1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cryptographic API. 4 * 5 * Support for ATMEL AES HW acceleration. 6 * 7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL 8 * Author: Nicolas Royer <nicolas@eukrea.com> 9 * 10 * Some ideas are from omap-aes.c driver. 11 */ 12 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/err.h> 18 #include <linux/clk.h> 19 #include <linux/io.h> 20 #include <linux/hw_random.h> 21 #include <linux/platform_device.h> 22 23 #include <linux/device.h> 24 #include <linux/dmaengine.h> 25 #include <linux/init.h> 26 #include <linux/errno.h> 27 #include <linux/interrupt.h> 28 #include <linux/irq.h> 29 #include <linux/scatterlist.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/of_device.h> 32 #include <linux/delay.h> 33 #include <linux/crypto.h> 34 #include <crypto/scatterwalk.h> 35 #include <crypto/algapi.h> 36 #include <crypto/aes.h> 37 #include <crypto/gcm.h> 38 #include <crypto/xts.h> 39 #include <crypto/internal/aead.h> 40 #include <crypto/internal/skcipher.h> 41 #include "atmel-aes-regs.h" 42 #include "atmel-authenc.h" 43 44 #define ATMEL_AES_PRIORITY 300 45 46 #define ATMEL_AES_BUFFER_ORDER 2 47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER) 48 49 #define CFB8_BLOCK_SIZE 1 50 #define CFB16_BLOCK_SIZE 2 51 #define CFB32_BLOCK_SIZE 4 52 #define CFB64_BLOCK_SIZE 8 53 54 #define SIZE_IN_WORDS(x) ((x) >> 2) 55 56 /* AES flags */ 57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */ 58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC 59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN 60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK) 61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB 62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC 63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB 64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b) 65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b) 66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b) 67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b) 68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b) 69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR 70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM 71 #define AES_FLAGS_XTS AES_MR_OPMOD_XTS 72 73 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \ 74 AES_FLAGS_ENCRYPT | \ 75 AES_FLAGS_GTAGEN) 76 77 #define AES_FLAGS_BUSY BIT(3) 78 #define AES_FLAGS_DUMP_REG BIT(4) 79 #define AES_FLAGS_OWN_SHA BIT(5) 80 81 #define AES_FLAGS_PERSISTENT AES_FLAGS_BUSY 82 83 #define ATMEL_AES_QUEUE_LENGTH 50 84 85 #define ATMEL_AES_DMA_THRESHOLD 256 86 87 88 struct atmel_aes_caps { 89 bool has_dualbuff; 90 bool has_cfb64; 91 bool has_gcm; 92 bool has_xts; 93 bool has_authenc; 94 u32 max_burst_size; 95 }; 96 97 struct atmel_aes_dev; 98 99 100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *); 101 102 103 struct atmel_aes_base_ctx { 104 struct atmel_aes_dev *dd; 105 atmel_aes_fn_t start; 106 int keylen; 107 u32 key[AES_KEYSIZE_256 / sizeof(u32)]; 108 u16 block_size; 109 bool is_aead; 110 }; 111 112 struct atmel_aes_ctx { 113 struct atmel_aes_base_ctx base; 114 }; 115 116 struct atmel_aes_ctr_ctx { 117 struct atmel_aes_base_ctx base; 118 119 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)]; 120 size_t offset; 121 struct scatterlist src[2]; 122 struct scatterlist dst[2]; 123 u32 blocks; 124 }; 125 126 struct atmel_aes_gcm_ctx { 127 struct atmel_aes_base_ctx base; 128 129 struct scatterlist src[2]; 130 struct scatterlist dst[2]; 131 132 __be32 j0[AES_BLOCK_SIZE / sizeof(u32)]; 133 u32 tag[AES_BLOCK_SIZE / sizeof(u32)]; 134 __be32 ghash[AES_BLOCK_SIZE / sizeof(u32)]; 135 size_t textlen; 136 137 const __be32 *ghash_in; 138 __be32 *ghash_out; 139 atmel_aes_fn_t ghash_resume; 140 }; 141 142 struct atmel_aes_xts_ctx { 143 struct atmel_aes_base_ctx base; 144 145 u32 key2[AES_KEYSIZE_256 / sizeof(u32)]; 146 struct crypto_skcipher *fallback_tfm; 147 }; 148 149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 150 struct atmel_aes_authenc_ctx { 151 struct atmel_aes_base_ctx base; 152 struct atmel_sha_authenc_ctx *auth; 153 }; 154 #endif 155 156 struct atmel_aes_reqctx { 157 unsigned long mode; 158 u8 lastc[AES_BLOCK_SIZE]; 159 struct skcipher_request fallback_req; 160 }; 161 162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 163 struct atmel_aes_authenc_reqctx { 164 struct atmel_aes_reqctx base; 165 166 struct scatterlist src[2]; 167 struct scatterlist dst[2]; 168 size_t textlen; 169 u32 digest[SHA512_DIGEST_SIZE / sizeof(u32)]; 170 171 /* auth_req MUST be place last. */ 172 struct ahash_request auth_req; 173 }; 174 #endif 175 176 struct atmel_aes_dma { 177 struct dma_chan *chan; 178 struct scatterlist *sg; 179 int nents; 180 unsigned int remainder; 181 unsigned int sg_len; 182 }; 183 184 struct atmel_aes_dev { 185 struct list_head list; 186 unsigned long phys_base; 187 void __iomem *io_base; 188 189 struct crypto_async_request *areq; 190 struct atmel_aes_base_ctx *ctx; 191 192 bool is_async; 193 atmel_aes_fn_t resume; 194 atmel_aes_fn_t cpu_transfer_complete; 195 196 struct device *dev; 197 struct clk *iclk; 198 int irq; 199 200 unsigned long flags; 201 202 spinlock_t lock; 203 struct crypto_queue queue; 204 205 struct tasklet_struct done_task; 206 struct tasklet_struct queue_task; 207 208 size_t total; 209 size_t datalen; 210 u32 *data; 211 212 struct atmel_aes_dma src; 213 struct atmel_aes_dma dst; 214 215 size_t buflen; 216 void *buf; 217 struct scatterlist aligned_sg; 218 struct scatterlist *real_dst; 219 220 struct atmel_aes_caps caps; 221 222 u32 hw_version; 223 }; 224 225 struct atmel_aes_drv { 226 struct list_head dev_list; 227 spinlock_t lock; 228 }; 229 230 static struct atmel_aes_drv atmel_aes = { 231 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list), 232 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock), 233 }; 234 235 #ifdef VERBOSE_DEBUG 236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz) 237 { 238 switch (offset) { 239 case AES_CR: 240 return "CR"; 241 242 case AES_MR: 243 return "MR"; 244 245 case AES_ISR: 246 return "ISR"; 247 248 case AES_IMR: 249 return "IMR"; 250 251 case AES_IER: 252 return "IER"; 253 254 case AES_IDR: 255 return "IDR"; 256 257 case AES_KEYWR(0): 258 case AES_KEYWR(1): 259 case AES_KEYWR(2): 260 case AES_KEYWR(3): 261 case AES_KEYWR(4): 262 case AES_KEYWR(5): 263 case AES_KEYWR(6): 264 case AES_KEYWR(7): 265 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2); 266 break; 267 268 case AES_IDATAR(0): 269 case AES_IDATAR(1): 270 case AES_IDATAR(2): 271 case AES_IDATAR(3): 272 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2); 273 break; 274 275 case AES_ODATAR(0): 276 case AES_ODATAR(1): 277 case AES_ODATAR(2): 278 case AES_ODATAR(3): 279 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2); 280 break; 281 282 case AES_IVR(0): 283 case AES_IVR(1): 284 case AES_IVR(2): 285 case AES_IVR(3): 286 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2); 287 break; 288 289 case AES_AADLENR: 290 return "AADLENR"; 291 292 case AES_CLENR: 293 return "CLENR"; 294 295 case AES_GHASHR(0): 296 case AES_GHASHR(1): 297 case AES_GHASHR(2): 298 case AES_GHASHR(3): 299 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2); 300 break; 301 302 case AES_TAGR(0): 303 case AES_TAGR(1): 304 case AES_TAGR(2): 305 case AES_TAGR(3): 306 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2); 307 break; 308 309 case AES_CTRR: 310 return "CTRR"; 311 312 case AES_GCMHR(0): 313 case AES_GCMHR(1): 314 case AES_GCMHR(2): 315 case AES_GCMHR(3): 316 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2); 317 break; 318 319 case AES_EMR: 320 return "EMR"; 321 322 case AES_TWR(0): 323 case AES_TWR(1): 324 case AES_TWR(2): 325 case AES_TWR(3): 326 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2); 327 break; 328 329 case AES_ALPHAR(0): 330 case AES_ALPHAR(1): 331 case AES_ALPHAR(2): 332 case AES_ALPHAR(3): 333 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2); 334 break; 335 336 default: 337 snprintf(tmp, sz, "0x%02x", offset); 338 break; 339 } 340 341 return tmp; 342 } 343 #endif /* VERBOSE_DEBUG */ 344 345 /* Shared functions */ 346 347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset) 348 { 349 u32 value = readl_relaxed(dd->io_base + offset); 350 351 #ifdef VERBOSE_DEBUG 352 if (dd->flags & AES_FLAGS_DUMP_REG) { 353 char tmp[16]; 354 355 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value, 356 atmel_aes_reg_name(offset, tmp, sizeof(tmp))); 357 } 358 #endif /* VERBOSE_DEBUG */ 359 360 return value; 361 } 362 363 static inline void atmel_aes_write(struct atmel_aes_dev *dd, 364 u32 offset, u32 value) 365 { 366 #ifdef VERBOSE_DEBUG 367 if (dd->flags & AES_FLAGS_DUMP_REG) { 368 char tmp[16]; 369 370 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value, 371 atmel_aes_reg_name(offset, tmp, sizeof(tmp))); 372 } 373 #endif /* VERBOSE_DEBUG */ 374 375 writel_relaxed(value, dd->io_base + offset); 376 } 377 378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset, 379 u32 *value, int count) 380 { 381 for (; count--; value++, offset += 4) 382 *value = atmel_aes_read(dd, offset); 383 } 384 385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset, 386 const u32 *value, int count) 387 { 388 for (; count--; value++, offset += 4) 389 atmel_aes_write(dd, offset, *value); 390 } 391 392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset, 393 void *value) 394 { 395 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE)); 396 } 397 398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset, 