK_SIZE;
1434 
1435 		isr = atmel_aes_read(dd, AES_ISR);
1436 		if (!(isr & AES_INT_DATARDY)) {
1437 			dd->resume = atmel_aes_gcm_ghash_finalize;
1438 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1439 			return -EINPROGRESS;
1440 		}
1441 	}
1442 
1443 	/* Read the computed hash from GHASHRx. */
1444 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1445 
1446 	return ctx->ghash_resume(dd);
1447 }
1448 
1449 
1450 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1451 {
1452 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1453 	struct aead_request *req = aead_request_cast(dd->areq);
1454 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1455 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1456 	size_t ivsize = crypto_aead_ivsize(tfm);
1457 	size_t datalen, padlen;
1458 	const void *iv = req->iv;
1459 	u8 *data = dd->buf;
1460 	int err;
1461 
1462 	atmel_aes_set_mode(dd, rctx);
1463 
1464 	err = atmel_aes_hw_init(dd);
1465 	if (err)
1466 		return atmel_aes_complete(dd, err);
1467 
1468 	if (likely(ivsize == 12)) {
1469 		memcpy(ctx->j0, iv, ivsize);
1470 		ctx->j0[3] = cpu_to_be32(1);
1471 		return atmel_aes_gcm_process(dd);
1472 	}
1473 
1474 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1475 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1476 	if (datalen > dd->buflen)
1477 		return atmel_aes_complete(dd, -EINVAL);
1478 
1479 	memcpy(data, iv, ivsize);
1480 	memset(data + ivsize, 0, padlen + sizeof(u64));
1481 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1482 
1483 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1484 				   NULL, ctx->j0, atmel_aes_gcm_process);
1485 }
1486 
1487 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1488 {
1489 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1490 	struct aead_request *req = aead_request_cast(dd->areq);
1491 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1492 	bool enc = atmel_aes_is_encrypt(dd);
1493 	u32 authsize;
1494 
1495 	/* Compute text length. */
1496 	authsize = crypto_aead_authsize(tfm);
1497 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1498 
1499 	/*
1500 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1501 	 * fails when both the message and its associated data are empty.
1502 	 */
1503 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1504 		dd->flags |= AES_FLAGS_GTAGEN;
1505 
1506 	atmel_aes_write_ctrl(dd, false, NULL);
1507 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1508 }
1509 
1510 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1511 {
1512 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 	struct aead_request *req = aead_request_cast(dd->areq);
1514 	u32 j0_lsw, *j0 = ctx->j0;
1515 	size_t padlen;
1516 
1517 	/* Write incr32(J0) into IV. */
1518 	j0_lsw = j0[3];
1519 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1520 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1521 	j0[3] = j0_lsw;
1522 
1523 	/* Set aad and text lengths. */
1524 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1525 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1526 
1527 	/* Check whether AAD are present. */
1528 	if (unlikely(req->assoclen == 0)) {
1529 		dd->datalen = 0;
1530 		return atmel_aes_gcm_data(dd);
1531 	}
1532 
1533 	/* Copy assoc data and add padding. */
1534 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1535 	if (unlikely(req->assoclen + padlen > dd->buflen))
1536 		return atmel_aes_complete(dd, -EINVAL);
1537 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1538 
1539 	/* Write assoc data into the Input Data register. */
1540 	dd->data = (u32 *)dd->buf;
1541 	dd->datalen = req->assoclen + padlen;
1542 	return atmel_aes_gcm_data(dd);
1543 }
1544 
1545 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1546 {
1547 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1548 	struct aead_request *req = aead_request_cast(dd->areq);
1549 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1550 	struct scatterlist *src, *dst;
1551 	u32 isr, mr;
1552 
1553 	/* Write AAD first. */
1554 	while (dd->datalen > 0) {
1555 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1556 		dd->data += 4;
1557 		dd->datalen -= AES_BLOCK_SIZE;
1558 
1559 		isr = atmel_aes_read(dd, AES_ISR);
1560 		if (!(isr & AES_INT_DATARDY)) {
1561 			dd->resume = atmel_aes_gcm_data;
1562 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1563 			return -EINPROGRESS;
1564 		}
1565 	}
1566 
1567 	/* GMAC only. */
1568 	if (unlikely(ctx->textlen == 0))
1569 		return atmel_aes_gcm_tag_init(dd);
1570 
1571 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1572 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1573 	dst = ((req->src == req->dst) ? src :
1574 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1575 
1576 	if (use_dma) {
1577 		/* Update the Mode Register for DMA transfers. */
1578 		mr = atmel_aes_read(dd, AES_MR);
1579 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1580 		mr |= AES_MR_SMOD_IDATAR0;
1581 		if (dd->caps.has_dualbuff)
1582 			mr |= AES_MR_DUALBUFF;
1583 		atmel_aes_write(dd, AES_MR, mr);
1584 
1585 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1586 					   atmel_aes_gcm_tag_init);
1587 	}
1588 
1589 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1590 				   atmel_aes_gcm_tag_init);
1591 }
1592 
1593 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1594 {
1595 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1596 	struct aead_request *req = aead_request_cast(dd->areq);
1597 	u64 *data = dd->buf;
1598 
1599 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1600 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1601 			dd->resume = atmel_aes_gcm_tag_init;
1602 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1603 			return -EINPROGRESS;
1604 		}
1605 
1606 		return atmel_aes_gcm_finalize(dd);
1607 	}
1608 
1609 	/* Read the GCM Intermediate Hash Word Registers. */
1610 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1611 
1612 	data[0] = cpu_to_be64(req->assoclen * 8);
1613 	data[1] = cpu_to_be64(ctx->textlen * 8);
1614 
1615 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1616 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1617 }
1618 
1619 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1620 {
1621 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1622 	unsigned long flags;
1623 
1624 	/*
1625 	 * Change mode to CTR to complete the tag generation.
