xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <crypto/internal/skcipher.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43 #include "atmel-authenc.h"
44 
45 #define ATMEL_AES_PRIORITY	300
46 
47 #define ATMEL_AES_BUFFER_ORDER	2
48 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49 
50 #define CFB8_BLOCK_SIZE		1
51 #define CFB16_BLOCK_SIZE	2
52 #define CFB32_BLOCK_SIZE	4
53 #define CFB64_BLOCK_SIZE	8
54 
55 #define SIZE_IN_WORDS(x)	((x) >> 2)
56 
57 /* AES flags */
58 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
59 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
60 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
61 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
62 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
63 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
64 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
65 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
66 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
67 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
68 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
69 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
70 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
71 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
72 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
73 
74 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
75 				 AES_FLAGS_ENCRYPT |		\
76 				 AES_FLAGS_GTAGEN)
77 
78 #define AES_FLAGS_BUSY		BIT(3)
79 #define AES_FLAGS_DUMP_REG	BIT(4)
80 #define AES_FLAGS_OWN_SHA	BIT(5)
81 
82 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
83 
84 #define ATMEL_AES_QUEUE_LENGTH	50
85 
86 #define ATMEL_AES_DMA_THRESHOLD		256
87 
88 
89 struct atmel_aes_caps {
90 	bool			has_dualbuff;
91 	bool			has_cfb64;
92 	bool			has_ctr32;
93 	bool			has_gcm;
94 	bool			has_xts;
95 	bool			has_authenc;
96 	u32			max_burst_size;
97 };
98 
99 struct atmel_aes_dev;
100 
101 
102 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
103 
104 
105 struct atmel_aes_base_ctx {
106 	struct atmel_aes_dev	*dd;
107 	atmel_aes_fn_t		start;
108 	int			keylen;
109 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
110 	u16			block_size;
111 	bool			is_aead;
112 };
113 
114 struct atmel_aes_ctx {
115 	struct atmel_aes_base_ctx	base;
116 };
117 
118 struct atmel_aes_ctr_ctx {
119 	struct atmel_aes_base_ctx	base;
120 
121 	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
122 	size_t			offset;
123 	struct scatterlist	src[2];
124 	struct scatterlist	dst[2];
125 };
126 
127 struct atmel_aes_gcm_ctx {
128 	struct atmel_aes_base_ctx	base;
129 
130 	struct scatterlist	src[2];
131 	struct scatterlist	dst[2];
132 
133 	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
134 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
135 	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
136 	size_t			textlen;
137 
138 	const __be32		*ghash_in;
139 	__be32			*ghash_out;
140 	atmel_aes_fn_t		ghash_resume;
141 };
142 
143 struct atmel_aes_xts_ctx {
144 	struct atmel_aes_base_ctx	base;
145 
146 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
147 };
148 
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151 	struct atmel_aes_base_ctx	base;
152 	struct atmel_sha_authenc_ctx	*auth;
153 };
154 #endif
155 
156 struct atmel_aes_reqctx {
157 	unsigned long		mode;
158 	u8			lastc[AES_BLOCK_SIZE];
159 };
160 
161 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
162 struct atmel_aes_authenc_reqctx {
163 	struct atmel_aes_reqctx	base;
164 
165 	struct scatterlist	src[2];
166 	struct scatterlist	dst[2];
167 	size_t			textlen;
168 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
169 
170 	/* auth_req MUST be place last. */
171 	struct ahash_request	auth_req;
172 };
173 #endif
174 
175 struct atmel_aes_dma {
176 	struct dma_chan		*chan;
177 	struct scatterlist	*sg;
178 	int			nents;
179 	unsigned int		remainder;
180 	unsigned int		sg_len;
181 };
182 
183 struct atmel_aes_dev {
184 	struct list_head	list;
185 	unsigned long		phys_base;
186 	void __iomem		*io_base;
187 
188 	struct crypto_async_request	*areq;
189 	struct atmel_aes_base_ctx	*ctx;
190 
191 	bool			is_async;
192 	atmel_aes_fn_t		resume;
193 	atmel_aes_fn_t		cpu_transfer_complete;
194 
195 	struct device		*dev;
196 	struct clk		*iclk;
197 	int			irq;
198 
199 	unsigned long		flags;
200 
201 	spinlock_t		lock;
202 	struct crypto_queue	queue;
203 
204 	struct tasklet_struct	done_task;
205 	struct tasklet_struct	queue_task;
206 
207 	size_t			total;
208 	size_t			datalen;
209 	u32			*data;
210 
211 	struct atmel_aes_dma	src;
212 	struct atmel_aes_dma	dst;
213 
214 	size_t			buflen;
215 	void			*buf;
216 	struct scatterlist	aligned_sg;
217 	struct scatterlist	*real_dst;
218 
219 	struct atmel_aes_caps	caps;
220 
221 	u32			hw_version;
222 };
223 
224 struct atmel_aes_drv {
225 	struct list_head	dev_list;
226 	spinlock_t		lock;
227 };
228 
229 static struct atmel_aes_drv atmel_aes = {
230 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
231 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
232 };
233 
234 #ifdef VERBOSE_DEBUG
235 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
236 {
237 	switch (offset) {
238 	case AES_CR:
239 		return "CR";
240 
241 	case AES_MR:
242 		return "MR";
243 
244 	case AES_ISR:
245 		return "ISR";
246 
247 	case AES_IMR:
248 		return "IMR";
249 
250 	case AES_IER:
251 		return "IER";
252 
253 	case AES_IDR:
254 		return "IDR";
255 
256 	case AES_KEYWR(0):
257 	case AES_KEYWR(1):
258 	case AES_KEYWR(2):
259 	case AES_KEYWR(3):
260 	case AES_KEYWR(4):
261 	case AES_KEYWR(5):
262 	case AES_KEYWR(6):
263 	case AES_KEYWR(7):
264 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
265 		break;
266 
267 	case AES_IDATAR(0):
268 	case AES_IDATAR(1):
269 	case AES_IDATAR(2):
270 	case AES_IDATAR(3):
271 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
272 		break;
273 
274 	case AES_ODATAR(0):
275 	case AES_ODATAR(1):
276 	case AES_ODATAR(2):
277 	case AES_ODATAR(3):
278 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
279 		break;
280 
281 	case AES_IVR(0):
282 	case AES_IVR(1):
283 	case AES_IVR(2):
284 	case AES_IVR(3):
285 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
286 		break;
287 
288 	case AES_AADLENR:
289 		return "AADLENR";
290 
291 	case AES_CLENR:
292 		return "CLENR";
293 
294 	case AES_GHASHR(0):
295 	case AES_GHASHR(1):
296 	case AES_GHASHR(2):
297 	case AES_GHASHR(3):
298 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
299 		break;
300 
301 	case AES_TAGR(0):
302 	case AES_TAGR(1):
303 	case AES_TAGR(2):
304 	case AES_TAGR(3):
305 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
306 		break;
307 
308 	case AES_CTRR:
309 		return "CTRR";
310 
311 	case AES_GCMHR(0):
312 	case AES_GCMHR(1):
313 	case AES_GCMHR(2):
314 	case AES_GCMHR(3):
315 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
316 		break;
317 
318 	case AES_EMR:
319 		return "EMR";
320 
321 	case AES_TWR(0):
322 	case AES_TWR(1):
323 	case AES_TWR(2):
324 	case AES_TWR(3):
325 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
326 		break;
327 
328 	case AES_ALPHAR(0):
329 	case AES_ALPHAR(1):
330 	case AES_ALPHAR(2):
331 	case AES_ALPHAR(3):
332 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
333 		break;
334 
335 	default:
336 		snprintf(tmp, sz, "0x%02x", offset);
337 		break;
338 	}
339 
340 	return tmp;
341 }
342 #endif /* VERBOSE_DEBUG */
343 
344 /* Shared functions */
345 
346 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
347 {
348 	u32 value = readl_relaxed(dd->io_base + offset);
349 
350 #ifdef VERBOSE_DEBUG
351 	if (dd->flags & AES_FLAGS_DUMP_REG) {
352 		char tmp[16];
353 
354 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
355 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
356 	}
357 #endif /* VERBOSE_DEBUG */
358 
359 	return value;
360 }
361 
362 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
363 					u32 offset, u32 value)
364 {
365 #ifdef VERBOSE_DEBUG
366 	if (dd->flags & AES_FLAGS_DUMP_REG) {
367 		char tmp[16];
368 
369 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
370 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
371 	}
372 #endif /* VERBOSE_DEBUG */
373 
374 	writel_relaxed(value, dd->io_base + offset);
375 }
376 
377 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
378 					u32 *value, int count)
379 {
380 	for (; count--; value++, offset += 4)
381 		*value = atmel_aes_read(dd, offset);
382 }
383 
384 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
385 			      const u32 *value, int count)
386 {
387 	for (; count--; value++, offset += 4)
388 		atmel_aes_write(dd, offset, *value);
389 }
390 
391 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
392 					void *value)
393 {
394 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
