1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2021 Aspeed Technology Inc.
4  */
5 
6 #include "aspeed-hace.h"
7 #include <crypto/engine.h>
8 #include <crypto/hmac.h>
9 #include <crypto/internal/hash.h>
10 #include <crypto/scatterwalk.h>
11 #include <crypto/sha1.h>
12 #include <crypto/sha2.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 
19 #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
20 #define AHASH_DBG(h, fmt, ...)	\
21 	dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
22 #else
23 #define AHASH_DBG(h, fmt, ...)	\
24 	dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
25 #endif
26 
27 /* Initialization Vectors for SHA-family */
28 static const __be32 sha1_iv[8] = {
29 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
30 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
31 	cpu_to_be32(SHA1_H4), 0, 0, 0
32 };
33 
34 static const __be32 sha224_iv[8] = {
35 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
36 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
37 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
38 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
39 };
40 
41 static const __be32 sha256_iv[8] = {
42 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
43 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
44 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
45 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
46 };
47 
48 static const __be64 sha384_iv[8] = {
49 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
50 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
51 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
52 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7)
53 };
54 
55 static const __be64 sha512_iv[8] = {
56 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
57 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
58 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
59 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7)
60 };
61 
62 /* The purpose of this padding is to ensure that the padded message is a
63  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
64  * The bit "1" is appended at the end of the message followed by
65  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
66  * 128 bits block (SHA384/SHA512) equals to the message length in bits
67  * is appended.
68  *
69  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
70  *  - if message length < 56 bytes then padlen = 56 - message length
71  *  - else padlen = 64 + 56 - message length
72  *
73  * For SHA384/SHA512, padlen is calculated as followed:
74  *  - if message length < 112 bytes then padlen = 112 - message length
75  *  - else padlen = 128 + 112 - message length
76  */
77 static void aspeed_ahash_fill_padding(struct aspeed_hace_dev *hace_dev,
78 				      struct aspeed_sham_reqctx *rctx)
79 {
80 	unsigned int index, padlen;
81 	__be64 bits[2];
82 
83 	AHASH_DBG(hace_dev, "rctx flags:0x%x\n", (u32)rctx->flags);
84 
85 	switch (rctx->flags & SHA_FLAGS_MASK) {
86 	case SHA_FLAGS_SHA1:
87 	case SHA_FLAGS_SHA224:
88 	case SHA_FLAGS_SHA256:
89 		bits[0] = cpu_to_be64(rctx->digcnt[0] << 3);
90 		index = rctx->bufcnt & 0x3f;
91 		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
92 		*(rctx->buffer + rctx->bufcnt) = 0x80;
93 		memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
94 		memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 8);
95 		rctx->bufcnt += padlen + 8;
96 		break;
97 	default:
98 		bits[1] = cpu_to_be64(rctx->digcnt[0] << 3);
99 		bits[0] = cpu_to_be64(rctx->digcnt[1] << 3 |
100 				      rctx->digcnt[0] >> 61);
101 		index = rctx->bufcnt & 0x7f;
102 		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
103 		*(rctx->buffer + rctx->bufcnt) = 0x80;
104 		memset(rctx->buffer + rctx->bufcnt + 1, 0, padlen - 1);
105 		memcpy(rctx->buffer + rctx->bufcnt + padlen, bits, 16);
106 		rctx->bufcnt += padlen + 16;
107 		break;
108 	}
109 }
110 
111 /*
112  * Prepare DMA buffer before hardware engine
113  * processing.
114  */
115 static int aspeed_ahash_dma_prepare(struct aspeed_hace_dev *hace_dev)
116 {
117 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
118 	struct ahash_request *req = hash_engine->req;
119 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
120 	int length, remain;
121 
122 	length = rctx->total + rctx->bufcnt;
123 	remain = length % rctx->block_size;
124 
125 	AHASH_DBG(hace_dev, "length:0x%x, remain:0x%x\n", length, remain);
126 
127 	if (rctx->bufcnt)
128 		memcpy(hash_engine->ahash_src_addr, rctx->buffer, rctx->bufcnt);
129 
130 	if (rctx->total + rctx->bufcnt < ASPEED_CRYPTO_SRC_DMA_BUF_LEN) {
131 		scatterwalk_map_and_copy(hash_engine->ahash_src_addr +
132 					 rctx->bufcnt, rctx->src_sg,
133 					 rctx->offset, rctx->total - remain, 0);
134 		rctx->offset += rctx->total - remain;
135 
136 	} else {
137 		dev_warn(hace_dev->dev, "Hash data length is too large\n");
138 		return -EINVAL;
139 	}
140 
141 	scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg,
142 				 rctx->offset, remain, 0);
143 
144 	rctx->bufcnt = remain;
145 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
146 					       SHA512_DIGEST_SIZE,
147 					       DMA_BIDIRECTIONAL);
148 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
149 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
150 		return -ENOMEM;
151 	}
152 
153 	hash_engine->src_length = length - remain;
154 	hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
155 	hash_engine->digest_dma = rctx->digest_dma_addr;
156 
157 	return 0;
158 }
159 
160 /*
161  * Prepare DMA buffer as SG list buffer before
162  * hardware engine processing.