399 const void *value) 400 { 401 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE)); 402 } 403 404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd, 405 atmel_aes_fn_t resume) 406 { 407 u32 isr = atmel_aes_read(dd, AES_ISR); 408 409 if (unlikely(isr & AES_INT_DATARDY)) 410 return resume(dd); 411 412 dd->resume = resume; 413 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 414 return -EINPROGRESS; 415 } 416 417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size) 418 { 419 len &= block_size - 1; 420 return len ? block_size - len : 0; 421 } 422 423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx) 424 { 425 struct atmel_aes_dev *aes_dd; 426 427 spin_lock_bh(&atmel_aes.lock); 428 /* One AES IP per SoC. */ 429 aes_dd = list_first_entry_or_null(&atmel_aes.dev_list, 430 struct atmel_aes_dev, list); 431 spin_unlock_bh(&atmel_aes.lock); 432 return aes_dd; 433 } 434 435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd) 436 { 437 int err; 438 439 err = clk_enable(dd->iclk); 440 if (err) 441 return err; 442 443 atmel_aes_write(dd, AES_CR, AES_CR_SWRST); 444 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET); 445 446 return 0; 447 } 448 449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd) 450 { 451 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff; 452 } 453 454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd) 455 { 456 int err; 457 458 err = atmel_aes_hw_init(dd); 459 if (err) 460 return err; 461 462 dd->hw_version = atmel_aes_get_version(dd); 463 464 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version); 465 466 clk_disable(dd->iclk); 467 return 0; 468 } 469 470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd, 471 const struct atmel_aes_reqctx *rctx) 472 { 473 /* Clear all but persistent flags and set request flags. */ 474 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode; 475 } 476 477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd) 478 { 479 return (dd->flags & AES_FLAGS_ENCRYPT); 480 } 481 482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err); 484 #endif 485 486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd) 487 { 488 struct skcipher_request *req = skcipher_request_cast(dd->areq); 489 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 490 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 491 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 492 493 if (req->cryptlen < ivsize) 494 return; 495 496 if (rctx->mode & AES_FLAGS_ENCRYPT) { 497 scatterwalk_map_and_copy(req->iv, req->dst, 498 req->cryptlen - ivsize, ivsize, 0); 499 } else { 500 if (req->src == req->dst) 501 memcpy(req->iv, rctx->lastc, ivsize); 502 else 503 scatterwalk_map_and_copy(req->iv, req->src, 504 req->cryptlen - ivsize, 505 ivsize, 0); 506 } 507 } 508 509 static inline struct atmel_aes_ctr_ctx * 510 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx) 511 { 512 return container_of(ctx, struct atmel_aes_ctr_ctx, base); 513 } 514 515 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd) 516 { 517 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 518 struct skcipher_request *req = skcipher_request_cast(dd->areq); 519 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 520 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 521 int i; 522 523 /* 524 * The CTR transfer works in fragments of data of maximum 1 MByte 525 * because of the 16 bit CTR counter embedded in the IP. When reaching 526 * here, ctx->blocks contains the number of blocks of the last fragment 527 * processed, there is no need to explicit cast it to u16. 528 */ 529 for (i = 0; i < ctx->blocks; i++) 530 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE); 531 532 memcpy(req->iv, ctx->iv, ivsize); 533 } 534 535 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err) 536 { 537 struct skcipher_request *req = skcipher_request_cast(dd->areq); 538 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 539 540 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 541 if (dd->ctx->is_aead) 542 atmel_aes_authenc_complete(dd, err); 543 #endif 544 545 clk_disable(dd->iclk); 546 dd->flags &= ~AES_FLAGS_BUSY; 547 548 if (!err && !dd->ctx->is_aead && 549 (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) { 550 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR) 551 atmel_aes_set_iv_as_last_ciphertext_block(dd); 552 else 553 atmel_aes_ctr_update_req_iv(dd); 554 } 555 556 if (dd->is_async) 557 dd->areq->complete(dd->areq, err); 558 559 tasklet_schedule(&dd->queue_task); 560 561 return err; 562 } 563 564 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma, 565 const __be32 *iv, const u32 *key, int keylen) 566 { 567 u32 valmr = 0; 568 569 /* MR register must be set before IV registers */ 570 if (keylen == AES_KEYSIZE_128) 571 valmr |= AES_MR_KEYSIZE_128; 572 else if (keylen == AES_KEYSIZE_192) 573 valmr |= AES_MR_KEYSIZE_192; 574 else 575 valmr |= AES_MR_KEYSIZE_256; 576 577 valmr |= dd->flags & AES_FLAGS_MODE_MASK; 578 579 if (use_dma) { 580 valmr |= AES_MR_SMOD_IDATAR0; 581 if (dd->caps.has_dualbuff) 582 valmr |= AES_MR_DUALBUFF; 583 } else { 584 valmr |= AES_MR_SMOD_AUTO; 585 } 586 587 atmel_aes_write(dd, AES_MR, valmr); 588 589 atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen)); 590 591 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB) 592 atmel_aes_write_block(dd, AES_IVR(0), iv); 593 } 594 595 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma, 596 const __be32 *iv) 597 598 { 599 atmel_aes_write_ctrl_key(dd, use_dma, iv, 600 dd->ctx->key, dd->ctx->keylen); 601 } 602 603 /* CPU transfer */ 604 605 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd) 606 { 607 int err = 0; 608 u32 isr; 609 610 for (;;) { 611 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data); 612 dd->data += 4; 613 dd->datalen -= AES_BLOCK_SIZE; 614 615 if (dd->datalen < AES_BLOCK_SIZE) 616 break; 617 618 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 619 620 isr = atmel_aes_read(dd, AES_ISR); 621 if (!(isr & AES_INT_DATARDY)) { 622 dd->resume = atmel_aes_cpu_transfer; 623 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 624 return -EINPROGRESS; 625 } 626 } 627 628 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst), 629 dd->buf, dd->total)) 630 err = -EINVAL; 631 632 if (err) 633 return atmel_aes_complete(dd, err); 634 635 return dd->cpu_transfer_complete(dd); 636 } 637 638 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd, 639 struct scatterlist *src, 640 struct scatterlist *dst, 641 size_t len, 642 atmel_aes_fn_t resume) 643 { 644 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE); 645 646 if (unlikely(len == 0)) 647 return -EINVAL; 648 649 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len); 650 651 dd->total = len; 652 dd->real_dst = dst; 653 dd->cpu_transfer_complete = resume; 654 dd->datalen = len + padlen; 655 dd->data = (u32 *)dd->buf; 656 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 657 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer); 658 } 659 660 661 /* DMA transfer */ 662 663 static void atmel_aes_dma_callback(void *data); 664 665 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd, 666 struct scatterlist *sg, 667 size_t len, 668 struct atmel_aes_dma *dma) 669 { 670 int nents; 671 672 if (!IS_ALIGNED(len, dd->ctx->block_size)) 673 return false; 674 675 for (nents = 0; sg; sg = sg_next(sg), ++nents) { 676 if (!IS_ALIGNED(sg->offset, sizeof(u32))) 677 return false; 678 679 if (len <= sg->length) { 680 if (!IS_ALIGNED(len, dd->ctx->block_size)) 681 return false; 682 683 dma->nents = nents+1; 684 dma->remainder = sg->length - len; 685 sg->length = len; 686 return true; 687 } 688 689 if (!IS_ALIGNED(sg->length, dd->ctx->block_size)) 690 return false; 691 692 len -= sg->length; 693 } 694 695 return false; 696 } 697 698 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma) 699 { 700 struct scatterlist *sg = dma->sg; 701 int nents = dma->nents; 702 703 if (!dma->remainder) 704 return; 705 706 while (--nents > 0 && sg) 707 sg = sg_next(sg); 708 709 if (!sg) 710 return; 711 712 sg->length += dma->remainder; 713 } 714 715 static int atmel_aes_map(struct atmel_aes_dev *dd, 716 struct scatterlist *src, 717 struct scatterlist *dst, 718 size_t len) 719 { 720 bool src_aligned, dst_aligned; 721 size_t padlen; 722 723 dd->total = len; 724 dd->src.sg = src; 725 dd->dst.sg = dst; 726 dd->real_dst = dst; 727 728 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src); 729 if (src == dst) 730 dst_aligned = src_aligned; 731 else 732 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst); 733 if (!src_aligned || !dst_aligned) { 734 padlen = atmel_aes_padlen(len, dd->ctx->block_size); 735 736 if (dd->buflen < len + padlen) 737 return -ENOMEM; 738 739 if (!src_aligned) { 740 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len); 741 dd->src.sg = &dd->aligned_sg; 742 dd->src.nents = 1; 743 dd->src.remainder = 0; 744 } 745 746 if (!dst_aligned) { 747 dd->dst.sg = &dd->aligned_sg; 748 dd->dst.nents = 1; 749 dd->dst.remainder = 0; 750 } 751 752 sg_init_table(&dd->aligned_sg, 1); 753 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen); 754 } 755 756 if (dd->src.sg == dd->dst.sg) { 757 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents, 758 DMA_BIDIRECTIONAL); 759 dd->dst.sg_len = dd->src.sg_len; 760 if (!dd->src.sg_len) 761 return -EFAULT; 762 } else { 763 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents, 764 DMA_TO_DEVICE); 765 if (!dd->src.sg_len) 766 return -EFAULT; 767 768 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents, 769 DMA_FROM_DEVICE); 