xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43 
44 #define ATMEL_AES_PRIORITY	300
45 
46 #define ATMEL_AES_BUFFER_ORDER	2
47 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48 
49 #define CFB8_BLOCK_SIZE		1
50 #define CFB16_BLOCK_SIZE	2
51 #define CFB32_BLOCK_SIZE	4
52 #define CFB64_BLOCK_SIZE	8
53 
54 #define SIZE_IN_WORDS(x)	((x) >> 2)
55 
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72 
73 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74 				 AES_FLAGS_ENCRYPT |		\
75 				 AES_FLAGS_GTAGEN)
76 
77 #define AES_FLAGS_BUSY		BIT(3)
78 #define AES_FLAGS_DUMP_REG	BIT(4)
79 #define AES_FLAGS_OWN_SHA	BIT(5)
80 
81 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82 
83 #define ATMEL_AES_QUEUE_LENGTH	50
84 
85 #define ATMEL_AES_DMA_THRESHOLD		256
86 
87 
88 struct atmel_aes_caps {
89 	bool			has_dualbuff;
90 	bool			has_cfb64;
91 	bool			has_gcm;
92 	bool			has_xts;
93 	bool			has_authenc;
94 	u32			max_burst_size;
95 };
96 
97 struct atmel_aes_dev;
98 
99 
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101 
102 
103 struct atmel_aes_base_ctx {
104 	struct atmel_aes_dev	*dd;
105 	atmel_aes_fn_t		start;
106 	int			keylen;
107 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
108 	u16			block_size;
109 	bool			is_aead;
110 };
111 
112 struct atmel_aes_ctx {
113 	struct atmel_aes_base_ctx	base;
114 };
115 
116 struct atmel_aes_ctr_ctx {
117 	struct atmel_aes_base_ctx	base;
118 
119 	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
120 	size_t			offset;
121 	struct scatterlist	src[2];
122 	struct scatterlist	dst[2];
123 	u32			blocks;
124 };
125 
126 struct atmel_aes_gcm_ctx {
127 	struct atmel_aes_base_ctx	base;
128 
129 	struct scatterlist	src[2];
130 	struct scatterlist	dst[2];
131 
132 	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134 	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 	size_t			textlen;
136 
137 	const __be32		*ghash_in;
138 	__be32			*ghash_out;
139 	atmel_aes_fn_t		ghash_resume;
140 };
141 
142 struct atmel_aes_xts_ctx {
143 	struct atmel_aes_base_ctx	base;
144 
145 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146 };
147 
148 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
149 struct atmel_aes_authenc_ctx {
150 	struct atmel_aes_base_ctx	base;
151 	struct atmel_sha_authenc_ctx	*auth;
152 };
153 #endif
154 
155 struct atmel_aes_reqctx {
156 	unsigned long		mode;
157 	u8			lastc[AES_BLOCK_SIZE];
158 };
159 
160 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
161 struct atmel_aes_authenc_reqctx {
162 	struct atmel_aes_reqctx	base;
163 
164 	struct scatterlist	src[2];
165 	struct scatterlist	dst[2];
166 	size_t			textlen;
167 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168 
169 	/* auth_req MUST be place last. */
170 	struct ahash_request	auth_req;
171 };
172 #endif
173 
174 struct atmel_aes_dma {
175 	struct dma_chan		*chan;
176 	struct scatterlist	*sg;
177 	int			nents;
178 	unsigned int		remainder;
179 	unsigned int		sg_len;
180 };
181 
182 struct atmel_aes_dev {
183 	struct list_head	list;
184 	unsigned long		phys_base;
185 	void __iomem		*io_base;
186 
187 	struct crypto_async_request	*areq;
188 	struct atmel_aes_base_ctx	*ctx;
189 
190 	bool			is_async;
191 	atmel_aes_fn_t		resume;
192 	atmel_aes_fn_t		cpu_transfer_complete;
193 
194 	struct device		*dev;
195 	struct clk		*iclk;
196 	int			irq;
197 
198 	unsigned long		flags;
199 
200 	spinlock_t		lock;
201 	struct crypto_queue	queue;
202 
203 	struct tasklet_struct	done_task;
204 	struct tasklet_struct	queue_task;
205 
206 	size_t			total;
207 	size_t			datalen;
208 	u32			*data;
209 
210 	struct atmel_aes_dma	src;
211 	struct atmel_aes_dma	dst;
212 
213 	size_t			buflen;
214 	void			*buf;
215 	struct scatterlist	aligned_sg;
216 	struct scatterlist	*real_dst;
217 
218 	struct atmel_aes_caps	caps;
219 
220 	u32			hw_version;
221 };
222 
223 struct atmel_aes_drv {
224 	struct list_head	dev_list;
225 	spinlock_t		lock;
226 };
227 
228 static struct atmel_aes_drv atmel_aes = {
229 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232 
233 #ifdef VERBOSE_DEBUG
234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236 	switch (offset) {
237 	case AES_CR:
238 		return "CR";
239 
240 	case AES_MR:
241 		return "MR";
242 
243 	case AES_ISR:
244 		return "ISR";
245 
246 	case AES_IMR:
247 		return "IMR";
248 
249 	case AES_IER:
250 		return "IER";
251 
252 	case AES_IDR:
253 		return "IDR";
254 
255 	case AES_KEYWR(0):
256 	case AES_KEYWR(1):
257 	case AES_KEYWR(2):
258 	case AES_KEYWR(3):
259 	case AES_KEYWR(4):
260 	case AES_KEYWR(5):
261 	case AES_KEYWR(6):
262 	case AES_KEYWR(7):
263 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 		break;
265 
266 	case AES_IDATAR(0):
267 	case AES_IDATAR(1):
268 	case AES_IDATAR(2):
269 	case AES_IDATAR(3):
270 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 		break;
272 
273 	case AES_ODATAR(0):
274 	case AES_ODATAR(1):
275 	case AES_ODATAR(2):
276 	case AES_ODATAR(3):
277 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 		break;
279 
280 	case AES_IVR(0):
281 	case AES_IVR(1):
282 	case AES_IVR(2):
283 	case AES_IVR(3):
284 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 		break;
286 
287 	case AES_AADLENR:
288 		return "AADLENR";
289 
290 	case AES_CLENR:
291 		return "CLENR";
292 
293 	case AES_GHASHR(0):
294 	case AES_GHASHR(1):
295 	case AES_GHASHR(2):
296 	case AES_GHASHR(3):
297 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 		break;
299 
300 	case AES_TAGR(0):
301 	case AES_TAGR(1):
302 	case AES_TAGR(2):
303 	case AES_TAGR(3):
304 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 		break;
306 
307 	case AES_CTRR:
308 		return "CTRR";
309 
310 	case AES_GCMHR(0):
311 	case AES_GCMHR(1):
312 	case AES_GCMHR(2):
313 	case AES_GCMHR(3):
314 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 		break;
316 
317 	case AES_EMR:
318 		return "EMR";
319 
320 	case AES_TWR(0):
321 	case AES_TWR(1):
322 	case AES_TWR(2):
323 	case AES_TWR(3):
324 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 		break;
326 
327 	case AES_ALPHAR(0):
328 	case AES_ALPHAR(1):
329 	case AES_ALPHAR(2):
330 	case AES_ALPHAR(3):
331 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 		break;
333 
334 	default:
335 		snprintf(tmp, sz, "0x%02x", offset);
336 		break;
337 	}
338 
339 	return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342 
343 /* Shared functions */
344 
345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347 	u32 value = readl_relaxed(dd->io_base + offset);
348 
349 #ifdef VERBOSE_DEBUG
350 	if (dd->flags & AES_FLAGS_DUMP_REG) {
351 		char tmp[16];
352 
353 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355 	}
356 #endif /* VERBOSE_DEBUG */
357 
358 	return value;
359 }
360 
361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 					u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365 	if (dd->flags & AES_FLAGS_DUMP_REG) {
366 		char tmp[16];
367 
368 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 	}
371 #endif /* VERBOSE_DEBUG */
372 
373 	writel_relaxed(value, dd->io_base + offset);
374 }
375 
376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 					u32 *value, int count)
378 {
379 	for (; count--; value++, offset += 4)
380 		*value = atmel_aes_read(dd, offset);
381 }
382 
383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 			      const u32 *value, int count)
385 {
386 	for (; count--; value++, offset += 4)
387 		atmel_aes_write(dd, offset, *value);
388 }
389 
390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 					void *value)
392 {
393 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395 
396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 					 const void *value)
398 {
399 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401 
402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 						atmel_aes_fn_t resume)
404 {
405 	u32 isr = atmel_aes_read(dd, AES_ISR);
406 
407 	if (unlikely(isr & AES_INT_DATARDY))
408 		return resume(dd);
409 
410 	dd->resume = resume;
411 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 	return -EINPROGRESS;
413 }
414 
415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417 	len &= block_size - 1;
418 	return len ? block_size - len : 0;
419 }
420 
421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423 	struct atmel_aes_dev *aes_dd = NULL;
424 	struct atmel_aes_dev *tmp;
425 
426 	spin_lock_bh(&atmel_aes.lock);
427 	if (!ctx->dd) {
428 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 			aes_dd = tmp;
430 			break;
431 		}
432 		ctx->dd = aes_dd;
433 	} else {
434 		aes_dd = ctx->dd;
435 	}
436 
437 	spin_unlock_bh(&atmel_aes.lock);
438 
439 	return aes_dd;
440 }
441 
442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444 	int err;
445 
446 	err = clk_enable(dd->iclk);
447 	if (err)
448 		return err;
449 
450 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452 
453 	return 0;
454 }
455 
456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457 {
458 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459 }
460 
461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462 {
463 	int err;
464 
465 	err = atmel_aes_hw_init(dd);
466 	if (err)
467 		return err;
468 
469 	dd->hw_version = atmel_aes_get_version(dd);
470 
471 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472 
473 	clk_disable(dd->iclk);
474 	return 0;
475 }
476 
477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478 				      const struct atmel_aes_reqctx *rctx)
479 {
480 	/* Clear all but persistent flags and set request flags. */
481 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482 }
483 
484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485 {
486 	return (dd->flags & AES_FLAGS_ENCRYPT);
487 }
488 
489 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
492 
493 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
494 {
495 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
496 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
497 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
498 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
499 
500 	if (req->cryptlen < ivsize)
501 		return;
502 
503 	if (rctx->mode & AES_FLAGS_ENCRYPT) {
504 		scatterwalk_map_and_copy(req->iv, req->dst,
505 					 req->cryptlen - ivsize, ivsize, 0);
506 	} else {
507 		if (req->src == req->dst)
508 			memcpy(req->iv, rctx->lastc, ivsize);
509 		else
510 			scatterwalk_map_and_copy(req->iv, req->src,
511 						 req->cryptlen - ivsize,
512 						 ivsize, 0);
513 	}
514 }
515 
516 static inline struct atmel_aes_ctr_ctx *
517 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
518 {
519 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
520 }
521 
522 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
523 {
524 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
525 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
526 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
527 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
528 	int i;
529 
530 	/*
531 	 * The CTR transfer works in fragments of data of maximum 1 MByte
532 	 * because of the 16 bit CTR counter embedded in the IP. When reaching
533 	 * here, ctx->blocks contains the number of blocks of the last fragment
534 	 * processed, there is no need to explicit cast it to u16.