163  */
164 static int aspeed_ahash_dma_prepare_sg(struct aspeed_hace_dev *hace_dev)
165 {
166 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
167 	struct ahash_request *req = hash_engine->req;
168 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
169 	struct aspeed_sg_list *src_list;
170 	struct scatterlist *s;
171 	int length, remain, sg_len, i;
172 	int rc = 0;
173 
174 	remain = (rctx->total + rctx->bufcnt) % rctx->block_size;
175 	length = rctx->total + rctx->bufcnt - remain;
176 
177 	AHASH_DBG(hace_dev, "%s:0x%x, %s:%zu, %s:0x%x, %s:0x%x\n",
178 		  "rctx total", rctx->total, "bufcnt", rctx->bufcnt,
179 		  "length", length, "remain", remain);
180 
181 	sg_len = dma_map_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
182 			    DMA_TO_DEVICE);
183 	if (!sg_len) {
184 		dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
185 		rc = -ENOMEM;
186 		goto end;
187 	}
188 
189 	src_list = (struct aspeed_sg_list *)hash_engine->ahash_src_addr;
190 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
191 					       SHA512_DIGEST_SIZE,
192 					       DMA_BIDIRECTIONAL);
193 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
194 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
195 		rc = -ENOMEM;
196 		goto free_src_sg;
197 	}
198 
199 	if (rctx->bufcnt != 0) {
200 		u32 phy_addr;
201 		u32 len;
202 
203 		rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
204 						       rctx->buffer,
205 						       rctx->block_size * 2,
206 						       DMA_TO_DEVICE);
207 		if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
208 			dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
209 			rc = -ENOMEM;
210 			goto free_rctx_digest;
211 		}
212 
213 		phy_addr = rctx->buffer_dma_addr;
214 		len = rctx->bufcnt;
215 		length -= len;
216 
217 		/* Last sg list */
218 		if (length == 0)
219 			len |= HASH_SG_LAST_LIST;
220 
221 		src_list[0].phy_addr = cpu_to_le32(phy_addr);
222 		src_list[0].len = cpu_to_le32(len);
223 		src_list++;
224 	}
225 
226 	if (length != 0) {
227 		for_each_sg(rctx->src_sg, s, sg_len, i) {
228 			u32 phy_addr = sg_dma_address(s);
229 			u32 len = sg_dma_len(s);
230 
231 			if (length > len)
232 				length -= len;
233 			else {
234 				/* Last sg list */
235 				len = length;
236 				len |= HASH_SG_LAST_LIST;
237 				length = 0;
238 			}
239 
240 			src_list[i].phy_addr = cpu_to_le32(phy_addr);
241 			src_list[i].len = cpu_to_le32(len);
242 		}
243 	}
244 
245 	if (length != 0) {
246 		rc = -EINVAL;
247 		goto free_rctx_buffer;
248 	}
249 
250 	rctx->offset = rctx->total - remain;
251 	hash_engine->src_length = rctx->total + rctx->bufcnt - remain;
252 	hash_engine->src_dma = hash_engine->ahash_src_dma_addr;
253 	hash_engine->digest_dma = rctx->digest_dma_addr;
254 
255 	return 0;
256 
257 free_rctx_buffer:
258 	if (rctx->bufcnt != 0)
259 		dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
260 				 rctx->block_size * 2, DMA_TO_DEVICE);
261 free_rctx_digest:
262 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
263 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
264 free_src_sg:
265 	dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
266 		     DMA_TO_DEVICE);
267 end:
268 	return rc;
269 }
270 
271 static int aspeed_ahash_complete(struct aspeed_hace_dev *hace_dev)
272 {
273 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
274 	struct ahash_request *req = hash_engine->req;
275 
276 	AHASH_DBG(hace_dev, "\n");
277 
278 	hash_engine->flags &= ~CRYPTO_FLAGS_BUSY;
279 
280 	crypto_finalize_hash_request(hace_dev->crypt_engine_hash, req, 0);
281 
282 	return 0;
283 }
284 
285 /*
286  * Copy digest to the corresponding request result.
287  * This function will be called at final() stage.
288  */
289 static int aspeed_ahash_transfer(struct aspeed_hace_dev *hace_dev)
290 {
291 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
292 	struct ahash_request *req = hash_engine->req;
293 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
294 
295 	AHASH_DBG(hace_dev, "\n");
296 
297 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
298 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
299 
300 	dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
301 			 rctx->block_size * 2, DMA_TO_DEVICE);
302 
303 	memcpy(req->result, rctx->digest, rctx->digsize);
304 
305 	return aspeed_ahash_complete(hace_dev);
306 }
307 
308 /*
309  * Trigger hardware engines to do the math.
310  */
311 static int aspeed_hace_ahash_trigger(struct aspeed_hace_dev *hace_dev,
312 				     aspeed_hace_fn_t resume)
313 {
314 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
315 	struct ahash_request *req = hash_engine->req;
316 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
317 
318 	AHASH_DBG(hace_dev, "src_dma:%pad, digest_dma:%pad, length:%zu\n",
319 		  &hash_engine->src_dma, &hash_engine->digest_dma,
320 		  hash_engine->src_length);
321 
322 	rctx->cmd |= HASH_CMD_INT_ENABLE;
323 	hash_engine->resume = resume;
324 
325 	ast_hace_write(hace_dev, hash_engine->src_dma, ASPEED_HACE_HASH_SRC);
326 	ast_hace_write(hace_dev, hash_engine->digest_dma,
327 		       ASPEED_HACE_HASH_DIGEST_BUFF);
328 	ast_hace_write(hace_dev, hash_engine->digest_dma,
329 		       ASPEED_HACE_HASH_KEY_BUFF);
330 	ast_hace_write(hace_dev, hash_engine->src_length,
331 		       ASPEED_HACE_HASH_DATA_LEN);
332 
333 	/* Memory barrier to ensure all data setup before engine starts */
334 	mb();
335 
336 	ast_hace_write(hace_dev, rctx->cmd, ASPEED_HACE_HASH_CMD);
337 
338 	return -EINPROGRESS;
339 }
340 
341 /*
342  * HMAC resume aims to do the second pass produces
343  * the final HMAC code derived from the inner hash
344  * result and the outer key.