770 if (!dd->dst.sg_len) { 771 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 772 DMA_TO_DEVICE); 773 return -EFAULT; 774 } 775 } 776 777 return 0; 778 } 779 780 static void atmel_aes_unmap(struct atmel_aes_dev *dd) 781 { 782 if (dd->src.sg == dd->dst.sg) { 783 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 784 DMA_BIDIRECTIONAL); 785 786 if (dd->src.sg != &dd->aligned_sg) 787 atmel_aes_restore_sg(&dd->src); 788 } else { 789 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents, 790 DMA_FROM_DEVICE); 791 792 if (dd->dst.sg != &dd->aligned_sg) 793 atmel_aes_restore_sg(&dd->dst); 794 795 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents, 796 DMA_TO_DEVICE); 797 798 if (dd->src.sg != &dd->aligned_sg) 799 atmel_aes_restore_sg(&dd->src); 800 } 801 802 if (dd->dst.sg == &dd->aligned_sg) 803 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst), 804 dd->buf, dd->total); 805 } 806 807 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd, 808 enum dma_slave_buswidth addr_width, 809 enum dma_transfer_direction dir, 810 u32 maxburst) 811 { 812 struct dma_async_tx_descriptor *desc; 813 struct dma_slave_config config; 814 dma_async_tx_callback callback; 815 struct atmel_aes_dma *dma; 816 int err; 817 818 memset(&config, 0, sizeof(config)); 819 config.src_addr_width = addr_width; 820 config.dst_addr_width = addr_width; 821 config.src_maxburst = maxburst; 822 config.dst_maxburst = maxburst; 823 824 switch (dir) { 825 case DMA_MEM_TO_DEV: 826 dma = &dd->src; 827 callback = NULL; 828 config.dst_addr = dd->phys_base + AES_IDATAR(0); 829 break; 830 831 case DMA_DEV_TO_MEM: 832 dma = &dd->dst; 833 callback = atmel_aes_dma_callback; 834 config.src_addr = dd->phys_base + AES_ODATAR(0); 835 break; 836 837 default: 838 return -EINVAL; 839 } 840 841 err = dmaengine_slave_config(dma->chan, &config); 842 if (err) 843 return err; 844 845 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir, 846 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 847 if (!desc) 848 return -ENOMEM; 849 850 desc->callback = callback; 851 desc->callback_param = dd; 852 dmaengine_submit(desc); 853 dma_async_issue_pending(dma->chan); 854 855 return 0; 856 } 857 858 static int atmel_aes_dma_start(struct atmel_aes_dev *dd, 859 struct scatterlist *src, 860 struct scatterlist *dst, 861 size_t len, 862 atmel_aes_fn_t resume) 863 { 864 enum dma_slave_buswidth addr_width; 865 u32 maxburst; 866 int err; 867 868 switch (dd->ctx->block_size) { 869 case CFB8_BLOCK_SIZE: 870 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 871 maxburst = 1; 872 break; 873 874 case CFB16_BLOCK_SIZE: 875 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 876 maxburst = 1; 877 break; 878 879 case CFB32_BLOCK_SIZE: 880 case CFB64_BLOCK_SIZE: 881 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 882 maxburst = 1; 883 break; 884 885 case AES_BLOCK_SIZE: 886 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 887 maxburst = dd->caps.max_burst_size; 888 break; 889 890 default: 891 err = -EINVAL; 892 goto exit; 893 } 894 895 err = atmel_aes_map(dd, src, dst, len); 896 if (err) 897 goto exit; 898 899 dd->resume = resume; 900 901 /* Set output DMA transfer first */ 902 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM, 903 maxburst); 904 if (err) 905 goto unmap; 906 907 /* Then set input DMA transfer */ 908 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV, 909 maxburst); 910 if (err) 911 goto output_transfer_stop; 912 913 return -EINPROGRESS; 914 915 output_transfer_stop: 916 dmaengine_terminate_sync(dd->dst.chan); 917 unmap: 918 atmel_aes_unmap(dd); 919 exit: 920 return atmel_aes_complete(dd, err); 921 } 922 923 static void atmel_aes_dma_callback(void *data) 924 { 925 struct atmel_aes_dev *dd = data; 926 927 atmel_aes_unmap(dd); 928 dd->is_async = true; 929 (void)dd->resume(dd); 930 } 931 932 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd, 933 struct crypto_async_request *new_areq) 934 { 935 struct crypto_async_request *areq, *backlog; 936 struct atmel_aes_base_ctx *ctx; 937 unsigned long flags; 938 bool start_async; 939 int err, ret = 0; 940 941 spin_lock_irqsave(&dd->lock, flags); 942 if (new_areq) 943 ret = crypto_enqueue_request(&dd->queue, new_areq); 944 if (dd->flags & AES_FLAGS_BUSY) { 945 spin_unlock_irqrestore(&dd->lock, flags); 946 return ret; 947 } 948 backlog = crypto_get_backlog(&dd->queue); 949 areq = crypto_dequeue_request(&dd->queue); 950 if (areq) 951 dd->flags |= AES_FLAGS_BUSY; 952 spin_unlock_irqrestore(&dd->lock, flags); 953 954 if (!areq) 955 return ret; 956 957 if (backlog) 958 backlog->complete(backlog, -EINPROGRESS); 959 960 ctx = crypto_tfm_ctx(areq->tfm); 961 962 dd->areq = areq; 963 start_async = (areq != new_areq); 964 dd->is_async = start_async; 965 966 /* WARNING: ctx->start() MAY change dd->is_async. */ 967 err = ctx->start(dd); 968 return (start_async) ? ret : err; 969 } 970 971 972 /* AES async block ciphers */ 973 974 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd) 975 { 976 return atmel_aes_complete(dd, 0); 977 } 978 979 static int atmel_aes_start(struct atmel_aes_dev *dd) 980 { 981 struct skcipher_request *req = skcipher_request_cast(dd->areq); 982 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 983 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD || 984 dd->ctx->block_size != AES_BLOCK_SIZE); 985 int err; 986 987 atmel_aes_set_mode(dd, rctx); 988 989 err = atmel_aes_hw_init(dd); 990 if (err) 991 return atmel_aes_complete(dd, err); 992 993 atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv); 994 if (use_dma) 995 return atmel_aes_dma_start(dd, req->src, req->dst, 996 req->cryptlen, 997 atmel_aes_transfer_complete); 998 999 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen, 1000 atmel_aes_transfer_complete); 1001 } 1002 1003 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd) 1004 { 1005 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 1006 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1007 struct scatterlist *src, *dst; 1008 size_t datalen; 1009 u32 ctr; 1010 u16 start, end; 1011 bool use_dma, fragmented = false; 1012 1013 /* Check for transfer completion. */ 1014 ctx->offset += dd->total; 1015 if (ctx->offset >= req->cryptlen) 1016 return atmel_aes_transfer_complete(dd); 1017 1018 /* Compute data length. */ 1019 datalen = req->cryptlen - ctx->offset; 1020 ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE); 1021 ctr = be32_to_cpu(ctx->iv[3]); 1022 1023 /* Check 16bit counter overflow. */ 1024 start = ctr & 0xffff; 1025 end = start + ctx->blocks - 1; 1026 1027 if (ctx->blocks >> 16 || end < start) { 1028 ctr |= 0xffff; 1029 datalen = AES_BLOCK_SIZE * (0x10000 - start); 1030 fragmented = true; 1031 } 1032 1033 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD); 1034 1035 /* Jump to offset. */ 1036 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset); 1037 dst = ((req->src == req->dst) ? src : 1038 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset)); 1039 1040 /* Configure hardware. */ 1041 atmel_aes_write_ctrl(dd, use_dma, ctx->iv); 1042 if (unlikely(fragmented)) { 1043 /* 1044 * Increment the counter manually to cope with the hardware 1045 * counter overflow. 1046 */ 1047 ctx->iv[3] = cpu_to_be32(ctr); 1048 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE); 1049 } 1050 1051 if (use_dma) 1052 return atmel_aes_dma_start(dd, src, dst, datalen, 1053 atmel_aes_ctr_transfer); 1054 1055 return atmel_aes_cpu_start(dd, src, dst, datalen, 1056 atmel_aes_ctr_transfer); 1057 } 1058 1059 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd) 1060 { 1061 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx); 1062 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1063 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1064 int err; 1065 1066 atmel_aes_set_mode(dd, rctx); 1067 1068 err = atmel_aes_hw_init(dd); 1069 if (err) 1070 return atmel_aes_complete(dd, err); 1071 1072 memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE); 1073 ctx->offset = 0; 1074 dd->total = 0; 1075 return atmel_aes_ctr_transfer(dd); 1076 } 1077 1078 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc) 1079 { 1080 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1081 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx( 1082 crypto_skcipher_reqtfm(req)); 1083 1084 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 1085 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, 1086 req->base.complete, req->base.data); 1087 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, 1088 req->cryptlen, req->iv); 1089 1090 return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) : 1091 crypto_skcipher_decrypt(&rctx->fallback_req); 1092 } 1093 1094 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode) 1095 { 1096 struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); 1097 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher); 1098 struct atmel_aes_reqctx *rctx; 1099 u32 opmode = mode & AES_FLAGS_OPMODE_MASK; 1100 1101 if (opmode == AES_FLAGS_XTS) { 1102 if (req->cryptlen < XTS_BLOCK_SIZE) 1103 return -EINVAL; 1104 1105 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE)) 1106 return atmel_aes_xts_fallback(req, 1107 mode & AES_FLAGS_ENCRYPT); 1108 } 1109 1110 /* 1111 * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext 1112 * to have a positve integer length. 1113 */ 1114 if (!req->cryptlen && opmode != AES_FLAGS_XTS) 1115 return 0; 1116 1117 if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) && 1118 !