395 }
396 
397 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
398 					 const void *value)
399 {
400 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
401 }
402 
403 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
404 						atmel_aes_fn_t resume)
405 {
406 	u32 isr = atmel_aes_read(dd, AES_ISR);
407 
408 	if (unlikely(isr & AES_INT_DATARDY))
409 		return resume(dd);
410 
411 	dd->resume = resume;
412 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
413 	return -EINPROGRESS;
414 }
415 
416 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
417 {
418 	len &= block_size - 1;
419 	return len ? block_size - len : 0;
420 }
421 
422 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
423 {
424 	struct atmel_aes_dev *aes_dd = NULL;
425 	struct atmel_aes_dev *tmp;
426 
427 	spin_lock_bh(&atmel_aes.lock);
428 	if (!ctx->dd) {
429 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
430 			aes_dd = tmp;
431 			break;
432 		}
433 		ctx->dd = aes_dd;
434 	} else {
435 		aes_dd = ctx->dd;
436 	}
437 
438 	spin_unlock_bh(&atmel_aes.lock);
439 
440 	return aes_dd;
441 }
442 
443 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
444 {
445 	int err;
446 
447 	err = clk_enable(dd->iclk);
448 	if (err)
449 		return err;
450 
451 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
452 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
453 
454 	return 0;
455 }
456 
457 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
458 {
459 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
460 }
461 
462 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
463 {
464 	int err;
465 
466 	err = atmel_aes_hw_init(dd);
467 	if (err)
468 		return err;
469 
470 	dd->hw_version = atmel_aes_get_version(dd);
471 
472 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
473 
474 	clk_disable(dd->iclk);
475 	return 0;
476 }
477 
478 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
479 				      const struct atmel_aes_reqctx *rctx)
480 {
481 	/* Clear all but persistent flags and set request flags. */
482 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
483 }
484 
485 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
486 {
487 	return (dd->flags & AES_FLAGS_ENCRYPT);
488 }
489 
490 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
491 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
492 #endif
493 
494 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
495 {
496 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
497 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
498 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
499 	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
500 
501 	if (req->cryptlen < ivsize)
502 		return;
503 
504 	if (rctx->mode & AES_FLAGS_ENCRYPT) {
505 		scatterwalk_map_and_copy(req->iv, req->dst,
506 					 req->cryptlen - ivsize, ivsize, 0);
507 	} else {
508 		if (req->src == req->dst)
509 			memcpy(req->iv, rctx->lastc, ivsize);
510 		else
511 			scatterwalk_map_and_copy(req->iv, req->src,
512 						 req->cryptlen - ivsize,
513 						 ivsize, 0);
514 	}
515 }
516 
517 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518 {
519 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
520 	if (dd->ctx->is_aead)
521 		atmel_aes_authenc_complete(dd, err);
522 #endif
523 
524 	clk_disable(dd->iclk);
525 	dd->flags &= ~AES_FLAGS_BUSY;
526 
527 	if (!dd->ctx->is_aead)
528 		atmel_aes_set_iv_as_last_ciphertext_block(dd);
529 
530 	if (dd->is_async)
531 		dd->areq->complete(dd->areq, err);
532 
533 	tasklet_schedule(&dd->queue_task);
534 
535 	return err;
536 }
537 
538 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
539 				     const __be32 *iv, const u32 *key, int keylen)
540 {
541 	u32 valmr = 0;
542 
543 	/* MR register must be set before IV registers */
544 	if (keylen == AES_KEYSIZE_128)
545 		valmr |= AES_MR_KEYSIZE_128;
546 	else if (keylen == AES_KEYSIZE_192)
547 		valmr |= AES_MR_KEYSIZE_192;
548 	else
549 		valmr |= AES_MR_KEYSIZE_256;
550 
551 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
552 
553 	if (use_dma) {
554 		valmr |= AES_MR_SMOD_IDATAR0;
555 		if (dd->caps.has_dualbuff)
556 			valmr |= AES_MR_DUALBUFF;
557 	} else {
558 		valmr |= AES_MR_SMOD_AUTO;
559 	}
560 
561 	atmel_aes_write(dd, AES_MR, valmr);
562 
563 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
564 
565 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
566 		atmel_aes_write_block(dd, AES_IVR(0), iv);
567 }
568 
569 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
570 					const __be32 *iv)
571 
572 {
573 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
574 				 dd->ctx->key, dd->ctx->keylen);
575 }
576 
577 /* CPU transfer */
578 
579 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
580 {
581 	int err = 0;
582 	u32 isr;
583 
584 	for (;;) {
585 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
586 		dd->data += 4;
587 		dd->datalen -= AES_BLOCK_SIZE;
588 
589 		if (dd->datalen < AES_BLOCK_SIZE)
590 			break;
591 
592 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
593 
594 		isr = atmel_aes_read(dd, AES_ISR);
595 		if (!(isr & AES_INT_DATARDY)) {
596 			dd->resume = atmel_aes_cpu_transfer;
597 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
598 			return -EINPROGRESS;
599 		}
600 	}
601 
602 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
603 				 dd->buf, dd->total))
604 		err = -EINVAL;
605 
606 	if (err)
607 		return atmel_aes_complete(dd, err);
608 
609 	return dd->cpu_transfer_complete(dd);
610 }
611 
612 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
613 			       struct scatterlist *src,
614 			       struct scatterlist *dst,
615 			       size_t len,
616 			       atmel_aes_fn_t resume)
617 {
618 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
619 
620 	if (unlikely(len == 0))
621 		return -EINVAL;
622 
623 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
624 
625 	dd->total = len;
626 	dd->real_dst = dst;
627 	dd->cpu_transfer_complete = resume;
628 	dd->datalen = len + padlen;
629 	dd->data = (u32 *)dd->buf;
630 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
631 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
632 }
633 
634 
635 /* DMA transfer */
636 
637 static void atmel_aes_dma_callback(void *data);
638 
639 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
640 				    struct scatterlist *sg,
641 				    size_t len,
642 				    struct atmel_aes_dma *dma)
643 {
644 	int nents;
645 
646 	if (!IS_ALIGNED(len, dd->ctx->block_size))
647 		return false;
648 
649 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
650 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
651 			return false;
652 
653 		if (len <= sg->length) {
654 			if (!IS_ALIGNED(len, dd->ctx->block_size))
655 				return false;
656 
657 			dma->nents = nents+1;
658 			dma->remainder = sg->length - len;
659 			sg->length = len;
660 			return true;
661 		}
662 
663 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
664 			return false;
665 
666 		len -= sg->length;
667 	}
668 
669 	return false;
670 }
671 
672 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
673 {
674 	struct scatterlist *sg = dma->sg;
675 	int nents = dma->nents;
676 
677 	if (!dma->remainder)
678 		return;
679 
680 	while (--nents > 0 && sg)
681 		sg = sg_next(sg);
682 
683 	if (!sg)
684 		return;
685 
686 	sg->length += dma->remainder;
687 }
688 
689 static int atmel_aes_map(struct atmel_aes_dev *dd,
690 			 struct scatterlist *src,
691 			 struct scatterlist *dst,
692 			 size_t len)
693 {
694 	bool src_aligned, dst_aligned;
695 	size_t padlen;
696 
697 	dd->total = len;
698 	dd->src.sg = src;
699 	dd->dst.sg = dst;
700 	dd->real_dst = dst;
701 
702 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
703 	if (src == dst)
704 		dst_aligned = src_aligned;
705 	else
706 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
707 	if (!src_aligned || !dst_aligned) {
708 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
709 
710 		if (dd->buflen < len + padlen)
711 			return -ENOMEM;
712 
713 		if (!src_aligned) {
714 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
715 			dd->src.sg = &dd->aligned_sg;
716 			dd->src.nents = 1;
717 			dd->src.remainder = 0;
718 		}
719 
720 		if (!dst_aligned) {
721 			dd->dst.sg = &dd->aligned_sg;
722 			dd->dst.nents = 1;
723 			dd->dst.remainder = 0;
724 		}
725 
726 		sg_init_table(&dd->aligned_sg, 1);
727 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
728 	}
729 
730 	if (dd->src.sg == dd->dst.sg) {
731 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
732 					    DMA_BIDIRECTIONAL);
733 		dd->dst.sg_len = dd->src.sg_len;
734 		if (!dd->src.sg_len)
735 			return -EFAULT;
736 	} else {
737 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
738 					    DMA_TO_DEVICE);