345  */
346 static int aspeed_ahash_hmac_resume(struct aspeed_hace_dev *hace_dev)
347 {
348 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
349 	struct ahash_request *req = hash_engine->req;
350 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
351 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
353 	struct aspeed_sha_hmac_ctx *bctx = tctx->base;
354 	int rc = 0;
355 
356 	AHASH_DBG(hace_dev, "\n");
357 
358 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
359 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
360 
361 	dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
362 			 rctx->block_size * 2, DMA_TO_DEVICE);
363 
364 	/* o key pad + hash sum 1 */
365 	memcpy(rctx->buffer, bctx->opad, rctx->block_size);
366 	memcpy(rctx->buffer + rctx->block_size, rctx->digest, rctx->digsize);
367 
368 	rctx->bufcnt = rctx->block_size + rctx->digsize;
369 	rctx->digcnt[0] = rctx->block_size + rctx->digsize;
370 
371 	aspeed_ahash_fill_padding(hace_dev, rctx);
372 	memcpy(rctx->digest, rctx->sha_iv, rctx->ivsize);
373 
374 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev, rctx->digest,
375 					       SHA512_DIGEST_SIZE,
376 					       DMA_BIDIRECTIONAL);
377 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
378 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
379 		rc = -ENOMEM;
380 		goto end;
381 	}
382 
383 	rctx->buffer_dma_addr = dma_map_single(hace_dev->dev, rctx->buffer,
384 					       rctx->block_size * 2,
385 					       DMA_TO_DEVICE);
386 	if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
387 		dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
388 		rc = -ENOMEM;
389 		goto free_rctx_digest;
390 	}
391 
392 	hash_engine->src_dma = rctx->buffer_dma_addr;
393 	hash_engine->src_length = rctx->bufcnt;
394 	hash_engine->digest_dma = rctx->digest_dma_addr;
395 
396 	return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
397 
398 free_rctx_digest:
399 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
400 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
401 end:
402 	return rc;
403 }
404 
405 static int aspeed_ahash_req_final(struct aspeed_hace_dev *hace_dev)
406 {
407 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
408 	struct ahash_request *req = hash_engine->req;
409 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
410 	int rc = 0;
411 
412 	AHASH_DBG(hace_dev, "\n");
413 
414 	aspeed_ahash_fill_padding(hace_dev, rctx);
415 
416 	rctx->digest_dma_addr = dma_map_single(hace_dev->dev,
417 					       rctx->digest,
418 					       SHA512_DIGEST_SIZE,
419 					       DMA_BIDIRECTIONAL);
420 	if (dma_mapping_error(hace_dev->dev, rctx->digest_dma_addr)) {
421 		dev_warn(hace_dev->dev, "dma_map() rctx digest error\n");
422 		rc = -ENOMEM;
423 		goto end;
424 	}
425 
426 	rctx->buffer_dma_addr = dma_map_single(hace_dev->dev,
427 					       rctx->buffer,
428 					       rctx->block_size * 2,
429 					       DMA_TO_DEVICE);
430 	if (dma_mapping_error(hace_dev->dev, rctx->buffer_dma_addr)) {
431 		dev_warn(hace_dev->dev, "dma_map() rctx buffer error\n");
432 		rc = -ENOMEM;
433 		goto free_rctx_digest;
434 	}
435 
436 	hash_engine->src_dma = rctx->buffer_dma_addr;
437 	hash_engine->src_length = rctx->bufcnt;
438 	hash_engine->digest_dma = rctx->digest_dma_addr;
439 
440 	if (rctx->flags & SHA_FLAGS_HMAC)
441 		return aspeed_hace_ahash_trigger(hace_dev,
442 						 aspeed_ahash_hmac_resume);
443 
444 	return aspeed_hace_ahash_trigger(hace_dev, aspeed_ahash_transfer);
445 
446 free_rctx_digest:
447 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
448 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
449 end:
450 	return rc;
451 }
452 
453 static int aspeed_ahash_update_resume_sg(struct aspeed_hace_dev *hace_dev)
454 {
455 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
456 	struct ahash_request *req = hash_engine->req;
457 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
458 
459 	AHASH_DBG(hace_dev, "\n");
460 
461 	dma_unmap_sg(hace_dev->dev, rctx->src_sg, rctx->src_nents,
462 		     DMA_TO_DEVICE);
463 
464 	if (rctx->bufcnt != 0)
465 		dma_unmap_single(hace_dev->dev, rctx->buffer_dma_addr,
466 				 rctx->block_size * 2,
467 				 DMA_TO_DEVICE);
468 
469 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
470 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
471 
472 	scatterwalk_map_and_copy(rctx->buffer, rctx->src_sg, rctx->offset,
473 				 rctx->total - rctx->offset, 0);
474 
475 	rctx->bufcnt = rctx->total - rctx->offset;
476 	rctx->cmd &= ~HASH_CMD_HASH_SRC_SG_CTRL;
477 
478 	if (rctx->flags & SHA_FLAGS_FINUP)
479 		return aspeed_ahash_req_final(hace_dev);
480 
481 	return aspeed_ahash_complete(hace_dev);
482 }
483 
484 static int aspeed_ahash_update_resume(struct aspeed_hace_dev *hace_dev)
485 {
486 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
