xref: /openbmc/linux/drivers/crypto/atmel-aes.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12 
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22 
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <linux/platform_data/crypto-atmel.h>
40 #include <dt-bindings/dma/at91.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43 
44 #define ATMEL_AES_PRIORITY	300
45 
46 #define ATMEL_AES_BUFFER_ORDER	2
47 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48 
49 #define CFB8_BLOCK_SIZE		1
50 #define CFB16_BLOCK_SIZE	2
51 #define CFB32_BLOCK_SIZE	4
52 #define CFB64_BLOCK_SIZE	8
53 
54 #define SIZE_IN_WORDS(x)	((x) >> 2)
55 
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
72 
73 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
74 				 AES_FLAGS_ENCRYPT |		\
75 				 AES_FLAGS_GTAGEN)
76 
77 #define AES_FLAGS_BUSY		BIT(3)
78 #define AES_FLAGS_DUMP_REG	BIT(4)
79 #define AES_FLAGS_OWN_SHA	BIT(5)
80 
81 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
82 
83 #define ATMEL_AES_QUEUE_LENGTH	50
84 
85 #define ATMEL_AES_DMA_THRESHOLD		256
86 
87 
88 struct atmel_aes_caps {
89 	bool			has_dualbuff;
90 	bool			has_cfb64;
91 	bool			has_ctr32;
92 	bool			has_gcm;
93 	bool			has_xts;
94 	bool			has_authenc;
95 	u32			max_burst_size;
96 };
97 
98 struct atmel_aes_dev;
99 
100 
101 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
102 
103 
104 struct atmel_aes_base_ctx {
105 	struct atmel_aes_dev	*dd;
106 	atmel_aes_fn_t		start;
107 	int			keylen;
108 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
109 	u16			block_size;
110 	bool			is_aead;
111 };
112 
113 struct atmel_aes_ctx {
114 	struct atmel_aes_base_ctx	base;
115 };
116 
117 struct atmel_aes_ctr_ctx {
118 	struct atmel_aes_base_ctx	base;
119 
120 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
121 	size_t			offset;
122 	struct scatterlist	src[2];
123 	struct scatterlist	dst[2];
124 };
125 
126 struct atmel_aes_gcm_ctx {
127 	struct atmel_aes_base_ctx	base;
128 
129 	struct scatterlist	src[2];
130 	struct scatterlist	dst[2];
131 
132 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
133 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
134 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
135 	size_t			textlen;
136 
137 	const u32		*ghash_in;
138 	u32			*ghash_out;
139 	atmel_aes_fn_t		ghash_resume;
140 };
141 
142 struct atmel_aes_xts_ctx {
143 	struct atmel_aes_base_ctx	base;
144 
145 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
146 };
147 
148 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
149 struct atmel_aes_authenc_ctx {
150 	struct atmel_aes_base_ctx	base;
151 	struct atmel_sha_authenc_ctx	*auth;
152 };
153 #endif
154 
155 struct atmel_aes_reqctx {
156 	unsigned long		mode;
157 	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
158 };
159 
160 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
161 struct atmel_aes_authenc_reqctx {
162 	struct atmel_aes_reqctx	base;
163 
164 	struct scatterlist	src[2];
165 	struct scatterlist	dst[2];
166 	size_t			textlen;
167 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168 
169 	/* auth_req MUST be place last. */
170 	struct ahash_request	auth_req;
171 };
172 #endif
173 
174 struct atmel_aes_dma {
175 	struct dma_chan		*chan;
176 	struct scatterlist	*sg;
177 	int			nents;
178 	unsigned int		remainder;
179 	unsigned int		sg_len;
180 };
181 
182 struct atmel_aes_dev {
183 	struct list_head	list;
184 	unsigned long		phys_base;
185 	void __iomem		*io_base;
186 
187 	struct crypto_async_request	*areq;
188 	struct atmel_aes_base_ctx	*ctx;
189 
190 	bool			is_async;
191 	atmel_aes_fn_t		resume;
192 	atmel_aes_fn_t		cpu_transfer_complete;
193 
194 	struct device		*dev;
195 	struct clk		*iclk;
196 	int			irq;
197 
198 	unsigned long		flags;
199 
200 	spinlock_t		lock;
201 	struct crypto_queue	queue;
202 
203 	struct tasklet_struct	done_task;
204 	struct tasklet_struct	queue_task;
205 
206 	size_t			total;
207 	size_t			datalen;
208 	u32			*data;
209 
210 	struct atmel_aes_dma	src;
211 	struct atmel_aes_dma	dst;
212 
213 	size_t			buflen;
214 	void			*buf;
215 	struct scatterlist	aligned_sg;
216 	struct scatterlist	*real_dst;
217 
218 	struct atmel_aes_caps	caps;
219 
220 	u32			hw_version;
221 };
222 
223 struct atmel_aes_drv {
224 	struct list_head	dev_list;
225 	spinlock_t		lock;
226 };
227 
228 static struct atmel_aes_drv atmel_aes = {
229 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232 
233 #ifdef VERBOSE_DEBUG
234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236 	switch (offset) {
237 	case AES_CR:
238 		return "CR";
239 
240 	case AES_MR:
241 		return "MR";
242 
243 	case AES_ISR:
244 		return "ISR";
245 
246 	case AES_IMR:
247 		return "IMR";
248 
249 	case AES_IER:
250 		return "IER";
251 
252 	case AES_IDR:
253 		return "IDR";
254 
255 	case AES_KEYWR(0):
256 	case AES_KEYWR(1):
257 	case AES_KEYWR(2):
258 	case AES_KEYWR(3):
259 	case AES_KEYWR(4):
260 	case AES_KEYWR(5):
261 	case AES_KEYWR(6):
262 	case AES_KEYWR(7):
263 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 		break;
265 
266 	case AES_IDATAR(0):
267 	case AES_IDATAR(1):
268 	case AES_IDATAR(2):
269 	case AES_IDATAR(3):
270 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 		break;
272 
273 	case AES_ODATAR(0):
274 	case AES_ODATAR(1):
275 	case AES_ODATAR(2):
276 	case AES_ODATAR(3):
277 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 		break;
279 
280 	case AES_IVR(0):
281 	case AES_IVR(1):
282 	case AES_IVR(2):
283 	case AES_IVR(3):
284 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 		break;
286 
287 	case AES_AADLENR:
288 		return "AADLENR";
289 
290 	case AES_CLENR:
291 		return "CLENR";
292 
293 	case AES_GHASHR(0):
294 	case AES_GHASHR(1):
295 	case AES_GHASHR(2):
296 	case AES_GHASHR(3):
297 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 		break;
299 
300 	case AES_TAGR(0):
301 	case AES_TAGR(1):
302 	case AES_TAGR(2):
303 	case AES_TAGR(3):
304 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 		break;
306 
307 	case AES_CTRR:
308 		return "CTRR";
309 
310 	case AES_GCMHR(0):
311 	case AES_GCMHR(1):
312 	case AES_GCMHR(2):
313 	case AES_GCMHR(3):
314 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 		break;
316 
317 	case AES_EMR:
318 		return "EMR";
319 
320 	case AES_TWR(0):
321 	case AES_TWR(1):
322 	case AES_TWR(2):
323 	case AES_TWR(3):
324 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 		break;
326 
327 	case AES_ALPHAR(0):
328 	case AES_ALPHAR(1):
329 	case AES_ALPHAR(2):
330 	case AES_ALPHAR(3):
331 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 		break;
333 
334 	default:
335 		snprintf(tmp, sz, "0x%02x", offset);
336 		break;
337 	}
338 
339 	return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342 
343 /* Shared functions */
344 
345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347 	u32 value = readl_relaxed(dd->io_base + offset);
348 
349 #ifdef VERBOSE_DEBUG
350 	if (dd->flags & AES_FLAGS_DUMP_REG) {
351 		char tmp[16];
352 
353 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355 	}
356 #endif /* VERBOSE_DEBUG */
357 
358 	return value;
359 }
360 
361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 					u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365 	if (dd->flags & AES_FLAGS_DUMP_REG) {
366 		char tmp[16];
367 
368 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 	}
371 #endif /* VERBOSE_DEBUG */
372 
373 	writel_relaxed(value, dd->io_base + offset);
374 }
375 
376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 					u32 *value, int count)
378 {
379 	for (; count--; value++, offset += 4)
380 		*value = atmel_aes_read(dd, offset);
381 }
382 
383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 			      const u32 *value, int count)
385 {
386 	for (; count--; value++, offset += 4)
387 		atmel_aes_write(dd, offset, *value);
388 }
389 
390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 					u32 *value)
392 {
393 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395 
396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 					 const u32 *value)
398 {
399 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401 
402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 						atmel_aes_fn_t resume)
404 {
405 	u32 isr = atmel_aes_read(dd, AES_ISR);
406 
407 	if (unlikely(isr & AES_INT_DATARDY))
408 		return resume(dd);
409 
410 	dd->resume = resume;
411 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 	return -EINPROGRESS;
413 }
414 
415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417 	len &= block_size - 1;
418 	return len ? block_size - len : 0;
419 }
420 
421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423 	struct atmel_aes_dev *aes_dd = NULL;
424 	struct atmel_aes_dev *tmp;
425 
426 	spin_lock_bh(&atmel_aes.lock);
427 	if (!ctx->dd) {
428 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 			aes_dd = tmp;
430 			break;
431 		}
432 		ctx->dd = aes_dd;
433 	} else {
434 		aes_dd = ctx->dd;
435 	}
436 
437 	spin_unlock_bh(&atmel_aes.lock);
438 
439 	return aes_dd;