739 		if (!dd->src.sg_len)
740 			return -EFAULT;
741 
742 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
743 					    DMA_FROM_DEVICE);
744 		if (!dd->dst.sg_len) {
745 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
746 				     DMA_TO_DEVICE);
747 			return -EFAULT;
748 		}
749 	}
750 
751 	return 0;
752 }
753 
754 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
755 {
756 	if (dd->src.sg == dd->dst.sg) {
757 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
758 			     DMA_BIDIRECTIONAL);
759 
760 		if (dd->src.sg != &dd->aligned_sg)
761 			atmel_aes_restore_sg(&dd->src);
762 	} else {
763 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
764 			     DMA_FROM_DEVICE);
765 
766 		if (dd->dst.sg != &dd->aligned_sg)
767 			atmel_aes_restore_sg(&dd->dst);
768 
769 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
770 			     DMA_TO_DEVICE);
771 
772 		if (dd->src.sg != &dd->aligned_sg)
773 			atmel_aes_restore_sg(&dd->src);
774 	}
775 
776 	if (dd->dst.sg == &dd->aligned_sg)
777 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
778 				    dd->buf, dd->total);
779 }
780 
781 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
782 					enum dma_slave_buswidth addr_width,
783 					enum dma_transfer_direction dir,
784 					u32 maxburst)
785 {
786 	struct dma_async_tx_descriptor *desc;
787 	struct dma_slave_config config;
788 	dma_async_tx_callback callback;
789 	struct atmel_aes_dma *dma;
790 	int err;
791 
792 	memset(&config, 0, sizeof(config));
793 	config.direction = dir;
794 	config.src_addr_width = addr_width;
795 	config.dst_addr_width = addr_width;
796 	config.src_maxburst = maxburst;
797 	config.dst_maxburst = maxburst;
798 
799 	switch (dir) {
800 	case DMA_MEM_TO_DEV:
801 		dma = &dd->src;
802 		callback = NULL;
803 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
804 		break;
805 
806 	case DMA_DEV_TO_MEM:
807 		dma = &dd->dst;
808 		callback = atmel_aes_dma_callback;
809 		config.src_addr = dd->phys_base + AES_ODATAR(0);
810 		break;
811 
812 	default:
813 		return -EINVAL;
814 	}
815 
816 	err = dmaengine_slave_config(dma->chan, &config);
817 	if (err)
818 		return err;
819 
820 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
821 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
822 	if (!desc)
823 		return -ENOMEM;
824 
825 	desc->callback = callback;
826 	desc->callback_param = dd;
827 	dmaengine_submit(desc);
828 	dma_async_issue_pending(dma->chan);
829 
830 	return 0;
831 }
832 
833 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
834 					enum dma_transfer_direction dir)
835 {
836 	struct atmel_aes_dma *dma;
837 
838 	switch (dir) {
839 	case DMA_MEM_TO_DEV:
840 		dma = &dd->src;
841 		break;
842 
843 	case DMA_DEV_TO_MEM:
844 		dma = &dd->dst;
845 		break;
846 
847 	default:
848 		return;
849 	}
850 
851 	dmaengine_terminate_all(dma->chan);
852 }
853 
854 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
855 			       struct scatterlist *src,
856 			       struct scatterlist *dst,
857 			       size_t len,
858 			       atmel_aes_fn_t resume)
859 {
860 	enum dma_slave_buswidth addr_width;
861 	u32 maxburst;
862 	int err;
863 
864 	switch (dd->ctx->block_size) {
865 	case CFB8_BLOCK_SIZE:
866 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
867 		maxburst = 1;
868 		break;
869 
870 	case CFB16_BLOCK_SIZE:
871 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
872 		maxburst = 1;
873 		break;
874 
875 	case CFB32_BLOCK_SIZE:
876 	case CFB64_BLOCK_SIZE:
877 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
878 		maxburst = 1;
879 		break;
880 
881 	case AES_BLOCK_SIZE:
882 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883 		maxburst = dd->caps.max_burst_size;
884 		break;
885 
886 	default:
887 		err = -EINVAL;
888 		goto exit;
889 	}
890 
891 	err = atmel_aes_map(dd, src, dst, len);
892 	if (err)
893 		goto exit;
894 
895 	dd->resume = resume;
896 
897 	/* Set output DMA transfer first */
898 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
899 					   maxburst);
900 	if (err)
901 		goto unmap;
902 
903 	/* Then set input DMA transfer */
904 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
905 					   maxburst);
906 	if (err)
907 		goto output_transfer_stop;
908 
909 	return -EINPROGRESS;
910 
911 output_transfer_stop:
912 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
913 unmap:
914 	atmel_aes_unmap(dd);
915 exit:
916 	return atmel_aes_complete(dd, err);
917 }
918 
919 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
920 {
921 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
922 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
923 	atmel_aes_unmap(dd);
924 }
925 
926 static void atmel_aes_dma_callback(void *data)
927 {
928 	struct atmel_aes_dev *dd = data;
929 
930 	atmel_aes_dma_stop(dd);
931 	dd->is_async = true;
932 	(void)dd->resume(dd);
933 }
934 
935 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
936 				  struct crypto_async_request *new_areq)
937 {
938 	struct crypto_async_request *areq, *backlog;
939 	struct atmel_aes_base_ctx *ctx;
940 	unsigned long flags;
941 	bool start_async;
942 	int err, ret = 0;
943 
944 	spin_lock_irqsave(&dd->lock, flags);
945 	if (new_areq)
946 		ret = crypto_enqueue_request(&dd->queue, new_areq);
947 	if (dd->flags & AES_FLAGS_BUSY) {
948 		spin_unlock_irqrestore(&dd->lock, flags);
949 		return ret;
950 	}
951 	backlog = crypto_get_backlog(&dd->queue);
952 	areq = crypto_dequeue_request(&dd->queue);
953 	if (areq)
954 		dd->flags |= AES_FLAGS_BUSY;
955 	spin_unlock_irqrestore(&dd->lock, flags);
956 
957 	if (!areq)
958 		return ret;
959 
960 	if (backlog)
961 		backlog->complete(backlog, -EINPROGRESS);
962 
963 	ctx = crypto_tfm_ctx(areq->tfm);
964 
965 	dd->areq = areq;
966 	dd->ctx = ctx;
967 	start_async = (areq != new_areq);
968 	dd->is_async = start_async;
969 
970 	/* WARNING: ctx->start() MAY change dd->is_async. */
971 	err = ctx->start(dd);
972 	return (start_async) ? ret : err;
973 }
974 
975 
976 /* AES async block ciphers */
977 
978 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
979 {
980 	return atmel_aes_complete(dd, 0);
981 }
982 
983 static int atmel_aes_start(struct atmel_aes_dev *dd)
984 {
985 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
986 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
987 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
988 			dd->ctx->block_size != AES_BLOCK_SIZE);
989 	int err;
990 
991 	atmel_aes_set_mode(dd, rctx);
992 
993 	err = atmel_aes_hw_init(dd);
994 	if (err)
995 		return atmel_aes_complete(dd, err);
996 
997 	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
998 	if (use_dma)
999 		return atmel_aes_dma_start(dd, req->src, req->dst,
1000 					   req->cryptlen,
1001 					   atmel_aes_transfer_complete);
1002 
1003 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1004 				   atmel_aes_transfer_complete);
1005 }
1006 
1007 static inline struct atmel_aes_ctr_ctx *
1008 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1009 {
1010 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1011 }
1012 
1013 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1014 {
1015 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1016 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1017 	struct scatterlist *src, *dst;
1018 	u32 ctr, blocks;
1019 	size_t datalen;
1020 	bool use_dma, fragmented = false;
1021 
1022 	/* Check for transfer completion. */
1023 	ctx->offset += dd->total;
1024 	if (ctx->offset >= req->cryptlen)
1025 		return atmel_aes_transfer_complete(dd);
1026 
1027 	/* Compute data length. */
1028 	datalen = req->cryptlen - ctx->offset;
1029 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1030 	ctr = be32_to_cpu(ctx->iv[3]);
1031 	if (dd->caps.has_ctr32) {
1032 		/* Check 32bit counter overflow. */
1033 		u32 start = ctr;
1034 		u32 end = start + blocks - 1;
1035 
1036 		if (end < start) {
1037 			ctr |= 0xffffffff;
1038 			datalen = AES_BLOCK_SIZE * -start;
1039 			fragmented = true;
1040 		}
1041 	} else {
1042 		/* Check 16bit counter overflow. */
1043 		u16 start = ctr & 0xffff;
1044 		u16 end = start + (u16)blocks - 1;
1045 
1046 		if (blocks >> 16 || end < start) {
1047 			ctr |= 0xffff;
1048 			datalen = AES_BLOCK_SIZE * (0x10000-start);
1049 			fragmented = true;
1050 		}
1051 	}
1052 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1053 
1054 	/* Jump to offset. */
1055 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1056 	dst = ((req->src == req->dst) ? src :
1057 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1058 
1059 	/* Configure hardware. */
1060 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1061 	if (unlikely(fragmented)) {
1062 		/*
1063 		 * Increment the counter manually to cope with the hardware
1064 		 * counter overflow.