487 	struct ahash_request *req = hash_engine->req;
488 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
489 
490 	AHASH_DBG(hace_dev, "\n");
491 
492 	dma_unmap_single(hace_dev->dev, rctx->digest_dma_addr,
493 			 SHA512_DIGEST_SIZE, DMA_BIDIRECTIONAL);
494 
495 	if (rctx->flags & SHA_FLAGS_FINUP)
496 		return aspeed_ahash_req_final(hace_dev);
497 
498 	return aspeed_ahash_complete(hace_dev);
499 }
500 
501 static int aspeed_ahash_req_update(struct aspeed_hace_dev *hace_dev)
502 {
503 	struct aspeed_engine_hash *hash_engine = &hace_dev->hash_engine;
504 	struct ahash_request *req = hash_engine->req;
505 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
506 	aspeed_hace_fn_t resume;
507 	int ret;
508 
509 	AHASH_DBG(hace_dev, "\n");
510 
511 	if (hace_dev->version == AST2600_VERSION) {
512 		rctx->cmd |= HASH_CMD_HASH_SRC_SG_CTRL;
513 		resume = aspeed_ahash_update_resume_sg;
514 
515 	} else {
516 		resume = aspeed_ahash_update_resume;
517 	}
518 
519 	ret = hash_engine->dma_prepare(hace_dev);
520 	if (ret)
521 		return ret;
522 
523 	return aspeed_hace_ahash_trigger(hace_dev, resume);
524 }
525 
526 static int aspeed_hace_hash_handle_queue(struct aspeed_hace_dev *hace_dev,
527 				  struct ahash_request *req)
528 {
529 	return crypto_transfer_hash_request_to_engine(
530 			hace_dev->crypt_engine_hash, req);
531 }
532 
533 static int aspeed_ahash_do_request(struct crypto_engine *engine, void *areq)
534 {
535 	struct ahash_request *req = ahash_request_cast(areq);
536 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
537 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
538 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
539 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
540 	struct aspeed_engine_hash *hash_engine;
541 	int ret = 0;
542 
543 	hash_engine = &hace_dev->hash_engine;
544 	hash_engine->flags |= CRYPTO_FLAGS_BUSY;
545 
546 	if (rctx->op == SHA_OP_UPDATE)
547 		ret = aspeed_ahash_req_update(hace_dev);
548 	else if (rctx->op == SHA_OP_FINAL)
549 		ret = aspeed_ahash_req_final(hace_dev);
550 
551 	if (ret != -EINPROGRESS)
552 		return ret;
553 
554 	return 0;
555 }
556 
557 static void aspeed_ahash_prepare_request(struct crypto_engine *engine,
558 					 void *areq)
559 {
560 	struct ahash_request *req = ahash_request_cast(areq);
561 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
562 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
563 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
564 	struct aspeed_engine_hash *hash_engine;
565 
566 	hash_engine = &hace_dev->hash_engine;
567 	hash_engine->req = req;
568 
569 	if (hace_dev->version == AST2600_VERSION)
570 		hash_engine->dma_prepare = aspeed_ahash_dma_prepare_sg;
571 	else
572 		hash_engine->dma_prepare = aspeed_ahash_dma_prepare;
573 }
574 
575 static int aspeed_ahash_do_one(struct crypto_engine *engine, void *areq)
576 {
577 	aspeed_ahash_prepare_request(engine, areq);
578 	return aspeed_ahash_do_request(engine, areq);
579 }
580 
581 static int aspeed_sham_update(struct ahash_request *req)
582 {
583 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
584 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
585 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
586 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
587 
588 	AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
589 
590 	rctx->total = req->nbytes;
591 	rctx->src_sg = req->src;
592 	rctx->offset = 0;
593 	rctx->src_nents = sg_nents(req->src);
594 	rctx->op = SHA_OP_UPDATE;
595 
596 	rctx->digcnt[0] += rctx->total;
597 	if (rctx->digcnt[0] < rctx->total)
598 		rctx->digcnt[1]++;
599 
600 	if (rctx->bufcnt + rctx->total < rctx->block_size) {
601 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt,
602 					 rctx->src_sg, rctx->offset,
603 					 rctx->total, 0);
604 		rctx->bufcnt += rctx->total;
605 
606 		return 0;
607 	}
608 
609 	return aspeed_hace_hash_handle_queue(hace_dev, req);
610 }
611 
612 static int aspeed_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
613 				    const u8 *data, unsigned int len, u8 *out)
614 {
615 	SHASH_DESC_ON_STACK(shash, tfm);
616 
617 	shash->tfm = tfm;
618 
619 	return crypto_shash_digest(shash, data, len, out);
620 }
621 
622 static int aspeed_sham_final(struct ahash_request *req)
623 {
624 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
625 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
626 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
627 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
628 
629 	AHASH_DBG(hace_dev, "req->nbytes:%d, rctx->total:%d\n",
630 		  req->nbytes, rctx->total);
631 	rctx->op = SHA_OP_FINAL;
632 
633 	return aspeed_hace_hash_handle_queue(hace_dev, req);
634 }
635 
636 static int aspeed_sham_finup(struct ahash_request *req)
637 {