535 	 */
536 	for (i = 0; i < ctx->blocks; i++)
537 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
538 
539 	memcpy(req->iv, ctx->iv, ivsize);
540 }
541 
542 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
543 {
544 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
545 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
546 
547 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
548 	if (dd->ctx->is_aead)
549 		atmel_aes_authenc_complete(dd, err);
550 #endif
551 
552 	clk_disable(dd->iclk);
553 	dd->flags &= ~AES_FLAGS_BUSY;
554 
555 	if (!err && !dd->ctx->is_aead &&
556 	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
557 		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
558 			atmel_aes_set_iv_as_last_ciphertext_block(dd);
559 		else
560 			atmel_aes_ctr_update_req_iv(dd);
561 	}
562 
563 	if (dd->is_async)
564 		dd->areq->complete(dd->areq, err);
565 
566 	tasklet_schedule(&dd->queue_task);
567 
568 	return err;
569 }
570 
571 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
572 				     const __be32 *iv, const u32 *key, int keylen)
573 {
574 	u32 valmr = 0;
575 
576 	/* MR register must be set before IV registers */
577 	if (keylen == AES_KEYSIZE_128)
578 		valmr |= AES_MR_KEYSIZE_128;
579 	else if (keylen == AES_KEYSIZE_192)
580 		valmr |= AES_MR_KEYSIZE_192;
581 	else
582 		valmr |= AES_MR_KEYSIZE_256;
583 
584 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
585 
586 	if (use_dma) {
587 		valmr |= AES_MR_SMOD_IDATAR0;
588 		if (dd->caps.has_dualbuff)
589 			valmr |= AES_MR_DUALBUFF;
590 	} else {
591 		valmr |= AES_MR_SMOD_AUTO;
592 	}
593 
594 	atmel_aes_write(dd, AES_MR, valmr);
595 
596 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
597 
598 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
599 		atmel_aes_write_block(dd, AES_IVR(0), iv);
600 }
601 
602 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
603 					const __be32 *iv)
604 
605 {
606 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
607 				 dd->ctx->key, dd->ctx->keylen);
608 }
609 
610 /* CPU transfer */
611 
612 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
613 {
614 	int err = 0;
615 	u32 isr;
616 
617 	for (;;) {
618 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
619 		dd->data += 4;
620 		dd->datalen -= AES_BLOCK_SIZE;
621 
622 		if (dd->datalen < AES_BLOCK_SIZE)
623 			break;
624 
625 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
626 
627 		isr = atmel_aes_read(dd, AES_ISR);
628 		if (!(isr & AES_INT_DATARDY)) {
629 			dd->resume = atmel_aes_cpu_transfer;
630 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
631 			return -EINPROGRESS;
632 		}
633 	}
634 
635 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
636 				 dd->buf, dd->total))
637 		err = -EINVAL;
638 
639 	if (err)
640 		return atmel_aes_complete(dd, err);
641 
642 	return dd->cpu_transfer_complete(dd);
643 }
644 
645 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
646 			       struct scatterlist *src,
647 			       struct scatterlist *dst,
648 			       size_t len,
649 			       atmel_aes_fn_t resume)
650 {
651 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
652 
653 	if (unlikely(len == 0))
654 		return -EINVAL;
655 
656 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
657 
658 	dd->total = len;
659 	dd->real_dst = dst;
660 	dd->cpu_transfer_complete = resume;
661 	dd->datalen = len + padlen;
662 	dd->data = (u32 *)dd->buf;
663 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
664 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
665 }
666 
667 
668 /* DMA transfer */
669 
670 static void atmel_aes_dma_callback(void *data);
671 
672 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
673 				    struct scatterlist *sg,
674 				    size_t len,
675 				    struct atmel_aes_dma *dma)
676 {
677 	int nents;
678 
679 	if (!IS_ALIGNED(len, dd->ctx->block_size))
680 		return false;
681 
682 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
683 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
684 			return false;
685 
686 		if (len <= sg->length) {
687 			if (!IS_ALIGNED(len, dd->ctx->block_size))
688 				return false;
689 
690 			dma->nents = nents+1;
691 			dma->remainder = sg->length - len;
692 			sg->length = len;
693 			return true;
694 		}
695 
696 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
697 			return false;
698 
699 		len -= sg->length;
700 	}
701 
702 	return false;
703 }
704 
705 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
706 {
707 	struct scatterlist *sg = dma->sg;
708 	int nents = dma->nents;
709 
710 	if (!dma->remainder)
711 		return;
712 
713 	while (--nents > 0 && sg)
714 		sg = sg_next(sg);
715 
716 	if (!sg)
717 		return;
718 
719 	sg->length += dma->remainder;
720 }
721 
722 static int atmel_aes_map(struct atmel_aes_dev *dd,
723 			 struct scatterlist *src,
724 			 struct scatterlist *dst,
725 			 size_t len)
726 {
727 	bool src_aligned, dst_aligned;
728 	size_t padlen;
729 
730 	dd->total = len;
731 	dd->src.sg = src;
732 	dd->dst.sg = dst;
733 	dd->real_dst = dst;
734 
735 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
736 	if (src == dst)
737 		dst_aligned = src_aligned;
738 	else
739 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
740 	if (!src_aligned || !dst_aligned) {
741 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
742 
743 		if (dd->buflen < len + padlen)
744 			return -ENOMEM;
745 
746 		if (!src_aligned) {
747 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
748 			dd->src.sg = &dd->aligned_sg;
749 			dd->src.nents = 1;
750 			dd->src.remainder = 0;
751 		}
752 
753 		if (!dst_aligned) {
754 			dd->dst.sg = &dd->aligned_sg;
755 			dd->dst.nents = 1;
756 			dd->dst.remainder = 0;
757 		}
758 
759 		sg_init_table(&dd->aligned_sg, 1);
760 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
761 	}
762 
763 	if (dd->src.sg == dd->dst.sg) {
764 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
765 					    DMA_BIDIRECTIONAL);
766 		dd->dst.sg_len = dd->src.sg_len;
767 		if (!dd->src.sg_len)
768 			return -EFAULT;
769 	} else {
770 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
771 					    DMA_TO_DEVICE);
772 		if (!dd->src.sg_len)
773 			return -EFAULT;
774 
775 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
776 					    DMA_FROM_DEVICE);
777 		if (!dd->dst.sg_len) {
778 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
779 				     DMA_TO_DEVICE);
780 			return -EFAULT;
781 		}
782 	}
783 
784 	return 0;
785 }
786 
787 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
788 {
789 	if (dd->src.sg == dd->dst.sg) {
790 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
791 			     DMA_BIDIRECTIONAL);
792 
793 		if (dd->src.sg != &dd->aligned_sg)
794 			atmel_aes_restore_sg(&dd->src);
795 	} else {
796 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
797 			     DMA_FROM_DEVICE);
798 