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher))) 1119 return -EINVAL; 1120 1121 switch (mode & AES_FLAGS_OPMODE_MASK) { 1122 case AES_FLAGS_CFB8: 1123 ctx->block_size = CFB8_BLOCK_SIZE; 1124 break; 1125 1126 case AES_FLAGS_CFB16: 1127 ctx->block_size = CFB16_BLOCK_SIZE; 1128 break; 1129 1130 case AES_FLAGS_CFB32: 1131 ctx->block_size = CFB32_BLOCK_SIZE; 1132 break; 1133 1134 case AES_FLAGS_CFB64: 1135 ctx->block_size = CFB64_BLOCK_SIZE; 1136 break; 1137 1138 default: 1139 ctx->block_size = AES_BLOCK_SIZE; 1140 break; 1141 } 1142 ctx->is_aead = false; 1143 1144 rctx = skcipher_request_ctx(req); 1145 rctx->mode = mode; 1146 1147 if (opmode != AES_FLAGS_ECB && 1148 !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) { 1149 unsigned int ivsize = crypto_skcipher_ivsize(skcipher); 1150 1151 if (req->cryptlen >= ivsize) 1152 scatterwalk_map_and_copy(rctx->lastc, req->src, 1153 req->cryptlen - ivsize, 1154 ivsize, 0); 1155 } 1156 1157 return atmel_aes_handle_queue(ctx->dd, &req->base); 1158 } 1159 1160 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, 1161 unsigned int keylen) 1162 { 1163 struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm); 1164 1165 if (keylen != AES_KEYSIZE_128 && 1166 keylen != AES_KEYSIZE_192 && 1167 keylen != AES_KEYSIZE_256) 1168 return -EINVAL; 1169 1170 memcpy(ctx->key, key, keylen); 1171 ctx->keylen = keylen; 1172 1173 return 0; 1174 } 1175 1176 static int atmel_aes_ecb_encrypt(struct skcipher_request *req) 1177 { 1178 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT); 1179 } 1180 1181 static int atmel_aes_ecb_decrypt(struct skcipher_request *req) 1182 { 1183 return atmel_aes_crypt(req, AES_FLAGS_ECB); 1184 } 1185 1186 static int atmel_aes_cbc_encrypt(struct skcipher_request *req) 1187 { 1188 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT); 1189 } 1190 1191 static int atmel_aes_cbc_decrypt(struct skcipher_request *req) 1192 { 1193 return atmel_aes_crypt(req, AES_FLAGS_CBC); 1194 } 1195 1196 static int atmel_aes_ofb_encrypt(struct skcipher_request *req) 1197 { 1198 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT); 1199 } 1200 1201 static int atmel_aes_ofb_decrypt(struct skcipher_request *req) 1202 { 1203 return atmel_aes_crypt(req, AES_FLAGS_OFB); 1204 } 1205 1206 static int atmel_aes_cfb_encrypt(struct skcipher_request *req) 1207 { 1208 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT); 1209 } 1210 1211 static int atmel_aes_cfb_decrypt(struct skcipher_request *req) 1212 { 1213 return atmel_aes_crypt(req, AES_FLAGS_CFB128); 1214 } 1215 1216 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req) 1217 { 1218 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT); 1219 } 1220 1221 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req) 1222 { 1223 return atmel_aes_crypt(req, AES_FLAGS_CFB64); 1224 } 1225 1226 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req) 1227 { 1228 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT); 1229 } 1230 1231 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req) 1232 { 1233 return atmel_aes_crypt(req, AES_FLAGS_CFB32); 1234 } 1235 1236 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req) 1237 { 1238 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT); 1239 } 1240 1241 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req) 1242 { 1243 return atmel_aes_crypt(req, AES_FLAGS_CFB16); 1244 } 1245 1246 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req) 1247 { 1248 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT); 1249 } 1250 1251 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req) 1252 { 1253 return atmel_aes_crypt(req, AES_FLAGS_CFB8); 1254 } 1255 1256 static int atmel_aes_ctr_encrypt(struct skcipher_request *req) 1257 { 1258 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT); 1259 } 1260 1261 static int atmel_aes_ctr_decrypt(struct skcipher_request *req) 1262 { 1263 return atmel_aes_crypt(req, AES_FLAGS_CTR); 1264 } 1265 1266 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm) 1267 { 1268 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 1269 struct atmel_aes_dev *dd; 1270 1271 dd = atmel_aes_dev_alloc(&ctx->base); 1272 if (!dd) 1273 return -ENODEV; 1274 1275 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1276 ctx->base.dd = dd; 1277 ctx->base.dd->ctx = &ctx->base; 1278 ctx->base.start = atmel_aes_start; 1279 1280 return 0; 1281 } 1282 1283 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm) 1284 { 1285 struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 1286 struct atmel_aes_dev *dd; 1287 1288 dd = atmel_aes_dev_alloc(&ctx->base); 1289 if (!dd) 1290 return -ENODEV; 1291 1292 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1293 ctx->base.dd = dd; 1294 ctx->base.dd->ctx = &ctx->base; 1295 ctx->base.start = atmel_aes_ctr_start; 1296 1297 return 0; 1298 } 1299 1300 static struct skcipher_alg aes_algs[] = { 1301 { 1302 .base.cra_name = "ecb(aes)", 1303 .base.cra_driver_name = "atmel-ecb-aes", 1304 .base.cra_blocksize = AES_BLOCK_SIZE, 1305 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1306 1307 .init = atmel_aes_init_tfm, 1308 .min_keysize = AES_MIN_KEY_SIZE, 1309 .max_keysize = AES_MAX_KEY_SIZE, 1310 .setkey = atmel_aes_setkey, 1311 .encrypt = atmel_aes_ecb_encrypt, 1312 .decrypt = atmel_aes_ecb_decrypt, 1313 }, 1314 { 1315 .base.cra_name = "cbc(aes)", 1316 .base.cra_driver_name = "atmel-cbc-aes", 1317 .base.cra_blocksize = AES_BLOCK_SIZE, 1318 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1319 1320 .init = atmel_aes_init_tfm, 1321 .min_keysize = AES_MIN_KEY_SIZE, 1322 .max_keysize = AES_MAX_KEY_SIZE, 1323 .setkey = atmel_aes_setkey, 1324 .encrypt = atmel_aes_cbc_encrypt, 1325 .decrypt = atmel_aes_cbc_decrypt, 1326 .ivsize = AES_BLOCK_SIZE, 1327 }, 1328 { 1329 .base.cra_name = "ofb(aes)", 1330 .base.cra_driver_name = "atmel-ofb-aes", 1331 .base.cra_blocksize = 1, 1332 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1333 1334 .init = atmel_aes_init_tfm, 1335 .min_keysize = AES_MIN_KEY_SIZE, 1336 .max_keysize = AES_MAX_KEY_SIZE, 1337 .setkey = atmel_aes_setkey, 1338 .encrypt = atmel_aes_ofb_encrypt, 1339 .decrypt = atmel_aes_ofb_decrypt, 1340 .ivsize = AES_BLOCK_SIZE, 1341 }, 1342 { 1343 .base.cra_name = "cfb(aes)", 1344 .base.cra_driver_name = "atmel-cfb-aes", 1345 .base.cra_blocksize = AES_BLOCK_SIZE, 1346 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1347 1348 .init = atmel_aes_init_tfm, 1349 .min_keysize = AES_MIN_KEY_SIZE, 1350 .max_keysize = AES_MAX_KEY_SIZE, 1351 .setkey = atmel_aes_setkey, 1352 .encrypt = atmel_aes_cfb_encrypt, 1353 .decrypt = atmel_aes_cfb_decrypt, 1354 .ivsize = AES_BLOCK_SIZE, 1355 }, 1356 { 1357 .base.cra_name = "cfb32(aes)", 1358 .base.cra_driver_name = "atmel-cfb32-aes", 1359 .base.cra_blocksize = CFB32_BLOCK_SIZE, 1360 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1361 1362 .init = atmel_aes_init_tfm, 1363 .min_keysize = AES_MIN_KEY_SIZE, 1364 .max_keysize = AES_MAX_KEY_SIZE, 1365 .setkey = atmel_aes_setkey, 1366 .encrypt = atmel_aes_cfb32_encrypt, 1367 .decrypt = atmel_aes_cfb32_decrypt, 1368 .ivsize = AES_BLOCK_SIZE, 1369 }, 1370 { 1371 .base.cra_name = "cfb16(aes)", 1372 .base.cra_driver_name = "atmel-cfb16-aes", 1373 .base.cra_blocksize = CFB16_BLOCK_SIZE, 1374 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1375 1376 .init = atmel_aes_init_tfm, 1377 .min_keysize = AES_MIN_KEY_SIZE, 1378 .max_keysize = AES_MAX_KEY_SIZE, 1379 .setkey = atmel_aes_setkey, 1380 .encrypt = atmel_aes_cfb16_encrypt, 1381 .decrypt = atmel_aes_cfb16_decrypt, 1382 .ivsize = AES_BLOCK_SIZE, 1383 }, 1384 { 1385 .base.cra_name = "cfb8(aes)", 1386 .base.cra_driver_name = "atmel-cfb8-aes", 1387 .base.cra_blocksize = CFB8_BLOCK_SIZE, 1388 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1389 1390 .init = atmel_aes_init_tfm, 1391 .min_keysize = AES_MIN_KEY_SIZE, 1392 .max_keysize = AES_MAX_KEY_SIZE, 1393 .setkey = atmel_aes_setkey, 1394 .encrypt = atmel_aes_cfb8_encrypt, 1395 .decrypt = atmel_aes_cfb8_decrypt, 1396 .ivsize = AES_BLOCK_SIZE, 1397 }, 1398 { 1399 .base.cra_name = "ctr(aes)", 1400 .base.cra_driver_name = "atmel-ctr-aes", 1401 .base.cra_blocksize = 1, 1402 .base.cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx), 1403 1404 .init = atmel_aes_ctr_init_tfm, 1405 .min_keysize = AES_MIN_KEY_SIZE, 1406 .max_keysize = AES_MAX_KEY_SIZE, 1407 .setkey = atmel_aes_setkey, 1408 .encrypt = atmel_aes_ctr_encrypt, 1409 .decrypt = atmel_aes_ctr_decrypt, 1410 .ivsize = AES_BLOCK_SIZE, 1411 }, 1412 }; 1413 1414 static struct skcipher_alg aes_cfb64_alg = { 1415 .base.cra_name = "cfb64(aes)", 1416 .base.cra_driver_name = "atmel-cfb64-aes", 1417 .base.cra_blocksize = CFB64_BLOCK_SIZE, 1418 .base.cra_ctxsize = sizeof(struct atmel_aes_ctx), 1419 1420 .init = atmel_aes_init_tfm, 1421 .min_keysize = AES_MIN_KEY_SIZE, 1422 .max_keysize = AES_MAX_KEY_SIZE, 1423 .setkey = atmel_aes_setkey, 1424 .encrypt = atmel_aes_cfb64_encrypt, 1425 .decrypt = atmel_aes_cfb64_decrypt, 1426 .ivsize = AES_BLOCK_SIZE, 1427 }; 1428 1429 1430 /* gcm aead functions */ 1431 1432 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd, 1433 const u32 *data, size_t datalen, 1434 const __be32 *ghash_in, __be32 *ghash_out, 1435 atmel_aes_fn_t resume); 1436 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd); 1437 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd); 1438 1439 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd); 1440 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd); 1441 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd); 1442 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd); 1443 