638 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
639 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
640 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
641 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
642 	int rc1, rc2;
643 
644 	AHASH_DBG(hace_dev, "req->nbytes: %d\n", req->nbytes);
645 
646 	rctx->flags |= SHA_FLAGS_FINUP;
647 
648 	rc1 = aspeed_sham_update(req);
649 	if (rc1 == -EINPROGRESS || rc1 == -EBUSY)
650 		return rc1;
651 
652 	/*
653 	 * final() has to be always called to cleanup resources
654 	 * even if update() failed, except EINPROGRESS
655 	 */
656 	rc2 = aspeed_sham_final(req);
657 
658 	return rc1 ? : rc2;
659 }
660 
661 static int aspeed_sham_init(struct ahash_request *req)
662 {
663 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
664 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
665 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
666 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
667 	struct aspeed_sha_hmac_ctx *bctx = tctx->base;
668 
669 	AHASH_DBG(hace_dev, "%s: digest size:%d\n",
670 		  crypto_tfm_alg_name(&tfm->base),
671 		  crypto_ahash_digestsize(tfm));
672 
673 	rctx->cmd = HASH_CMD_ACC_MODE;
674 	rctx->flags = 0;
675 
676 	switch (crypto_ahash_digestsize(tfm)) {
677 	case SHA1_DIGEST_SIZE:
678 		rctx->cmd |= HASH_CMD_SHA1 | HASH_CMD_SHA_SWAP;
679 		rctx->flags |= SHA_FLAGS_SHA1;
680 		rctx->digsize = SHA1_DIGEST_SIZE;
681 		rctx->block_size = SHA1_BLOCK_SIZE;
682 		rctx->sha_iv = sha1_iv;
683 		rctx->ivsize = 32;
684 		memcpy(rctx->digest, sha1_iv, rctx->ivsize);
685 		break;
686 	case SHA224_DIGEST_SIZE:
687 		rctx->cmd |= HASH_CMD_SHA224 | HASH_CMD_SHA_SWAP;
688 		rctx->flags |= SHA_FLAGS_SHA224;
689 		rctx->digsize = SHA224_DIGEST_SIZE;
690 		rctx->block_size = SHA224_BLOCK_SIZE;
691 		rctx->sha_iv = sha224_iv;
692 		rctx->ivsize = 32;
693 		memcpy(rctx->digest, sha224_iv, rctx->ivsize);
694 		break;
695 	case SHA256_DIGEST_SIZE:
696 		rctx->cmd |= HASH_CMD_SHA256 | HASH_CMD_SHA_SWAP;
697 		rctx->flags |= SHA_FLAGS_SHA256;
698 		rctx->digsize = SHA256_DIGEST_SIZE;
699 		rctx->block_size = SHA256_BLOCK_SIZE;
700 		rctx->sha_iv = sha256_iv;
701 		rctx->ivsize = 32;
702 		memcpy(rctx->digest, sha256_iv, rctx->ivsize);
703 		break;
704 	case SHA384_DIGEST_SIZE:
705 		rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA384 |
706 			     HASH_CMD_SHA_SWAP;
707 		rctx->flags |= SHA_FLAGS_SHA384;
708 		rctx->digsize = SHA384_DIGEST_SIZE;
709 		rctx->block_size = SHA384_BLOCK_SIZE;
710 		rctx->sha_iv = (const __be32 *)sha384_iv;
711 		rctx->ivsize = 64;
712 		memcpy(rctx->digest, sha384_iv, rctx->ivsize);
713 		break;
714 	case SHA512_DIGEST_SIZE:
715 		rctx->cmd |= HASH_CMD_SHA512_SER | HASH_CMD_SHA512 |
716 			     HASH_CMD_SHA_SWAP;
717 		rctx->flags |= SHA_FLAGS_SHA512;
718 		rctx->digsize = SHA512_DIGEST_SIZE;
719 		rctx->block_size = SHA512_BLOCK_SIZE;
720 		rctx->sha_iv = (const __be32 *)sha512_iv;
721 		rctx->ivsize = 64;
722 		memcpy(rctx->digest, sha512_iv, rctx->ivsize);
723 		break;
724 	default:
725 		dev_warn(tctx->hace_dev->dev, "digest size %d not support\n",
726 			 crypto_ahash_digestsize(tfm));
727 		return -EINVAL;
728 	}
729 
730 	rctx->bufcnt = 0;
731 	rctx->total = 0;
732 	rctx->digcnt[0] = 0;
733 	rctx->digcnt[1] = 0;
734 
735 	/* HMAC init */
736 	if (tctx->flags & SHA_FLAGS_HMAC) {
737 		rctx->digcnt[0] = rctx->block_size;
738 		rctx->bufcnt = rctx->block_size;
739 		memcpy(rctx->buffer, bctx->ipad, rctx->block_size);
740 		rctx->flags |= SHA_FLAGS_HMAC;
741 	}
742 
743 	return 0;
744 }
745 
746 static int aspeed_sham_digest(struct ahash_request *req)
747 {
748 	return aspeed_sham_init(req) ? : aspeed_sham_finup(req);
749 }
750 
751 static int aspeed_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
752 			      unsigned int keylen)
753 {
754 	struct aspeed_sham_ctx *tctx = crypto_ahash_ctx(tfm);
755 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
756 	struct aspeed_sha_hmac_ctx *bctx = tctx->base;
757 	int ds = crypto_shash_digestsize(bctx->shash);
758 	int bs = crypto_shash_blocksize(bctx->shash);
759 	int err = 0;
760 	int i;
761 
762 	AHASH_DBG(hace_dev, "%s: keylen:%d\n", crypto_tfm_alg_name(&tfm->base),
763 		  keylen);
764 
765 	if (keylen > bs) {
766 		err = aspeed_sham_shash_digest(bctx->shash,
767 					       crypto_shash_get_flags(bctx->shash),
768 					       key, keylen, bctx->ipad);
769 		if (err)
770 			return err;
771 		keylen = ds;
772 
773 	} else {
774 		memcpy(bctx->ipad, key, keylen);
775 	}
776 
777 	memset(bctx->ipad + keylen, 0, bs - keylen);
778 	memcpy(bctx->opad, bctx->ipad, bs);
779 
780 	for (i = 0; i < bs; i++) {
781 		bctx->ipad[i] ^= HMAC_IPAD_VALUE;
782 		bctx->opad[i] ^= HMAC_OPAD_VALUE;
783 	}
784 
785 	return err;
786 }
787 
788 static int aspeed_sham_cra_init(struct crypto_tfm *tfm)