440 }
441 
442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444 	int err;
445 
446 	err = clk_enable(dd->iclk);
447 	if (err)
448 		return err;
449 
450 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
451 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
452 
453 	return 0;
454 }
455 
456 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
457 {
458 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
459 }
460 
461 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
462 {
463 	int err;
464 
465 	err = atmel_aes_hw_init(dd);
466 	if (err)
467 		return err;
468 
469 	dd->hw_version = atmel_aes_get_version(dd);
470 
471 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
472 
473 	clk_disable(dd->iclk);
474 	return 0;
475 }
476 
477 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
478 				      const struct atmel_aes_reqctx *rctx)
479 {
480 	/* Clear all but persistent flags and set request flags. */
481 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
482 }
483 
484 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
485 {
486 	return (dd->flags & AES_FLAGS_ENCRYPT);
487 }
488 
489 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
490 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
491 #endif
492 
493 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
494 {
495 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
496 	if (dd->ctx->is_aead)
497 		atmel_aes_authenc_complete(dd, err);
498 #endif
499 
500 	clk_disable(dd->iclk);
501 	dd->flags &= ~AES_FLAGS_BUSY;
502 
503 	if (!dd->ctx->is_aead) {
504 		struct ablkcipher_request *req =
505 			ablkcipher_request_cast(dd->areq);
506 		struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
507 		struct crypto_ablkcipher *ablkcipher =
508 			crypto_ablkcipher_reqtfm(req);
509 		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
510 
511 		if (rctx->mode & AES_FLAGS_ENCRYPT) {
512 			scatterwalk_map_and_copy(req->info, req->dst,
513 				req->nbytes - ivsize, ivsize, 0);
514 		} else {
515 			if (req->src == req->dst) {
516 				memcpy(req->info, rctx->lastc, ivsize);
517 			} else {
518 				scatterwalk_map_and_copy(req->info, req->src,
519 					req->nbytes - ivsize, ivsize, 0);
520 			}
521 		}
522 	}
523 
524 	if (dd->is_async)
525 		dd->areq->complete(dd->areq, err);
526 
527 	tasklet_schedule(&dd->queue_task);
528 
529 	return err;
530 }
531 
532 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
533 				     const u32 *iv, const u32 *key, int keylen)
534 {
535 	u32 valmr = 0;
536 
537 	/* MR register must be set before IV registers */
538 	if (keylen == AES_KEYSIZE_128)
539 		valmr |= AES_MR_KEYSIZE_128;
540 	else if (keylen == AES_KEYSIZE_192)
541 		valmr |= AES_MR_KEYSIZE_192;
542 	else
543 		valmr |= AES_MR_KEYSIZE_256;
544 
545 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
546 
547 	if (use_dma) {
548 		valmr |= AES_MR_SMOD_IDATAR0;
549 		if (dd->caps.has_dualbuff)
550 			valmr |= AES_MR_DUALBUFF;
551 	} else {
552 		valmr |= AES_MR_SMOD_AUTO;
553 	}
554 
555 	atmel_aes_write(dd, AES_MR, valmr);
556 
557 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
558 
559 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
560 		atmel_aes_write_block(dd, AES_IVR(0), iv);
561 }
562 
563 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
564 					const u32 *iv)
565 
566 {
567 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
568 				 dd->ctx->key, dd->ctx->keylen);
569 }
570 
571 /* CPU transfer */
572 
573 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
574 {
575 	int err = 0;
576 	u32 isr;
577 
578 	for (;;) {
579 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
580 		dd->data += 4;
581 		dd->datalen -= AES_BLOCK_SIZE;
582 
583 		if (dd->datalen < AES_BLOCK_SIZE)
584 			break;
585 
586 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
587 
588 		isr = atmel_aes_read(dd, AES_ISR);
589 		if (!(isr & AES_INT_DATARDY)) {
590 			dd->resume = atmel_aes_cpu_transfer;
591 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
592 			return -EINPROGRESS;
593 		}
594 	}
595 
596 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
597 				 dd->buf, dd->total))
598 		err = -EINVAL;
599 
600 	if (err)
601 		return atmel_aes_complete(dd, err);
602 
603 	return dd->cpu_transfer_complete(dd);
604 }
605 
606 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
607 			       struct scatterlist *src,
608 			       struct scatterlist *dst,
609 			       size_t len,
610 			       atmel_aes_fn_t resume)
611 {
612 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
613 
614 	if (unlikely(len == 0))
615 		return -EINVAL;
616 
617 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
618 
619 	dd->total = len;
620 	dd->real_dst = dst;
621 	dd->cpu_transfer_complete = resume;
622 	dd->datalen = len + padlen;
623 	dd->data = (u32 *)dd->buf;
624 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
625 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
626 }
627 
628 
629 /* DMA transfer */
630 
631 static void atmel_aes_dma_callback(void *data);
632 
633 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
634 				    struct scatterlist *sg,
635 				    size_t len,
636 				    struct atmel_aes_dma *dma)
637 {
638 	int nents;
639 
640 	if (!IS_ALIGNED(len, dd->ctx->block_size))
641 		return false;
642 
643 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
644 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
645 			return false;
646 
647 		if (len <= sg->length) {
648 			if (!IS_ALIGNED(len, dd->ctx->block_size))
649 				return false;
650 
651 			dma->nents = nents+1;
652 			dma->remainder = sg->length - len;
653 			sg->length = len;
654 			return true;
655 		}
656 
657 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
658 			return false;
659 
660 		len -= sg->length;
661 	}
662 
663 	return false;
664 }
665 
666 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
667 {
668 	struct scatterlist *sg = dma->sg;
669 	int nents = dma->nents;
670 
671 	if (!dma->remainder)
672 		return;
673 
674 	while (--nents > 0 && sg)
675 		sg = sg_next(sg);
676 
677 	if (!sg)
678 		return;
679 
680 	sg->length += dma->remainder;
681 }
682 
683 static int atmel_aes_map(struct atmel_aes_dev *dd,
684 			 struct scatterlist *src,
685 			 struct scatterlist *dst,
686 			 size_t len)
687 {
688 	bool src_aligned, dst_aligned;
689 	size_t padlen;
690 
691 	dd->total = len;
692 	dd->src.sg = src;
693 	dd->dst.sg = dst;
694 	dd->real_dst = dst;
695 
696 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
697 	if (src == dst)
698 		dst_aligned = src_aligned;
699 	else
700 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
701 	if (!src_aligned || !dst_aligned) {
702 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
703 
704 		if (dd->buflen < len + padlen)
705 			return -ENOMEM;
706 
707 		if (!src_aligned) {
708 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
709 			dd->src.sg = &dd->aligned_sg;
710 			dd->src.nents = 1;
711 			dd->src.remainder = 0;
712 		}
713 
714 		if (!dst_aligned) {
715 			dd->dst.sg = &dd->aligned_sg;
716 			dd->dst.nents = 1;
717 			dd->dst.remainder = 0;
718 		}
719 
720 		sg_init_table(&dd->aligned_sg, 1);
721 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
722 	}
723 
724 	if (dd->src.sg == dd->dst.sg) {
725 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
726 					    DMA_BIDIRECTIONAL);
727 		dd->dst.sg_len = dd->src.sg_len;
728 		if (!dd->src.sg_len)
729 			return -EFAULT;
730 	} else {
731 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
732 					    DMA_TO_DEVICE);
733 		if (!dd->src.sg_len)
734 			return -EFAULT;
735 
736 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
737 					    DMA_FROM_DEVICE);
738 		if (!dd->dst.sg_len) {
739 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
740 				     DMA_TO_DEVICE);
741 			return -EFAULT;
742 		}
743 	}
744 
745 	return 0;
746 }
747 
748 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
749 {
750 	if (dd->src.sg == dd->dst.sg) {
751 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
752 			     DMA_BIDIRECTIONAL);
753 
754 		if (dd->src.sg != &dd->aligned_sg)
755 			atmel_aes_restore_sg(&dd->src);
756 	} else {
757 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
758 			     DMA_FROM_DEVICE);
759 
760 		if (dd->dst.sg != &dd->aligned_sg)
761 			atmel_aes_restore_sg(&dd->dst);
762 
763 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
764 			     DMA_TO_DEVICE);
765 
766 		if (dd->src.sg != &dd->aligned_sg)
767 			atmel_aes_restore_sg(&dd->src);
768 	}
769 
770 	if (dd->dst.sg == &dd->aligned_sg)
771 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
772 				    dd->buf, dd->total);
773 }
774 
775 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
776 					enum dma_slave_buswidth addr_width,
777 					enum dma_transfer_direction dir,
778 					u32 maxburst)
779 {
780 	struct dma_async_tx_descriptor *desc;
781 	struct dma_slave_config config;
782 	dma_async_tx_callback callback;
783 	struct atmel_aes_dma *dma;
784 	int err;