799 		if (dd->dst.sg != &dd->aligned_sg)
800 			atmel_aes_restore_sg(&dd->dst);
801 
802 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
803 			     DMA_TO_DEVICE);
804 
805 		if (dd->src.sg != &dd->aligned_sg)
806 			atmel_aes_restore_sg(&dd->src);
807 	}
808 
809 	if (dd->dst.sg == &dd->aligned_sg)
810 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
811 				    dd->buf, dd->total);
812 }
813 
814 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
815 					enum dma_slave_buswidth addr_width,
816 					enum dma_transfer_direction dir,
817 					u32 maxburst)
818 {
819 	struct dma_async_tx_descriptor *desc;
820 	struct dma_slave_config config;
821 	dma_async_tx_callback callback;
822 	struct atmel_aes_dma *dma;
823 	int err;
824 
825 	memset(&config, 0, sizeof(config));
826 	config.src_addr_width = addr_width;
827 	config.dst_addr_width = addr_width;
828 	config.src_maxburst = maxburst;
829 	config.dst_maxburst = maxburst;
830 
831 	switch (dir) {
832 	case DMA_MEM_TO_DEV:
833 		dma = &dd->src;
834 		callback = NULL;
835 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
836 		break;
837 
838 	case DMA_DEV_TO_MEM:
839 		dma = &dd->dst;
840 		callback = atmel_aes_dma_callback;
841 		config.src_addr = dd->phys_base + AES_ODATAR(0);
842 		break;
843 
844 	default:
845 		return -EINVAL;
846 	}
847 
848 	err = dmaengine_slave_config(dma->chan, &config);
849 	if (err)
850 		return err;
851 
852 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
853 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
854 	if (!desc)
855 		return -ENOMEM;
856 
857 	desc->callback = callback;
858 	desc->callback_param = dd;
859 	dmaengine_submit(desc);
860 	dma_async_issue_pending(dma->chan);
861 
862 	return 0;
863 }
864 
865 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
866 			       struct scatterlist *src,
867 			       struct scatterlist *dst,
868 			       size_t len,
869 			       atmel_aes_fn_t resume)
870 {
871 	enum dma_slave_buswidth addr_width;
872 	u32 maxburst;
873 	int err;
874 
875 	switch (dd->ctx->block_size) {
876 	case CFB8_BLOCK_SIZE:
877 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
878 		maxburst = 1;
879 		break;
880 
881 	case CFB16_BLOCK_SIZE:
882 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
883 		maxburst = 1;
884 		break;
885 
886 	case CFB32_BLOCK_SIZE:
887 	case CFB64_BLOCK_SIZE:
888 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
889 		maxburst = 1;
890 		break;
891 
892 	case AES_BLOCK_SIZE:
893 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
894 		maxburst = dd->caps.max_burst_size;
895 		break;
896 
897 	default:
898 		err = -EINVAL;
899 		goto exit;
900 	}
901 
902 	err = atmel_aes_map(dd, src, dst, len);
903 	if (err)
904 		goto exit;
905 
906 	dd->resume = resume;
907 
908 	/* Set output DMA transfer first */
909 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
910 					   maxburst);
911 	if (err)
912 		goto unmap;
913 
914 	/* Then set input DMA transfer */
915 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
916 					   maxburst);
917 	if (err)
918 		goto output_transfer_stop;
919 
920 	return -EINPROGRESS;
921 
922 output_transfer_stop:
923 	dmaengine_terminate_sync(dd->dst.chan);
924 unmap:
925 	atmel_aes_unmap(dd);
926 exit:
927 	return atmel_aes_complete(dd, err);
928 }
929 
930 static void atmel_aes_dma_callback(void *data)
931 {
932 	struct atmel_aes_dev *dd = data;
933 
934 	atmel_aes_unmap(dd);
935 	dd->is_async = true;
936 	(void)dd->resume(dd);
937 }
938 
939 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
940 				  struct crypto_async_request *new_areq)
941 {
942 	struct crypto_async_request *areq, *backlog;
943 	struct atmel_aes_base_ctx *ctx;
944 	unsigned long flags;
945 	bool start_async;
946 	int err, ret = 0;
947 
948 	spin_lock_irqsave(&dd->lock, flags);
949 	if (new_areq)
950 		ret = crypto_enqueue_request(&dd->queue, new_areq);
951 	if (dd->flags & AES_FLAGS_BUSY) {
952 		spin_unlock_irqrestore(&dd->lock, flags);
953 		return ret;
954 	}
955 	backlog = crypto_get_backlog(&dd->queue);
956 	areq = crypto_dequeue_request(&dd->queue);
957 	if (areq)
958 		dd->flags |= AES_FLAGS_BUSY;
959 	spin_unlock_irqrestore(&dd->lock, flags);
960 
961 	if (!areq)
962 		return ret;
963 
964 	if (backlog)
965 		backlog->complete(backlog, -EINPROGRESS);
966 
967 	ctx = crypto_tfm_ctx(areq->tfm);
968 
969 	dd->areq = areq;
970 	dd->ctx = ctx;
971 	start_async = (areq != new_areq);
972 	dd->is_async = start_async;
973 
974 	/* WARNING: ctx->start() MAY change dd->is_async. */
975 	err = ctx->start(dd);
976 	return (start_async) ? ret : err;
977 }
978 
979 
980 /* AES async block ciphers */
981 
982 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
983 {
984 	return atmel_aes_complete(dd, 0);
985 }
986 
987 static int atmel_aes_start(struct atmel_aes_dev *dd)
988 {
989 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
990 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
991 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
992 			dd->ctx->block_size != AES_BLOCK_SIZE);
993 	int err;
994 
995 	atmel_aes_set_mode(dd, rctx);
996 
997 	err = atmel_aes_hw_init(dd);
998 	if (err)
999 		return atmel_aes_complete(dd, err);
1000 
1001 	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002 	if (use_dma)
1003 		return atmel_aes_dma_start(dd, req->src, req->dst,
1004 					   req->cryptlen,
1005 					   atmel_aes_transfer_complete);
1006 
1007 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008 				   atmel_aes_transfer_complete);
1009 }
1010 
1011 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012 {
1013 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015 	struct scatterlist *src, *dst;
1016 	size_t datalen;
1017 	u32 ctr;
1018 	u16 start, end;
1019 	bool use_dma, fragmented = false;
1020 
1021 	/* Check for transfer completion. */
1022 	ctx->offset += dd->total;
1023 	if (ctx->offset >= req->cryptlen)
1024 		return atmel_aes_transfer_complete(dd);
1025 
1026 	/* Compute data length. */
1027 	datalen = req->cryptlen - ctx->offset;
1028 	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029 	ctr = be32_to_cpu(ctx->iv[3]);
1030 
1031 	/* Check 16bit counter overflow. */
1032 	start = ctr & 0xffff;
1033 	end = start + ctx->blocks - 1;
1034 
1035 	if (ctx->blocks >> 16 || end < start) {
1036 		ctr |= 0xffff;
1037 		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038 		fragmented = true;
1039 	}
1040 
1041 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042 
1043 	/* Jump to offset. */
1044 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045 	dst = ((req->src == req->dst) ? src :
1046 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047 
1048 	/* Configure hardware. */
1049 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050 	if (unlikely(fragmented)) {
1051 		/*
1052 		 * Increment the counter manually to cope with the hardware
1053 		 * counter overflow.