789 {
790 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
791 	struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
792 	struct aspeed_hace_alg *ast_alg;
793 
794 	ast_alg = container_of(alg, struct aspeed_hace_alg, alg.ahash.base);
795 	tctx->hace_dev = ast_alg->hace_dev;
796 	tctx->flags = 0;
797 
798 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
799 				 sizeof(struct aspeed_sham_reqctx));
800 
801 	if (ast_alg->alg_base) {
802 		/* hmac related */
803 		struct aspeed_sha_hmac_ctx *bctx = tctx->base;
804 
805 		tctx->flags |= SHA_FLAGS_HMAC;
806 		bctx->shash = crypto_alloc_shash(ast_alg->alg_base, 0,
807 						 CRYPTO_ALG_NEED_FALLBACK);
808 		if (IS_ERR(bctx->shash)) {
809 			dev_warn(ast_alg->hace_dev->dev,
810 				 "base driver '%s' could not be loaded.\n",
811 				 ast_alg->alg_base);
812 			return PTR_ERR(bctx->shash);
813 		}
814 	}
815 
816 	return 0;
817 }
818 
819 static void aspeed_sham_cra_exit(struct crypto_tfm *tfm)
820 {
821 	struct aspeed_sham_ctx *tctx = crypto_tfm_ctx(tfm);
822 	struct aspeed_hace_dev *hace_dev = tctx->hace_dev;
823 
824 	AHASH_DBG(hace_dev, "%s\n", crypto_tfm_alg_name(tfm));
825 
826 	if (tctx->flags & SHA_FLAGS_HMAC) {
827 		struct aspeed_sha_hmac_ctx *bctx = tctx->base;
828 
829 		crypto_free_shash(bctx->shash);
830 	}
831 }
832 
833 static int aspeed_sham_export(struct ahash_request *req, void *out)
834 {
835 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
836 
837 	memcpy(out, rctx, sizeof(*rctx));
838 
839 	return 0;
840 }
841 
842 static int aspeed_sham_import(struct ahash_request *req, const void *in)
843 {
844 	struct aspeed_sham_reqctx *rctx = ahash_request_ctx(req);
845 
846 	memcpy(rctx, in, sizeof(*rctx));
847 
848 	return 0;
849 }
850 
851 static struct aspeed_hace_alg aspeed_ahash_algs[] = {
852 	{
853 		.alg.ahash.base = {
854 			.init	= aspeed_sham_init,
855 			.update	= aspeed_sham_update,
856 			.final	= aspeed_sham_final,
857 			.finup	= aspeed_sham_finup,
858 			.digest	= aspeed_sham_digest,
859 			.export	= aspeed_sham_export,
860 			.import	= aspeed_sham_import,
861 			.halg = {
862 				.digestsize = SHA1_DIGEST_SIZE,
863 				.statesize = sizeof(struct aspeed_sham_reqctx),
864 				.base = {
865 					.cra_name		= "sha1",
866 					.cra_driver_name	= "aspeed-sha1",
867 					.cra_priority		= 300,
868 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
869 								  CRYPTO_ALG_ASYNC |
870 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
871 					.cra_blocksize		= SHA1_BLOCK_SIZE,
872 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
873 					.cra_alignmask		= 0,
874 					.cra_module		= THIS_MODULE,
875 					.cra_init		= aspeed_sham_cra_init,
876 					.cra_exit		= aspeed_sham_cra_exit,
877 				}
878 			}
879 		},
880 		.alg.ahash.op = {
881 			.do_one_request = aspeed_ahash_do_one,
882 		},
883 	},
884 	{
885 		.alg.ahash.base = {
886 			.init	= aspeed_sham_init,
887 			.update	= aspeed_sham_update,
888 			.final	= aspeed_sham_final,
889 			.finup	= aspeed_sham_finup,
890 			.digest	= aspeed_sham_digest,
891 			.export	= aspeed_sham_export,
892 			.import	= aspeed_sham_import,
893 			.halg = {
894 				.digestsize = SHA256_DIGEST_SIZE,
895 				.statesize = sizeof(struct aspeed_sham_reqctx),
896 				.base = {
897 					.cra_name		= "sha256",
898 					.cra_driver_name	= "aspeed-sha256",
899 					.cra_priority		= 300,
900 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
901 								  CRYPTO_ALG_ASYNC |
902 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
903 					.cra_blocksize		= SHA256_BLOCK_SIZE,
904 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
905 					.cra_alignmask		= 0,
906 					.cra_module		= THIS_MODULE,
907 					.cra_init		= aspeed_sham_cra_init,
908 					.cra_exit		= aspeed_sham_cra_exit,
909 				}
910 			}
911 		},
912 		.alg.ahash.op = {
913 			.do_one_request = aspeed_ahash_do_one,
914 		},
915 	},
916 	{
917 		.alg.ahash.base = {
918 			.init	= aspeed_sham_init,
919 			.update	= aspeed_sham_update,
920 			.final	= aspeed_sham_final,
921 			.finup	= aspeed_sham_finup,
922 			.digest	= aspeed_sham_digest,
923 			.export	= aspeed_sham_export,
924 			.import	= aspeed_sham_import,
925 			.halg = {
926 				.digestsize = SHA224_DIGEST_SIZE,
927 				.statesize = sizeof(struct aspeed_sham_reqctx),
928 				.base = {
929 					.cra_name		= "sha224",
930 					.cra_driver_name	= "aspeed-sha224",
931 					.cra_priority		= 300,
932 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
933 								  CRYPTO_ALG_ASYNC |
934 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
935 					.cra_blocksize		= SHA224_BLOCK_SIZE,
936 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
937 					.cra_alignmask		= 0,
938 					.cra_module		= THIS_MODULE,
939 					.cra_init		= aspeed_sham_cra_init,
940 					.cra_exit		= aspeed_sham_cra_exit,
