1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2021 Aspeed Technology Inc.
4  */
5 #include <crypto/akcipher.h>
6 #include <crypto/algapi.h>
7 #include <crypto/engine.h>
8 #include <crypto/internal/akcipher.h>
9 #include <crypto/internal/rsa.h>
10 #include <crypto/scatterwalk.h>
11 #include <linux/clk.h>
12 #include <linux/platform_device.h>
13 #include <linux/module.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/interrupt.h>
20 #include <linux/count_zeros.h>
21 #include <linux/err.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/regmap.h>
24 
25 #ifdef CONFIG_CRYPTO_DEV_ASPEED_DEBUG
26 #define ACRY_DBG(d, fmt, ...)	\
27 	dev_info((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
28 #else
29 #define ACRY_DBG(d, fmt, ...)	\
30 	dev_dbg((d)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
31 #endif
32 
33 /*****************************
34  *                           *
35  * ACRY register definitions *
36  *                           *
37  * ***************************/
38 #define ASPEED_ACRY_TRIGGER		0x000	/* ACRY Engine Control: trigger */
39 #define ASPEED_ACRY_DMA_CMD		0x048	/* ACRY Engine Control: Command */
40 #define ASPEED_ACRY_DMA_SRC_BASE	0x04C	/* ACRY DRAM base address for DMA */
41 #define ASPEED_ACRY_DMA_LEN		0x050	/* ACRY Data Length of DMA */
42 #define ASPEED_ACRY_RSA_KEY_LEN		0x058	/* ACRY RSA Exp/Mod Key Length (Bits) */
43 #define ASPEED_ACRY_INT_MASK		0x3F8	/* ACRY Interrupt Mask */
44 #define ASPEED_ACRY_STATUS		0x3FC	/* ACRY Interrupt Status */
45 
46 /* rsa trigger */
47 #define  ACRY_CMD_RSA_TRIGGER		BIT(0)
48 #define  ACRY_CMD_DMA_RSA_TRIGGER	BIT(1)
49 
50 /* rsa dma cmd */
51 #define  ACRY_CMD_DMA_SRAM_MODE_RSA	(0x3 << 4)
52 #define  ACRY_CMD_DMEM_AHB		BIT(8)
53 #define  ACRY_CMD_DMA_SRAM_AHB_ENGINE	0
54 
55 /* rsa key len */
56 #define  RSA_E_BITS_LEN(x)		((x) << 16)
57 #define  RSA_M_BITS_LEN(x)		(x)
58 
59 /* acry isr */
60 #define  ACRY_RSA_ISR			BIT(1)
61 
62 #define ASPEED_ACRY_BUFF_SIZE		0x1800	/* DMA buffer size */
63 #define ASPEED_ACRY_SRAM_MAX_LEN	2048	/* ACRY SRAM maximum length (Bytes) */
64 #define ASPEED_ACRY_RSA_MAX_KEY_LEN	512	/* ACRY RSA maximum key length (Bytes) */
65 
66 #define CRYPTO_FLAGS_BUSY		BIT(1)
67 #define BYTES_PER_DWORD			4
68 
69 /*****************************
70  *                           *
71  * AHBC register definitions *
72  *                           *
73  * ***************************/
74 #define AHBC_REGION_PROT		0x240
75 #define REGION_ACRYM			BIT(23)
76 
77 #define ast_acry_write(acry, val, offset)	\
78 	writel((val), (acry)->regs + (offset))
79 
80 #define ast_acry_read(acry, offset)		\
81 	readl((acry)->regs + (offset))
82 
83 struct aspeed_acry_dev;
84 
85 typedef int (*aspeed_acry_fn_t)(struct aspeed_acry_dev *);
86 
87 struct aspeed_acry_dev {
88 	void __iomem			*regs;
89 	struct device			*dev;
90 	int				irq;
91 	struct clk			*clk;
92 	struct regmap			*ahbc;
93 
94 	struct akcipher_request		*req;
95 	struct tasklet_struct		done_task;
96 	aspeed_acry_fn_t		resume;
97 	unsigned long			flags;
98 
99 	/* ACRY output SRAM buffer */
100 	void __iomem			*acry_sram;
101 
102 	/* ACRY input DMA buffer */
103 	void				*buf_addr;
104 	dma_addr_t			buf_dma_addr;
105 
106 	struct crypto_engine		*crypt_engine_rsa;
107 
108 	/* ACRY SRAM memory mapped */
109 	int				exp_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
110 	int				mod_dw_mapping[ASPEED_ACRY_RSA_MAX_KEY_LEN];
111 	int				data_byte_mapping[ASPEED_ACRY_SRAM_MAX_LEN];
112 };
113 
114 struct aspeed_acry_ctx {
115 	struct crypto_engine_ctx	enginectx;
116 	struct aspeed_acry_dev		*acry_dev;
117 
118 	struct rsa_key			key;
119 	int				enc;
120 	u8				*n;
121 	u8				*e;
122 	u8				*d;
123 	size_t				n_sz;
124 	size_t				e_sz;
125 	size_t				d_sz;
126 
127 	aspeed_acry_fn_t		trigger;
128 
129 	struct crypto_akcipher          *fallback_tfm;
130 };
131 
132 struct aspeed_acry_alg {
133 	struct aspeed_acry_dev		*acry_dev;
134 	struct akcipher_alg		akcipher;
135 };
136 
137 enum aspeed_rsa_key_mode {
138 	ASPEED_RSA_EXP_MODE = 0,
139 	ASPEED_RSA_MOD_MODE,
140 	ASPEED_RSA_DATA_MODE,
141 };
142 
143 static inline struct akcipher_request *
144 	akcipher_request_cast(struct crypto_async_request *req)
145 {
146 	return container_of(req, struct akcipher_request, base);
147 }
148 