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd); 1444 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd); 1445 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd); 1446 1447 static inline struct atmel_aes_gcm_ctx * 1448 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx) 1449 { 1450 return container_of(ctx, struct atmel_aes_gcm_ctx, base); 1451 } 1452 1453 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd, 1454 const u32 *data, size_t datalen, 1455 const __be32 *ghash_in, __be32 *ghash_out, 1456 atmel_aes_fn_t resume) 1457 { 1458 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1459 1460 dd->data = (u32 *)data; 1461 dd->datalen = datalen; 1462 ctx->ghash_in = ghash_in; 1463 ctx->ghash_out = ghash_out; 1464 ctx->ghash_resume = resume; 1465 1466 atmel_aes_write_ctrl(dd, false, NULL); 1467 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init); 1468 } 1469 1470 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd) 1471 { 1472 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1473 1474 /* Set the data length. */ 1475 atmel_aes_write(dd, AES_AADLENR, dd->total); 1476 atmel_aes_write(dd, AES_CLENR, 0); 1477 1478 /* If needed, overwrite the GCM Intermediate Hash Word Registers */ 1479 if (ctx->ghash_in) 1480 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in); 1481 1482 return atmel_aes_gcm_ghash_finalize(dd); 1483 } 1484 1485 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd) 1486 { 1487 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1488 u32 isr; 1489 1490 /* Write data into the Input Data Registers. */ 1491 while (dd->datalen > 0) { 1492 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 1493 dd->data += 4; 1494 dd->datalen -= AES_BLOCK_SIZE; 1495 1496 isr = atmel_aes_read(dd, AES_ISR); 1497 if (!(isr & AES_INT_DATARDY)) { 1498 dd->resume = atmel_aes_gcm_ghash_finalize; 1499 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 1500 return -EINPROGRESS; 1501 } 1502 } 1503 1504 /* Read the computed hash from GHASHRx. */ 1505 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out); 1506 1507 return ctx->ghash_resume(dd); 1508 } 1509 1510 1511 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd) 1512 { 1513 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1514 struct aead_request *req = aead_request_cast(dd->areq); 1515 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1516 struct atmel_aes_reqctx *rctx = aead_request_ctx(req); 1517 size_t ivsize = crypto_aead_ivsize(tfm); 1518 size_t datalen, padlen; 1519 const void *iv = req->iv; 1520 u8 *data = dd->buf; 1521 int err; 1522 1523 atmel_aes_set_mode(dd, rctx); 1524 1525 err = atmel_aes_hw_init(dd); 1526 if (err) 1527 return atmel_aes_complete(dd, err); 1528 1529 if (likely(ivsize == GCM_AES_IV_SIZE)) { 1530 memcpy(ctx->j0, iv, ivsize); 1531 ctx->j0[3] = cpu_to_be32(1); 1532 return atmel_aes_gcm_process(dd); 1533 } 1534 1535 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE); 1536 datalen = ivsize + padlen + AES_BLOCK_SIZE; 1537 if (datalen > dd->buflen) 1538 return atmel_aes_complete(dd, -EINVAL); 1539 1540 memcpy(data, iv, ivsize); 1541 memset(data + ivsize, 0, padlen + sizeof(u64)); 1542 ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8); 1543 1544 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen, 1545 NULL, ctx->j0, atmel_aes_gcm_process); 1546 } 1547 1548 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd) 1549 { 1550 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1551 struct aead_request *req = aead_request_cast(dd->areq); 1552 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1553 bool enc = atmel_aes_is_encrypt(dd); 1554 u32 authsize; 1555 1556 /* Compute text length. */ 1557 authsize = crypto_aead_authsize(tfm); 1558 ctx->textlen = req->cryptlen - (enc ? 0 : authsize); 1559 1560 /* 1561 * According to tcrypt test suite, the GCM Automatic Tag Generation 1562 * fails when both the message and its associated data are empty. 1563 */ 1564 if (likely(req->assoclen != 0 || ctx->textlen != 0)) 1565 dd->flags |= AES_FLAGS_GTAGEN; 1566 1567 atmel_aes_write_ctrl(dd, false, NULL); 1568 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length); 1569 } 1570 1571 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd) 1572 { 1573 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1574 struct aead_request *req = aead_request_cast(dd->areq); 1575 __be32 j0_lsw, *j0 = ctx->j0; 1576 size_t padlen; 1577 1578 /* Write incr32(J0) into IV. */ 1579 j0_lsw = j0[3]; 1580 be32_add_cpu(&j0[3], 1); 1581 atmel_aes_write_block(dd, AES_IVR(0), j0); 1582 j0[3] = j0_lsw; 1583 1584 /* Set aad and text lengths. */ 1585 atmel_aes_write(dd, AES_AADLENR, req->assoclen); 1586 atmel_aes_write(dd, AES_CLENR, ctx->textlen); 1587 1588 /* Check whether AAD are present. */ 1589 if (unlikely(req->assoclen == 0)) { 1590 dd->datalen = 0; 1591 return atmel_aes_gcm_data(dd); 1592 } 1593 1594 /* Copy assoc data and add padding. */ 1595 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE); 1596 if (unlikely(req->assoclen + padlen > dd->buflen)) 1597 return atmel_aes_complete(dd, -EINVAL); 1598 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen); 1599 1600 /* Write assoc data into the Input Data register. */ 1601 dd->data = (u32 *)dd->buf; 1602 dd->datalen = req->assoclen + padlen; 1603 return atmel_aes_gcm_data(dd); 1604 } 1605 1606 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd) 1607 { 1608 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1609 struct aead_request *req = aead_request_cast(dd->areq); 1610 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD); 1611 struct scatterlist *src, *dst; 1612 u32 isr, mr; 1613 1614 /* Write AAD first. */ 1615 while (dd->datalen > 0) { 1616 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data); 1617 dd->data += 4; 1618 dd->datalen -= AES_BLOCK_SIZE; 1619 1620 isr = atmel_aes_read(dd, AES_ISR); 1621 if (!(isr & AES_INT_DATARDY)) { 1622 dd->resume = atmel_aes_gcm_data; 1623 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY); 1624 return -EINPROGRESS; 1625 } 1626 } 1627 1628 /* GMAC only. */ 1629 if (unlikely(ctx->textlen == 0)) 1630 return atmel_aes_gcm_tag_init(dd); 1631 1632 /* Prepare src and dst scatter lists to transfer cipher/plain texts */ 1633 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen); 1634 dst = ((req->src == req->dst) ? src : 1635 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen)); 1636 1637 if (use_dma) { 1638 /* Update the Mode Register for DMA transfers. */ 1639 mr = atmel_aes_read(dd, AES_MR); 1640 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF); 1641 mr |= AES_MR_SMOD_IDATAR0; 1642 if (dd->caps.has_dualbuff) 1643 mr |= AES_MR_DUALBUFF; 1644 atmel_aes_write(dd, AES_MR, mr); 1645 1646 return atmel_aes_dma_start(dd, src, dst, ctx->textlen, 1647 atmel_aes_gcm_tag_init); 1648 } 1649 1650 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen, 1651 atmel_aes_gcm_tag_init); 1652 } 1653 1654 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd) 1655 { 1656 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1657 struct aead_request *req = aead_request_cast(dd->areq); 1658 __be64 *data = dd->buf; 1659 1660 if (likely(dd->flags & AES_FLAGS_GTAGEN)) { 1661 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) { 1662 dd->resume = atmel_aes_gcm_tag_init; 1663 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY); 1664 return -EINPROGRESS; 1665 } 1666 1667 return atmel_aes_gcm_finalize(dd); 1668 } 1669 1670 /* Read the GCM Intermediate Hash Word Registers. */ 1671 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash); 1672 1673 data[0] = cpu_to_be64(req->assoclen * 8); 1674 data[1] = cpu_to_be64(ctx->textlen * 8); 1675 1676 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE, 1677 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag); 1678 } 1679 1680 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd) 1681 { 1682 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1683 unsigned long flags; 1684 1685 /* 1686 * Change mode to CTR to complete the tag generation. 1687 * Use J0 as Initialization Vector. 1688 */ 1689 flags = dd->flags; 1690 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN); 1691 dd->flags |= AES_FLAGS_CTR; 1692 atmel_aes_write_ctrl(dd, false, ctx->j0); 1693 dd->flags = flags; 1694 1695 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash); 1696 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize); 1697 } 1698 1699 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd) 1700 { 1701 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx); 1702 struct aead_request *req = aead_request_cast(dd->areq); 1703 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1704 bool enc = atmel_aes_is_encrypt(dd); 1705 u32 offset, authsize, itag[4], *otag = ctx->tag; 1706 int err; 1707 1708 /* Read the computed tag. */ 1709 if (likely(dd->flags & AES_FLAGS_GTAGEN)) 1710 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag); 1711 else 1712 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag); 1713 1714 offset = req->assoclen + ctx->textlen; 1715 authsize = crypto_aead_authsize(tfm); 1716 if (enc) { 1717 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1); 1718 err = 0; 1719 } else { 1720 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0); 1721 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0; 1722 } 1723 1724 return atmel_aes_complete(dd, err); 1725 } 1726 1727 static int atmel_aes_gcm_crypt(struct aead_request *req, 1728 unsigned long mode) 1729 { 1730 struct atmel_aes_base_ctx *ctx; 1731 struct atmel_aes_reqctx *rctx; 