785 
786 	memset(&config, 0, sizeof(config));
787 	config.direction = dir;
788 	config.src_addr_width = addr_width;
789 	config.dst_addr_width = addr_width;
790 	config.src_maxburst = maxburst;
791 	config.dst_maxburst = maxburst;
792 
793 	switch (dir) {
794 	case DMA_MEM_TO_DEV:
795 		dma = &dd->src;
796 		callback = NULL;
797 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
798 		break;
799 
800 	case DMA_DEV_TO_MEM:
801 		dma = &dd->dst;
802 		callback = atmel_aes_dma_callback;
803 		config.src_addr = dd->phys_base + AES_ODATAR(0);
804 		break;
805 
806 	default:
807 		return -EINVAL;
808 	}
809 
810 	err = dmaengine_slave_config(dma->chan, &config);
811 	if (err)
812 		return err;
813 
814 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
815 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
816 	if (!desc)
817 		return -ENOMEM;
818 
819 	desc->callback = callback;
820 	desc->callback_param = dd;
821 	dmaengine_submit(desc);
822 	dma_async_issue_pending(dma->chan);
823 
824 	return 0;
825 }
826 
827 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
828 					enum dma_transfer_direction dir)
829 {
830 	struct atmel_aes_dma *dma;
831 
832 	switch (dir) {
833 	case DMA_MEM_TO_DEV:
834 		dma = &dd->src;
835 		break;
836 
837 	case DMA_DEV_TO_MEM:
838 		dma = &dd->dst;
839 		break;
840 
841 	default:
842 		return;
843 	}
844 
845 	dmaengine_terminate_all(dma->chan);
846 }
847 
848 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
849 			       struct scatterlist *src,
850 			       struct scatterlist *dst,
851 			       size_t len,
852 			       atmel_aes_fn_t resume)
853 {
854 	enum dma_slave_buswidth addr_width;
855 	u32 maxburst;
856 	int err;
857 
858 	switch (dd->ctx->block_size) {
859 	case CFB8_BLOCK_SIZE:
860 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
861 		maxburst = 1;
862 		break;
863 
864 	case CFB16_BLOCK_SIZE:
865 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
866 		maxburst = 1;
867 		break;
868 
869 	case CFB32_BLOCK_SIZE:
870 	case CFB64_BLOCK_SIZE:
871 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
872 		maxburst = 1;
873 		break;
874 
875 	case AES_BLOCK_SIZE:
876 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
877 		maxburst = dd->caps.max_burst_size;
878 		break;
879 
880 	default:
881 		err = -EINVAL;
882 		goto exit;
883 	}
884 
885 	err = atmel_aes_map(dd, src, dst, len);
886 	if (err)
887 		goto exit;
888 
889 	dd->resume = resume;
890 
891 	/* Set output DMA transfer first */
892 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
893 					   maxburst);
894 	if (err)
895 		goto unmap;
896 
897 	/* Then set input DMA transfer */
898 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
899 					   maxburst);
900 	if (err)
901 		goto output_transfer_stop;
902 
903 	return -EINPROGRESS;
904 
905 output_transfer_stop:
906 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
907 unmap:
908 	atmel_aes_unmap(dd);
909 exit:
910 	return atmel_aes_complete(dd, err);
911 }
912 
913 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
914 {
915 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
916 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
917 	atmel_aes_unmap(dd);
918 }
919 
920 static void atmel_aes_dma_callback(void *data)
921 {
922 	struct atmel_aes_dev *dd = data;
923 
924 	atmel_aes_dma_stop(dd);
925 	dd->is_async = true;
926 	(void)dd->resume(dd);
927 }
928 
929 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
930 				  struct crypto_async_request *new_areq)
931 {
932 	struct crypto_async_request *areq, *backlog;
933 	struct atmel_aes_base_ctx *ctx;
934 	unsigned long flags;
935 	bool start_async;
936 	int err, ret = 0;
937 
938 	spin_lock_irqsave(&dd->lock, flags);
939 	if (new_areq)
940 		ret = crypto_enqueue_request(&dd->queue, new_areq);
941 	if (dd->flags & AES_FLAGS_BUSY) {
942 		spin_unlock_irqrestore(&dd->lock, flags);
943 		return ret;
944 	}
945 	backlog = crypto_get_backlog(&dd->queue);
946 	areq = crypto_dequeue_request(&dd->queue);
947 	if (areq)
948 		dd->flags |= AES_FLAGS_BUSY;
949 	spin_unlock_irqrestore(&dd->lock, flags);
950 
951 	if (!areq)
952 		return ret;
953 
954 	if (backlog)
955 		backlog->complete(backlog, -EINPROGRESS);
956 
957 	ctx = crypto_tfm_ctx(areq->tfm);
958 
959 	dd->areq = areq;
960 	dd->ctx = ctx;
961 	start_async = (areq != new_areq);
962 	dd->is_async = start_async;
963 
964 	/* WARNING: ctx->start() MAY change dd->is_async. */
965 	err = ctx->start(dd);
966 	return (start_async) ? ret : err;
967 }
968 
969 
970 /* AES async block ciphers */
971 
972 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
973 {
974 	return atmel_aes_complete(dd, 0);
975 }
976 
977 static int atmel_aes_start(struct atmel_aes_dev *dd)
978 {
979 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
980 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
981 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
982 			dd->ctx->block_size != AES_BLOCK_SIZE);
983 	int err;
984 
985 	atmel_aes_set_mode(dd, rctx);
986 
987 	err = atmel_aes_hw_init(dd);
988 	if (err)
989 		return atmel_aes_complete(dd, err);
990 
991 	atmel_aes_write_ctrl(dd, use_dma, req->info);
992 	if (use_dma)
993 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
994 					   atmel_aes_transfer_complete);
995 
996 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
997 				   atmel_aes_transfer_complete);
998 }
999 
1000 static inline struct atmel_aes_ctr_ctx *
1001 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1002 {
1003 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1004 }
1005 
1006 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1007 {
1008 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1009 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1010 	struct scatterlist *src, *dst;
1011 	u32 ctr, blocks;
1012 	size_t datalen;
1013 	bool use_dma, fragmented = false;
1014 
1015 	/* Check for transfer completion. */
1016 	ctx->offset += dd->total;
1017 	if (ctx->offset >= req->nbytes)
1018 		return atmel_aes_transfer_complete(dd);
1019 
1020 	/* Compute data length. */
1021 	datalen = req->nbytes - ctx->offset;
1022 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1023 	ctr = be32_to_cpu(ctx->iv[3]);
1024 	if (dd->caps.has_ctr32) {
1025 		/* Check 32bit counter overflow. */
1026 		u32 start = ctr;
1027 		u32 end = start + blocks - 1;
1028 
1029 		if (end < start) {
1030 			ctr |= 0xffffffff;
1031 			datalen = AES_BLOCK_SIZE * -start;
1032 			fragmented = true;
1033 		}
1034 	} else {
1035 		/* Check 16bit counter overflow. */
1036 		u16 start = ctr & 0xffff;
1037 		u16 end = start + (u16)blocks - 1;
1038 
1039 		if (blocks >> 16 || end < start) {
1040 			ctr |= 0xffff;
1041 			datalen = AES_BLOCK_SIZE * (0x10000-start);
1042 			fragmented = true;
1043 		}
1044 	}
1045 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1046 
1047 	/* Jump to offset. */
1048 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1049 	dst = ((req->src == req->dst) ? src :
1050 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1051 
1052 	/* Configure hardware. */
1053 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1054 	if (unlikely(fragmented)) {
1055 		/*
1056 		 * Increment the counter manually to cope with the hardware
1057 		 * counter overflow.
1058 		 */
1059 		ctx->iv[3] = cpu_to_be32(ctr);
1060 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1061 	}
1062 
1063 	if (use_dma)
1064 		return atmel_aes_dma_start(dd, src, dst, datalen,
1065 					   atmel_aes_ctr_transfer);
1066 
1067 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1068 				   atmel_aes_ctr_transfer);
1069 }
1070 
1071 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1072 {
1073 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1074 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1075 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1076 	int err;
1077 
1078 	atmel_aes_set_mode(dd, rctx);
1079 
1080 	err = atmel_aes_hw_init(dd);
1081 	if (err)
1082 		return atmel_aes_complete(dd, err);
1083 
1084 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1085 	ctx->offset = 0;
1086 	dd->total = 0;
1087 	return atmel_aes_ctr_transfer(dd);
1088 }
1089 
1090 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1091 {
1092 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1093 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1094 	struct atmel_aes_reqctx *rctx;
1095 	struct atmel_aes_dev *dd;
1096 
1097 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1098 	case AES_FLAGS_CFB8:
1099 		ctx->block_size = CFB8_BLOCK_SIZE;
1100 		break;
1101 
1102 	case AES_FLAGS_CFB16:
1103 		ctx->block_size = CFB16_BLOCK_SIZE;
1104 		break;
1105 
1106 	case AES_FLAGS_CFB32:
1107 		ctx->block_size = CFB32_BLOCK_SIZE;
1108 		break;
1109 
1110 	case AES_FLAGS_CFB64:
1111 		ctx->block_size = CFB64_BLOCK_SIZE;
1112 		break;
1113 
1114 	default:
1115 		ctx->block_size = AES_BLOCK_SIZE;
1116 		break;
1117 	}
1118 	ctx->is_aead = false;
1119 
1120 	dd = atmel_aes_find_dev(ctx);