941 				}
942 			}
943 		},
944 		.alg.ahash.op = {
945 			.do_one_request = aspeed_ahash_do_one,
946 		},
947 	},
948 	{
949 		.alg_base = "sha1",
950 		.alg.ahash.base = {
951 			.init	= aspeed_sham_init,
952 			.update	= aspeed_sham_update,
953 			.final	= aspeed_sham_final,
954 			.finup	= aspeed_sham_finup,
955 			.digest	= aspeed_sham_digest,
956 			.setkey	= aspeed_sham_setkey,
957 			.export	= aspeed_sham_export,
958 			.import	= aspeed_sham_import,
959 			.halg = {
960 				.digestsize = SHA1_DIGEST_SIZE,
961 				.statesize = sizeof(struct aspeed_sham_reqctx),
962 				.base = {
963 					.cra_name		= "hmac(sha1)",
964 					.cra_driver_name	= "aspeed-hmac-sha1",
965 					.cra_priority		= 300,
966 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
967 								  CRYPTO_ALG_ASYNC |
968 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
969 					.cra_blocksize		= SHA1_BLOCK_SIZE,
970 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx) +
971 								sizeof(struct aspeed_sha_hmac_ctx),
972 					.cra_alignmask		= 0,
973 					.cra_module		= THIS_MODULE,
974 					.cra_init		= aspeed_sham_cra_init,
975 					.cra_exit		= aspeed_sham_cra_exit,
976 				}
977 			}
978 		},
979 		.alg.ahash.op = {
980 			.do_one_request = aspeed_ahash_do_one,
981 		},
982 	},
983 	{
984 		.alg_base = "sha224",
985 		.alg.ahash.base = {
986 			.init	= aspeed_sham_init,
987 			.update	= aspeed_sham_update,
988 			.final	= aspeed_sham_final,
989 			.finup	= aspeed_sham_finup,
990 			.digest	= aspeed_sham_digest,
991 			.setkey	= aspeed_sham_setkey,
992 			.export	= aspeed_sham_export,
993 			.import	= aspeed_sham_import,
994 			.halg = {
995 				.digestsize = SHA224_DIGEST_SIZE,
996 				.statesize = sizeof(struct aspeed_sham_reqctx),
997 				.base = {
998 					.cra_name		= "hmac(sha224)",
999 					.cra_driver_name	= "aspeed-hmac-sha224",
1000 					.cra_priority		= 300,
1001 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1002 								  CRYPTO_ALG_ASYNC |
1003 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1004 					.cra_blocksize		= SHA224_BLOCK_SIZE,
1005 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx) +
1006 								sizeof(struct aspeed_sha_hmac_ctx),
1007 					.cra_alignmask		= 0,
1008 					.cra_module		= THIS_MODULE,
1009 					.cra_init		= aspeed_sham_cra_init,
1010 					.cra_exit		= aspeed_sham_cra_exit,
1011 				}
1012 			}
1013 		},
1014 		.alg.ahash.op = {
1015 			.do_one_request = aspeed_ahash_do_one,
1016 		},
1017 	},
1018 	{
1019 		.alg_base = "sha256",
1020 		.alg.ahash.base = {
1021 			.init	= aspeed_sham_init,
1022 			.update	= aspeed_sham_update,
1023 			.final	= aspeed_sham_final,
1024 			.finup	= aspeed_sham_finup,
1025 			.digest	= aspeed_sham_digest,
1026 			.setkey	= aspeed_sham_setkey,
1027 			.export	= aspeed_sham_export,
1028 			.import	= aspeed_sham_import,
1029 			.halg = {
1030 				.digestsize = SHA256_DIGEST_SIZE,
1031 				.statesize = sizeof(struct aspeed_sham_reqctx),
1032 				.base = {
1033 					.cra_name		= "hmac(sha256)",
1034 					.cra_driver_name	= "aspeed-hmac-sha256",
1035 					.cra_priority		= 300,
1036 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1037 								  CRYPTO_ALG_ASYNC |
1038 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1039 					.cra_blocksize		= SHA256_BLOCK_SIZE,
1040 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx) +
1041 								sizeof(struct aspeed_sha_hmac_ctx),
1042 					.cra_alignmask		= 0,
1043 					.cra_module		= THIS_MODULE,
1044 					.cra_init		= aspeed_sham_cra_init,
1045 					.cra_exit		= aspeed_sham_cra_exit,
1046 				}
1047 			}
1048 		},
1049 		.alg.ahash.op = {
1050 			.do_one_request = aspeed_ahash_do_one,
1051 		},
1052 	},
1053 };
1054 
1055 static struct aspeed_hace_alg aspeed_ahash_algs_g6[] = {
1056 	{
1057 		.alg.ahash.base = {
1058 			.init	= aspeed_sham_init,
1059 			.update	= aspeed_sham_update,
1060 			.final	= aspeed_sham_final,
1061 			.finup	= aspeed_sham_finup,
1062 			.digest	= aspeed_sham_digest,
1063 			.export	= aspeed_sham_export,
1064 			.import	= aspeed_sham_import,
1065 			.halg = {
1066 				.digestsize = SHA384_DIGEST_SIZE,
1067 				.statesize = sizeof(struct aspeed_sham_reqctx),
1068 				.base = {
1069 					.cra_name		= "sha384",
1070 					.cra_driver_name	= "aspeed-sha384",
1071 					.cra_priority		= 300,
1072 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1073 								  CRYPTO_ALG_ASYNC |
1074 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1075 					.cra_blocksize		= SHA384_BLOCK_SIZE,
1076 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
1077 					.cra_alignmask		= 0,
1078 					.cra_module		= THIS_MODULE,
1079 					.cra_init		= aspeed_sham_cra_init,
1080 					.cra_exit		= aspeed_sham_cra_exit,
1081 				}
1082 			}
1083 		},
1084 		.alg.ahash.op = {
1085 			.do_one_request = aspeed_ahash_do_one,
1086 		},