1054 		 */
1055 		ctx->iv[3] = cpu_to_be32(ctr);
1056 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057 	}
1058 
1059 	if (use_dma)
1060 		return atmel_aes_dma_start(dd, src, dst, datalen,
1061 					   atmel_aes_ctr_transfer);
1062 
1063 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1064 				   atmel_aes_ctr_transfer);
1065 }
1066 
1067 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068 {
1069 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072 	int err;
1073 
1074 	atmel_aes_set_mode(dd, rctx);
1075 
1076 	err = atmel_aes_hw_init(dd);
1077 	if (err)
1078 		return atmel_aes_complete(dd, err);
1079 
1080 	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081 	ctx->offset = 0;
1082 	dd->total = 0;
1083 	return atmel_aes_ctr_transfer(dd);
1084 }
1085 
1086 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087 {
1088 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090 	struct atmel_aes_reqctx *rctx;
1091 	struct atmel_aes_dev *dd;
1092 
1093 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1094 	case AES_FLAGS_CFB8:
1095 		ctx->block_size = CFB8_BLOCK_SIZE;
1096 		break;
1097 
1098 	case AES_FLAGS_CFB16:
1099 		ctx->block_size = CFB16_BLOCK_SIZE;
1100 		break;
1101 
1102 	case AES_FLAGS_CFB32:
1103 		ctx->block_size = CFB32_BLOCK_SIZE;
1104 		break;
1105 
1106 	case AES_FLAGS_CFB64:
1107 		ctx->block_size = CFB64_BLOCK_SIZE;
1108 		break;
1109 
1110 	default:
1111 		ctx->block_size = AES_BLOCK_SIZE;
1112 		break;
1113 	}
1114 	ctx->is_aead = false;
1115 
1116 	dd = atmel_aes_find_dev(ctx);
1117 	if (!dd)
1118 		return -ENODEV;
1119 
1120 	rctx = skcipher_request_ctx(req);
1121 	rctx->mode = mode;
1122 
1123 	if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124 	    !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125 		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126 
1127 		if (req->cryptlen >= ivsize)
1128 			scatterwalk_map_and_copy(rctx->lastc, req->src,
1129 						 req->cryptlen - ivsize,
1130 						 ivsize, 0);
1131 	}
1132 
1133 	return atmel_aes_handle_queue(dd, &req->base);
1134 }
1135 
1136 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137 			   unsigned int keylen)
1138 {
1139 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140 
1141 	if (keylen != AES_KEYSIZE_128 &&
1142 	    keylen != AES_KEYSIZE_192 &&
1143 	    keylen != AES_KEYSIZE_256)
1144 		return -EINVAL;
1145 
1146 	memcpy(ctx->key, key, keylen);
1147 	ctx->keylen = keylen;
1148 
1149 	return 0;
1150 }
1151 
1152 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153 {
1154 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155 }
1156 
1157 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158 {
1159 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160 }
1161 
1162 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163 {
1164 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165 }
1166 
1167 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168 {
1169 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170 }
1171 
1172 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173 {
1174 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175 }
1176 
1177 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178 {
1179 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180 }
1181 
1182 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183 {
1184 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185 }
1186 
1187 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188 {
1189 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190 }
1191 
1192 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193 {
1194 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195 }
1196 
1197 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198 {
1199 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200 }
1201 
1202 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203 {
1204 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205 }
1206 
1207 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208 {
1209 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210 }
1211 
1212 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213 {
1214 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215 }
1216 
1217 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218 {
1219 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220 }
1221 
1222 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223 {
1224 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225 }
1226 
1227 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228 {
1229 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230 }
1231 
1232 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233 {
1234 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235 }
1236 
1237 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238 {
1239 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240 }
1241 
1242 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243 {
1244 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1245 
1246 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1247 	ctx->base.start = atmel_aes_start;
1248 
1249 	return 0;
1250 }
1251 
1252 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253 {
1254 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1255 
1256 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1257 	ctx->base.start = atmel_aes_ctr_start;
1258 
1259 	return 0;
1260 }
1261 
1262 static struct skcipher_alg aes_algs[] = {
1263 {
1264 	.base.cra_name		= "ecb(aes)",
1265 	.base.cra_driver_name	= "atmel-ecb-aes",
1266 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1267 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1268 
1269 	.init			= atmel_aes_init_tfm,
1270 	.min_keysize		= AES_MIN_KEY_SIZE,
1271 	.max_keysize		= AES_MAX_KEY_SIZE,
1272 	.setkey			= atmel_aes_setkey,
1273 	.encrypt		= atmel_aes_ecb_encrypt,
1274 	.decrypt		= atmel_aes_ecb_decrypt,
1275 },
1276 {
1277 	.base.cra_name		= "cbc(aes)",
1278 	.base.cra_driver_name	= "atmel-cbc-aes",
1279 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1280 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1281 
1282 	.init			= atmel_aes_init_tfm,
1283 	.min_keysize		= AES_MIN_KEY_SIZE,
1284 	.max_keysize		= AES_MAX_KEY_SIZE,
1285 	.setkey			= atmel_aes_setkey,
1286 	.encrypt		= atmel_aes_cbc_encrypt,
1287 	.decrypt		= atmel_aes_cbc_decrypt,
1288 	.ivsize			= AES_BLOCK_SIZE,
1289 },
1290 {
1291 	.base.cra_name		= "ofb(aes)",
1292 	.base.cra_driver_name	= "atmel-ofb-aes",
1293 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1294 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1295 
1296 	.init			= atmel_aes_init_tfm,
1297 	.min_keysize		= AES_MIN_KEY_SIZE,
1298 	.max_keysize		= AES_MAX_KEY_SIZE,
1299 	.setkey			= atmel_aes_setkey,
1300 	.encrypt		= atmel_aes_ofb_encrypt,
1301 	.decrypt		= atmel_aes_ofb_decrypt,
1302 	.ivsize			= AES_BLOCK_SIZE,
1303 },
1304 {
1305 	.base.cra_name		= "cfb(aes)",
1306 	.base.cra_driver_name	= "atmel-cfb-aes",
1307 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1308 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1309 
1310 	.init			= atmel_aes_init_tfm,
1311 	.min_keysize		= AES_MIN_KEY_SIZE,
1312 	.max_keysize		= AES_MAX_KEY_SIZE,
1313 	.setkey			= atmel_aes_setkey,
1314 	.encrypt		= atmel_aes_cfb_encrypt,
1315 	.decrypt		= atmel_aes_cfb_decrypt,
1316 	.ivsize			= AES_BLOCK_SIZE,
1317 },
1318 {
1319 	.base.cra_name		= "cfb32(aes)",
1320 	.base.cra_driver_name	= "atmel-cfb32-aes",
1321 	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1322 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1323 
1324 	.init			= atmel_aes_init_tfm,
1325 	.min_keysize		= AES_MIN_KEY_SIZE,
1326 	.max_keysize		= AES_MAX_KEY_SIZE,
1327 	.setkey			= atmel_aes_setkey,
1328 	.encrypt		= atmel_aes_cfb32_encrypt,
1329 	.decrypt		= atmel_aes_cfb32_decrypt,
1330 	.ivsize			= AES_BLOCK_SIZE,
1331 },
1332 {
1333 	.base.cra_name		= "cfb16(aes)",
1334 	.base.cra_driver_name	= "atmel-cfb16-aes",
1335 	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1336 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1337 
1338 	.init			= atmel_aes_init_tfm,
1339 	.min_keysize		= AES_MIN_KEY_SIZE,
1340 	.max_keysize		= AES_MAX_KEY_SIZE,
1341 	.setkey			= atmel_aes_setkey,
1342 	.encrypt		= atmel_aes_cfb16_encrypt,
1343 	.decrypt		= atmel_aes_cfb16_decrypt,
1344 	.ivsize			= AES_BLOCK_SIZE,
1345 },
1346 {
1347 	.base.cra_name		= "cfb8(aes)",
1348 	.base.cra_driver_name	= "atmel-cfb8-aes",
1349 	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1350 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1351 
1352 	.init			= atmel_aes_init_tfm,
1353 	.min_keysize		= AES_MIN_KEY_SIZE,
1354 	.max_keysize		= AES_MAX_KEY_SIZE,
1355 	.setkey			= atmel_aes_setkey,
1356 	.encrypt		= atmel_aes_cfb8_encrypt,
1357 	.decrypt		= atmel_aes_cfb8_decrypt,
1358 	.ivsize			= AES_BLOCK_SIZE,
1359 },
1360 {
1361 	.base.cra_name		= "ctr(aes)",