1121 	if (!dd)
1122 		return -ENODEV;
1123 
1124 	rctx = ablkcipher_request_ctx(req);
1125 	rctx->mode = mode;
1126 
1127 	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1128 		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1129 
1130 		scatterwalk_map_and_copy(rctx->lastc, req->src,
1131 			(req->nbytes - ivsize), ivsize, 0);
1132 	}
1133 
1134 	return atmel_aes_handle_queue(dd, &req->base);
1135 }
1136 
1137 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138 			   unsigned int keylen)
1139 {
1140 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1141 
1142 	if (keylen != AES_KEYSIZE_128 &&
1143 	    keylen != AES_KEYSIZE_192 &&
1144 	    keylen != AES_KEYSIZE_256) {
1145 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146 		return -EINVAL;
1147 	}
1148 
1149 	memcpy(ctx->key, key, keylen);
1150 	ctx->keylen = keylen;
1151 
1152 	return 0;
1153 }
1154 
1155 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1156 {
1157 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1158 }
1159 
1160 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1161 {
1162 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1163 }
1164 
1165 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1166 {
1167 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1168 }
1169 
1170 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1171 {
1172 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1173 }
1174 
1175 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1176 {
1177 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1178 }
1179 
1180 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1181 {
1182 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1183 }
1184 
1185 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1186 {
1187 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1188 }
1189 
1190 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1191 {
1192 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1193 }
1194 
1195 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1196 {
1197 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1198 }
1199 
1200 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1201 {
1202 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1203 }
1204 
1205 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1206 {
1207 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1208 }
1209 
1210 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1211 {
1212 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1213 }
1214 
1215 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1216 {
1217 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1218 }
1219 
1220 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1221 {
1222 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1223 }
1224 
1225 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1226 {
1227 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1228 }
1229 
1230 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1231 {
1232 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1233 }
1234 
1235 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1236 {
1237 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1238 }
1239 
1240 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1241 {
1242 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1243 }
1244 
1245 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1246 {
1247 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1248 
1249 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1250 	ctx->base.start = atmel_aes_start;
1251 
1252 	return 0;
1253 }
1254 
1255 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1256 {
1257 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1258 
1259 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1260 	ctx->base.start = atmel_aes_ctr_start;
1261 
1262 	return 0;
1263 }
1264 
1265 static struct crypto_alg aes_algs[] = {
1266 {
1267 	.cra_name		= "ecb(aes)",
1268 	.cra_driver_name	= "atmel-ecb-aes",
1269 	.cra_priority		= ATMEL_AES_PRIORITY,
1270 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271 	.cra_blocksize		= AES_BLOCK_SIZE,
1272 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1273 	.cra_alignmask		= 0xf,
1274 	.cra_type		= &crypto_ablkcipher_type,
1275 	.cra_module		= THIS_MODULE,
1276 	.cra_init		= atmel_aes_cra_init,
1277 	.cra_u.ablkcipher = {
1278 		.min_keysize	= AES_MIN_KEY_SIZE,
1279 		.max_keysize	= AES_MAX_KEY_SIZE,
1280 		.setkey		= atmel_aes_setkey,
1281 		.encrypt	= atmel_aes_ecb_encrypt,
1282 		.decrypt	= atmel_aes_ecb_decrypt,
1283 	}
1284 },
1285 {
1286 	.cra_name		= "cbc(aes)",
1287 	.cra_driver_name	= "atmel-cbc-aes",
1288 	.cra_priority		= ATMEL_AES_PRIORITY,
1289 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290 	.cra_blocksize		= AES_BLOCK_SIZE,
1291 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1292 	.cra_alignmask		= 0xf,
1293 	.cra_type		= &crypto_ablkcipher_type,
1294 	.cra_module		= THIS_MODULE,
1295 	.cra_init		= atmel_aes_cra_init,
1296 	.cra_u.ablkcipher = {
1297 		.min_keysize	= AES_MIN_KEY_SIZE,
1298 		.max_keysize	= AES_MAX_KEY_SIZE,
1299 		.ivsize		= AES_BLOCK_SIZE,
1300 		.setkey		= atmel_aes_setkey,
1301 		.encrypt	= atmel_aes_cbc_encrypt,
1302 		.decrypt	= atmel_aes_cbc_decrypt,
1303 	}
1304 },
1305 {
1306 	.cra_name		= "ofb(aes)",
1307 	.cra_driver_name	= "atmel-ofb-aes",
1308 	.cra_priority		= ATMEL_AES_PRIORITY,
1309 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310 	.cra_blocksize		= AES_BLOCK_SIZE,
1311 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1312 	.cra_alignmask		= 0xf,
1313 	.cra_type		= &crypto_ablkcipher_type,
1314 	.cra_module		= THIS_MODULE,
1315 	.cra_init		= atmel_aes_cra_init,
1316 	.cra_u.ablkcipher = {
1317 		.min_keysize	= AES_MIN_KEY_SIZE,
1318 		.max_keysize	= AES_MAX_KEY_SIZE,
1319 		.ivsize		= AES_BLOCK_SIZE,
1320 		.setkey		= atmel_aes_setkey,
1321 		.encrypt	= atmel_aes_ofb_encrypt,
1322 		.decrypt	= atmel_aes_ofb_decrypt,
1323 	}
1324 },
1325 {
1326 	.cra_name		= "cfb(aes)",
1327 	.cra_driver_name	= "atmel-cfb-aes",
1328 	.cra_priority		= ATMEL_AES_PRIORITY,
1329 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330 	.cra_blocksize		= AES_BLOCK_SIZE,
1331 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1332 	.cra_alignmask		= 0xf,
1333 	.cra_type		= &crypto_ablkcipher_type,
1334 	.cra_module		= THIS_MODULE,
1335 	.cra_init		= atmel_aes_cra_init,
1336 	.cra_u.ablkcipher = {
1337 		.min_keysize	= AES_MIN_KEY_SIZE,
1338 		.max_keysize	= AES_MAX_KEY_SIZE,
1339 		.ivsize		= AES_BLOCK_SIZE,
1340 		.setkey		= atmel_aes_setkey,
1341 		.encrypt	= atmel_aes_cfb_encrypt,
1342 		.decrypt	= atmel_aes_cfb_decrypt,
1343 	}
1344 },
1345 {
1346 	.cra_name		= "cfb32(aes)",
1347 	.cra_driver_name	= "atmel-cfb32-aes",
1348 	.cra_priority		= ATMEL_AES_PRIORITY,
1349 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1351 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1352 	.cra_alignmask		= 0x3,
1353 	.cra_type		= &crypto_ablkcipher_type,
1354 	.cra_module		= THIS_MODULE,
1355 	.cra_init		= atmel_aes_cra_init,
1356 	.cra_u.ablkcipher = {
1357 		.min_keysize	= AES_MIN_KEY_SIZE,
1358 		.max_keysize	= AES_MAX_KEY_SIZE,
1359 		.ivsize		= AES_BLOCK_SIZE,
1360 		.setkey		= atmel_aes_setkey,
1361 		.encrypt	= atmel_aes_cfb32_encrypt,
1362 		.decrypt	= atmel_aes_cfb32_decrypt,
1363 	}
1364 },
1365 {
1366 	.cra_name		= "cfb16(aes)",
1367 	.cra_driver_name	= "atmel-cfb16-aes",
1368 	.cra_priority		= ATMEL_AES_PRIORITY,
1369 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1371 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1372 	.cra_alignmask		= 0x1,
1373 	.cra_type		= &crypto_ablkcipher_type,
1374 	.cra_module		= THIS_MODULE,
1375 	.cra_init		= atmel_aes_cra_init,
1376 	.cra_u.ablkcipher = {
1377 		.min_keysize	= AES_MIN_KEY_SIZE,
1378 		.max_keysize	= AES_MAX_KEY_SIZE,
1379 		.ivsize		= AES_BLOCK_SIZE,
1380 		.setkey		= atmel_aes_setkey,
1381 		.encrypt	= atmel_aes_cfb16_encrypt,
1382 		.decrypt	= atmel_aes_cfb16_decrypt,
1383 	}
1384 },
1385 {
1386 	.cra_name		= "cfb8(aes)",
1387 	.cra_driver_name	= "atmel-cfb8-aes",
1388 	.cra_priority		= ATMEL_AES_PRIORITY,
1389 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1391 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1392 	.cra_alignmask		= 0x0,
1393 	.cra_type		= &crypto_ablkcipher_type,
1394 	.cra_module		= THIS_MODULE,
1395 	.cra_init		= atmel_aes_cra_init,
1396 	.cra_u.ablkcipher = {
1397 		.min_keysize	= AES_MIN_KEY_SIZE,
1398 		.max_keysize	= AES_MAX_KEY_SIZE,
1399 		.ivsize		= AES_BLOCK_SIZE,
1400 		.setkey		= atmel_aes_setkey,
1401 		.encrypt	= atmel_aes_cfb8_encrypt,
1402 		.decrypt	= atmel_aes_cfb8_decrypt,
1403 	}
1404 },
1405 {
1406 	.cra_name		= "ctr(aes)",
1407 	.cra_driver_name	= "atmel-ctr-aes",
1408 	.cra_priority		= ATMEL_AES_PRIORITY,
1409 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410 	.cra_blocksize		= 1,
1411 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1412 	.cra_alignmask		= 0xf,
1413 	.cra_type		= &crypto_ablkcipher_type,