1065 		 */
1066 		ctx->iv[3] = cpu_to_be32(ctr);
1067 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1068 	}
1069 
1070 	if (use_dma)
1071 		return atmel_aes_dma_start(dd, src, dst, datalen,
1072 					   atmel_aes_ctr_transfer);
1073 
1074 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1075 				   atmel_aes_ctr_transfer);
1076 }
1077 
1078 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1079 {
1080 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1081 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1082 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1083 	int err;
1084 
1085 	atmel_aes_set_mode(dd, rctx);
1086 
1087 	err = atmel_aes_hw_init(dd);
1088 	if (err)
1089 		return atmel_aes_complete(dd, err);
1090 
1091 	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1092 	ctx->offset = 0;
1093 	dd->total = 0;
1094 	return atmel_aes_ctr_transfer(dd);
1095 }
1096 
1097 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1098 {
1099 	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1100 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1101 	struct atmel_aes_reqctx *rctx;
1102 	struct atmel_aes_dev *dd;
1103 
1104 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1105 	case AES_FLAGS_CFB8:
1106 		ctx->block_size = CFB8_BLOCK_SIZE;
1107 		break;
1108 
1109 	case AES_FLAGS_CFB16:
1110 		ctx->block_size = CFB16_BLOCK_SIZE;
1111 		break;
1112 
1113 	case AES_FLAGS_CFB32:
1114 		ctx->block_size = CFB32_BLOCK_SIZE;
1115 		break;
1116 
1117 	case AES_FLAGS_CFB64:
1118 		ctx->block_size = CFB64_BLOCK_SIZE;
1119 		break;
1120 
1121 	default:
1122 		ctx->block_size = AES_BLOCK_SIZE;
1123 		break;
1124 	}
1125 	ctx->is_aead = false;
1126 
1127 	dd = atmel_aes_find_dev(ctx);
1128 	if (!dd)
1129 		return -ENODEV;
1130 
1131 	rctx = skcipher_request_ctx(req);
1132 	rctx->mode = mode;
1133 
1134 	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1135 		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1136 
1137 		if (req->cryptlen >= ivsize)
1138 			scatterwalk_map_and_copy(rctx->lastc, req->src,
1139 						 req->cryptlen - ivsize,
1140 						 ivsize, 0);
1141 	}
1142 
1143 	return atmel_aes_handle_queue(dd, &req->base);
1144 }
1145 
1146 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1147 			   unsigned int keylen)
1148 {
1149 	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1150 
1151 	if (keylen != AES_KEYSIZE_128 &&
1152 	    keylen != AES_KEYSIZE_192 &&
1153 	    keylen != AES_KEYSIZE_256) {
1154 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1155 		return -EINVAL;
1156 	}
1157 
1158 	memcpy(ctx->key, key, keylen);
1159 	ctx->keylen = keylen;
1160 
1161 	return 0;
1162 }
1163 
1164 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1165 {
1166 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1167 }
1168 
1169 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1170 {
1171 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1172 }
1173 
1174 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1175 {
1176 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1177 }
1178 
1179 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1180 {
1181 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1182 }
1183 
1184 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1185 {
1186 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1187 }
1188 
1189 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1190 {
1191 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1192 }
1193 
1194 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1195 {
1196 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1197 }
1198 
1199 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1200 {
1201 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1202 }
1203 
1204 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1205 {
1206 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1207 }
1208 
1209 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1210 {
1211 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1212 }
1213 
1214 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1215 {
1216 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1217 }
1218 
1219 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1220 {
1221 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1222 }
1223 
1224 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1225 {
1226 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1227 }
1228 
1229 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1230 {
1231 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1232 }
1233 
1234 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1235 {
1236 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1237 }
1238 
1239 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1240 {
1241 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1242 }
1243 
1244 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1245 {
1246 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1247 }
1248 
1249 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1250 {
1251 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1252 }
1253 
1254 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1255 {
1256 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1257 
1258 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1259 	ctx->base.start = atmel_aes_start;
1260 
1261 	return 0;
1262 }
1263 
1264 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1265 {
1266 	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1267 
1268 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1269 	ctx->base.start = atmel_aes_ctr_start;
1270 
1271 	return 0;
1272 }
1273 
1274 static struct skcipher_alg aes_algs[] = {
1275 {
1276 	.base.cra_name		= "ecb(aes)",
1277 	.base.cra_driver_name	= "atmel-ecb-aes",
1278 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1279 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1280 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1281 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1282 	.base.cra_alignmask	= 0xf,
1283 	.base.cra_module	= THIS_MODULE,
1284 
1285 	.init			= atmel_aes_init_tfm,
1286 	.min_keysize		= AES_MIN_KEY_SIZE,
1287 	.max_keysize		= AES_MAX_KEY_SIZE,
1288 	.setkey			= atmel_aes_setkey,
1289 	.encrypt		= atmel_aes_ecb_encrypt,
1290 	.decrypt		= atmel_aes_ecb_decrypt,
1291 },
1292 {
1293 	.base.cra_name		= "cbc(aes)",
1294 	.base.cra_driver_name	= "atmel-cbc-aes",
1295 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1296 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1297 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1298 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1299 	.base.cra_alignmask	= 0xf,
1300 	.base.cra_module	= THIS_MODULE,
1301 
1302 	.init			= atmel_aes_init_tfm,
1303 	.min_keysize		= AES_MIN_KEY_SIZE,
1304 	.max_keysize		= AES_MAX_KEY_SIZE,
1305 	.setkey			= atmel_aes_setkey,
1306 	.encrypt		= atmel_aes_cbc_encrypt,
1307 	.decrypt		= atmel_aes_cbc_decrypt,
1308 	.ivsize			= AES_BLOCK_SIZE,
1309 },
1310 {
1311 	.base.cra_name		= "ofb(aes)",
1312 	.base.cra_driver_name	= "atmel-ofb-aes",
1313 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1314 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1315 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1316 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1317 	.base.cra_alignmask	= 0xf,
1318 	.base.cra_module	= THIS_MODULE,
1319 
1320 	.init			= atmel_aes_init_tfm,
1321 	.min_keysize		= AES_MIN_KEY_SIZE,
1322 	.max_keysize		= AES_MAX_KEY_SIZE,
1323 	.setkey			= atmel_aes_setkey,
1324 	.encrypt		= atmel_aes_ofb_encrypt,
1325 	.decrypt		= atmel_aes_ofb_decrypt,
1326 	.ivsize			= AES_BLOCK_SIZE,
1327 },
1328 {
1329 	.base.cra_name		= "cfb(aes)",
1330 	.base.cra_driver_name	= "atmel-cfb-aes",
1331 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1332 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1333 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1334 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1335 	.base.cra_alignmask	= 0xf,
1336 	.base.cra_module	= THIS_MODULE,
1337 
1338 	.init			= atmel_aes_init_tfm,
1339 	.min_keysize		= AES_MIN_KEY_SIZE,
1340 	.max_keysize		= AES_MAX_KEY_SIZE,
1341 	.setkey			= atmel_aes_setkey,
1342 	.encrypt		= atmel_aes_cfb_encrypt,
1343 	.decrypt		= atmel_aes_cfb_decrypt,
1344 	.ivsize			= AES_BLOCK_SIZE,
1345 },
1346 {
1347 	.base.cra_name		= "cfb32(aes)",
1348 	.base.cra_driver_name	= "atmel-cfb32-aes",
1349 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1350 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1351 	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1352 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1353 	.base.cra_alignmask	= 0xf,
1354 	.base.cra_module	= THIS_MODULE,
1355 
1356 	.init			= atmel_aes_init_tfm,
1357 	.min_keysize		= AES_MIN_KEY_SIZE,
1358 	.max_keysize		= AES_MAX_KEY_SIZE,
1359 	.setkey			= atmel_aes_setkey,
1360 	.encrypt		= atmel_aes_cfb32_encrypt,
1361 	.decrypt		= atmel_aes_cfb32_decrypt,
1362 	.ivsize			= AES_BLOCK_SIZE,
1363 },
1364 {
1365 	.base.cra_name		= "cfb16(aes)",
1366 	.base.cra_driver_name	= "atmel-cfb16-aes",
1367 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1368 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1369 	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1370 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1371 	.base.cra_alignmask	= 0xf,
1372 	.base.cra_module	= THIS_MODULE,
1373 
1374 	.init			= atmel_aes_init_tfm,
1375 	.min_keysize		= AES_MIN_KEY_SIZE,
1376 	.max_keysize		= AES_MAX_KEY_SIZE,
1377 	.setkey			= atmel_aes_setkey,
1378 	.encrypt		= atmel_aes_cfb16_encrypt,
1379 	.decrypt		= atmel_aes_cfb16_decrypt,
1380 	.ivsize			= AES_BLOCK_SIZE,
1381 },
1382 {
1383 	.base.cra_name		= "cfb8(aes)",
1384 	.base.cra_driver_name	= "atmel-cfb8-aes",
1385 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1386 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1387 	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1388 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1389 	.base.cra_alignmask	= 0xf,
1390 	.base.cra_module	= THIS_MODULE,
1391 
1392 	.init			= atmel_aes_init_tfm,
1393 	.min_keysize		= AES_MIN_KEY_SIZE,
1394 	.max_keysize		= AES_MAX_KEY_SIZE,
1395 	.setkey			= atmel_aes_setkey,
1396 	.encrypt		= atmel_aes_cfb8_encrypt,
1397 	.decrypt		= atmel_aes_cfb8_decrypt,
1398 	.ivsize			= AES_BLOCK_SIZE,
1399 },
1400 {
1401 	.base.cra_name		= "ctr(aes)",
1402 	.base.cra_driver_name	= "atmel-ctr-aes",
1403 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1404 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1405 	.base.cra_blocksize	= 1,
1406 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1407 	.base.cra_alignmask	= 0xf,
1408 	.base.cra_module	= THIS_MODULE,
1409 
1410 	.init			= atmel_aes_ctr_init_tfm,
1411 	.min_keysize		= AES_MIN_KEY_SIZE,
1412 	.max_keysize		= AES_MAX_KEY_SIZE,
1413 	.setkey			= atmel_aes_setkey,
1414 	.encrypt		= atmel_aes_ctr_encrypt,
1415 	.decrypt		= atmel_aes_ctr_decrypt,
1416 	.ivsize			= AES_BLOCK_SIZE,
1417 },
1418 };
1419 
1420 static struct skcipher_alg aes_cfb64_alg = {
1421 	.base.cra_name		= "cfb64(aes)",
1422 	.base.cra_driver_name	= "atmel-cfb64-aes",
1423 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1424 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1425 	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1426 	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1427 	.base.cra_alignmask	= 0xf,
1428 	.base.cra_module	= THIS_MODULE,
1429 
1430 	.init			= atmel_aes_init_tfm,
1431 	.min_keysize		= AES_MIN_KEY_SIZE,
1432 	.max_keysize		= AES_MAX_KEY_SIZE,
1433 	.setkey			= atmel_aes_setkey,
1434 	.encrypt		= atmel_aes_cfb64_encrypt,
1435 	.decrypt		= atmel_aes_cfb64_decrypt,
1436 	.ivsize			= AES_BLOCK_SIZE,
1437 };
1438 
1439 
1440 /* gcm aead functions */
1441 
1442 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1443 			       const u32 *data, size_t datalen,
1444 			       const __be32 *ghash_in, __be32 *ghash_out,
1445 			       atmel_aes_fn_t resume);
1446 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1448 
1449 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1450 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1451 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1452 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1453 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1454 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1455 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1456 
1457 static inline struct atmel_aes_gcm_ctx *
1458 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1459 {
1460 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1461 }
1462 
1463 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1464 			       const u32 *data, size_t datalen,
1465 			       const __be32 *ghash_in, __be32 *ghash_out,
1466 			       atmel_aes_fn_t resume)
1467 {
1468 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1469 
1470 	dd->data = (u32 *)data;
1471 	dd->datalen = datalen;
1472 	ctx->ghash_in = ghash_in;
1473 	ctx->ghash_out = ghash_out;