1362 	.base.cra_driver_name	= "atmel-ctr-aes",
1363 	.base.cra_blocksize	= 1,
1364 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1365 
1366 	.init			= atmel_aes_ctr_init_tfm,
1367 	.min_keysize		= AES_MIN_KEY_SIZE,
1368 	.max_keysize		= AES_MAX_KEY_SIZE,
1369 	.setkey			= atmel_aes_setkey,
1370 	.encrypt		= atmel_aes_ctr_encrypt,
1371 	.decrypt		= atmel_aes_ctr_decrypt,
1372 	.ivsize			= AES_BLOCK_SIZE,
1373 },
1374 };
1375 
1376 static struct skcipher_alg aes_cfb64_alg = {
1377 	.base.cra_name		= "cfb64(aes)",
1378 	.base.cra_driver_name	= "atmel-cfb64-aes",
1379 	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1380 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1381 
1382 	.init			= atmel_aes_init_tfm,
1383 	.min_keysize		= AES_MIN_KEY_SIZE,
1384 	.max_keysize		= AES_MAX_KEY_SIZE,
1385 	.setkey			= atmel_aes_setkey,
1386 	.encrypt		= atmel_aes_cfb64_encrypt,
1387 	.decrypt		= atmel_aes_cfb64_decrypt,
1388 	.ivsize			= AES_BLOCK_SIZE,
1389 };
1390 
1391 
1392 /* gcm aead functions */
1393 
1394 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395 			       const u32 *data, size_t datalen,
1396 			       const __be32 *ghash_in, __be32 *ghash_out,
1397 			       atmel_aes_fn_t resume);
1398 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400 
1401 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408 
1409 static inline struct atmel_aes_gcm_ctx *
1410 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411 {
1412 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413 }
1414 
1415 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416 			       const u32 *data, size_t datalen,
1417 			       const __be32 *ghash_in, __be32 *ghash_out,
1418 			       atmel_aes_fn_t resume)
1419 {
1420 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421 
1422 	dd->data = (u32 *)data;
1423 	dd->datalen = datalen;
1424 	ctx->ghash_in = ghash_in;
1425 	ctx->ghash_out = ghash_out;
1426 	ctx->ghash_resume = resume;
1427 
1428 	atmel_aes_write_ctrl(dd, false, NULL);
1429 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430 }
1431 
1432 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433 {
1434 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435 
1436 	/* Set the data length. */
1437 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1438 	atmel_aes_write(dd, AES_CLENR, 0);
1439 
1440 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441 	if (ctx->ghash_in)
1442 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443 
1444 	return atmel_aes_gcm_ghash_finalize(dd);
1445 }
1446 
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448 {
1449 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450 	u32 isr;
1451 
1452 	/* Write data into the Input Data Registers. */
1453 	while (dd->datalen > 0) {
1454 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455 		dd->data += 4;
1456 		dd->datalen -= AES_BLOCK_SIZE;
1457 
1458 		isr = atmel_aes_read(dd, AES_ISR);
1459 		if (!(isr & AES_INT_DATARDY)) {
1460 			dd->resume = atmel_aes_gcm_ghash_finalize;
1461 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462 			return -EINPROGRESS;
1463 		}
1464 	}
1465 
1466 	/* Read the computed hash from GHASHRx. */
1467 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468 
1469 	return ctx->ghash_resume(dd);
1470 }
1471 
1472 
1473 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474 {
1475 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476 	struct aead_request *req = aead_request_cast(dd->areq);
1477 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479 	size_t ivsize = crypto_aead_ivsize(tfm);
1480 	size_t datalen, padlen;
1481 	const void *iv = req->iv;
1482 	u8 *data = dd->buf;
1483 	int err;
1484 
1485 	atmel_aes_set_mode(dd, rctx);
1486 
1487 	err = atmel_aes_hw_init(dd);
1488 	if (err)
1489 		return atmel_aes_complete(dd, err);
1490 
1491 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492 		memcpy(ctx->j0, iv, ivsize);
1493 		ctx->j0[3] = cpu_to_be32(1);
1494 		return atmel_aes_gcm_process(dd);
1495 	}
1496 
1497 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499 	if (datalen > dd->buflen)
1500 		return atmel_aes_complete(dd, -EINVAL);
1501 
1502 	memcpy(data, iv, ivsize);
1503 	memset(data + ivsize, 0, padlen + sizeof(u64));
1504 	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505 
1506 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507 				   NULL, ctx->j0, atmel_aes_gcm_process);
1508 }
1509 
1510 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511 {
1512 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 	struct aead_request *req = aead_request_cast(dd->areq);
1514 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515 	bool enc = atmel_aes_is_encrypt(dd);
1516 	u32 authsize;
1517 
1518 	/* Compute text length. */
1519 	authsize = crypto_aead_authsize(tfm);
1520 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521 
1522 	/*
1523 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1524 	 * fails when both the message and its associated data are empty.
1525 	 */
1526 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527 		dd->flags |= AES_FLAGS_GTAGEN;
1528 
1529 	atmel_aes_write_ctrl(dd, false, NULL);
1530 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531 }
1532 
1533 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534 {
1535 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536 	struct aead_request *req = aead_request_cast(dd->areq);
1537 	__be32 j0_lsw, *j0 = ctx->j0;
1538 	size_t padlen;
1539 
1540 	/* Write incr32(J0) into IV. */
1541 	j0_lsw = j0[3];
1542 	be32_add_cpu(&j0[3], 1);
1543 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1544 	j0[3] = j0_lsw;
1545 
1546 	/* Set aad and text lengths. */
1547 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549 
1550 	/* Check whether AAD are present. */
1551 	if (unlikely(req->assoclen == 0)) {
1552 		dd->datalen = 0;
1553 		return atmel_aes_gcm_data(dd);
1554 	}
1555 
1556 	/* Copy assoc data and add padding. */
1557 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558 	if (unlikely(req->assoclen + padlen > dd->buflen))
1559 		return atmel_aes_complete(dd, -EINVAL);
1560 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561 
1562 	/* Write assoc data into the Input Data register. */
1563 	dd->data = (u32 *)dd->buf;
1564 	dd->datalen = req->assoclen + padlen;
1565 	return atmel_aes_gcm_data(dd);
1566 }
1567 
1568 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569 {
1570 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571 	struct aead_request *req = aead_request_cast(dd->areq);
1572 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573 	struct scatterlist *src, *dst;
1574 	u32 isr, mr;
1575 
1576 	/* Write AAD first. */
1577 	while (dd->datalen > 0) {
1578 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579 		dd->data += 4;
1580 		dd->datalen -= AES_BLOCK_SIZE;
1581 
1582 		isr = atmel_aes_read(dd, AES_ISR);
1583 		if (!(isr & AES_INT_DATARDY)) {
1584 			dd->resume = atmel_aes_gcm_data;
1585 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586 			return -EINPROGRESS;
1587 		}
1588 	}
1589 
1590 	/* GMAC only. */
1591 	if (unlikely(ctx->textlen == 0))
1592 		return atmel_aes_gcm_tag_init(dd);
1593 
1594 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596 	dst = ((req->src == req->dst) ? src :
1597 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598 
1599 	if (use_dma) {
1600 		/* Update the Mode Register for DMA transfers. */
1601 		mr = atmel_aes_read(dd, AES_MR);
1602 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603 		mr |= AES_MR_SMOD_IDATAR0;
1604 		if (dd->caps.has_dualbuff)
1605 			mr |= AES_MR_DUALBUFF;
1606 		atmel_aes_write(dd, AES_MR, mr);
1607 
1608 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609 					   atmel_aes_gcm_tag_init);
1610 	}
1611 
1612 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613 				   atmel_aes_gcm_tag_init);
1614 }
1615 
1616 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617 {
1618 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619 	struct aead_request *req = aead_request_cast(dd->areq);
1620 	__be64 *data = dd->buf;
1621 
1622 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624 			dd->resume = atmel_aes_gcm_tag_init;
1625 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626 			return -EINPROGRESS;
1627 		}
1628 
1629 		return atmel_aes_gcm_finalize(dd);
1630 	}
1631 
1632 	/* Read the GCM Intermediate Hash Word Registers. */
1633 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634 
1635 	data[0] = cpu_to_be64(req->assoclen * 8);
1636 	data[1] = cpu_to_be64(ctx->textlen * 8);
1637 
1638 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640 }
1641 
1642 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643 {
1644 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645 	unsigned long flags;
1646 
1647 	/*
1648 	 * Change mode to CTR to complete the tag generation.
1649 	 * Use J0 as Initialization Vector.