1414 	.cra_module		= THIS_MODULE,
1415 	.cra_init		= atmel_aes_ctr_cra_init,
1416 	.cra_u.ablkcipher = {
1417 		.min_keysize	= AES_MIN_KEY_SIZE,
1418 		.max_keysize	= AES_MAX_KEY_SIZE,
1419 		.ivsize		= AES_BLOCK_SIZE,
1420 		.setkey		= atmel_aes_setkey,
1421 		.encrypt	= atmel_aes_ctr_encrypt,
1422 		.decrypt	= atmel_aes_ctr_decrypt,
1423 	}
1424 },
1425 };
1426 
1427 static struct crypto_alg aes_cfb64_alg = {
1428 	.cra_name		= "cfb64(aes)",
1429 	.cra_driver_name	= "atmel-cfb64-aes",
1430 	.cra_priority		= ATMEL_AES_PRIORITY,
1431 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1433 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1434 	.cra_alignmask		= 0x7,
1435 	.cra_type		= &crypto_ablkcipher_type,
1436 	.cra_module		= THIS_MODULE,
1437 	.cra_init		= atmel_aes_cra_init,
1438 	.cra_u.ablkcipher = {
1439 		.min_keysize	= AES_MIN_KEY_SIZE,
1440 		.max_keysize	= AES_MAX_KEY_SIZE,
1441 		.ivsize		= AES_BLOCK_SIZE,
1442 		.setkey		= atmel_aes_setkey,
1443 		.encrypt	= atmel_aes_cfb64_encrypt,
1444 		.decrypt	= atmel_aes_cfb64_decrypt,
1445 	}
1446 };
1447 
1448 
1449 /* gcm aead functions */
1450 
1451 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452 			       const u32 *data, size_t datalen,
1453 			       const u32 *ghash_in, u32 *ghash_out,
1454 			       atmel_aes_fn_t resume);
1455 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1457 
1458 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1465 
1466 static inline struct atmel_aes_gcm_ctx *
1467 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1468 {
1469 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1470 }
1471 
1472 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473 			       const u32 *data, size_t datalen,
1474 			       const u32 *ghash_in, u32 *ghash_out,
1475 			       atmel_aes_fn_t resume)
1476 {
1477 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1478 
1479 	dd->data = (u32 *)data;
1480 	dd->datalen = datalen;
1481 	ctx->ghash_in = ghash_in;
1482 	ctx->ghash_out = ghash_out;
1483 	ctx->ghash_resume = resume;
1484 
1485 	atmel_aes_write_ctrl(dd, false, NULL);
1486 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1487 }
1488 
1489 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1490 {
1491 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1492 
1493 	/* Set the data length. */
1494 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1495 	atmel_aes_write(dd, AES_CLENR, 0);
1496 
1497 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498 	if (ctx->ghash_in)
1499 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1500 
1501 	return atmel_aes_gcm_ghash_finalize(dd);
1502 }
1503 
1504 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1505 {
1506 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507 	u32 isr;
1508 
1509 	/* Write data into the Input Data Registers. */
1510 	while (dd->datalen > 0) {
1511 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512 		dd->data += 4;
1513 		dd->datalen -= AES_BLOCK_SIZE;
1514 
1515 		isr = atmel_aes_read(dd, AES_ISR);
1516 		if (!(isr & AES_INT_DATARDY)) {
1517 			dd->resume = atmel_aes_gcm_ghash_finalize;
1518 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519 			return -EINPROGRESS;
1520 		}
1521 	}
1522 
1523 	/* Read the computed hash from GHASHRx. */
1524 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1525 
1526 	return ctx->ghash_resume(dd);
1527 }
1528 
1529 
1530 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1531 {
1532 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533 	struct aead_request *req = aead_request_cast(dd->areq);
1534 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536 	size_t ivsize = crypto_aead_ivsize(tfm);
1537 	size_t datalen, padlen;
1538 	const void *iv = req->iv;
1539 	u8 *data = dd->buf;
1540 	int err;
1541 
1542 	atmel_aes_set_mode(dd, rctx);
1543 
1544 	err = atmel_aes_hw_init(dd);
1545 	if (err)
1546 		return atmel_aes_complete(dd, err);
1547 
1548 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549 		memcpy(ctx->j0, iv, ivsize);
1550 		ctx->j0[3] = cpu_to_be32(1);
1551 		return atmel_aes_gcm_process(dd);
1552 	}
1553 
1554 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556 	if (datalen > dd->buflen)
1557 		return atmel_aes_complete(dd, -EINVAL);
1558 
1559 	memcpy(data, iv, ivsize);
1560 	memset(data + ivsize, 0, padlen + sizeof(u64));
1561 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1562 
1563 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564 				   NULL, ctx->j0, atmel_aes_gcm_process);
1565 }
1566 
1567 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1568 {
1569 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570 	struct aead_request *req = aead_request_cast(dd->areq);
1571 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572 	bool enc = atmel_aes_is_encrypt(dd);
1573 	u32 authsize;
1574 
1575 	/* Compute text length. */
1576 	authsize = crypto_aead_authsize(tfm);
1577 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1578 
1579 	/*
1580 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1581 	 * fails when both the message and its associated data are empty.
1582 	 */
1583 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584 		dd->flags |= AES_FLAGS_GTAGEN;
1585 
1586 	atmel_aes_write_ctrl(dd, false, NULL);
1587 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1588 }
1589 
1590 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1591 {
1592 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593 	struct aead_request *req = aead_request_cast(dd->areq);
1594 	u32 j0_lsw, *j0 = ctx->j0;
1595 	size_t padlen;
1596 
1597 	/* Write incr32(J0) into IV. */
1598 	j0_lsw = j0[3];
1599 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1601 	j0[3] = j0_lsw;
1602 
1603 	/* Set aad and text lengths. */
1604 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1606 
1607 	/* Check whether AAD are present. */
1608 	if (unlikely(req->assoclen == 0)) {
1609 		dd->datalen = 0;
1610 		return atmel_aes_gcm_data(dd);
1611 	}
1612 
1613 	/* Copy assoc data and add padding. */
1614 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615 	if (unlikely(req->assoclen + padlen > dd->buflen))
1616 		return atmel_aes_complete(dd, -EINVAL);
1617 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1618 
1619 	/* Write assoc data into the Input Data register. */
1620 	dd->data = (u32 *)dd->buf;
1621 	dd->datalen = req->assoclen + padlen;
1622 	return atmel_aes_gcm_data(dd);
1623 }
1624 
1625 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1626 {
1627 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628 	struct aead_request *req = aead_request_cast(dd->areq);
1629 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630 	struct scatterlist *src, *dst;
1631 	u32 isr, mr;
1632 
1633 	/* Write AAD first. */
1634 	while (dd->datalen > 0) {
1635 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636 		dd->data += 4;
1637 		dd->datalen -= AES_BLOCK_SIZE;
1638 
1639 		isr = atmel_aes_read(dd, AES_ISR);
1640 		if (!(isr & AES_INT_DATARDY)) {
1641 			dd->resume = atmel_aes_gcm_data;
1642 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643 			return -EINPROGRESS;
1644 		}
1645 	}
1646 
1647 	/* GMAC only. */
1648 	if (unlikely(ctx->textlen == 0))
1649 		return atmel_aes_gcm_tag_init(dd);
1650 
1651 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653 	dst = ((req->src == req->dst) ? src :
1654 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1655 
1656 	if (use_dma) {
1657 		/* Update the Mode Register for DMA transfers. */
1658 		mr = atmel_aes_read(dd, AES_MR);
1659 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660 		mr |= AES_MR_SMOD_IDATAR0;
1661 		if (dd->caps.has_dualbuff)
1662 			mr |= AES_MR_DUALBUFF;
1663 		atmel_aes_write(dd, AES_MR, mr);
1664 
1665 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666 					   atmel_aes_gcm_tag_init);
1667 	}
1668 
1669 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670 				   atmel_aes_gcm_tag_init);
1671 }
1672 
1673 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1674 {
1675 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676 	struct aead_request *req = aead_request_cast(dd->areq);
1677 	u64 *data = dd->buf;
1678 
1679 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681 			dd->resume = atmel_aes_gcm_tag_init;
1682 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683 			return -EINPROGRESS;
1684 		}
1685 
1686 		return atmel_aes_gcm_finalize(dd);
1687 	}
1688 
1689 	/* Read the GCM Intermediate Hash Word Registers. */
1690 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1691 
1692 	data[0] = cpu_to_be64(req->assoclen * 8);
1693 	data[1] = cpu_to_be64(ctx->textlen * 8);
1694 
1695 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1697 }
1698 
1699 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1700 {
1701 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702 	unsigned long flags;
1703 
1704 	/*
1705 	 * Change mode to CTR to complete the tag generation.
1706 	 * Use J0 as Initialization Vector.