1474 	ctx->ghash_resume = resume;
1475 
1476 	atmel_aes_write_ctrl(dd, false, NULL);
1477 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1478 }
1479 
1480 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1481 {
1482 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483 
1484 	/* Set the data length. */
1485 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1486 	atmel_aes_write(dd, AES_CLENR, 0);
1487 
1488 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1489 	if (ctx->ghash_in)
1490 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1491 
1492 	return atmel_aes_gcm_ghash_finalize(dd);
1493 }
1494 
1495 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1496 {
1497 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1498 	u32 isr;
1499 
1500 	/* Write data into the Input Data Registers. */
1501 	while (dd->datalen > 0) {
1502 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1503 		dd->data += 4;
1504 		dd->datalen -= AES_BLOCK_SIZE;
1505 
1506 		isr = atmel_aes_read(dd, AES_ISR);
1507 		if (!(isr & AES_INT_DATARDY)) {
1508 			dd->resume = atmel_aes_gcm_ghash_finalize;
1509 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1510 			return -EINPROGRESS;
1511 		}
1512 	}
1513 
1514 	/* Read the computed hash from GHASHRx. */
1515 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1516 
1517 	return ctx->ghash_resume(dd);
1518 }
1519 
1520 
1521 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1522 {
1523 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1524 	struct aead_request *req = aead_request_cast(dd->areq);
1525 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1526 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1527 	size_t ivsize = crypto_aead_ivsize(tfm);
1528 	size_t datalen, padlen;
1529 	const void *iv = req->iv;
1530 	u8 *data = dd->buf;
1531 	int err;
1532 
1533 	atmel_aes_set_mode(dd, rctx);
1534 
1535 	err = atmel_aes_hw_init(dd);
1536 	if (err)
1537 		return atmel_aes_complete(dd, err);
1538 
1539 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1540 		memcpy(ctx->j0, iv, ivsize);
1541 		ctx->j0[3] = cpu_to_be32(1);
1542 		return atmel_aes_gcm_process(dd);
1543 	}
1544 
1545 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1546 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1547 	if (datalen > dd->buflen)
1548 		return atmel_aes_complete(dd, -EINVAL);
1549 
1550 	memcpy(data, iv, ivsize);
1551 	memset(data + ivsize, 0, padlen + sizeof(u64));
1552 	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1553 
1554 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1555 				   NULL, ctx->j0, atmel_aes_gcm_process);
1556 }
1557 
1558 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1559 {
1560 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1561 	struct aead_request *req = aead_request_cast(dd->areq);
1562 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1563 	bool enc = atmel_aes_is_encrypt(dd);
1564 	u32 authsize;
1565 
1566 	/* Compute text length. */
1567 	authsize = crypto_aead_authsize(tfm);
1568 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1569 
1570 	/*
1571 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1572 	 * fails when both the message and its associated data are empty.
1573 	 */
1574 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1575 		dd->flags |= AES_FLAGS_GTAGEN;
1576 
1577 	atmel_aes_write_ctrl(dd, false, NULL);
1578 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1579 }
1580 
1581 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1582 {
1583 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1584 	struct aead_request *req = aead_request_cast(dd->areq);
1585 	__be32 j0_lsw, *j0 = ctx->j0;
1586 	size_t padlen;
1587 
1588 	/* Write incr32(J0) into IV. */
1589 	j0_lsw = j0[3];
1590 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1591 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1592 	j0[3] = j0_lsw;
1593 
1594 	/* Set aad and text lengths. */
1595 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1596 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1597 
1598 	/* Check whether AAD are present. */
1599 	if (unlikely(req->assoclen == 0)) {
1600 		dd->datalen = 0;
1601 		return atmel_aes_gcm_data(dd);
1602 	}
1603 
1604 	/* Copy assoc data and add padding. */
1605 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1606 	if (unlikely(req->assoclen + padlen > dd->buflen))
1607 		return atmel_aes_complete(dd, -EINVAL);
1608 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1609 
1610 	/* Write assoc data into the Input Data register. */
1611 	dd->data = (u32 *)dd->buf;
1612 	dd->datalen = req->assoclen + padlen;
1613 	return atmel_aes_gcm_data(dd);
1614 }
1615 
1616 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1617 {
1618 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619 	struct aead_request *req = aead_request_cast(dd->areq);
1620 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1621 	struct scatterlist *src, *dst;
1622 	u32 isr, mr;
1623 
1624 	/* Write AAD first. */
1625 	while (dd->datalen > 0) {
1626 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1627 		dd->data += 4;
1628 		dd->datalen -= AES_BLOCK_SIZE;
1629 
1630 		isr = atmel_aes_read(dd, AES_ISR);
1631 		if (!(isr & AES_INT_DATARDY)) {
1632 			dd->resume = atmel_aes_gcm_data;
1633 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1634 			return -EINPROGRESS;
1635 		}
1636 	}
1637 
1638 	/* GMAC only. */
1639 	if (unlikely(ctx->textlen == 0))
1640 		return atmel_aes_gcm_tag_init(dd);
1641 
1642 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1643 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1644 	dst = ((req->src == req->dst) ? src :
1645 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1646 
1647 	if (use_dma) {
1648 		/* Update the Mode Register for DMA transfers. */
1649 		mr = atmel_aes_read(dd, AES_MR);
1650 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1651 		mr |= AES_MR_SMOD_IDATAR0;
1652 		if (dd->caps.has_dualbuff)
1653 			mr |= AES_MR_DUALBUFF;
1654 		atmel_aes_write(dd, AES_MR, mr);
1655 
1656 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1657 					   atmel_aes_gcm_tag_init);
1658 	}
1659 
1660 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1661 				   atmel_aes_gcm_tag_init);
1662 }
1663 
1664 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1665 {
1666 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1667 	struct aead_request *req = aead_request_cast(dd->areq);
1668 	__be64 *data = dd->buf;
1669 
1670 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1671 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1672 			dd->resume = atmel_aes_gcm_tag_init;
1673 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1674 			return -EINPROGRESS;
1675 		}
1676 
1677 		return atmel_aes_gcm_finalize(dd);
1678 	}
1679 
1680 	/* Read the GCM Intermediate Hash Word Registers. */
1681 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1682 
1683 	data[0] = cpu_to_be64(req->assoclen * 8);
1684 	data[1] = cpu_to_be64(ctx->textlen * 8);
1685 
1686 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1687 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1688 }
1689 
1690 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1691 {
1692 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1693 	unsigned long flags;
1694 
1695 	/*
1696 	 * Change mode to CTR to complete the tag generation.
1697 	 * Use J0 as Initialization Vector.
1698 	 */
1699 	flags = dd->flags;
1700 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1701 	dd->flags |= AES_FLAGS_CTR;
1702 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1703 	dd->flags = flags;
1704 
1705 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1706 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1707 }
1708 
1709 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1710 {
1711 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1712 	struct aead_request *req = aead_request_cast(dd->areq);
1713 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1714 	bool enc = atmel_aes_is_encrypt(dd);
1715 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1716 	int err;
1717 
1718 	/* Read the computed tag. */
1719 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1720 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1721 	else
1722 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1723 
1724 	offset = req->assoclen + ctx->textlen;
1725 	authsize = crypto_aead_authsize(tfm);
1726 	if (enc) {
1727 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1728 		err = 0;
1729 	} else {
1730 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1731 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1732 	}
1733 
1734 	return atmel_aes_complete(dd, err);
1735 }
1736 
1737 static int atmel_aes_gcm_crypt(struct aead_request *req,
1738 			       unsigned long mode)
1739 {
1740 	struct atmel_aes_base_ctx *ctx;
1741 	struct atmel_aes_reqctx *rctx;
1742 	struct atmel_aes_dev *dd;
1743 
1744 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1745 	ctx->block_size = AES_BLOCK_SIZE;
1746 	ctx->is_aead = true;
1747 
1748 	dd = atmel_aes_find_dev(ctx);
1749 	if (!dd)
1750 		return -ENODEV;
1751 
1752 	rctx = aead_request_ctx(req);
1753 	rctx->mode = AES_FLAGS_GCM | mode;
1754 
1755 	return atmel_aes_handle_queue(dd, &req->base);
1756 }
1757 
1758 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1759 				unsigned int keylen)
1760 {
1761 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1762 
1763 	if (keylen != AES_KEYSIZE_256 &&
1764 	    keylen != AES_KEYSIZE_192 &&
1765 	    keylen != AES_KEYSIZE_128) {
1766 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1767 		return -EINVAL;
1768 	}
1769 
1770 	memcpy(ctx->key, key, keylen);
1771 	ctx->keylen = keylen;
1772 
1773 	return 0;
1774 }
1775 
1776 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1777 				     unsigned int authsize)
1778 {
1779 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1780 	switch (authsize) {
1781 	case 4:
1782 	case 8:
1783 	case 12:
1784 	case 13:
1785 	case 14:
1786 	case 15:
1787 	case 16:
1788 		break;
1789 	default:
1790 		return -EINVAL;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1797 {
1798 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1799 }
1800 
1801 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1802 {
1803 	return atmel_aes_gcm_crypt(req, 0);
1804 }
1805 
1806 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1807 {
1808 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1809 
1810 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1811 	ctx->base.start = atmel_aes_gcm_start;
1812 
1813 	return 0;
1814 }
1815 
1816 static struct aead_alg aes_gcm_alg = {
1817 	.setkey		= atmel_aes_gcm_setkey,
1818 	.setauthsize	= atmel_aes_gcm_setauthsize,
1819 	.encrypt	= atmel_aes_gcm_encrypt,
1820 	.decrypt	= atmel_aes_gcm_decrypt,
1821 	.init		= atmel_aes_gcm_init,
1822 	.ivsize		= GCM_AES_IV_SIZE,
1823 	.maxauthsize	= AES_BLOCK_SIZE,
1824 
1825 	.base = {
1826 		.cra_name		= "gcm(aes)",
1827 		.cra_driver_name	= "atmel-gcm-aes",
1828 		.cra_priority		= ATMEL_AES_PRIORITY,
1829 		.cra_flags		= CRYPTO_ALG_ASYNC,
1830 		.cra_blocksize		= 1,
1831 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1832 		.cra_alignmask		= 0xf,
1833 		.cra_module		= THIS_MODULE,
1834 	},
1835 };
1836 
1837 
1838 /* xts functions */
1839 
1840 static inline struct atmel_aes_xts_ctx *
1841 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1842 {
1843 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1844 }
1845 
1846 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1847 
1848 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1849 {
1850 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1851 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1852 	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1853 	unsigned long flags;
1854 	int err;
1855 
1856 	atmel_aes_set_mode(dd, rctx);
1857 
1858 	err = atmel_aes_hw_init(dd);
1859 	if (err)
1860 		return atmel_aes_complete(dd, err);
1861 
1862 	/* Compute the tweak value from req->iv with ecb(aes). */
1863 	flags = dd->flags;
1864 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1865 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1866 	atmel_aes_write_ctrl_key(dd, false, NULL,
1867 				 ctx->key2, ctx->base.keylen);
1868 	dd->flags = flags;
1869 
1870 	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1871 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1872 }
1873 
1874 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1875 {
1876 	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1877 	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1878 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1879 	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1880 	u8 *tweak_bytes = (u8 *)tweak;
1881 	int i;
1882 
1883 	/* Read the computed ciphered tweak value. */
1884 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1885 	/*
1886 	 * Hardware quirk:
1887 	 * the order of the ciphered tweak bytes need to be reversed before
1888 	 * writing them into the ODATARx registers.