1650 	 */
1651 	flags = dd->flags;
1652 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653 	dd->flags |= AES_FLAGS_CTR;
1654 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1655 	dd->flags = flags;
1656 
1657 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659 }
1660 
1661 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662 {
1663 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664 	struct aead_request *req = aead_request_cast(dd->areq);
1665 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666 	bool enc = atmel_aes_is_encrypt(dd);
1667 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1668 	int err;
1669 
1670 	/* Read the computed tag. */
1671 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673 	else
1674 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675 
1676 	offset = req->assoclen + ctx->textlen;
1677 	authsize = crypto_aead_authsize(tfm);
1678 	if (enc) {
1679 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680 		err = 0;
1681 	} else {
1682 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684 	}
1685 
1686 	return atmel_aes_complete(dd, err);
1687 }
1688 
1689 static int atmel_aes_gcm_crypt(struct aead_request *req,
1690 			       unsigned long mode)
1691 {
1692 	struct atmel_aes_base_ctx *ctx;
1693 	struct atmel_aes_reqctx *rctx;
1694 	struct atmel_aes_dev *dd;
1695 
1696 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697 	ctx->block_size = AES_BLOCK_SIZE;
1698 	ctx->is_aead = true;
1699 
1700 	dd = atmel_aes_find_dev(ctx);
1701 	if (!dd)
1702 		return -ENODEV;
1703 
1704 	rctx = aead_request_ctx(req);
1705 	rctx->mode = AES_FLAGS_GCM | mode;
1706 
1707 	return atmel_aes_handle_queue(dd, &req->base);
1708 }
1709 
1710 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711 				unsigned int keylen)
1712 {
1713 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714 
1715 	if (keylen != AES_KEYSIZE_256 &&
1716 	    keylen != AES_KEYSIZE_192 &&
1717 	    keylen != AES_KEYSIZE_128)
1718 		return -EINVAL;
1719 
1720 	memcpy(ctx->key, key, keylen);
1721 	ctx->keylen = keylen;
1722 
1723 	return 0;
1724 }
1725 
1726 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727 				     unsigned int authsize)
1728 {
1729 	return crypto_gcm_check_authsize(authsize);
1730 }
1731 
1732 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733 {
1734 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735 }
1736 
1737 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738 {
1739 	return atmel_aes_gcm_crypt(req, 0);
1740 }
1741 
1742 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743 {
1744 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1745 
1746 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1747 	ctx->base.start = atmel_aes_gcm_start;
1748 
1749 	return 0;
1750 }
1751 
1752 static struct aead_alg aes_gcm_alg = {
1753 	.setkey		= atmel_aes_gcm_setkey,
1754 	.setauthsize	= atmel_aes_gcm_setauthsize,
1755 	.encrypt	= atmel_aes_gcm_encrypt,
1756 	.decrypt	= atmel_aes_gcm_decrypt,
1757 	.init		= atmel_aes_gcm_init,
1758 	.ivsize		= GCM_AES_IV_SIZE,
1759 	.maxauthsize	= AES_BLOCK_SIZE,
1760 
1761 	.base = {
1762 		.cra_name		= "gcm(aes)",
1763 		.cra_driver_name	= "atmel-gcm-aes",
1764 		.cra_blocksize		= 1,
1765 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1766 	},
1767 };
1768 
1769 
1770 /* xts functions */
1771 
1772 static inline struct atmel_aes_xts_ctx *
1773 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774 {
1775 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776 }
1777 
1778 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779 
1780 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781 {
1782 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785 	unsigned long flags;
1786 	int err;
1787 
1788 	atmel_aes_set_mode(dd, rctx);
1789 
1790 	err = atmel_aes_hw_init(dd);
1791 	if (err)
1792 		return atmel_aes_complete(dd, err);
1793 
1794 	/* Compute the tweak value from req->iv with ecb(aes). */
1795 	flags = dd->flags;
1796 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1797 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798 	atmel_aes_write_ctrl_key(dd, false, NULL,
1799 				 ctx->key2, ctx->base.keylen);
1800 	dd->flags = flags;
1801 
1802 	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804 }
1805 
1806 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807 {
1808 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811 	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812 	u8 *tweak_bytes = (u8 *)tweak;
1813 	int i;
1814 
1815 	/* Read the computed ciphered tweak value. */
1816 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817 	/*
1818 	 * Hardware quirk:
1819 	 * the order of the ciphered tweak bytes need to be reversed before
1820 	 * writing them into the ODATARx registers.
1821 	 */
1822 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824 
1825 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826 		tweak_bytes[i] = tmp;
1827 	}
1828 
1829 	/* Process the data. */
1830 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1831 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833 	if (use_dma)
1834 		return atmel_aes_dma_start(dd, req->src, req->dst,
1835 					   req->cryptlen,
1836 					   atmel_aes_transfer_complete);
1837 
1838 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839 				   atmel_aes_transfer_complete);
1840 }
1841 
1842 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843 				unsigned int keylen)
1844 {
1845 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846 	int err;
1847 
1848 	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1849 	if (err)
1850 		return err;
1851 
1852 	memcpy(ctx->base.key, key, keylen/2);
1853 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1854 	ctx->base.keylen = keylen/2;
1855 
1856 	return 0;
1857 }
1858 
1859 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860 {
1861 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862 }
1863 
1864 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865 {
1866 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867 }
1868 
1869 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870 {
1871 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1872 
1873 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1874 	ctx->base.start = atmel_aes_xts_start;
1875 
1876 	return 0;
1877 }
1878 
1879 static struct skcipher_alg aes_xts_alg = {
1880 	.base.cra_name		= "xts(aes)",
1881 	.base.cra_driver_name	= "atmel-xts-aes",
1882 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1883 	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1884 
1885 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1886 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1887 	.ivsize			= AES_BLOCK_SIZE,
1888 	.setkey			= atmel_aes_xts_setkey,
1889 	.encrypt		= atmel_aes_xts_encrypt,
1890 	.decrypt		= atmel_aes_xts_decrypt,
1891 	.init			= atmel_aes_xts_init_tfm,
1892 };
1893 
1894 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895 /* authenc aead functions */
1896 
1897 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899 				  bool is_async);
1900 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901 				      bool is_async);
1902 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904 				   bool is_async);
1905 
1906 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907 {
1908 	struct aead_request *req = aead_request_cast(dd->areq);
1909 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910 
1911 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912 		atmel_sha_authenc_abort(&rctx->auth_req);
1913 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1914 }
1915 
1916 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917 {
1918 	struct aead_request *req = aead_request_cast(dd->areq);
1919 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922 	int err;
1923 
1924 	atmel_aes_set_mode(dd, &rctx->base);
1925 
1926 	err = atmel_aes_hw_init(dd);
1927 	if (err)
1928 		return atmel_aes_complete(dd, err);
1929 
1930 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931 					  atmel_aes_authenc_init, dd);
1932 }
1933 
1934 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935 				  bool is_async)
1936 {
1937 	struct aead_request *req = aead_request_cast(dd->areq);
1938 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939 
1940 	if (is_async)
1941 		dd->is_async = true;
1942 	if (err)
1943 		return atmel_aes_complete(dd, err);
1944 
1945 	/* If here, we've got the ownership of the SHA device. */
1946 	dd->flags |= AES_FLAGS_OWN_SHA;
1947 
1948 	/* Configure the SHA device. */
1949 	return atmel_sha_authenc_init(&rctx->auth_req,
1950 				      req->src, req->assoclen,
1951 				      rctx->textlen,
1952 				      atmel_aes_authenc_transfer, dd);
1953 }
1954 
1955 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956 				      bool is_async)
1957 {
1958 	struct aead_request *req = aead_request_cast(dd->areq);
1959 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960 	bool enc = atmel_aes_is_encrypt(dd);
1961 	struct scatterlist *src, *dst;
1962 	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963 	u32 emr;
1964 
1965 	if (is_async)
1966 		dd->is_async = true;
1967 	if (err)
1968 		return atmel_aes_complete(dd, err);
1969 
1970 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972 	dst = src;
1973 
1974 	if (req->src != req->dst)
1975 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976 
1977 	/* Configure the AES device. */
1978 	memcpy(iv, req->iv, sizeof(iv));
1979 
1980 	/*
1981 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982 	 * 'true' even if the data transfer is actually performed by the CPU (so
1983 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985 	 * must be set to *_MR_SMOD_IDATAR0.