1732 1733 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); 1734 ctx->block_size = AES_BLOCK_SIZE; 1735 ctx->is_aead = true; 1736 1737 rctx = aead_request_ctx(req); 1738 rctx->mode = AES_FLAGS_GCM | mode; 1739 1740 return atmel_aes_handle_queue(ctx->dd, &req->base); 1741 } 1742 1743 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key, 1744 unsigned int keylen) 1745 { 1746 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm); 1747 1748 if (keylen != AES_KEYSIZE_256 && 1749 keylen != AES_KEYSIZE_192 && 1750 keylen != AES_KEYSIZE_128) 1751 return -EINVAL; 1752 1753 memcpy(ctx->key, key, keylen); 1754 ctx->keylen = keylen; 1755 1756 return 0; 1757 } 1758 1759 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm, 1760 unsigned int authsize) 1761 { 1762 return crypto_gcm_check_authsize(authsize); 1763 } 1764 1765 static int atmel_aes_gcm_encrypt(struct aead_request *req) 1766 { 1767 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT); 1768 } 1769 1770 static int atmel_aes_gcm_decrypt(struct aead_request *req) 1771 { 1772 return atmel_aes_gcm_crypt(req, 0); 1773 } 1774 1775 static int atmel_aes_gcm_init(struct crypto_aead *tfm) 1776 { 1777 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm); 1778 struct atmel_aes_dev *dd; 1779 1780 dd = atmel_aes_dev_alloc(&ctx->base); 1781 if (!dd) 1782 return -ENODEV; 1783 1784 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx)); 1785 ctx->base.dd = dd; 1786 ctx->base.dd->ctx = &ctx->base; 1787 ctx->base.start = atmel_aes_gcm_start; 1788 1789 return 0; 1790 } 1791 1792 static struct aead_alg aes_gcm_alg = { 1793 .setkey = atmel_aes_gcm_setkey, 1794 .setauthsize = atmel_aes_gcm_setauthsize, 1795 .encrypt = atmel_aes_gcm_encrypt, 1796 .decrypt = atmel_aes_gcm_decrypt, 1797 .init = atmel_aes_gcm_init, 1798 .ivsize = GCM_AES_IV_SIZE, 1799 .maxauthsize = AES_BLOCK_SIZE, 1800 1801 .base = { 1802 .cra_name = "gcm(aes)", 1803 .cra_driver_name = "atmel-gcm-aes", 1804 .cra_blocksize = 1, 1805 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx), 1806 }, 1807 }; 1808 1809 1810 /* xts functions */ 1811 1812 static inline struct atmel_aes_xts_ctx * 1813 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx) 1814 { 1815 return container_of(ctx, struct atmel_aes_xts_ctx, base); 1816 } 1817 1818 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd); 1819 1820 static int atmel_aes_xts_start(struct atmel_aes_dev *dd) 1821 { 1822 struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx); 1823 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1824 struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req); 1825 unsigned long flags; 1826 int err; 1827 1828 atmel_aes_set_mode(dd, rctx); 1829 1830 err = atmel_aes_hw_init(dd); 1831 if (err) 1832 return atmel_aes_complete(dd, err); 1833 1834 /* Compute the tweak value from req->iv with ecb(aes). */ 1835 flags = dd->flags; 1836 dd->flags &= ~AES_FLAGS_MODE_MASK; 1837 dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT); 1838 atmel_aes_write_ctrl_key(dd, false, NULL, 1839 ctx->key2, ctx->base.keylen); 1840 dd->flags = flags; 1841 1842 atmel_aes_write_block(dd, AES_IDATAR(0), req->iv); 1843 return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data); 1844 } 1845 1846 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd) 1847 { 1848 struct skcipher_request *req = skcipher_request_cast(dd->areq); 1849 bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD); 1850 u32 tweak[AES_BLOCK_SIZE / sizeof(u32)]; 1851 static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), }; 1852 u8 *tweak_bytes = (u8 *)tweak; 1853 int i; 1854 1855 /* Read the computed ciphered tweak value. */ 1856 atmel_aes_read_block(dd, AES_ODATAR(0), tweak); 1857 /* 1858 * Hardware quirk: 1859 * the order of the ciphered tweak bytes need to be reversed before 1860 * writing them into the ODATARx registers. 1861 */ 1862 for (i = 0; i < AES_BLOCK_SIZE/2; ++i) 1863 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]); 1864 1865 /* Process the data. */ 1866 atmel_aes_write_ctrl(dd, use_dma, NULL); 1867 atmel_aes_write_block(dd, AES_TWR(0), tweak); 1868 atmel_aes_write_block(dd, AES_ALPHAR(0), one); 1869 if (use_dma) 1870 return atmel_aes_dma_start(dd, req->src, req->dst, 1871 req->cryptlen, 1872 atmel_aes_transfer_complete); 1873 1874 return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen, 1875 atmel_aes_transfer_complete); 1876 } 1877 1878 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, 1879 unsigned int keylen) 1880 { 1881 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1882 int err; 1883 1884 err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen); 1885 if (err) 1886 return err; 1887 1888 crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK); 1889 crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & 1890 CRYPTO_TFM_REQ_MASK); 1891 err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen); 1892 if (err) 1893 return err; 1894 1895 memcpy(ctx->base.key, key, keylen/2); 1896 memcpy(ctx->key2, key + keylen/2, keylen/2); 1897 ctx->base.keylen = keylen/2; 1898 1899 return 0; 1900 } 1901 1902 static int atmel_aes_xts_encrypt(struct skcipher_request *req) 1903 { 1904 return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT); 1905 } 1906 1907 static int atmel_aes_xts_decrypt(struct skcipher_request *req) 1908 { 1909 return atmel_aes_crypt(req, AES_FLAGS_XTS); 1910 } 1911 1912 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm) 1913 { 1914 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1915 struct atmel_aes_dev *dd; 1916 const char *tfm_name = crypto_tfm_alg_name(&tfm->base); 1917 1918 dd = atmel_aes_dev_alloc(&ctx->base); 1919 if (!dd) 1920 return -ENODEV; 1921 1922 ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0, 1923 CRYPTO_ALG_NEED_FALLBACK); 1924 if (IS_ERR(ctx->fallback_tfm)) 1925 return PTR_ERR(ctx->fallback_tfm); 1926 1927 crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) + 1928 crypto_skcipher_reqsize(ctx->fallback_tfm)); 1929 ctx->base.dd = dd; 1930 ctx->base.dd->ctx = &ctx->base; 1931 ctx->base.start = atmel_aes_xts_start; 1932 1933 return 0; 1934 } 1935 1936 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm) 1937 { 1938 struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); 1939 1940 crypto_free_skcipher(ctx->fallback_tfm); 1941 } 1942 1943 static struct skcipher_alg aes_xts_alg = { 1944 .base.cra_name = "xts(aes)", 1945 .base.cra_driver_name = "atmel-xts-aes", 1946 .base.cra_blocksize = AES_BLOCK_SIZE, 1947 .base.cra_ctxsize = sizeof(struct atmel_aes_xts_ctx), 1948 .base.cra_flags = CRYPTO_ALG_NEED_FALLBACK, 1949 1950 .min_keysize = 2 * AES_MIN_KEY_SIZE, 1951 .max_keysize = 2 * AES_MAX_KEY_SIZE, 1952 .ivsize = AES_BLOCK_SIZE, 1953 .setkey = atmel_aes_xts_setkey, 1954 .encrypt = atmel_aes_xts_encrypt, 1955 .decrypt = atmel_aes_xts_decrypt, 1956 .init = atmel_aes_xts_init_tfm, 1957 .exit = atmel_aes_xts_exit_tfm, 1958 }; 1959 1960 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 1961 /* authenc aead functions */ 1962 1963 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd); 1964 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err, 1965 bool is_async); 1966 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err, 1967 bool is_async); 1968 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd); 1969 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err, 1970 bool is_async); 1971 1972 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err) 1973 { 1974 struct aead_request *req = aead_request_cast(dd->areq); 1975 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 1976 1977 if (err && (dd->flags & AES_FLAGS_OWN_SHA)) 1978 atmel_sha_authenc_abort(&rctx->auth_req); 1979 dd->flags &= ~AES_FLAGS_OWN_SHA; 1980 } 1981 1982 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd) 1983 { 1984 struct aead_request *req = aead_request_cast(dd->areq); 1985 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 1986 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1987 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 1988 int err; 1989 1990 atmel_aes_set_mode(dd, &rctx->base); 1991 1992 err = atmel_aes_hw_init(dd); 1993 if (err) 1994 return atmel_aes_complete(dd, err); 1995 1996 return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth, 1997 atmel_aes_authenc_init, dd); 1998 } 1999 2000 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err, 2001 bool is_async) 2002 { 2003 struct aead_request *req = aead_request_cast(dd->areq); 2004 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2005 2006 if (is_async) 2007 dd->is_async = true; 2008 if (err) 2009 return atmel_aes_complete(dd, err); 2010 2011 /* If here, we've got the ownership of the SHA device. */ 2012 dd->flags |= AES_FLAGS_OWN_SHA; 2013 2014 /* Configure the SHA device. */ 2015 return atmel_sha_authenc_init(&rctx->auth_req, 2016 req->src, req->assoclen, 2017 rctx->textlen, 2018 atmel_aes_authenc_transfer, dd); 2019 } 2020 2021 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err, 2022 bool is_async) 2023 { 2024 struct aead_request *req = aead_request_cast(dd->areq); 2025 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2026 bool enc = atmel_aes_is_encrypt(dd); 2027 struct scatterlist *src, *dst; 2028 __be32 iv[AES_BLOCK_SIZE / sizeof(u32)]; 2029 u32 emr; 2030 2031 if (is_async) 2032 dd->is_async = true; 2033 if (err) 2034 return atmel_aes_complete(dd, err); 2035 2036 /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */ 2037 src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen); 2038 dst = src; 2039 2040 if (req->src != req->dst) 2041 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen); 2042 2043 /* Configure the AES device. */ 2044 memcpy(iv, req->iv, sizeof(iv)); 2045 2046 /* 2047 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to 2048 * 'true' even if the data transfer is actually performed by the CPU (so 2049 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the 2050 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD 2051 * must be set to *_MR_SMOD_IDATAR0. 