1889 	 */
1890 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1891 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1892 
1893 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1894 		tweak_bytes[i] = tmp;
1895 	}
1896 
1897 	/* Process the data. */
1898 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1899 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1900 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1901 	if (use_dma)
1902 		return atmel_aes_dma_start(dd, req->src, req->dst,
1903 					   req->cryptlen,
1904 					   atmel_aes_transfer_complete);
1905 
1906 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1907 				   atmel_aes_transfer_complete);
1908 }
1909 
1910 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1911 				unsigned int keylen)
1912 {
1913 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1914 	int err;
1915 
1916 	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1917 	if (err)
1918 		return err;
1919 
1920 	memcpy(ctx->base.key, key, keylen/2);
1921 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1922 	ctx->base.keylen = keylen/2;
1923 
1924 	return 0;
1925 }
1926 
1927 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1928 {
1929 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1930 }
1931 
1932 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1933 {
1934 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1935 }
1936 
1937 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1938 {
1939 	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1940 
1941 	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1942 	ctx->base.start = atmel_aes_xts_start;
1943 
1944 	return 0;
1945 }
1946 
1947 static struct skcipher_alg aes_xts_alg = {
1948 	.base.cra_name		= "xts(aes)",
1949 	.base.cra_driver_name	= "atmel-xts-aes",
1950 	.base.cra_priority	= ATMEL_AES_PRIORITY,
1951 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1952 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1953 	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1954 	.base.cra_alignmask	= 0xf,
1955 	.base.cra_module	= THIS_MODULE,
1956 
1957 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1958 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1959 	.ivsize			= AES_BLOCK_SIZE,
1960 	.setkey			= atmel_aes_xts_setkey,
1961 	.encrypt		= atmel_aes_xts_encrypt,
1962 	.decrypt		= atmel_aes_xts_decrypt,
1963 	.init			= atmel_aes_xts_init_tfm,
1964 };
1965 
1966 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1967 /* authenc aead functions */
1968 
1969 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1970 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1971 				  bool is_async);
1972 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1973 				      bool is_async);
1974 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1975 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1976 				   bool is_async);
1977 
1978 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1979 {
1980 	struct aead_request *req = aead_request_cast(dd->areq);
1981 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1982 
1983 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1984 		atmel_sha_authenc_abort(&rctx->auth_req);
1985 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1986 }
1987 
1988 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1989 {
1990 	struct aead_request *req = aead_request_cast(dd->areq);
1991 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1993 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1994 	int err;
1995 
1996 	atmel_aes_set_mode(dd, &rctx->base);
1997 
1998 	err = atmel_aes_hw_init(dd);
1999 	if (err)
2000 		return atmel_aes_complete(dd, err);
2001 
2002 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2003 					  atmel_aes_authenc_init, dd);
2004 }
2005 
2006 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2007 				  bool is_async)
2008 {
2009 	struct aead_request *req = aead_request_cast(dd->areq);
2010 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2011 
2012 	if (is_async)
2013 		dd->is_async = true;
2014 	if (err)
2015 		return atmel_aes_complete(dd, err);
2016 
2017 	/* If here, we've got the ownership of the SHA device. */
2018 	dd->flags |= AES_FLAGS_OWN_SHA;
2019 
2020 	/* Configure the SHA device. */
2021 	return atmel_sha_authenc_init(&rctx->auth_req,
2022 				      req->src, req->assoclen,
2023 				      rctx->textlen,
2024 				      atmel_aes_authenc_transfer, dd);
2025 }
2026 
2027 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2028 				      bool is_async)
2029 {
2030 	struct aead_request *req = aead_request_cast(dd->areq);
2031 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2032 	bool enc = atmel_aes_is_encrypt(dd);
2033 	struct scatterlist *src, *dst;
2034 	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2035 	u32 emr;
2036 
2037 	if (is_async)
2038 		dd->is_async = true;
2039 	if (err)
2040 		return atmel_aes_complete(dd, err);
2041 
2042 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2043 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2044 	dst = src;
2045 
2046 	if (req->src != req->dst)
2047 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2048 
2049 	/* Configure the AES device. */
2050 	memcpy(iv, req->iv, sizeof(iv));
2051 
2052 	/*
2053 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2054 	 * 'true' even if the data transfer is actually performed by the CPU (so
2055 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2056 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2057 	 * must be set to *_MR_SMOD_IDATAR0.
2058 	 */
2059 	atmel_aes_write_ctrl(dd, true, iv);
2060 	emr = AES_EMR_PLIPEN;
2061 	if (!enc)
2062 		emr |= AES_EMR_PLIPD;
2063 	atmel_aes_write(dd, AES_EMR, emr);
2064 
2065 	/* Transfer data. */
2066 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2067 				   atmel_aes_authenc_digest);
2068 }
2069 
2070 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2071 {
2072 	struct aead_request *req = aead_request_cast(dd->areq);
2073 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2074 
2075 	/* atmel_sha_authenc_final() releases the SHA device. */
2076 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2077 	return atmel_sha_authenc_final(&rctx->auth_req,
2078 				       rctx->digest, sizeof(rctx->digest),
2079 				       atmel_aes_authenc_final, dd);
2080 }
2081 
2082 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2083 				   bool is_async)
2084 {
2085 	struct aead_request *req = aead_request_cast(dd->areq);
2086 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2087 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2088 	bool enc = atmel_aes_is_encrypt(dd);
2089 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2090 	u32 offs, authsize;
2091 
2092 	if (is_async)
2093 		dd->is_async = true;
2094 	if (err)
2095 		goto complete;
2096 
2097 	offs = req->assoclen + rctx->textlen;
2098 	authsize = crypto_aead_authsize(tfm);
2099 	if (enc) {
2100 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2101 	} else {
2102 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2103 		if (crypto_memneq(idigest, odigest, authsize))
2104 			err = -EBADMSG;
2105 	}
2106 
2107 complete:
2108 	return atmel_aes_complete(dd, err);
2109 }
2110 
2111 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2112 				    unsigned int keylen)
2113 {
2114 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2115 	struct crypto_authenc_keys keys;
2116 	u32 flags;
2117 	int err;
2118 
2119 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2120 		goto badkey;
2121 
2122 	if (keys.enckeylen > sizeof(ctx->base.key))
2123 		goto badkey;
2124 
2125 	/* Save auth key. */
2126 	flags = crypto_aead_get_flags(tfm);
2127 	err = atmel_sha_authenc_setkey(ctx->auth,
2128 				       keys.authkey, keys.authkeylen,
2129 				       &flags);
2130 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2131 	if (err) {
2132 		memzero_explicit(&keys, sizeof(keys));
2133 		return err;
2134 	}
2135 
2136 	/* Save enc key. */
2137 	ctx->base.keylen = keys.enckeylen;
2138 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2139 
2140 	memzero_explicit(&keys, sizeof(keys));
2141 	return 0;
2142 
2143 badkey:
2144 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2145 	memzero_explicit(&keys, sizeof(keys));
2146 	return -EINVAL;
2147 }
2148 
2149 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2150 				      unsigned long auth_mode)
2151 {
2152 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2153 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2154 
2155 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2156 	if (IS_ERR(ctx->auth))
2157 		return PTR_ERR(ctx->auth);
2158 
2159 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2160 				      auth_reqsize));
2161 	ctx->base.start = atmel_aes_authenc_start;
2162 
2163 	return 0;
2164 }
2165 
2166 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2167 {
2168 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2169 }
2170 
2171 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2172 {
2173 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2174 }
2175 
2176 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2177 {
2178 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2179 }
2180 
2181 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2182 {
2183 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2184 }
2185 
2186 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2187 {
2188 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2189 }
2190 
2191 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2192 {
2193 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2194 
2195 	atmel_sha_authenc_free(ctx->auth);
2196 }
2197 
2198 static int atmel_aes_authenc_crypt(struct aead_request *req,
2199 				   unsigned long mode)
2200 {
2201 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2202 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2203 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2204 	u32 authsize = crypto_aead_authsize(tfm);
2205 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2206 	struct atmel_aes_dev *dd;
2207 
2208 	/* Compute text length. */
2209 	if (!enc && req->cryptlen < authsize)
2210 		return -EINVAL;
2211 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2212 
2213 	/*
2214 	 * Currently, empty messages are not supported yet:
2215 	 * the SHA auto-padding can be used only on non-empty messages.