1986 	 */
1987 	atmel_aes_write_ctrl(dd, true, iv);
1988 	emr = AES_EMR_PLIPEN;
1989 	if (!enc)
1990 		emr |= AES_EMR_PLIPD;
1991 	atmel_aes_write(dd, AES_EMR, emr);
1992 
1993 	/* Transfer data. */
1994 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995 				   atmel_aes_authenc_digest);
1996 }
1997 
1998 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999 {
2000 	struct aead_request *req = aead_request_cast(dd->areq);
2001 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002 
2003 	/* atmel_sha_authenc_final() releases the SHA device. */
2004 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2005 	return atmel_sha_authenc_final(&rctx->auth_req,
2006 				       rctx->digest, sizeof(rctx->digest),
2007 				       atmel_aes_authenc_final, dd);
2008 }
2009 
2010 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011 				   bool is_async)
2012 {
2013 	struct aead_request *req = aead_request_cast(dd->areq);
2014 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016 	bool enc = atmel_aes_is_encrypt(dd);
2017 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018 	u32 offs, authsize;
2019 
2020 	if (is_async)
2021 		dd->is_async = true;
2022 	if (err)
2023 		goto complete;
2024 
2025 	offs = req->assoclen + rctx->textlen;
2026 	authsize = crypto_aead_authsize(tfm);
2027 	if (enc) {
2028 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029 	} else {
2030 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031 		if (crypto_memneq(idigest, odigest, authsize))
2032 			err = -EBADMSG;
2033 	}
2034 
2035 complete:
2036 	return atmel_aes_complete(dd, err);
2037 }
2038 
2039 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040 				    unsigned int keylen)
2041 {
2042 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043 	struct crypto_authenc_keys keys;
2044 	int err;
2045 
2046 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047 		goto badkey;
2048 
2049 	if (keys.enckeylen > sizeof(ctx->base.key))
2050 		goto badkey;
2051 
2052 	/* Save auth key. */
2053 	err = atmel_sha_authenc_setkey(ctx->auth,
2054 				       keys.authkey, keys.authkeylen,
2055 				       crypto_aead_get_flags(tfm));
2056 	if (err) {
2057 		memzero_explicit(&keys, sizeof(keys));
2058 		return err;
2059 	}
2060 
2061 	/* Save enc key. */
2062 	ctx->base.keylen = keys.enckeylen;
2063 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064 
2065 	memzero_explicit(&keys, sizeof(keys));
2066 	return 0;
2067 
2068 badkey:
2069 	memzero_explicit(&keys, sizeof(keys));
2070 	return -EINVAL;
2071 }
2072 
2073 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074 				      unsigned long auth_mode)
2075 {
2076 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2078 
2079 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080 	if (IS_ERR(ctx->auth))
2081 		return PTR_ERR(ctx->auth);
2082 
2083 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084 				      auth_reqsize));
2085 	ctx->base.start = atmel_aes_authenc_start;
2086 
2087 	return 0;
2088 }
2089 
2090 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091 {
2092 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093 }
2094 
2095 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096 {
2097 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098 }
2099 
2100 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101 {
2102 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103 }
2104 
2105 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106 {
2107 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108 }
2109 
2110 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111 {
2112 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113 }
2114 
2115 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116 {
2117 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118 
2119 	atmel_sha_authenc_free(ctx->auth);
2120 }
2121 
2122 static int atmel_aes_authenc_crypt(struct aead_request *req,
2123 				   unsigned long mode)
2124 {
2125 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128 	u32 authsize = crypto_aead_authsize(tfm);
2129 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2130 	struct atmel_aes_dev *dd;
2131 
2132 	/* Compute text length. */
2133 	if (!enc && req->cryptlen < authsize)
2134 		return -EINVAL;
2135 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136 
2137 	/*
2138 	 * Currently, empty messages are not supported yet:
2139 	 * the SHA auto-padding can be used only on non-empty messages.
2140 	 * Hence a special case needs to be implemented for empty message.
2141 	 */
2142 	if (!rctx->textlen && !req->assoclen)
2143 		return -EINVAL;
2144 
2145 	rctx->base.mode = mode;
2146 	ctx->block_size = AES_BLOCK_SIZE;
2147 	ctx->is_aead = true;
2148 
2149 	dd = atmel_aes_find_dev(ctx);
2150 	if (!dd)
2151 		return -ENODEV;
2152 
2153 	return atmel_aes_handle_queue(dd, &req->base);
2154 }
2155 
2156 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157 {
2158 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159 }
2160 
2161 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162 {
2163 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164 }
2165 
2166 static struct aead_alg aes_authenc_algs[] = {
2167 {
2168 	.setkey		= atmel_aes_authenc_setkey,
2169 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2170 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2171 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2172 	.exit		= atmel_aes_authenc_exit_tfm,
2173 	.ivsize		= AES_BLOCK_SIZE,
2174 	.maxauthsize	= SHA1_DIGEST_SIZE,
2175 
2176 	.base = {
2177 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2178 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2179 		.cra_blocksize		= AES_BLOCK_SIZE,
2180 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2181 	},
2182 },
2183 {
2184 	.setkey		= atmel_aes_authenc_setkey,
2185 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2186 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2187 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2188 	.exit		= atmel_aes_authenc_exit_tfm,
2189 	.ivsize		= AES_BLOCK_SIZE,
2190 	.maxauthsize	= SHA224_DIGEST_SIZE,
2191 
2192 	.base = {
2193 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2194 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2195 		.cra_blocksize		= AES_BLOCK_SIZE,
2196 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2197 	},
2198 },
2199 {
2200 	.setkey		= atmel_aes_authenc_setkey,
2201 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2202 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2203 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2204 	.exit		= atmel_aes_authenc_exit_tfm,
2205 	.ivsize		= AES_BLOCK_SIZE,
2206 	.maxauthsize	= SHA256_DIGEST_SIZE,
2207 
2208 	.base = {
2209 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2210 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2211 		.cra_blocksize		= AES_BLOCK_SIZE,
2212 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2213 	},
2214 },
2215 {
2216 	.setkey		= atmel_aes_authenc_setkey,
2217 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2218 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2219 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2220 	.exit		= atmel_aes_authenc_exit_tfm,
2221 	.ivsize		= AES_BLOCK_SIZE,
2222 	.maxauthsize	= SHA384_DIGEST_SIZE,
2223 
2224 	.base = {
2225 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2226 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2227 		.cra_blocksize		= AES_BLOCK_SIZE,
2228 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2229 	},
2230 },
2231 {
2232 	.setkey		= atmel_aes_authenc_setkey,
2233 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2234 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2235 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2236 	.exit		= atmel_aes_authenc_exit_tfm,
2237 	.ivsize		= AES_BLOCK_SIZE,
2238 	.maxauthsize	= SHA512_DIGEST_SIZE,
2239 
2240 	.base = {
2241 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2242 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2243 		.cra_blocksize		= AES_BLOCK_SIZE,
2244 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2245 	},
2246 },
2247 };
2248 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249 
2250 /* Probe functions */
2251 
2252 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253 {
2254 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257 
2258 	if (!dd->buf) {
2259 		dev_err(dd->dev, "unable to alloc pages.\n");
2260 		return -ENOMEM;
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267 {
2268 	free_page((unsigned long)dd->buf);
2269 }
2270 
2271 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272 {
2273 	int ret;
2274 
2275 	/* Try to grab 2 DMA channels */
2276 	dd->src.chan = dma_request_chan(dd->dev, "tx");
2277 	if (IS_ERR(dd->src.chan)) {
2278 		ret = PTR_ERR(dd->src.chan);
2279 		goto err_dma_in;
2280 	}
2281 
2282 	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283 	if (IS_ERR(dd->dst.chan)) {
2284 		ret = PTR_ERR(dd->dst.chan);
2285 		goto err_dma_out;
2286 	}
2287 
2288 	return 0;
2289 
2290 err_dma_out:
2291 	dma_release_channel(dd->src.chan);
2292 err_dma_in:
2293 	dev_err(dd->dev, "no DMA channel available\n");
2294 	return ret;
2295 }
2296 
2297 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298 {