1626 	 * Use J0 as Initialization Vector.
1627 	 */
1628 	flags = dd->flags;
1629 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1630 	dd->flags |= AES_FLAGS_CTR;
1631 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1632 	dd->flags = flags;
1633 
1634 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1635 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1636 }
1637 
1638 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1639 {
1640 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1641 	struct aead_request *req = aead_request_cast(dd->areq);
1642 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1643 	bool enc = atmel_aes_is_encrypt(dd);
1644 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1645 	int err;
1646 
1647 	/* Read the computed tag. */
1648 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1649 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1650 	else
1651 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1652 
1653 	offset = req->assoclen + ctx->textlen;
1654 	authsize = crypto_aead_authsize(tfm);
1655 	if (enc) {
1656 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1657 		err = 0;
1658 	} else {
1659 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1660 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1661 	}
1662 
1663 	return atmel_aes_complete(dd, err);
1664 }
1665 
1666 static int atmel_aes_gcm_crypt(struct aead_request *req,
1667 			       unsigned long mode)
1668 {
1669 	struct atmel_aes_base_ctx *ctx;
1670 	struct atmel_aes_reqctx *rctx;
1671 	struct atmel_aes_dev *dd;
1672 
1673 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1674 	ctx->block_size = AES_BLOCK_SIZE;
1675 
1676 	dd = atmel_aes_find_dev(ctx);
1677 	if (!dd)
1678 		return -ENODEV;
1679 
1680 	rctx = aead_request_ctx(req);
1681 	rctx->mode = AES_FLAGS_GCM | mode;
1682 
1683 	return atmel_aes_handle_queue(dd, &req->base);
1684 }
1685 
1686 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1687 				unsigned int keylen)
1688 {
1689 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1690 
1691 	if (keylen != AES_KEYSIZE_256 &&
1692 	    keylen != AES_KEYSIZE_192 &&
1693 	    keylen != AES_KEYSIZE_128) {
1694 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1695 		return -EINVAL;
1696 	}
1697 
1698 	memcpy(ctx->key, key, keylen);
1699 	ctx->keylen = keylen;
1700 
1701 	return 0;
1702 }
1703 
1704 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1705 				     unsigned int authsize)
1706 {
1707 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1708 	switch (authsize) {
1709 	case 4:
1710 	case 8:
1711 	case 12:
1712 	case 13:
1713 	case 14:
1714 	case 15:
1715 	case 16:
1716 		break;
1717 	default:
1718 		return -EINVAL;
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1725 {
1726 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1727 }
1728 
1729 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1730 {
1731 	return atmel_aes_gcm_crypt(req, 0);
1732 }
1733 
1734 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1735 {
1736 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1737 
1738 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1739 	ctx->base.start = atmel_aes_gcm_start;
1740 
1741 	return 0;
1742 }
1743 
1744 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1745 {
1746 
1747 }
1748 
1749 static struct aead_alg aes_gcm_alg = {
1750 	.setkey		= atmel_aes_gcm_setkey,
1751 	.setauthsize	= atmel_aes_gcm_setauthsize,
1752 	.encrypt	= atmel_aes_gcm_encrypt,
1753 	.decrypt	= atmel_aes_gcm_decrypt,
1754 	.init		= atmel_aes_gcm_init,
1755 	.exit		= atmel_aes_gcm_exit,
1756 	.ivsize		= 12,
1757 	.maxauthsize	= AES_BLOCK_SIZE,
1758 