2216 	 * Hence a special case needs to be implemented for empty message.
2217 	 */
2218 	if (!rctx->textlen && !req->assoclen)
2219 		return -EINVAL;
2220 
2221 	rctx->base.mode = mode;
2222 	ctx->block_size = AES_BLOCK_SIZE;
2223 	ctx->is_aead = true;
2224 
2225 	dd = atmel_aes_find_dev(ctx);
2226 	if (!dd)
2227 		return -ENODEV;
2228 
2229 	return atmel_aes_handle_queue(dd, &req->base);
2230 }
2231 
2232 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2233 {
2234 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2235 }
2236 
2237 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2238 {
2239 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2240 }
2241 
2242 static struct aead_alg aes_authenc_algs[] = {
2243 {
2244 	.setkey		= atmel_aes_authenc_setkey,
2245 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2246 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2247 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2248 	.exit		= atmel_aes_authenc_exit_tfm,
2249 	.ivsize		= AES_BLOCK_SIZE,
2250 	.maxauthsize	= SHA1_DIGEST_SIZE,
2251 
2252 	.base = {
2253 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2254 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2255 		.cra_priority		= ATMEL_AES_PRIORITY,
2256 		.cra_flags		= CRYPTO_ALG_ASYNC,
2257 		.cra_blocksize		= AES_BLOCK_SIZE,
2258 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2259 		.cra_alignmask		= 0xf,
2260 		.cra_module		= THIS_MODULE,
2261 	},
2262 },
2263 {
2264 	.setkey		= atmel_aes_authenc_setkey,
2265 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2266 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2267 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2268 	.exit		= atmel_aes_authenc_exit_tfm,
2269 	.ivsize		= AES_BLOCK_SIZE,
2270 	.maxauthsize	= SHA224_DIGEST_SIZE,
2271 
2272 	.base = {
2273 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2274 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2275 		.cra_priority		= ATMEL_AES_PRIORITY,
2276 		.cra_flags		= CRYPTO_ALG_ASYNC,
2277 		.cra_blocksize		= AES_BLOCK_SIZE,
2278 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2279 		.cra_alignmask		= 0xf,
2280 		.cra_module		= THIS_MODULE,
2281 	},
2282 },
2283 {
2284 	.setkey		= atmel_aes_authenc_setkey,
2285 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2286 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2287 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2288 	.exit		= atmel_aes_authenc_exit_tfm,
2289 	.ivsize		= AES_BLOCK_SIZE,
2290 	.maxauthsize	= SHA256_DIGEST_SIZE,
2291 
2292 	.base = {
2293 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2294 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2295 		.cra_priority		= ATMEL_AES_PRIORITY,
2296 		.cra_flags		= CRYPTO_ALG_ASYNC,
2297 		.cra_blocksize		= AES_BLOCK_SIZE,
2298 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2299 		.cra_alignmask		= 0xf,
2300 		.cra_module		= THIS_MODULE,
2301 	},
2302 },
2303 {
2304 	.setkey		= atmel_aes_authenc_setkey,
2305 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2306 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2307 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2308 	.exit		= atmel_aes_authenc_exit_tfm,
2309 	.ivsize		= AES_BLOCK_SIZE,
2310 	.maxauthsize	= SHA384_DIGEST_SIZE,
2311 
2312 	.base = {
2313 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2314 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2315 		.cra_priority		= ATMEL_AES_PRIORITY,
2316 		.cra_flags		= CRYPTO_ALG_ASYNC,
2317 		.cra_blocksize		= AES_BLOCK_SIZE,
2318 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2319 		.cra_alignmask		= 0xf,
2320 		.cra_module		= THIS_MODULE,
2321 	},
2322 },
2323 {
2324 	.setkey		= atmel_aes_authenc_setkey,
2325 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2326 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2327 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2328 	.exit		= atmel_aes_authenc_exit_tfm,
2329 	.ivsize		= AES_BLOCK_SIZE,
2330 	.maxauthsize	= SHA512_DIGEST_SIZE,
2331 
2332 	.base = {
2333 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2334 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2335 		.cra_priority		= ATMEL_AES_PRIORITY,
2336 		.cra_flags		= CRYPTO_ALG_ASYNC,
2337 		.cra_blocksize		= AES_BLOCK_SIZE,
2338 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2339 		.cra_alignmask		= 0xf,
2340 		.cra_module		= THIS_MODULE,
2341 	},
2342 },
2343 };
2344 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2345 
2346 /* Probe functions */
2347 
2348 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2349 {
2350 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2351 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2352 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2353 
2354 	if (!dd->buf) {
2355 		dev_err(dd->dev, "unable to alloc pages.\n");
2356 		return -ENOMEM;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2363 {
2364 	free_page((unsigned long)dd->buf);
2365 }
2366 
2367 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2368 {
2369 	struct at_dma_slave	*sl = slave;
2370 
2371 	if (sl && sl->dma_dev == chan->device->dev) {
2372 		chan->private = sl;
2373 		return true;
2374 	} else {
2375 		return false;
2376 	}
2377 }
2378 
2379 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2380 			      struct crypto_platform_data *pdata)
2381 {
2382 	struct at_dma_slave *slave;
2383 	dma_cap_mask_t mask;
2384 
2385 	dma_cap_zero(mask);
2386 	dma_cap_set(DMA_SLAVE, mask);
2387 
2388 	/* Try to grab 2 DMA channels */
2389 	slave = &pdata->dma_slave->rxdata;
2390 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2391 							slave, dd->dev, "tx");
2392 	if (!dd->src.chan)
2393 		goto err_dma_in;
2394 
2395 	slave = &pdata->dma_slave->txdata;
2396 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2397 							slave, dd->dev, "rx");
2398 	if (!dd->dst.chan)
2399 		goto err_dma_out;
2400 
2401 	return 0;
2402 
2403 err_dma_out:
2404 	dma_release_channel(dd->src.chan);
2405 err_dma_in:
2406 	dev_warn(dd->dev, "no DMA channel available\n");
2407 	return -ENODEV;
2408 }
2409 
2410 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2411 {
2412 	dma_release_channel(dd->dst.chan);
2413 	dma_release_channel(dd->src.chan);
2414 }
2415 
2416 static void atmel_aes_queue_task(unsigned long data)
2417 {
2418 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2419 
2420 	atmel_aes_handle_queue(dd, NULL);
2421 }
2422 
2423 static void atmel_aes_done_task(unsigned long data)
2424 {
2425 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2426 
2427 	dd->is_async = true;
2428 	(void)dd->resume(dd);
2429 }
2430 
2431 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2432 {
2433 	struct atmel_aes_dev *aes_dd = dev_id;
2434 	u32 reg;
2435 
2436 	reg = atmel_aes_read(aes_dd, AES_ISR);
2437 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2438 		atmel_aes_write(aes_dd, AES_IDR, reg);
2439 		if (AES_FLAGS_BUSY & aes_dd->flags)
2440 			tasklet_schedule(&aes_dd->done_task);
2441 		else
2442 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2443 		return IRQ_HANDLED;
2444 	}
2445 
2446 	return IRQ_NONE;
2447 }
2448 
2449 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2450 {
2451 	int i;
2452 
2453 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2454 	if (dd->caps.has_authenc)
2455 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2456 			crypto_unregister_aead(&aes_authenc_algs[i]);
2457 #endif
2458 
2459 	if (dd->caps.has_xts)
2460 		crypto_unregister_skcipher(&aes_xts_alg);
2461 
2462 	if (dd->caps.has_gcm)
2463 		crypto_unregister_aead(&aes_gcm_alg);
2464 
2465 	if (dd->caps.has_cfb64)
2466 		crypto_unregister_skcipher(&aes_cfb64_alg);
2467 
2468 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2469 		crypto_unregister_skcipher(&aes_algs[i]);
2470 }
2471 
2472 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2473 {
2474 	int err, i, j;
2475 
2476 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2477 		err = crypto_register_skcipher(&aes_algs[i]);
2478 		if (err)
2479 			goto err_aes_algs;
2480 	}
2481 
2482 	if (dd->caps.has_cfb64) {
2483 		err = crypto_register_skcipher(&aes_cfb64_alg);