2299 	dma_release_channel(dd->dst.chan);
2300 	dma_release_channel(dd->src.chan);
2301 }
2302 
2303 static void atmel_aes_queue_task(unsigned long data)
2304 {
2305 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306 
2307 	atmel_aes_handle_queue(dd, NULL);
2308 }
2309 
2310 static void atmel_aes_done_task(unsigned long data)
2311 {
2312 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313 
2314 	dd->is_async = true;
2315 	(void)dd->resume(dd);
2316 }
2317 
2318 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319 {
2320 	struct atmel_aes_dev *aes_dd = dev_id;
2321 	u32 reg;
2322 
2323 	reg = atmel_aes_read(aes_dd, AES_ISR);
2324 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325 		atmel_aes_write(aes_dd, AES_IDR, reg);
2326 		if (AES_FLAGS_BUSY & aes_dd->flags)
2327 			tasklet_schedule(&aes_dd->done_task);
2328 		else
2329 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330 		return IRQ_HANDLED;
2331 	}
2332 
2333 	return IRQ_NONE;
2334 }
2335 
2336 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337 {
2338 	int i;
2339 
2340 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341 	if (dd->caps.has_authenc)
2342 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343 			crypto_unregister_aead(&aes_authenc_algs[i]);
2344 #endif
2345 
2346 	if (dd->caps.has_xts)
2347 		crypto_unregister_skcipher(&aes_xts_alg);
2348 
2349 	if (dd->caps.has_gcm)
2350 		crypto_unregister_aead(&aes_gcm_alg);
2351 
2352 	if (dd->caps.has_cfb64)
2353 		crypto_unregister_skcipher(&aes_cfb64_alg);
2354 
2355 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356 		crypto_unregister_skcipher(&aes_algs[i]);
2357 }
2358 
2359 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360 {
2361 	alg->cra_flags = CRYPTO_ALG_ASYNC;
2362 	alg->cra_alignmask = 0xf;
2363 	alg->cra_priority = ATMEL_AES_PRIORITY;
2364 	alg->cra_module = THIS_MODULE;
2365 }
2366 
2367 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368 {
2369 	int err, i, j;
2370 
2371 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372 		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373 
2374 		err = crypto_register_skcipher(&aes_algs[i]);
2375 		if (err)
2376 			goto err_aes_algs;
2377 	}
2378 
2379 	if (dd->caps.has_cfb64) {
2380 		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381 
2382 		err = crypto_register_skcipher(&aes_cfb64_alg);
2383 		if (err)
2384 			goto err_aes_cfb64_alg;
2385 	}
2386 
2387 	if (dd->caps.has_gcm) {
2388 		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389 
2390 		err = crypto_register_aead(&aes_gcm_alg);
2391 		if (err)
2392 			goto err_aes_gcm_alg;
2393 	}
2394 
2395 	if (dd->caps.has_xts) {
2396 		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397 
2398 		err = crypto_register_skcipher(&aes_xts_alg);
2399 		if (err)
2400 			goto err_aes_xts_alg;
2401 	}
2402 
2403 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404 	if (dd->caps.has_authenc) {
2405 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406 			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407 
2408 			err = crypto_register_aead(&aes_authenc_algs[i]);
2409 			if (err)
2410 				goto err_aes_authenc_alg;
2411 		}
2412 	}
2413 #endif
2414 
2415 	return 0;
2416 
2417 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2419 err_aes_authenc_alg:
2420 	for (j = 0; j < i; j++)
2421 		crypto_unregister_aead(&aes_authenc_algs[j]);
2422 	crypto_unregister_skcipher(&aes_xts_alg);
2423 #endif
2424 err_aes_xts_alg:
2425 	crypto_unregister_aead(&aes_gcm_alg);
2426 err_aes_gcm_alg:
2427 	crypto_unregister_skcipher(&aes_cfb64_alg);
2428 err_aes_cfb64_alg:
2429 	i = ARRAY_SIZE(aes_algs);
2430 err_aes_algs:
2431 	for (j = 0; j < i; j++)
2432 		crypto_unregister_skcipher(&aes_algs[j]);
2433 
2434 	return err;
2435 }
2436 
2437 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438 {
2439 	dd->caps.has_dualbuff = 0;
2440 	dd->caps.has_cfb64 = 0;
2441 	dd->caps.has_gcm = 0;
2442 	dd->caps.has_xts = 0;
2443 	dd->caps.has_authenc = 0;
2444 	dd->caps.max_burst_size = 1;
2445 
2446 	/* keep only major version number */
2447 	switch (dd->hw_version & 0xff0) {
2448 	case 0x500:
2449 		dd->caps.has_dualbuff = 1;
2450 		dd->caps.has_cfb64 = 1;
2451 		dd->caps.has_gcm = 1;
2452 		dd->caps.has_xts = 1;
2453 		dd->caps.has_authenc = 1;
2454 		dd->caps.max_burst_size = 4;
2455 		break;
2456 	case 0x200:
2457 		dd->caps.has_dualbuff = 1;
2458 		dd->caps.has_cfb64 = 1;
2459 		dd->caps.has_gcm = 1;
2460 		dd->caps.max_burst_size = 4;
2461 		break;
2462 	case 0x130:
2463 		dd->caps.has_dualbuff = 1;
2464 		dd->caps.has_cfb64 = 1;
2465 		dd->caps.max_burst_size = 4;
2466 		break;
2467 	case 0x120:
2468 		break;
2469 	default:
2470 		dev_warn(dd->dev,
2471 				"Unmanaged aes version, set minimum capabilities\n");
2472 		break;
2473 	}
2474 }
2475 
2476 #if defined(CONFIG_OF)
2477 static const struct of_device_id atmel_aes_dt_ids[] = {
2478 	{ .compatible = "atmel,at91sam9g46-aes" },
2479 	{ /* sentinel */ }
2480 };
2481 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482 #endif
2483 
2484 static int atmel_aes_probe(struct platform_device *pdev)
2485 {
2486 	struct atmel_aes_dev *aes_dd;
2487 	struct device *dev = &pdev->dev;
2488 	struct resource *aes_res;
2489 	int err;
2490 
2491 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492 	if (!aes_dd)
2493 		return -ENOMEM;
2494 
2495 	aes_dd->dev = dev;
2496 
2497 	platform_set_drvdata(pdev, aes_dd);
2498 
2499 	INIT_LIST_HEAD(&aes_dd->list);
2500 	spin_lock_init(&aes_dd->lock);
2501 
2502 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503 					(unsigned long)aes_dd);
2504 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505 					(unsigned long)aes_dd);
2506 
2507 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508 
2509 	/* Get the base address */
2510 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511 	if (!aes_res) {
2512 		dev_err(dev, "no MEM resource info\n");
2513 		err = -ENODEV;
2514 		goto err_tasklet_kill;
2515 	}
2516 	aes_dd->phys_base = aes_res->start;
2517 
2518 	/* Get the IRQ */
2519 	aes_dd->irq = platform_get_irq(pdev,  0);
2520 	if (aes_dd->irq < 0) {
2521 		err = aes_dd->irq;
2522 		goto err_tasklet_kill;
2523 	}
2524 
2525 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526 			       IRQF_SHARED, "atmel-aes", aes_dd);
2527 	if (err) {
2528 		dev_err(dev, "unable to request aes irq.\n");
2529 		goto err_tasklet_kill;
2530 	}
2531 
2532 	/* Initializing the clock */
2533 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534 	if (IS_ERR(aes_dd->iclk)) {
2535 		dev_err(dev, "clock initialization failed.\n");
2536 		err = PTR_ERR(aes_dd->iclk);
2537 		goto err_tasklet_kill;
2538 	}
2539 
2540 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541 	if (IS_ERR(aes_dd->io_base)) {
2542 		dev_err(dev, "can't ioremap\n");
2543 		err = PTR_ERR(aes_dd->io_base);
2544 		goto err_tasklet_kill;
2545 	}
2546 
2547 	err = clk_prepare(aes_dd->iclk);
2548 	if (err)
2549 		goto err_tasklet_kill;
2550 
2551 	err = atmel_aes_hw_version_init(aes_dd);
2552 	if (err)
2553 		goto err_iclk_unprepare;
2554 
2555 	atmel_aes_get_cap(aes_dd);
2556 
2557 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559 		err = -EPROBE_DEFER;
2560 		goto err_iclk_unprepare;
2561 	}
2562 #endif
2563 
2564 	err = atmel_aes_buff_init(aes_dd);
2565 	if (err)
2566 		goto err_iclk_unprepare;
2567 
2568 	err = atmel_aes_dma_init(aes_dd);
2569 	if (err)
2570 		goto err_buff_cleanup;
2571 
2572 	spin_lock(&atmel_aes.lock);
2573 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574 	spin_unlock(&atmel_aes.lock);
2575 
2576 	err = atmel_aes_register_algs(aes_dd);
2577 	if (err)
2578 		goto err_algs;
2579 
2580 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581 			dma_chan_name(aes_dd->src.chan),
2582 			dma_chan_name(aes_dd->dst.chan));
2583 
2584 	return 0;
2585 
2586 err_algs:
2587 	spin_lock(&atmel_aes.lock);
2588 	list_del(&aes_dd->list);
2589 	spin_unlock(&atmel_aes.lock);
2590 	atmel_aes_dma_cleanup(aes_dd);
2591 err_buff_cleanup:
2592 	atmel_aes_buff_cleanup(aes_dd);
2593 err_iclk_unprepare:
2594 	clk_unprepare(aes_dd->iclk);
2595 err_tasklet_kill:
2596 	tasklet_kill(&aes_dd->done_task);
2597 	tasklet_kill(&aes_dd->queue_task);
2598 
2599 	return err;
2600 }
2601 
2602 static int atmel_aes_remove(struct platform_device *pdev)
2603 {
2604 	struct atmel_aes_dev *aes_dd;
2605 
2606 	aes_dd = platform_get_drvdata(pdev);
2607 	if (!aes_dd)
2608 		return -ENODEV;
2609 	spin_lock(&atmel_aes.lock);
2610 	list_del(&aes_dd->list);
2611 	spin_unlock(&atmel_aes.lock);
2612 
2613 	atmel_aes_unregister_algs(aes_dd);
2614 
2615 	tasklet_kill(&aes_dd->done_task);
2616 	tasklet_kill(&aes_dd->queue_task);
2617 
2618 	atmel_aes_dma_cleanup(aes_dd);
2619 	atmel_aes_buff_cleanup(aes_dd);
2620 
2621 	clk_unprepare(aes_dd->iclk);
2622 
2623 	return 0;
2624 }
2625 
2626 static struct platform_driver atmel_aes_driver = {
2627 	.probe		= atmel_aes_probe,
2628 	.remove		= atmel_aes_remove,
2629 	.driver		= {
2630 		.name	= "atmel_aes",
2631 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632 	},
2633 };
2634 
2635 module_platform_driver(atmel_aes_driver);
2636 
2637 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638 MODULE_LICENSE("GPL v2");
2639 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2640