1759 	.base = {
1760 		.cra_name		= "gcm(aes)",
1761 		.cra_driver_name	= "atmel-gcm-aes",
1762 		.cra_priority		= ATMEL_AES_PRIORITY,
1763 		.cra_flags		= CRYPTO_ALG_ASYNC,
1764 		.cra_blocksize		= 1,
1765 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1766 		.cra_alignmask		= 0xf,
1767 		.cra_module		= THIS_MODULE,
1768 	},
1769 };
1770 
1771 
1772 /* Probe functions */
1773 
1774 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1775 {
1776 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1777 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
1778 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1779 
1780 	if (!dd->buf) {
1781 		dev_err(dd->dev, "unable to alloc pages.\n");
1782 		return -ENOMEM;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1789 {
1790 	free_page((unsigned long)dd->buf);
1791 }
1792 
1793 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1794 {
1795 	struct at_dma_slave	*sl = slave;
1796 
1797 	if (sl && sl->dma_dev == chan->device->dev) {
1798 		chan->private = sl;
1799 		return true;
1800 	} else {
1801 		return false;
1802 	}
1803 }
1804 
1805 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1806 			      struct crypto_platform_data *pdata)
1807 {
1808 	struct at_dma_slave *slave;
1809 	int err = -ENOMEM;
1810 	dma_cap_mask_t mask;
1811 
1812 	dma_cap_zero(mask);
1813 	dma_cap_set(DMA_SLAVE, mask);
1814 
1815 	/* Try to grab 2 DMA channels */
1816 	slave = &pdata->dma_slave->rxdata;
1817 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1818 							slave, dd->dev, "tx");
1819 	if (!dd->src.chan)
1820 		goto err_dma_in;
1821 
1822 	slave = &pdata->dma_slave->txdata;
1823 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1824 							slave, dd->dev, "rx");
1825 	if (!dd->dst.chan)
1826 		goto err_dma_out;
1827 
1828 	return 0;
1829 
1830 err_dma_out:
1831 	dma_release_channel(dd->src.chan);
1832 err_dma_in:
1833 	dev_warn(dd->dev, "no DMA channel available\n");
1834 	return err;
1835 }
1836 
1837 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1838 {
1839 	dma_release_channel(dd->dst.chan);
1840 	dma_release_channel(dd->src.chan);
1841 }
1842 
1843 static void atmel_aes_queue_task(unsigned long data)
1844 {
1845 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1846 
1847 	atmel_aes_handle_queue(dd, NULL);
1848 }
1849 
1850 static void atmel_aes_done_task(unsigned long data)
1851 {
1852 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1853 
1854 	dd->is_async = true;
1855 	(void)dd->resume(dd);
1856 }
1857 
1858 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
1859 {
1860 	struct atmel_aes_dev *aes_dd = dev_id;
1861 	u32 reg;
1862 
1863 	reg = atmel_aes_read(aes_dd, AES_ISR);
1864 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
1865 		atmel_aes_write(aes_dd, AES_IDR, reg);
1866 		if (AES_FLAGS_BUSY & aes_dd->flags)
1867 			tasklet_schedule(&aes_dd->done_task);
1868 		else
1869 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
1870 		return IRQ_HANDLED;
1871 	}
1872 
1873 	return IRQ_NONE;
1874 }
1875 
1876 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
1877 {
1878 	int i;
1879 
1880 	if (dd->caps.has_gcm)
1881 		crypto_unregister_aead(&aes_gcm_alg);
1882 
1883 	if (dd->caps.has_cfb64)
1884 		crypto_unregister_alg(&aes_cfb64_alg);
1885 
1886 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1887 		crypto_unregister_alg(&aes_algs[i]);
1888 }
1889 
1890 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
1891 {
1892 	int err, i, j;
1893 
1894 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1895 		err = crypto_register_alg(&aes_algs[i]);
1896 		if (err)
1897 			goto err_aes_algs;
1898 	}
1899 