1087 	},
1088 	{
1089 		.alg.ahash.base = {
1090 			.init	= aspeed_sham_init,
1091 			.update	= aspeed_sham_update,
1092 			.final	= aspeed_sham_final,
1093 			.finup	= aspeed_sham_finup,
1094 			.digest	= aspeed_sham_digest,
1095 			.export	= aspeed_sham_export,
1096 			.import	= aspeed_sham_import,
1097 			.halg = {
1098 				.digestsize = SHA512_DIGEST_SIZE,
1099 				.statesize = sizeof(struct aspeed_sham_reqctx),
1100 				.base = {
1101 					.cra_name		= "sha512",
1102 					.cra_driver_name	= "aspeed-sha512",
1103 					.cra_priority		= 300,
1104 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1105 								  CRYPTO_ALG_ASYNC |
1106 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1107 					.cra_blocksize		= SHA512_BLOCK_SIZE,
1108 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx),
1109 					.cra_alignmask		= 0,
1110 					.cra_module		= THIS_MODULE,
1111 					.cra_init		= aspeed_sham_cra_init,
1112 					.cra_exit		= aspeed_sham_cra_exit,
1113 				}
1114 			}
1115 		},
1116 		.alg.ahash.op = {
1117 			.do_one_request = aspeed_ahash_do_one,
1118 		},
1119 	},
1120 	{
1121 		.alg_base = "sha384",
1122 		.alg.ahash.base = {
1123 			.init	= aspeed_sham_init,
1124 			.update	= aspeed_sham_update,
1125 			.final	= aspeed_sham_final,
1126 			.finup	= aspeed_sham_finup,
1127 			.digest	= aspeed_sham_digest,
1128 			.setkey	= aspeed_sham_setkey,
1129 			.export	= aspeed_sham_export,
1130 			.import	= aspeed_sham_import,
1131 			.halg = {
1132 				.digestsize = SHA384_DIGEST_SIZE,
1133 				.statesize = sizeof(struct aspeed_sham_reqctx),
1134 				.base = {
1135 					.cra_name		= "hmac(sha384)",
1136 					.cra_driver_name	= "aspeed-hmac-sha384",
1137 					.cra_priority		= 300,
1138 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1139 								  CRYPTO_ALG_ASYNC |
1140 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1141 					.cra_blocksize		= SHA384_BLOCK_SIZE,
1142 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx) +
1143 								sizeof(struct aspeed_sha_hmac_ctx),
1144 					.cra_alignmask		= 0,
1145 					.cra_module		= THIS_MODULE,
1146 					.cra_init		= aspeed_sham_cra_init,
1147 					.cra_exit		= aspeed_sham_cra_exit,
1148 				}
1149 			}
1150 		},
1151 		.alg.ahash.op = {
1152 			.do_one_request = aspeed_ahash_do_one,
1153 		},
1154 	},
1155 	{
1156 		.alg_base = "sha512",
1157 		.alg.ahash.base = {
1158 			.init	= aspeed_sham_init,
1159 			.update	= aspeed_sham_update,
1160 			.final	= aspeed_sham_final,
1161 			.finup	= aspeed_sham_finup,
1162 			.digest	= aspeed_sham_digest,
1163 			.setkey	= aspeed_sham_setkey,
1164 			.export	= aspeed_sham_export,
1165 			.import	= aspeed_sham_import,
1166 			.halg = {
1167 				.digestsize = SHA512_DIGEST_SIZE,
1168 				.statesize = sizeof(struct aspeed_sham_reqctx),
1169 				.base = {
1170 					.cra_name		= "hmac(sha512)",
1171 					.cra_driver_name	= "aspeed-hmac-sha512",
1172 					.cra_priority		= 300,
1173 					.cra_flags		= CRYPTO_ALG_TYPE_AHASH |
1174 								  CRYPTO_ALG_ASYNC |
1175 								  CRYPTO_ALG_KERN_DRIVER_ONLY,
1176 					.cra_blocksize		= SHA512_BLOCK_SIZE,
1177 					.cra_ctxsize		= sizeof(struct aspeed_sham_ctx) +
1178 								sizeof(struct aspeed_sha_hmac_ctx),
1179 					.cra_alignmask		= 0,
1180 					.cra_module		= THIS_MODULE,
1181 					.cra_init		= aspeed_sham_cra_init,
1182 					.cra_exit		= aspeed_sham_cra_exit,
1183 				}
1184 			}
1185 		},
1186 		.alg.ahash.op = {
1187 			.do_one_request = aspeed_ahash_do_one,
1188 		},
1189 	},
1190 };
1191 
1192 void aspeed_unregister_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++)
1197 		crypto_engine_unregister_ahash(&aspeed_ahash_algs[i].alg.ahash);
1198 
1199 	if (hace_dev->version != AST2600_VERSION)
1200 		return;
1201 
1202 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++)
1203 		crypto_engine_unregister_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
1204 }
1205 
1206 void aspeed_register_hace_hash_algs(struct aspeed_hace_dev *hace_dev)
1207 {
1208 	int rc, i;
1209 
1210 	AHASH_DBG(hace_dev, "\n");
1211 
1212 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs); i++) {
1213 		aspeed_ahash_algs[i].hace_dev = hace_dev;
1214 		rc = crypto_engine_register_ahash(&aspeed_ahash_algs[i].alg.ahash);
1215 		if (rc) {
1216 			AHASH_DBG(hace_dev, "Failed to register %s\n",
1217 				  aspeed_ahash_algs[i].alg.ahash.base.halg.base.cra_name);
1218 		}
1219 	}
1220 
1221 	if (hace_dev->version != AST2600_VERSION)
1222 		return;
1223 
1224 	for (i = 0; i < ARRAY_SIZE(aspeed_ahash_algs_g6); i++) {
1225 		aspeed_ahash_algs_g6[i].hace_dev = hace_dev;
1226 		rc = crypto_engine_register_ahash(&aspeed_ahash_algs_g6[i].alg.ahash);
1227 		if (rc) {
1228 			AHASH_DBG(hace_dev, "Failed to register %s\n",
1229 				  aspeed_ahash_algs_g6[i].alg.ahash.base.halg.base.cra_name);
1230 		}
1231 	}
1232 }
1233