1707 	 */
1708 	flags = dd->flags;
1709 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710 	dd->flags |= AES_FLAGS_CTR;
1711 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1712 	dd->flags = flags;
1713 
1714 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1716 }
1717 
1718 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1719 {
1720 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721 	struct aead_request *req = aead_request_cast(dd->areq);
1722 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723 	bool enc = atmel_aes_is_encrypt(dd);
1724 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1725 	int err;
1726 
1727 	/* Read the computed tag. */
1728 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730 	else
1731 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1732 
1733 	offset = req->assoclen + ctx->textlen;
1734 	authsize = crypto_aead_authsize(tfm);
1735 	if (enc) {
1736 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737 		err = 0;
1738 	} else {
1739 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1741 	}
1742 
1743 	return atmel_aes_complete(dd, err);
1744 }
1745 
1746 static int atmel_aes_gcm_crypt(struct aead_request *req,
1747 			       unsigned long mode)
1748 {
1749 	struct atmel_aes_base_ctx *ctx;
1750 	struct atmel_aes_reqctx *rctx;
1751 	struct atmel_aes_dev *dd;
1752 
1753 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754 	ctx->block_size = AES_BLOCK_SIZE;
1755 	ctx->is_aead = true;
1756 
1757 	dd = atmel_aes_find_dev(ctx);
1758 	if (!dd)
1759 		return -ENODEV;
1760 
1761 	rctx = aead_request_ctx(req);
1762 	rctx->mode = AES_FLAGS_GCM | mode;
1763 
1764 	return atmel_aes_handle_queue(dd, &req->base);
1765 }
1766 
1767 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768 				unsigned int keylen)
1769 {
1770 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1771 
1772 	if (keylen != AES_KEYSIZE_256 &&
1773 	    keylen != AES_KEYSIZE_192 &&
1774 	    keylen != AES_KEYSIZE_128) {
1775 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776 		return -EINVAL;
1777 	}
1778 
1779 	memcpy(ctx->key, key, keylen);
1780 	ctx->keylen = keylen;
1781 
1782 	return 0;
1783 }
1784 
1785 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786 				     unsigned int authsize)
1787 {
1788 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789 	switch (authsize) {
1790 	case 4:
1791 	case 8:
1792 	case 12:
1793 	case 13:
1794 	case 14:
1795 	case 15:
1796 	case 16:
1797 		break;
1798 	default:
1799 		return -EINVAL;
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1806 {
1807 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1808 }
1809 
1810 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1811 {
1812 	return atmel_aes_gcm_crypt(req, 0);
1813 }
1814 
1815 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1816 {
1817 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1818 
1819 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1820 	ctx->base.start = atmel_aes_gcm_start;
1821 
1822 	return 0;
1823 }
1824 
1825 static struct aead_alg aes_gcm_alg = {
1826 	.setkey		= atmel_aes_gcm_setkey,
1827 	.setauthsize	= atmel_aes_gcm_setauthsize,
1828 	.encrypt	= atmel_aes_gcm_encrypt,
1829 	.decrypt	= atmel_aes_gcm_decrypt,
1830 	.init		= atmel_aes_gcm_init,
1831 	.ivsize		= GCM_AES_IV_SIZE,
1832 	.maxauthsize	= AES_BLOCK_SIZE,
1833 
1834 	.base = {
1835 		.cra_name		= "gcm(aes)",
1836 		.cra_driver_name	= "atmel-gcm-aes",
1837 		.cra_priority		= ATMEL_AES_PRIORITY,
1838 		.cra_flags		= CRYPTO_ALG_ASYNC,
1839 		.cra_blocksize		= 1,
1840 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1841 		.cra_alignmask		= 0xf,
1842 		.cra_module		= THIS_MODULE,
1843 	},
1844 };
1845 
1846 
1847 /* xts functions */
1848 
1849 static inline struct atmel_aes_xts_ctx *
1850 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1851 {
1852 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1853 }
1854 
1855 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1856 
1857 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1858 {
1859 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862 	unsigned long flags;
1863 	int err;
1864 
1865 	atmel_aes_set_mode(dd, rctx);
1866 
1867 	err = atmel_aes_hw_init(dd);
1868 	if (err)
1869 		return atmel_aes_complete(dd, err);
1870 
1871 	/* Compute the tweak value from req->info with ecb(aes). */
1872 	flags = dd->flags;
1873 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1874 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875 	atmel_aes_write_ctrl_key(dd, false, NULL,
1876 				 ctx->key2, ctx->base.keylen);
1877 	dd->flags = flags;
1878 
1879 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1881 }
1882 
1883 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1884 {
1885 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889 	u8 *tweak_bytes = (u8 *)tweak;
1890 	int i;
1891 
1892 	/* Read the computed ciphered tweak value. */
1893 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1894 	/*
1895 	 * Hardware quirk:
1896 	 * the order of the ciphered tweak bytes need to be reversed before
1897 	 * writing them into the ODATARx registers.
1898 	 */
1899 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1901 
1902 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903 		tweak_bytes[i] = tmp;
1904 	}
1905 
1906 	/* Process the data. */
1907 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1908 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910 	if (use_dma)
1911 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1912 					   atmel_aes_transfer_complete);
1913 
1914 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915 				   atmel_aes_transfer_complete);
1916 }
1917 
1918 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919 				unsigned int keylen)
1920 {
1921 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922 	int err;
1923 
1924 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1925 	if (err)
1926 		return err;
1927 
1928 	memcpy(ctx->base.key, key, keylen/2);
1929 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1930 	ctx->base.keylen = keylen/2;
1931 
1932 	return 0;
1933 }
1934 
1935 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1936 {
1937 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1938 }
1939 
1940 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1941 {
1942 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1943 }
1944 
1945 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1946 {
1947 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1948 
1949 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1950 	ctx->base.start = atmel_aes_xts_start;
1951 
1952 	return 0;
1953 }
1954 
1955 static struct crypto_alg aes_xts_alg = {
1956 	.cra_name		= "xts(aes)",
1957 	.cra_driver_name	= "atmel-xts-aes",
1958 	.cra_priority		= ATMEL_AES_PRIORITY,
1959 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960 	.cra_blocksize		= AES_BLOCK_SIZE,
1961 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1962 	.cra_alignmask		= 0xf,
1963 	.cra_type		= &crypto_ablkcipher_type,
1964 	.cra_module		= THIS_MODULE,
1965 	.cra_init		= atmel_aes_xts_cra_init,
1966 	.cra_u.ablkcipher = {
1967 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1968 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1969 		.ivsize		= AES_BLOCK_SIZE,
1970 		.setkey		= atmel_aes_xts_setkey,
1971 		.encrypt	= atmel_aes_xts_encrypt,
1972 		.decrypt	= atmel_aes_xts_decrypt,
1973 	}
1974 };
1975 
1976 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1977 /* authenc aead functions */
1978 
1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981 				  bool is_async);
1982 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983 				      bool is_async);
1984 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986 				   bool is_async);
1987 
1988 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1989 {
1990 	struct aead_request *req = aead_request_cast(dd->areq);
1991 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992 
1993 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994 		atmel_sha_authenc_abort(&rctx->auth_req);
1995 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1996 }
1997 
1998 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1999 {
2000 	struct aead_request *req = aead_request_cast(dd->areq);
2001 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004 	int err;
2005 
2006 	atmel_aes_set_mode(dd, &rctx->base);
2007 
2008 	err = atmel_aes_hw_init(dd);
2009 	if (err)
2010 		return atmel_aes_complete(dd, err);
2011 
2012 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013 					  atmel_aes_authenc_init, dd);
2014 }
2015 
2016 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017 				  bool is_async)
2018 {
2019 	struct aead_request *req = aead_request_cast(dd->areq);
2020 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2021 
2022 	if (is_async)
2023 		dd->is_async = true;
2024 	if (err)
2025 		return atmel_aes_complete(dd, err);
2026 
2027 	/* If here, we've got the ownership of the SHA device. */
2028 	dd->flags |= AES_FLAGS_OWN_SHA;
2029 
2030 	/* Configure the SHA device. */
2031 	return atmel_sha_authenc_init(&rctx->auth_req,
2032 				      req->src, req->assoclen,
2033 				      rctx->textlen,
2034 				      atmel_aes_authenc_transfer, dd);
2035 }
2036 
2037 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038 				      bool is_async)
2039 {
2040 	struct aead_request *req = aead_request_cast(dd->areq);
2041 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042 	bool enc = atmel_aes_is_encrypt(dd);
2043 	struct scatterlist *src, *dst;
2044 	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045 	u32 emr;
2046 
2047 	if (is_async)
2048 		dd->is_async = true;
2049 	if (err)
2050 		return atmel_aes_complete(dd, err);
2051 
2052 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054 	dst = src;
2055 
2056 	if (req->src != req->dst)
2057 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2058 
2059 	/* Configure the AES device. */
2060 	memcpy(iv, req->iv, sizeof(iv));
2061 
2062 	/*
2063 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064 	 * 'true' even if the data transfer is actually performed by the CPU (so
2065 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067 	 * must be set to *_MR_SMOD_IDATAR0.
2068 	 */
2069 	atmel_aes_write_ctrl(dd, true, iv);
2070 	emr = AES_EMR_PLIPEN;
2071 	if (!enc)
2072 		emr |= AES_EMR_PLIPD;
2073 	atmel_aes_write(dd, AES_EMR, emr);
2074 
2075 	/* Transfer data. */
2076 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077 				   atmel_aes_authenc_digest);
2078 }
2079 
2080 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2081 {
2082 	struct aead_request *req = aead_request_cast(dd->areq);
2083 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2084 
2085 	/* atmel_sha_authenc_final() releases the SHA device. */
2086 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2087 	return atmel_sha_authenc_final(&rctx->auth_req,
2088 				       rctx->digest, sizeof(rctx->digest),
2089 				       atmel_aes_authenc_final, dd);
2090 }
2091 
2092 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093 				   bool is_async)
2094 {
2095 	struct aead_request *req = aead_request_cast(dd->areq);
2096 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098 	bool enc = atmel_aes_is_encrypt(dd);
2099 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100 	u32 offs, authsize;
2101 
2102 	if (is_async)
2103 		dd->is_async = true;
2104 	if (err)
2105 		goto complete;
2106 
2107 	offs = req->assoclen + rctx->textlen;
2108 	authsize = crypto_aead_authsize(tfm);
2109 	if (enc) {
2110 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111 	} else {
2112 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113 		if (crypto_memneq(idigest, odigest, authsize))
2114 			err = -EBADMSG;
2115 	}
2116 
2117 complete:
2118 	return atmel_aes_complete(dd, err);
2119 }
2120 
2121 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122 				    unsigned int keylen)
2123 {
2124 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125 	struct crypto_authenc_keys keys;
2126 	u32 flags;
2127 	int err;
2128 
2129 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130 		goto badkey;
2131 
2132 	if (keys.enckeylen > sizeof(ctx->base.key))
2133 		goto badkey;
2134 
2135 	/* Save auth key. */
2136 	flags = crypto_aead_get_flags(tfm);
2137 	err = atmel_sha_authenc_setkey(ctx->auth,
2138 				       keys.authkey, keys.authkeylen,
2139 				       &flags);
2140 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141 	if (err) {
2142 		memzero_explicit(&keys, sizeof(keys));
2143 		return err;
2144 	}
2145 
2146 	/* Save enc key. */
2147 	ctx->base.keylen = keys.enckeylen;
2148 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2149 
2150 	memzero_explicit(&keys, sizeof(keys));
2151 	return 0;
2152 
2153 badkey:
2154 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155 	memzero_explicit(&keys, sizeof(keys));
2156 	return -EINVAL;
2157 }
2158 
2159 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160 				      unsigned long auth_mode)
2161 {
2162 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2164 
2165 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166 	if (IS_ERR(ctx->auth))
2167 		return PTR_ERR(ctx->auth);
2168 
2169 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170 				      auth_reqsize));
2171 	ctx->base.start = atmel_aes_authenc_start;
2172 
2173 	return 0;
2174 }
2175 
2176 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2177 {
2178 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2179 }
2180 
2181 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2182 {
2183 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2184 }
2185 
2186 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2187 {
2188 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2189 }
2190 
2191 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2192 {
2193 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2194 }
2195 
2196 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2197 {
2198 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2199 }
2200 
2201 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2202 {
2203 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2204 
2205 	atmel_sha_authenc_free(ctx->auth);
2206 }
2207 
2208 static int atmel_aes_authenc_crypt(struct aead_request *req,
2209 				   unsigned long mode)
2210 {
2211 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214 	u32 authsize = crypto_aead_authsize(tfm);
2215 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2216 	struct atmel_aes_dev *dd;
2217 
2218 	/* Compute text length. */
2219 	if (!enc && req->cryptlen < authsize)
2220 		return -EINVAL;
2221 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2222 
2223 	/*
2224 	 * Currently, empty messages are not supported yet:
2225 	 * the SHA auto-padding can be used only on non-empty messages.