1900 	if (dd->caps.has_cfb64) {
1901 		err = crypto_register_alg(&aes_cfb64_alg);
1902 		if (err)
1903 			goto err_aes_cfb64_alg;
1904 	}
1905 
1906 	if (dd->caps.has_gcm) {
1907 		err = crypto_register_aead(&aes_gcm_alg);
1908 		if (err)
1909 			goto err_aes_gcm_alg;
1910 	}
1911 
1912 	return 0;
1913 
1914 err_aes_gcm_alg:
1915 	crypto_unregister_alg(&aes_cfb64_alg);
1916 err_aes_cfb64_alg:
1917 	i = ARRAY_SIZE(aes_algs);
1918 err_aes_algs:
1919 	for (j = 0; j < i; j++)
1920 		crypto_unregister_alg(&aes_algs[j]);
1921 
1922 	return err;
1923 }
1924 
1925 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
1926 {
1927 	dd->caps.has_dualbuff = 0;
1928 	dd->caps.has_cfb64 = 0;
1929 	dd->caps.has_ctr32 = 0;
1930 	dd->caps.has_gcm = 0;
1931 	dd->caps.max_burst_size = 1;
1932 
1933 	/* keep only major version number */
1934 	switch (dd->hw_version & 0xff0) {
1935 	case 0x500:
1936 		dd->caps.has_dualbuff = 1;
1937 		dd->caps.has_cfb64 = 1;
1938 		dd->caps.has_ctr32 = 1;
1939 		dd->caps.has_gcm = 1;
1940 		dd->caps.max_burst_size = 4;
1941 		break;
1942 	case 0x200:
1943 		dd->caps.has_dualbuff = 1;
1944 		dd->caps.has_cfb64 = 1;
1945 		dd->caps.has_ctr32 = 1;
1946 		dd->caps.has_gcm = 1;
1947 		dd->caps.max_burst_size = 4;
1948 		break;
1949 	case 0x130:
1950 		dd->caps.has_dualbuff = 1;
1951 		dd->caps.has_cfb64 = 1;
1952 		dd->caps.max_burst_size = 4;
1953 		break;
1954 	case 0x120:
1955 		break;
1956 	default:
1957 		dev_warn(dd->dev,
1958 				"Unmanaged aes version, set minimum capabilities\n");
1959 		break;
1960 	}
1961 }
1962 
1963 #if defined(CONFIG_OF)
1964 static const struct of_device_id atmel_aes_dt_ids[] = {
1965 	{ .compatible = "atmel,at91sam9g46-aes" },
1966 	{ /* sentinel */ }
1967 };
1968 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
1969 
1970 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1971 {
1972 	struct device_node *np = pdev->dev.of_node;
1973 	struct crypto_platform_data *pdata;
1974 
1975 	if (!np) {
1976 		dev_err(&pdev->dev, "device node not found\n");
1977 		return ERR_PTR(-EINVAL);
1978 	}
1979 
1980 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1981 	if (!pdata) {
1982 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1983 		return ERR_PTR(-ENOMEM);
1984 	}
1985 
1986 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
1987 					sizeof(*(pdata->dma_slave)),
1988 					GFP_KERNEL);
1989 	if (!pdata->dma_slave) {
1990 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1991 		devm_kfree(&pdev->dev, pdata);
1992 		return ERR_PTR(-ENOMEM);
1993 	}
1994 
1995 	return pdata;
1996 }
1997 #else
1998 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1999 {
2000 	return ERR_PTR(-EINVAL);
2001 }
2002 #endif
2003 
2004 static int atmel_aes_probe(struct platform_device *pdev)
2005 {
2006 	struct atmel_aes_dev *aes_dd;
2007 	struct crypto_platform_data *pdata;
2008 	struct device *dev = &pdev->dev;
2009 	struct resource *aes_res;
2010 	int err;
2011 
2012 	pdata = pdev->dev.platform_data;
2013 	if (!pdata) {
2014 		pdata = atmel_aes_of_init(pdev);
2015 		if (IS_ERR(pdata)) {
2016 			err = PTR_ERR(pdata);
2017 			goto aes_dd_err;
2018 		}
2019 	}
2020 
2021 	if (!pdata->dma_slave) {
2022 		err = -ENXIO;
2023 		goto aes_dd_err;
2024 	}
2025 
2026 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2027 	if (aes_dd == NULL) {
2028 		dev_err(dev, "unable to alloc data struct.\n");
2029 		err = -ENOMEM;
2030 		goto aes_dd_err;
2031 	}
2032 
2033 	aes_dd->dev = dev;
2034 
2035 	platform_set_drvdata(pdev, aes_dd);
2036 
2037 	INIT_LIST_HEAD(&aes_dd->list);
2038 	spin_lock_init(&aes_dd->lock);
2039 
2040 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2041 					(unsigned long)aes_dd);