2484 		if (err)
2485 			goto err_aes_cfb64_alg;
2486 	}
2487 
2488 	if (dd->caps.has_gcm) {
2489 		err = crypto_register_aead(&aes_gcm_alg);
2490 		if (err)
2491 			goto err_aes_gcm_alg;
2492 	}
2493 
2494 	if (dd->caps.has_xts) {
2495 		err = crypto_register_skcipher(&aes_xts_alg);
2496 		if (err)
2497 			goto err_aes_xts_alg;
2498 	}
2499 
2500 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2501 	if (dd->caps.has_authenc) {
2502 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2503 			err = crypto_register_aead(&aes_authenc_algs[i]);
2504 			if (err)
2505 				goto err_aes_authenc_alg;
2506 		}
2507 	}
2508 #endif
2509 
2510 	return 0;
2511 
2512 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2513 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2514 err_aes_authenc_alg:
2515 	for (j = 0; j < i; j++)
2516 		crypto_unregister_aead(&aes_authenc_algs[j]);
2517 	crypto_unregister_skcipher(&aes_xts_alg);
2518 #endif
2519 err_aes_xts_alg:
2520 	crypto_unregister_aead(&aes_gcm_alg);
2521 err_aes_gcm_alg:
2522 	crypto_unregister_skcipher(&aes_cfb64_alg);
2523 err_aes_cfb64_alg:
2524 	i = ARRAY_SIZE(aes_algs);
2525 err_aes_algs:
2526 	for (j = 0; j < i; j++)
2527 		crypto_unregister_skcipher(&aes_algs[j]);
2528 
2529 	return err;
2530 }
2531 
2532 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2533 {
2534 	dd->caps.has_dualbuff = 0;
2535 	dd->caps.has_cfb64 = 0;
2536 	dd->caps.has_ctr32 = 0;
2537 	dd->caps.has_gcm = 0;
2538 	dd->caps.has_xts = 0;
2539 	dd->caps.has_authenc = 0;
2540 	dd->caps.max_burst_size = 1;
2541 
2542 	/* keep only major version number */
2543 	switch (dd->hw_version & 0xff0) {
2544 	case 0x500:
2545 		dd->caps.has_dualbuff = 1;
2546 		dd->caps.has_cfb64 = 1;
2547 		dd->caps.has_ctr32 = 1;
2548 		dd->caps.has_gcm = 1;
2549 		dd->caps.has_xts = 1;
2550 		dd->caps.has_authenc = 1;
2551 		dd->caps.max_burst_size = 4;
2552 		break;
2553 	case 0x200:
2554 		dd->caps.has_dualbuff = 1;
2555 		dd->caps.has_cfb64 = 1;
2556 		dd->caps.has_ctr32 = 1;
2557 		dd->caps.has_gcm = 1;
2558 		dd->caps.max_burst_size = 4;
2559 		break;
2560 	case 0x130:
2561 		dd->caps.has_dualbuff = 1;
2562 		dd->caps.has_cfb64 = 1;
2563 		dd->caps.max_burst_size = 4;
2564 		break;
2565 	case 0x120:
2566 		break;
2567 	default:
2568 		dev_warn(dd->dev,
2569 				"Unmanaged aes version, set minimum capabilities\n");
2570 		break;
2571 	}
2572 }
2573 
2574 #if defined(CONFIG_OF)
2575 static const struct of_device_id atmel_aes_dt_ids[] = {
2576 	{ .compatible = "atmel,at91sam9g46-aes" },
2577 	{ /* sentinel */ }
2578 };
2579 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2580 
2581 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2582 {
2583 	struct device_node *np = pdev->dev.of_node;
2584 	struct crypto_platform_data *pdata;
2585 
2586 	if (!np) {
2587 		dev_err(&pdev->dev, "device node not found\n");
2588 		return ERR_PTR(-EINVAL);
2589 	}
2590 
2591 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2592 	if (!pdata)
2593 		return ERR_PTR(-ENOMEM);
2594 
2595 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2596 					sizeof(*(pdata->dma_slave)),
2597 					GFP_KERNEL);
2598 	if (!pdata->dma_slave) {
2599 		devm_kfree(&pdev->dev, pdata);
2600 		return ERR_PTR(-ENOMEM);
2601 	}
2602 
2603 	return pdata;
2604 }
2605 #else
2606 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2607 {
2608 	return ERR_PTR(-EINVAL);
2609 }
2610 #endif
2611 
2612 static int atmel_aes_probe(struct platform_device *pdev)
2613 {
2614 	struct atmel_aes_dev *aes_dd;
2615 	struct crypto_platform_data *pdata;
2616 	struct device *dev = &pdev->dev;
2617 	struct resource *aes_res;
2618 	int err;
2619 
2620 	pdata = pdev->dev.platform_data;
2621 	if (!pdata) {
2622 		pdata = atmel_aes_of_init(pdev);
2623 		if (IS_ERR(pdata)) {
2624 			err = PTR_ERR(pdata);
2625 			goto aes_dd_err;
2626 		}
2627 	}
2628 
2629 	if (!pdata->dma_slave) {
2630 		err = -ENXIO;
2631 		goto aes_dd_err;
2632 	}
2633 
2634 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2635 	if (aes_dd == NULL) {
2636 		err = -ENOMEM;
2637 		goto aes_dd_err;
2638 	}
2639 
2640 	aes_dd->dev = dev;
2641 
2642 	platform_set_drvdata(pdev, aes_dd);
2643 
2644 	INIT_LIST_HEAD(&aes_dd->list);
2645 	spin_lock_init(&aes_dd->lock);
2646 
2647 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2648 					(unsigned long)aes_dd);
2649 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2650 					(unsigned long)aes_dd);
2651 
2652 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2653 
2654 	/* Get the base address */
2655 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2656 	if (!aes_res) {
2657 		dev_err(dev, "no MEM resource info\n");
2658 		err = -ENODEV;
2659 		goto res_err;
2660 	}
2661 	aes_dd->phys_base = aes_res->start;
2662 
2663 	/* Get the IRQ */
2664 	aes_dd->irq = platform_get_irq(pdev,  0);
2665 	if (aes_dd->irq < 0) {
2666 		err = aes_dd->irq;
2667 		goto res_err;
2668 	}
2669 
2670 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2671 			       IRQF_SHARED, "atmel-aes", aes_dd);
2672 	if (err) {
2673 		dev_err(dev, "unable to request aes irq.\n");
2674 		goto res_err;
2675 	}
2676 
2677 	/* Initializing the clock */
2678 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2679 	if (IS_ERR(aes_dd->iclk)) {
2680 		dev_err(dev, "clock initialization failed.\n");
2681 		err = PTR_ERR(aes_dd->iclk);
2682 		goto res_err;
2683 	}
2684 
2685 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2686 	if (IS_ERR(aes_dd->io_base)) {
2687 		dev_err(dev, "can't ioremap\n");
2688 		err = PTR_ERR(aes_dd->io_base);
2689 		goto res_err;
2690 	}
2691 
2692 	err = clk_prepare(aes_dd->iclk);
2693 	if (err)
2694 		goto res_err;
2695 
2696 	err = atmel_aes_hw_version_init(aes_dd);
2697 	if (err)
2698 		goto iclk_unprepare;
2699 
2700 	atmel_aes_get_cap(aes_dd);
2701 
2702 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2703 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2704 		err = -EPROBE_DEFER;
2705 		goto iclk_unprepare;
2706 	}
2707 #endif
2708 
2709 	err = atmel_aes_buff_init(aes_dd);
2710 	if (err)
2711 		goto err_aes_buff;
2712 
2713 	err = atmel_aes_dma_init(aes_dd, pdata);
2714 	if (err)
2715 		goto err_aes_dma;
2716 
2717 	spin_lock(&atmel_aes.lock);
2718 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2719 	spin_unlock(&atmel_aes.lock);
2720 
2721 	err = atmel_aes_register_algs(aes_dd);
2722 	if (err)
2723 		goto err_algs;
2724 
2725 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2726 			dma_chan_name(aes_dd->src.chan),
2727 			dma_chan_name(aes_dd->dst.chan));
2728 
2729 	return 0;
2730 
2731 err_algs:
2732 	spin_lock(&atmel_aes.lock);
2733 	list_del(&aes_dd->list);
2734 	spin_unlock(&atmel_aes.lock);
2735 	atmel_aes_dma_cleanup(aes_dd);
2736 err_aes_dma:
2737 	atmel_aes_buff_cleanup(aes_dd);
2738 err_aes_buff:
2739 iclk_unprepare:
2740 	clk_unprepare(aes_dd->iclk);
2741 res_err:
2742 	tasklet_kill(&aes_dd->done_task);
2743 	tasklet_kill(&aes_dd->queue_task);
2744 aes_dd_err:
2745 	if (err != -EPROBE_DEFER)
2746 		dev_err(dev, "initialization failed.\n");
2747 
2748 	return err;
2749 }
2750 
2751 static int atmel_aes_remove(struct platform_device *pdev)
2752 {
2753 	struct atmel_aes_dev *aes_dd;
2754 
2755 	aes_dd = platform_get_drvdata(pdev);
2756 	if (!aes_dd)
2757 		return -ENODEV;
2758 	spin_lock(&atmel_aes.lock);
2759 	list_del(&aes_dd->list);
2760 	spin_unlock(&atmel_aes.lock);
2761 
2762 	atmel_aes_unregister_algs(aes_dd);
2763 
2764 	tasklet_kill(&aes_dd->done_task);
2765 	tasklet_kill(&aes_dd->queue_task);
2766 
2767 	atmel_aes_dma_cleanup(aes_dd);
2768 	atmel_aes_buff_cleanup(aes_dd);
2769 
2770 	clk_unprepare(aes_dd->iclk);
2771 
2772 	return 0;
2773 }
2774 
2775 static struct platform_driver atmel_aes_driver = {
2776 	.probe		= atmel_aes_probe,
2777 	.remove		= atmel_aes_remove,
2778 	.driver		= {
2779 		.name	= "atmel_aes",
2780 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2781 	},
2782 };
2783 
2784 module_platform_driver(atmel_aes_driver);
2785 
2786 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2787 MODULE_LICENSE("GPL v2");
2788 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2789