2226 	 * Hence a special case needs to be implemented for empty message.
2227 	 */
2228 	if (!rctx->textlen && !req->assoclen)
2229 		return -EINVAL;
2230 
2231 	rctx->base.mode = mode;
2232 	ctx->block_size = AES_BLOCK_SIZE;
2233 	ctx->is_aead = true;
2234 
2235 	dd = atmel_aes_find_dev(ctx);
2236 	if (!dd)
2237 		return -ENODEV;
2238 
2239 	return atmel_aes_handle_queue(dd, &req->base);
2240 }
2241 
2242 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2243 {
2244 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2245 }
2246 
2247 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2248 {
2249 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2250 }
2251 
2252 static struct aead_alg aes_authenc_algs[] = {
2253 {
2254 	.setkey		= atmel_aes_authenc_setkey,
2255 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2256 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2257 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2258 	.exit		= atmel_aes_authenc_exit_tfm,
2259 	.ivsize		= AES_BLOCK_SIZE,
2260 	.maxauthsize	= SHA1_DIGEST_SIZE,
2261 
2262 	.base = {
2263 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2264 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2265 		.cra_priority		= ATMEL_AES_PRIORITY,
2266 		.cra_flags		= CRYPTO_ALG_ASYNC,
2267 		.cra_blocksize		= AES_BLOCK_SIZE,
2268 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2269 		.cra_alignmask		= 0xf,
2270 		.cra_module		= THIS_MODULE,
2271 	},
2272 },
2273 {
2274 	.setkey		= atmel_aes_authenc_setkey,
2275 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2278 	.exit		= atmel_aes_authenc_exit_tfm,
2279 	.ivsize		= AES_BLOCK_SIZE,
2280 	.maxauthsize	= SHA224_DIGEST_SIZE,
2281 
2282 	.base = {
2283 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2284 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2285 		.cra_priority		= ATMEL_AES_PRIORITY,
2286 		.cra_flags		= CRYPTO_ALG_ASYNC,
2287 		.cra_blocksize		= AES_BLOCK_SIZE,
2288 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2289 		.cra_alignmask		= 0xf,
2290 		.cra_module		= THIS_MODULE,
2291 	},
2292 },
2293 {
2294 	.setkey		= atmel_aes_authenc_setkey,
2295 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2296 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2297 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2298 	.exit		= atmel_aes_authenc_exit_tfm,
2299 	.ivsize		= AES_BLOCK_SIZE,
2300 	.maxauthsize	= SHA256_DIGEST_SIZE,
2301 
2302 	.base = {
2303 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2304 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2305 		.cra_priority		= ATMEL_AES_PRIORITY,
2306 		.cra_flags		= CRYPTO_ALG_ASYNC,
2307 		.cra_blocksize		= AES_BLOCK_SIZE,
2308 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2309 		.cra_alignmask		= 0xf,
2310 		.cra_module		= THIS_MODULE,
2311 	},
2312 },
2313 {
2314 	.setkey		= atmel_aes_authenc_setkey,
2315 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2316 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2317 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2318 	.exit		= atmel_aes_authenc_exit_tfm,
2319 	.ivsize		= AES_BLOCK_SIZE,
2320 	.maxauthsize	= SHA384_DIGEST_SIZE,
2321 
2322 	.base = {
2323 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2324 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2325 		.cra_priority		= ATMEL_AES_PRIORITY,
2326 		.cra_flags		= CRYPTO_ALG_ASYNC,
2327 		.cra_blocksize		= AES_BLOCK_SIZE,
2328 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2329 		.cra_alignmask		= 0xf,
2330 		.cra_module		= THIS_MODULE,
2331 	},
2332 },
2333 {
2334 	.setkey		= atmel_aes_authenc_setkey,
2335 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2336 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2337 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2338 	.exit		= atmel_aes_authenc_exit_tfm,
2339 	.ivsize		= AES_BLOCK_SIZE,
2340 	.maxauthsize	= SHA512_DIGEST_SIZE,
2341 
2342 	.base = {
2343 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2344 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2345 		.cra_priority		= ATMEL_AES_PRIORITY,
2346 		.cra_flags		= CRYPTO_ALG_ASYNC,
2347 		.cra_blocksize		= AES_BLOCK_SIZE,
2348 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2349 		.cra_alignmask		= 0xf,
2350 		.cra_module		= THIS_MODULE,
2351 	},
2352 },
2353 };
2354 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2355 
2356 /* Probe functions */
2357 
2358 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2359 {
2360 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2363 
2364 	if (!dd->buf) {
2365 		dev_err(dd->dev, "unable to alloc pages.\n");
2366 		return -ENOMEM;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2373 {
2374 	free_page((unsigned long)dd->buf);
2375 }
2376 
2377 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2378 {
2379 	struct at_dma_slave	*sl = slave;
2380 
2381 	if (sl && sl->dma_dev == chan->device->dev) {
2382 		chan->private = sl;
2383 		return true;
2384 	} else {
2385 		return false;
2386 	}
2387 }
2388 
2389 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390 			      struct crypto_platform_data *pdata)
2391 {
2392 	struct at_dma_slave *slave;
2393 	dma_cap_mask_t mask;
2394 
2395 	dma_cap_zero(mask);
2396 	dma_cap_set(DMA_SLAVE, mask);
2397 
2398 	/* Try to grab 2 DMA channels */
2399 	slave = &pdata->dma_slave->rxdata;
2400 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401 							slave, dd->dev, "tx");
2402 	if (!dd->src.chan)
2403 		goto err_dma_in;
2404 
2405 	slave = &pdata->dma_slave->txdata;
2406 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407 							slave, dd->dev, "rx");
2408 	if (!dd->dst.chan)
2409 		goto err_dma_out;
2410 
2411 	return 0;
2412 
2413 err_dma_out:
2414 	dma_release_channel(dd->src.chan);
2415 err_dma_in:
2416 	dev_warn(dd->dev, "no DMA channel available\n");
2417 	return -ENODEV;
2418 }
2419 
2420 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2421 {
2422 	dma_release_channel(dd->dst.chan);
2423 	dma_release_channel(dd->src.chan);
2424 }
2425 
2426 static void atmel_aes_queue_task(unsigned long data)
2427 {
2428 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429 
2430 	atmel_aes_handle_queue(dd, NULL);
2431 }
2432 
2433 static void atmel_aes_done_task(unsigned long data)
2434 {
2435 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436 
2437 	dd->is_async = true;
2438 	(void)dd->resume(dd);
2439 }
2440 
2441 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2442 {
2443 	struct atmel_aes_dev *aes_dd = dev_id;
2444 	u32 reg;
2445 
2446 	reg = atmel_aes_read(aes_dd, AES_ISR);
2447 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448 		atmel_aes_write(aes_dd, AES_IDR, reg);
2449 		if (AES_FLAGS_BUSY & aes_dd->flags)
2450 			tasklet_schedule(&aes_dd->done_task);
2451 		else
2452 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453 		return IRQ_HANDLED;
2454 	}
2455 
2456 	return IRQ_NONE;
2457 }
2458 
2459 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2460 {
2461 	int i;
2462 
2463 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2464 	if (dd->caps.has_authenc)
2465 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466 			crypto_unregister_aead(&aes_authenc_algs[i]);
2467 #endif
2468 
2469 	if (dd->caps.has_xts)
2470 		crypto_unregister_alg(&aes_xts_alg);
2471 
2472 	if (dd->caps.has_gcm)
2473 		crypto_unregister_aead(&aes_gcm_alg);
2474 
2475 	if (dd->caps.has_cfb64)
2476 		crypto_unregister_alg(&aes_cfb64_alg);
2477 
2478 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479 		crypto_unregister_alg(&aes_algs[i]);
2480 }
2481 
2482 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2483 {
2484 	int err, i, j;
2485 
2486 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487 		err = crypto_register_alg(&aes_algs[i]);
2488 		if (err)
2489 			goto err_aes_algs;
2490 	}
2491 
2492 	if (dd->caps.has_cfb64) {
2493 		err = crypto_register_alg(&aes_cfb64_alg);
2494 		if (err)
2495 			goto err_aes_cfb64_alg;
2496 	}
2497 
2498 	if (dd->caps.has_gcm) {
2499 		err = crypto_register_aead(&aes_gcm_alg);