2052 */ 2053 atmel_aes_write_ctrl(dd, true, iv); 2054 emr = AES_EMR_PLIPEN; 2055 if (!enc) 2056 emr |= AES_EMR_PLIPD; 2057 atmel_aes_write(dd, AES_EMR, emr); 2058 2059 /* Transfer data. */ 2060 return atmel_aes_dma_start(dd, src, dst, rctx->textlen, 2061 atmel_aes_authenc_digest); 2062 } 2063 2064 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd) 2065 { 2066 struct aead_request *req = aead_request_cast(dd->areq); 2067 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2068 2069 /* atmel_sha_authenc_final() releases the SHA device. */ 2070 dd->flags &= ~AES_FLAGS_OWN_SHA; 2071 return atmel_sha_authenc_final(&rctx->auth_req, 2072 rctx->digest, sizeof(rctx->digest), 2073 atmel_aes_authenc_final, dd); 2074 } 2075 2076 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err, 2077 bool is_async) 2078 { 2079 struct aead_request *req = aead_request_cast(dd->areq); 2080 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2081 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2082 bool enc = atmel_aes_is_encrypt(dd); 2083 u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest; 2084 u32 offs, authsize; 2085 2086 if (is_async) 2087 dd->is_async = true; 2088 if (err) 2089 goto complete; 2090 2091 offs = req->assoclen + rctx->textlen; 2092 authsize = crypto_aead_authsize(tfm); 2093 if (enc) { 2094 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1); 2095 } else { 2096 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0); 2097 if (crypto_memneq(idigest, odigest, authsize)) 2098 err = -EBADMSG; 2099 } 2100 2101 complete: 2102 return atmel_aes_complete(dd, err); 2103 } 2104 2105 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key, 2106 unsigned int keylen) 2107 { 2108 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2109 struct crypto_authenc_keys keys; 2110 int err; 2111 2112 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0) 2113 goto badkey; 2114 2115 if (keys.enckeylen > sizeof(ctx->base.key)) 2116 goto badkey; 2117 2118 /* Save auth key. */ 2119 err = atmel_sha_authenc_setkey(ctx->auth, 2120 keys.authkey, keys.authkeylen, 2121 crypto_aead_get_flags(tfm)); 2122 if (err) { 2123 memzero_explicit(&keys, sizeof(keys)); 2124 return err; 2125 } 2126 2127 /* Save enc key. */ 2128 ctx->base.keylen = keys.enckeylen; 2129 memcpy(ctx->base.key, keys.enckey, keys.enckeylen); 2130 2131 memzero_explicit(&keys, sizeof(keys)); 2132 return 0; 2133 2134 badkey: 2135 memzero_explicit(&keys, sizeof(keys)); 2136 return -EINVAL; 2137 } 2138 2139 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm, 2140 unsigned long auth_mode) 2141 { 2142 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2143 unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize(); 2144 struct atmel_aes_dev *dd; 2145 2146 dd = atmel_aes_dev_alloc(&ctx->base); 2147 if (!dd) 2148 return -ENODEV; 2149 2150 ctx->auth = atmel_sha_authenc_spawn(auth_mode); 2151 if (IS_ERR(ctx->auth)) 2152 return PTR_ERR(ctx->auth); 2153 2154 crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) + 2155 auth_reqsize)); 2156 ctx->base.dd = dd; 2157 ctx->base.dd->ctx = &ctx->base; 2158 ctx->base.start = atmel_aes_authenc_start; 2159 2160 return 0; 2161 } 2162 2163 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm) 2164 { 2165 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1); 2166 } 2167 2168 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm) 2169 { 2170 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224); 2171 } 2172 2173 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm) 2174 { 2175 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256); 2176 } 2177 2178 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm) 2179 { 2180 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384); 2181 } 2182 2183 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm) 2184 { 2185 return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512); 2186 } 2187 2188 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm) 2189 { 2190 struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm); 2191 2192 atmel_sha_authenc_free(ctx->auth); 2193 } 2194 2195 static int atmel_aes_authenc_crypt(struct aead_request *req, 2196 unsigned long mode) 2197 { 2198 struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req); 2199 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2200 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm); 2201 u32 authsize = crypto_aead_authsize(tfm); 2202 bool enc = (mode & AES_FLAGS_ENCRYPT); 2203 2204 /* Compute text length. */ 2205 if (!enc && req->cryptlen < authsize) 2206 return -EINVAL; 2207 rctx->textlen = req->cryptlen - (enc ? 0 : authsize); 2208 2209 /* 2210 * Currently, empty messages are not supported yet: 2211 * the SHA auto-padding can be used only on non-empty messages. 2212 * Hence a special case needs to be implemented for empty message. 2213 */ 2214 if (!rctx->textlen && !req->assoclen) 2215 return -EINVAL; 2216 2217 rctx->base.mode = mode; 2218 ctx->block_size = AES_BLOCK_SIZE; 2219 ctx->is_aead = true; 2220 2221 return atmel_aes_handle_queue(ctx->dd, &req->base); 2222 } 2223 2224 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req) 2225 { 2226 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT); 2227 } 2228 2229 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req) 2230 { 2231 return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC); 2232 } 2233 2234 static struct aead_alg aes_authenc_algs[] = { 2235 { 2236 .setkey = atmel_aes_authenc_setkey, 2237 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2238 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2239 .init = atmel_aes_authenc_hmac_sha1_init_tfm, 2240 .exit = atmel_aes_authenc_exit_tfm, 2241 .ivsize = AES_BLOCK_SIZE, 2242 .maxauthsize = SHA1_DIGEST_SIZE, 2243 2244 .base = { 2245 .cra_name = "authenc(hmac(sha1),cbc(aes))", 2246 .cra_driver_name = "atmel-authenc-hmac-sha1-cbc-aes", 2247 .cra_blocksize = AES_BLOCK_SIZE, 2248 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2249 }, 2250 }, 2251 { 2252 .setkey = atmel_aes_authenc_setkey, 2253 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2254 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2255 .init = atmel_aes_authenc_hmac_sha224_init_tfm, 2256 .exit = atmel_aes_authenc_exit_tfm, 2257 .ivsize = AES_BLOCK_SIZE, 2258 .maxauthsize = SHA224_DIGEST_SIZE, 2259 2260 .base = { 2261 .cra_name = "authenc(hmac(sha224),cbc(aes))", 2262 .cra_driver_name = "atmel-authenc-hmac-sha224-cbc-aes", 2263 .cra_blocksize = AES_BLOCK_SIZE, 2264 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2265 }, 2266 }, 2267 { 2268 .setkey = atmel_aes_authenc_setkey, 2269 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2270 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2271 .init = atmel_aes_authenc_hmac_sha256_init_tfm, 2272 .exit = atmel_aes_authenc_exit_tfm, 2273 .ivsize = AES_BLOCK_SIZE, 2274 .maxauthsize = SHA256_DIGEST_SIZE, 2275 2276 .base = { 2277 .cra_name = "authenc(hmac(sha256),cbc(aes))", 2278 .cra_driver_name = "atmel-authenc-hmac-sha256-cbc-aes", 2279 .cra_blocksize = AES_BLOCK_SIZE, 2280 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2281 }, 2282 }, 2283 { 2284 .setkey = atmel_aes_authenc_setkey, 2285 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2286 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2287 .init = atmel_aes_authenc_hmac_sha384_init_tfm, 2288 .exit = atmel_aes_authenc_exit_tfm, 2289 .ivsize = AES_BLOCK_SIZE, 2290 .maxauthsize = SHA384_DIGEST_SIZE, 2291 2292 .base = { 2293 .cra_name = "authenc(hmac(sha384),cbc(aes))", 2294 .cra_driver_name = "atmel-authenc-hmac-sha384-cbc-aes", 2295 .cra_blocksize = AES_BLOCK_SIZE, 2296 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2297 }, 2298 }, 2299 { 2300 .setkey = atmel_aes_authenc_setkey, 2301 .encrypt = atmel_aes_authenc_cbc_aes_encrypt, 2302 .decrypt = atmel_aes_authenc_cbc_aes_decrypt, 2303 .init = atmel_aes_authenc_hmac_sha512_init_tfm, 2304 .exit = atmel_aes_authenc_exit_tfm, 2305 .ivsize = AES_BLOCK_SIZE, 2306 .maxauthsize = SHA512_DIGEST_SIZE, 2307 2308 .base = { 2309 .cra_name = "authenc(hmac(sha512),cbc(aes))", 2310 .cra_driver_name = "atmel-authenc-hmac-sha512-cbc-aes", 2311 .cra_blocksize = AES_BLOCK_SIZE, 2312 .cra_ctxsize = sizeof(struct atmel_aes_authenc_ctx), 2313 }, 2314 }, 2315 }; 2316 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */ 2317 2318 /* Probe functions */ 2319 2320 static int atmel_aes_buff_init(struct atmel_aes_dev *dd) 2321 { 2322 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER); 2323 dd->buflen = ATMEL_AES_BUFFER_SIZE; 2324 dd->buflen &= ~(AES_BLOCK_SIZE - 1); 2325 2326 if (!dd->buf) { 2327 dev_err(dd->dev, "unable to alloc pages.