2042 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2043 					(unsigned long)aes_dd);
2044 
2045 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2046 
2047 	aes_dd->irq = -1;
2048 
2049 	/* Get the base address */
2050 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2051 	if (!aes_res) {
2052 		dev_err(dev, "no MEM resource info\n");
2053 		err = -ENODEV;
2054 		goto res_err;
2055 	}
2056 	aes_dd->phys_base = aes_res->start;
2057 
2058 	/* Get the IRQ */
2059 	aes_dd->irq = platform_get_irq(pdev,  0);
2060 	if (aes_dd->irq < 0) {
2061 		dev_err(dev, "no IRQ resource info\n");
2062 		err = aes_dd->irq;
2063 		goto res_err;
2064 	}
2065 
2066 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2067 			       IRQF_SHARED, "atmel-aes", aes_dd);
2068 	if (err) {
2069 		dev_err(dev, "unable to request aes irq.\n");
2070 		goto res_err;
2071 	}
2072 
2073 	/* Initializing the clock */
2074 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2075 	if (IS_ERR(aes_dd->iclk)) {
2076 		dev_err(dev, "clock initialization failed.\n");
2077 		err = PTR_ERR(aes_dd->iclk);
2078 		goto res_err;
2079 	}
2080 
2081 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2082 	if (IS_ERR(aes_dd->io_base)) {
2083 		dev_err(dev, "can't ioremap\n");
2084 		err = PTR_ERR(aes_dd->io_base);
2085 		goto res_err;
2086 	}
2087 
2088 	err = clk_prepare(aes_dd->iclk);
2089 	if (err)
2090 		goto res_err;
2091 
2092 	err = atmel_aes_hw_version_init(aes_dd);
2093 	if (err)
2094 		goto iclk_unprepare;
2095 
2096 	atmel_aes_get_cap(aes_dd);
2097 
2098 	err = atmel_aes_buff_init(aes_dd);
2099 	if (err)
2100 		goto err_aes_buff;
2101 
2102 	err = atmel_aes_dma_init(aes_dd, pdata);
2103 	if (err)
2104 		goto err_aes_dma;
2105 
2106 	spin_lock(&atmel_aes.lock);
2107 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2108 	spin_unlock(&atmel_aes.lock);
2109 
2110 	err = atmel_aes_register_algs(aes_dd);
2111 	if (err)
2112 		goto err_algs;
2113 
2114 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2115 			dma_chan_name(aes_dd->src.chan),
2116 			dma_chan_name(aes_dd->dst.chan));
2117 
2118 	return 0;
2119 
2120 err_algs:
2121 	spin_lock(&atmel_aes.lock);
2122 	list_del(&aes_dd->list);
2123 	spin_unlock(&atmel_aes.lock);
2124 	atmel_aes_dma_cleanup(aes_dd);
2125 err_aes_dma:
2126 	atmel_aes_buff_cleanup(aes_dd);
2127 err_aes_buff:
2128 iclk_unprepare:
2129 	clk_unprepare(aes_dd->iclk);
2130 res_err:
2131 	tasklet_kill(&aes_dd->done_task);
2132 	tasklet_kill(&aes_dd->queue_task);
2133 aes_dd_err:
2134 	dev_err(dev, "initialization failed.\n");
2135 
2136 	return err;
2137 }
2138 
2139 static int atmel_aes_remove(struct platform_device *pdev)
2140 {
2141 	static struct atmel_aes_dev *aes_dd;
2142 
2143 	aes_dd = platform_get_drvdata(pdev);
2144 	if (!aes_dd)
2145 		return -ENODEV;
2146 	spin_lock(&atmel_aes.lock);
2147 	list_del(&aes_dd->list);
2148 	spin_unlock(&atmel_aes.lock);
2149 
2150 	atmel_aes_unregister_algs(aes_dd);
2151 
2152 	tasklet_kill(&aes_dd->done_task);
2153 	tasklet_kill(&aes_dd->queue_task);
2154 
2155 	atmel_aes_dma_cleanup(aes_dd);
2156 	atmel_aes_buff_cleanup(aes_dd);
2157 
2158 	clk_unprepare(aes_dd->iclk);
2159 
2160 	return 0;
2161 }
2162 
2163 static struct platform_driver atmel_aes_driver = {
2164 	.probe		= atmel_aes_probe,
2165 	.remove		= atmel_aes_remove,
2166 	.driver		= {
2167 		.name	= "atmel_aes",
2168 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2169 	},
2170 };
2171 
2172 module_platform_driver(atmel_aes_driver);
2173 
2174 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2175 MODULE_LICENSE("GPL v2");
2176 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2177