2500 		if (err)
2501 			goto err_aes_gcm_alg;
2502 	}
2503 
2504 	if (dd->caps.has_xts) {
2505 		err = crypto_register_alg(&aes_xts_alg);
2506 		if (err)
2507 			goto err_aes_xts_alg;
2508 	}
2509 
2510 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2511 	if (dd->caps.has_authenc) {
2512 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2513 			err = crypto_register_aead(&aes_authenc_algs[i]);
2514 			if (err)
2515 				goto err_aes_authenc_alg;
2516 		}
2517 	}
2518 #endif
2519 
2520 	return 0;
2521 
2522 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2523 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2524 err_aes_authenc_alg:
2525 	for (j = 0; j < i; j++)
2526 		crypto_unregister_aead(&aes_authenc_algs[j]);
2527 	crypto_unregister_alg(&aes_xts_alg);
2528 #endif
2529 err_aes_xts_alg:
2530 	crypto_unregister_aead(&aes_gcm_alg);
2531 err_aes_gcm_alg:
2532 	crypto_unregister_alg(&aes_cfb64_alg);
2533 err_aes_cfb64_alg:
2534 	i = ARRAY_SIZE(aes_algs);
2535 err_aes_algs:
2536 	for (j = 0; j < i; j++)
2537 		crypto_unregister_alg(&aes_algs[j]);
2538 
2539 	return err;
2540 }
2541 
2542 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2543 {
2544 	dd->caps.has_dualbuff = 0;
2545 	dd->caps.has_cfb64 = 0;
2546 	dd->caps.has_ctr32 = 0;
2547 	dd->caps.has_gcm = 0;
2548 	dd->caps.has_xts = 0;
2549 	dd->caps.has_authenc = 0;
2550 	dd->caps.max_burst_size = 1;
2551 
2552 	/* keep only major version number */
2553 	switch (dd->hw_version & 0xff0) {
2554 	case 0x500:
2555 		dd->caps.has_dualbuff = 1;
2556 		dd->caps.has_cfb64 = 1;
2557 		dd->caps.has_ctr32 = 1;
2558 		dd->caps.has_gcm = 1;
2559 		dd->caps.has_xts = 1;
2560 		dd->caps.has_authenc = 1;
2561 		dd->caps.max_burst_size = 4;
2562 		break;
2563 	case 0x200:
2564 		dd->caps.has_dualbuff = 1;
2565 		dd->caps.has_cfb64 = 1;
2566 		dd->caps.has_ctr32 = 1;
2567 		dd->caps.has_gcm = 1;
2568 		dd->caps.max_burst_size = 4;
2569 		break;
2570 	case 0x130:
2571 		dd->caps.has_dualbuff = 1;
2572 		dd->caps.has_cfb64 = 1;
2573 		dd->caps.max_burst_size = 4;
2574 		break;
2575 	case 0x120:
2576 		break;
2577 	default:
2578 		dev_warn(dd->dev,
2579 				"Unmanaged aes version, set minimum capabilities\n");
2580 		break;
2581 	}
2582 }
2583 
2584 #if defined(CONFIG_OF)
2585 static const struct of_device_id atmel_aes_dt_ids[] = {
2586 	{ .compatible = "atmel,at91sam9g46-aes" },
2587 	{ /* sentinel */ }
2588 };
2589 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2590 
2591 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2592 {
2593 	struct device_node *np = pdev->dev.of_node;
2594 	struct crypto_platform_data *pdata;
2595 
2596 	if (!np) {
2597 		dev_err(&pdev->dev, "device node not found\n");
2598 		return ERR_PTR(-EINVAL);
2599 	}
2600 
2601 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2602 	if (!pdata)
2603 		return ERR_PTR(-ENOMEM);
2604 
2605 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2606 					sizeof(*(pdata->dma_slave)),
2607 					GFP_KERNEL);
2608 	if (!pdata->dma_slave) {
2609 		devm_kfree(&pdev->dev, pdata);
2610 		return ERR_PTR(-ENOMEM);
2611 	}
2612 
2613 	return pdata;
2614 }
2615 #else
2616 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2617 {
2618 	return ERR_PTR(-EINVAL);
2619 }
2620 #endif
2621 
2622 static int atmel_aes_probe(struct platform_device *pdev)
2623 {
2624 	struct atmel_aes_dev *aes_dd;
2625 	struct crypto_platform_data *pdata;
2626 	struct device *dev = &pdev->dev;
2627 	struct resource *aes_res;
2628 	int err;
2629 
2630 	pdata = pdev->dev.platform_data;
2631 	if (!pdata) {
2632 		pdata = atmel_aes_of_init(pdev);
2633 		if (IS_ERR(pdata)) {
2634 			err = PTR_ERR(pdata);
2635 			goto aes_dd_err;
2636 		}
2637 	}
2638 
2639 	if (!pdata->dma_slave) {
2640 		err = -ENXIO;
2641 		goto aes_dd_err;
2642 	}
2643 
2644 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2645 	if (aes_dd == NULL) {
2646 		err = -ENOMEM;
2647 		goto aes_dd_err;
2648 	}
2649 
2650 	aes_dd->dev = dev;
2651 
2652 	platform_set_drvdata(pdev, aes_dd);
2653 
2654 	INIT_LIST_HEAD(&aes_dd->list);
2655 	spin_lock_init(&aes_dd->lock);
2656 
2657 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2658 					(unsigned long)aes_dd);
2659 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2660 					(unsigned long)aes_dd);
2661 
2662 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2663 
2664 	/* Get the base address */
2665 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2666 	if (!aes_res) {
2667 		dev_err(dev, "no MEM resource info\n");
2668 		err = -ENODEV;
2669 		goto res_err;
2670 	}
2671 	aes_dd->phys_base = aes_res->start;
2672 
2673 	/* Get the IRQ */
2674 	aes_dd->irq = platform_get_irq(pdev,  0);
2675 	if (aes_dd->irq < 0) {
2676 		dev_err(dev, "no IRQ resource info\n");
2677 		err = aes_dd->irq;
2678 		goto res_err;
2679 	}
2680 
2681 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2682 			       IRQF_SHARED, "atmel-aes", aes_dd);
2683 	if (err) {
2684 		dev_err(dev, "unable to request aes irq.\n");
2685 		goto res_err;
2686 	}
2687 
2688 	/* Initializing the clock */
2689 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2690 	if (IS_ERR(aes_dd->iclk)) {
2691 		dev_err(dev, "clock initialization failed.\n");
2692 		err = PTR_ERR(aes_dd->iclk);
2693 		goto res_err;
2694 	}
2695 
2696 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2697 	if (IS_ERR(aes_dd->io_base)) {
2698 		dev_err(dev, "can't ioremap\n");
2699 		err = PTR_ERR(aes_dd->io_base);
2700 		goto res_err;
2701 	}
2702 
2703 	err = clk_prepare(aes_dd->iclk);
2704 	if (err)
2705 		goto res_err;
2706 
2707 	err = atmel_aes_hw_version_init(aes_dd);
2708 	if (err)
2709 		goto iclk_unprepare;
2710 
2711 	atmel_aes_get_cap(aes_dd);
2712 
2713 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2714 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2715 		err = -EPROBE_DEFER;
2716 		goto iclk_unprepare;
2717 	}
2718 #endif
2719 
2720 	err = atmel_aes_buff_init(aes_dd);
2721 	if (err)
2722 		goto err_aes_buff;
2723 
2724 	err = atmel_aes_dma_init(aes_dd, pdata);
2725 	if (err)
2726 		goto err_aes_dma;
2727 
2728 	spin_lock(&atmel_aes.lock);
2729 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2730 	spin_unlock(&atmel_aes.lock);
2731 
2732 	err = atmel_aes_register_algs(aes_dd);
2733 	if (err)
2734 		goto err_algs;
2735 
2736 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2737 			dma_chan_name(aes_dd->src.chan),
2738 			dma_chan_name(aes_dd->dst.chan));
2739 
2740 	return 0;
2741 
2742 err_algs:
2743 	spin_lock(&atmel_aes.lock);
2744 	list_del(&aes_dd->list);
2745 	spin_unlock(&atmel_aes.lock);
2746 	atmel_aes_dma_cleanup(aes_dd);
2747 err_aes_dma:
2748 	atmel_aes_buff_cleanup(aes_dd);
2749 err_aes_buff:
2750 iclk_unprepare:
2751 	clk_unprepare(aes_dd->iclk);
2752 res_err:
2753 	tasklet_kill(&aes_dd->done_task);
2754 	tasklet_kill(&aes_dd->queue_task);
2755 aes_dd_err:
2756 	if (err != -EPROBE_DEFER)
2757 		dev_err(dev, "initialization failed.\n");
2758 
2759 	return err;
2760 }
2761 
2762 static int atmel_aes_remove(struct platform_device *pdev)
2763 {
2764 	struct atmel_aes_dev *aes_dd;
2765 
2766 	aes_dd = platform_get_drvdata(pdev);
2767 	if (!aes_dd)
2768 		return -ENODEV;
2769 	spin_lock(&atmel_aes.lock);
2770 	list_del(&aes_dd->list);
2771 	spin_unlock(&atmel_aes.lock);
2772 
2773 	atmel_aes_unregister_algs(aes_dd);
2774 
2775 	tasklet_kill(&aes_dd->done_task);
2776 	tasklet_kill(&aes_dd->queue_task);
2777 
2778 	atmel_aes_dma_cleanup(aes_dd);
2779 	atmel_aes_buff_cleanup(aes_dd);
2780 
2781 	clk_unprepare(aes_dd->iclk);
2782 
2783 	return 0;
2784 }
2785 
2786 static struct platform_driver atmel_aes_driver = {
2787 	.probe		= atmel_aes_probe,
2788 	.remove		= atmel_aes_remove,
2789 	.driver		= {
2790 		.name	= "atmel_aes",
2791 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2792 	},
2793 };
2794 
2795 module_platform_driver(atmel_aes_driver);
2796 
2797 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2798 MODULE_LICENSE("GPL v2");
2799 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2800