\n"); 2328 return -ENOMEM; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd) 2335 { 2336 free_page((unsigned long)dd->buf); 2337 } 2338 2339 static int atmel_aes_dma_init(struct atmel_aes_dev *dd) 2340 { 2341 int ret; 2342 2343 /* Try to grab 2 DMA channels */ 2344 dd->src.chan = dma_request_chan(dd->dev, "tx"); 2345 if (IS_ERR(dd->src.chan)) { 2346 ret = PTR_ERR(dd->src.chan); 2347 goto err_dma_in; 2348 } 2349 2350 dd->dst.chan = dma_request_chan(dd->dev, "rx"); 2351 if (IS_ERR(dd->dst.chan)) { 2352 ret = PTR_ERR(dd->dst.chan); 2353 goto err_dma_out; 2354 } 2355 2356 return 0; 2357 2358 err_dma_out: 2359 dma_release_channel(dd->src.chan); 2360 err_dma_in: 2361 dev_err(dd->dev, "no DMA channel available\n"); 2362 return ret; 2363 } 2364 2365 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd) 2366 { 2367 dma_release_channel(dd->dst.chan); 2368 dma_release_channel(dd->src.chan); 2369 } 2370 2371 static void atmel_aes_queue_task(unsigned long data) 2372 { 2373 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; 2374 2375 atmel_aes_handle_queue(dd, NULL); 2376 } 2377 2378 static void atmel_aes_done_task(unsigned long data) 2379 { 2380 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data; 2381 2382 dd->is_async = true; 2383 (void)dd->resume(dd); 2384 } 2385 2386 static irqreturn_t atmel_aes_irq(int irq, void *dev_id) 2387 { 2388 struct atmel_aes_dev *aes_dd = dev_id; 2389 u32 reg; 2390 2391 reg = atmel_aes_read(aes_dd, AES_ISR); 2392 if (reg & atmel_aes_read(aes_dd, AES_IMR)) { 2393 atmel_aes_write(aes_dd, AES_IDR, reg); 2394 if (AES_FLAGS_BUSY & aes_dd->flags) 2395 tasklet_schedule(&aes_dd->done_task); 2396 else 2397 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n"); 2398 return IRQ_HANDLED; 2399 } 2400 2401 return IRQ_NONE; 2402 } 2403 2404 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd) 2405 { 2406 int i; 2407 2408 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2409 if (dd->caps.has_authenc) 2410 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) 2411 crypto_unregister_aead(&aes_authenc_algs[i]); 2412 #endif 2413 2414 if (dd->caps.has_xts) 2415 crypto_unregister_skcipher(&aes_xts_alg); 2416 2417 if (dd->caps.has_gcm) 2418 crypto_unregister_aead(&aes_gcm_alg); 2419 2420 if (dd->caps.has_cfb64) 2421 crypto_unregister_skcipher(&aes_cfb64_alg); 2422 2423 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) 2424 crypto_unregister_skcipher(&aes_algs[i]); 2425 } 2426 2427 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg) 2428 { 2429 alg->cra_flags |= CRYPTO_ALG_ASYNC; 2430 alg->cra_alignmask = 0xf; 2431 alg->cra_priority = ATMEL_AES_PRIORITY; 2432 alg->cra_module = THIS_MODULE; 2433 } 2434 2435 static int atmel_aes_register_algs(struct atmel_aes_dev *dd) 2436 { 2437 int err, i, j; 2438 2439 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { 2440 atmel_aes_crypto_alg_init(&aes_algs[i].base); 2441 2442 err = crypto_register_skcipher(&aes_algs[i]); 2443 if (err) 2444 goto err_aes_algs; 2445 } 2446 2447 if (dd->caps.has_cfb64) { 2448 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base); 2449 2450 err = crypto_register_skcipher(&aes_cfb64_alg); 2451 if (err) 2452 goto err_aes_cfb64_alg; 2453 } 2454 2455 if (dd->caps.has_gcm) { 2456 atmel_aes_crypto_alg_init(&aes_gcm_alg.base); 2457 2458 err = crypto_register_aead(&aes_gcm_alg); 2459 if (err) 2460 goto err_aes_gcm_alg; 2461 } 2462 2463 if (dd->caps.has_xts) { 2464 atmel_aes_crypto_alg_init(&aes_xts_alg.base); 2465 2466 err = crypto_register_skcipher(&aes_xts_alg); 2467 if (err) 2468 goto err_aes_xts_alg; 2469 } 2470 2471 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2472 if (dd->caps.has_authenc) { 2473 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) { 2474 atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base); 2475 2476 err = crypto_register_aead(&aes_authenc_algs[i]); 2477 if (err) 2478 goto err_aes_authenc_alg; 2479 } 2480 } 2481 #endif 2482 2483 return 0; 2484 2485 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2486 /* i = ARRAY_SIZE(aes_authenc_algs); */ 2487 err_aes_authenc_alg: 2488 for (j = 0; j < i; j++) 2489 crypto_unregister_aead(&aes_authenc_algs[j]); 2490 crypto_unregister_skcipher(&aes_xts_alg); 2491 #endif 2492 err_aes_xts_alg: 2493 crypto_unregister_aead(&aes_gcm_alg); 2494 err_aes_gcm_alg: 2495 crypto_unregister_skcipher(&aes_cfb64_alg); 2496 err_aes_cfb64_alg: 2497 i = ARRAY_SIZE(aes_algs); 2498 err_aes_algs: 2499 for (j = 0; j < i; j++) 2500 crypto_unregister_skcipher(&aes_algs[j]); 2501 2502 return err; 2503 } 2504 2505 static void atmel_aes_get_cap(struct atmel_aes_dev *dd) 2506 { 2507 dd->caps.has_dualbuff = 0; 2508 dd->caps.has_cfb64 = 0; 2509 dd->caps.has_gcm = 0; 2510 dd->caps.has_xts = 0; 2511 dd->caps.has_authenc = 0; 2512 dd->caps.max_burst_size = 1; 2513 2514 /* keep only major version number */ 2515 switch (dd->hw_version & 0xff0) { 2516 case 0x500: 2517 dd->caps.has_dualbuff = 1; 2518 dd->caps.has_cfb64 = 1; 2519 dd->caps.has_gcm = 1; 2520 dd->caps.has_xts = 1; 2521 dd->caps.has_authenc = 1; 2522 dd->caps.max_burst_size = 4; 2523 break; 2524 case 0x200: 2525 dd->caps.has_dualbuff = 1; 2526 dd->caps.has_cfb64 = 1; 2527 dd->caps.has_gcm = 1; 2528 dd->caps.max_burst_size = 4; 2529 break; 2530 case 0x130: 2531 dd->caps.has_dualbuff = 1; 2532 dd->caps.has_cfb64 = 1; 2533 dd->caps.max_burst_size = 4; 2534 break; 2535 case 0x120: 2536 break; 2537 default: 2538 dev_warn(dd->dev, 2539 "Unmanaged aes version, set minimum capabilities\n"); 2540 break; 2541 } 2542 } 2543 2544 #if defined(CONFIG_OF) 2545 static const struct of_device_id atmel_aes_dt_ids[] = { 2546 { .compatible = "atmel,at91sam9g46-aes" }, 2547 { /* sentinel */ } 2548 }; 2549 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids); 2550 #endif 2551 2552 static int atmel_aes_probe(struct platform_device *pdev) 2553 { 2554 struct atmel_aes_dev *aes_dd; 2555 struct device *dev = &pdev->dev; 2556 struct resource *aes_res; 2557 int err; 2558 2559 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL); 2560 if (!aes_dd) 2561 return -ENOMEM; 2562 2563 aes_dd->dev = dev; 2564 2565 platform_set_drvdata(pdev, aes_dd); 2566 2567 INIT_LIST_HEAD(&aes_dd->list); 2568 spin_lock_init(&aes_dd->lock); 2569 2570 tasklet_init(&aes_dd->done_task, atmel_aes_done_task, 2571 (unsigned long)aes_dd); 2572 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task, 2573 (unsigned long)aes_dd); 2574 2575 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH); 2576 2577 /* Get the base address */ 2578 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2579 if (!aes_res) { 2580 dev_err(dev, "no MEM resource info\n"); 2581 err = -ENODEV; 2582 goto err_tasklet_kill; 2583 } 2584 aes_dd->phys_base = aes_res->start; 2585 2586 /* Get the IRQ */ 2587 aes_dd->irq = platform_get_irq(pdev, 0); 2588 if (aes_dd->irq < 0) { 2589 err = aes_dd->irq; 2590 goto err_tasklet_kill; 2591 } 2592 2593 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq, 2594 IRQF_SHARED, "atmel-aes", aes_dd); 2595 if (err) { 2596 dev_err(dev, "unable to request aes irq.\n"); 2597 goto err_tasklet_kill; 2598 } 2599 2600 /* Initializing the clock */ 2601 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk"); 2602 if (IS_ERR(aes_dd->iclk)) { 2603 dev_err(dev, "clock initialization failed.\n"); 2604 err = PTR_ERR(aes_dd->iclk); 2605 goto err_tasklet_kill; 2606 } 2607 2608 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res); 2609 if (IS_ERR(aes_dd->io_base)) { 2610 dev_err(dev, "can't ioremap\n"); 2611 err = PTR_ERR(aes_dd->io_base); 2612 goto err_tasklet_kill; 2613 } 2614 2615 err = clk_prepare(aes_dd->iclk); 2616 if (err) 2617 goto err_tasklet_kill; 2618 2619 err = atmel_aes_hw_version_init(aes_dd); 2620 if (err) 2621 goto err_iclk_unprepare; 2622 2623 atmel_aes_get_cap(aes_dd); 2624 2625 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC) 2626 if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) { 2627 err = -EPROBE_DEFER; 2628 goto err_iclk_unprepare; 2629 } 2630 #endif 2631 2632 err = atmel_aes_buff_init(aes_dd); 2633 if (err) 2634 goto err_iclk_unprepare; 2635 2636 err = atmel_aes_dma_init(aes_dd); 2637 if (err) 2638 goto err_buff_cleanup; 2639 2640 spin_lock(&atmel_aes.lock); 2641 list_add_tail(&aes_dd->list, &atmel_aes.dev_list); 2642 spin_unlock(&atmel_aes.lock); 2643 2644 err = atmel_aes_register_algs(aes_dd); 2645 if (err) 2646 goto err_algs; 2647 2648 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n", 2649 dma_chan_name(aes_dd->src.chan), 2650 dma_chan_name(aes_dd->dst.chan)); 2651 2652 return 0; 2653 2654 err_algs: 2655 spin_lock(&atmel_aes.lock); 2656 list_del(&aes_dd->list); 2657 spin_unlock(&atmel_aes.lock); 2658 atmel_aes_dma_cleanup(aes_dd); 2659 err_buff_cleanup: 2660 atmel_aes_buff_cleanup(aes_dd); 2661 err_iclk_unprepare: 2662 clk_unprepare(aes_dd->iclk); 2663 err_tasklet_kill: 2664 tasklet_kill(&aes_dd->done_task); 2665 tasklet_kill(&aes_dd->queue_task); 2666 2667 return err; 2668 } 2669 2670 static int atmel_aes_remove(struct platform_device *pdev) 2671 { 2672 struct atmel_aes_dev *aes_dd; 2673 2674 aes_dd = platform_get_drvdata(pdev); 2675 if (!aes_dd) 2676 return -ENODEV; 2677 spin_lock(&atmel_aes.lock); 2678 list_del(&aes_dd->list); 2679 spin_unlock(&atmel_aes.lock); 2680 2681 atmel_aes_unregister_algs(aes_dd); 2682 2683 tasklet_kill(&aes_dd->done_task); 2684 tasklet_kill(&aes_dd->queue_task); 2685 2686 atmel_aes_dma_cleanup(aes_dd); 2687 atmel_aes_buff_cleanup(aes_dd); 2688 2689 clk_unprepare(aes_dd->iclk); 2690 2691 return 0; 2692 } 2693 2694 static struct platform_driver atmel_aes_driver = { 2695 .probe = atmel_aes_probe, 2696 .remove = atmel_aes_remove, 2697 .driver = { 2698 .name = "atmel_aes", 2699 .of_match_table = of_match_ptr(atmel_aes_dt_ids), 2700 }, 2701 }; 2702 2703 module_platform_driver(atmel_aes_driver); 2704 2705 MODULE_DESCRIPTION("Atmel AES hw acceleration support."); 2706 MODULE_LICENSE("GPL v2"); 2707 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique"); 2708