149 static int aspeed_acry_do_fallback(struct akcipher_request *req)
150 {
151 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
152 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
153 	int err;
154 
155 	akcipher_request_set_tfm(req, ctx->fallback_tfm);
156 
157 	if (ctx->enc)
158 		err = crypto_akcipher_encrypt(req);
159 	else
160 		err = crypto_akcipher_decrypt(req);
161 
162 	akcipher_request_set_tfm(req, cipher);
163 
164 	return err;
165 }
166 
167 static bool aspeed_acry_need_fallback(struct akcipher_request *req)
168 {
169 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
170 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
171 
172 	return ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN;
173 }
174 
175 static int aspeed_acry_handle_queue(struct aspeed_acry_dev *acry_dev,
176 				    struct akcipher_request *req)
177 {
178 	if (aspeed_acry_need_fallback(req)) {
179 		ACRY_DBG(acry_dev, "SW fallback\n");
180 		return aspeed_acry_do_fallback(req);
181 	}
182 
183 	return crypto_transfer_akcipher_request_to_engine(acry_dev->crypt_engine_rsa, req);
184 }
185 
186 static int aspeed_acry_do_request(struct crypto_engine *engine, void *areq)
187 {
188 	struct akcipher_request *req = akcipher_request_cast(areq);
189 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
190 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
191 	struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
192 
193 	acry_dev->req = req;
194 	acry_dev->flags |= CRYPTO_FLAGS_BUSY;
195 
196 	return ctx->trigger(acry_dev);
197 }
198 
199 static int aspeed_acry_complete(struct aspeed_acry_dev *acry_dev, int err)
200 {
201 	struct akcipher_request *req = acry_dev->req;
202 
203 	acry_dev->flags &= ~CRYPTO_FLAGS_BUSY;
204 
205 	crypto_finalize_akcipher_request(acry_dev->crypt_engine_rsa, req, err);
206 
207 	return err;
208 }
209 
210 /*
211  * Copy Data to DMA buffer for engine used.
212  */
213 static void aspeed_acry_rsa_sg_copy_to_buffer(struct aspeed_acry_dev *acry_dev,
214 					      u8 *buf, struct scatterlist *src,
215 					      size_t nbytes)
216 {
217 	static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
218 	int i = 0, j;
219 	int data_idx;
220 
221 	ACRY_DBG(acry_dev, "\n");
222 
223 	scatterwalk_map_and_copy(dram_buffer, src, 0, nbytes, 0);
224 
225 	for (j = nbytes - 1; j >= 0; j--) {
226 		data_idx = acry_dev->data_byte_mapping[i];
227 		buf[data_idx] =  dram_buffer[j];
228 		i++;
229 	}
230 
231 	for (; i < ASPEED_ACRY_SRAM_MAX_LEN; i++) {
232 		data_idx = acry_dev->data_byte_mapping[i];
233 		buf[data_idx] = 0;
234 	}
235 }
236 
237 /*
238  * Copy Exp/Mod to DMA buffer for engine used.
239  *
240  * Params:
241  * - mode 0 : Exponential
242  * - mode 1 : Modulus
243  *
244  * Example:
245  * - DRAM memory layout:
246  *	D[0], D[4], D[8], D[12]
247  * - ACRY SRAM memory layout should reverse the order of source data:
248  *	D[12], D[8], D[4], D[0]
249  */
250 static int aspeed_acry_rsa_ctx_copy(struct aspeed_acry_dev *acry_dev, void *buf,
251 				    const void *xbuf, size_t nbytes,
252 				    enum aspeed_rsa_key_mode mode)
253 {
254 	const u8 *src = xbuf;
255 	__le32 *dw_buf = buf;
256 	int nbits, ndw;
257 	int i, j, idx;
258 	u32 data = 0;
259 
260 	ACRY_DBG(acry_dev, "nbytes:%zu, mode:%d\n", nbytes, mode);
261 
262 	if (nbytes > ASPEED_ACRY_RSA_MAX_KEY_LEN)
263 		return -ENOMEM;
264 
265 	/* Remove the leading zeros */
266 	while (nbytes > 0 && src[0] == 0) {
267 		src++;
268 		nbytes--;
269 	}
270 
271 	nbits = nbytes * 8;
272 	if (nbytes > 0)
273 		nbits -= count_leading_zeros(src[0]) - (BITS_PER_LONG - 8);
274 
275 	/* double-world alignment */
276 	ndw = DIV_ROUND_UP(nbytes, BYTES_PER_DWORD);
277 
278 	if (nbytes > 0) {
279 		i = BYTES_PER_DWORD - nbytes % BYTES_PER_DWORD;
280 		i %= BYTES_PER_DWORD;
281 
282 		for (j = ndw; j > 0; j--) {
283 			for (; i < BYTES_PER_DWORD; i++) {
284 				data <<= 8;
285 				data |= *src++;
286 			}
287 
288 			i = 0;
289 
290 			if (mode == ASPEED_RSA_EXP_MODE)
291 				idx = acry_dev->exp_dw_mapping[j - 1];
292 			else if (mode == ASPEED_RSA_MOD_MODE)
293 				idx = acry_dev->mod_dw_mapping[j - 1];
294 
295 			dw_buf[idx] = cpu_to_le32(data);
296 		}
297 	}
298 
299 	return nbits;
300 }
301 
302 static int aspeed_acry_rsa_transfer(struct aspeed_acry_dev *acry_dev)
303 {
304 	struct akcipher_request *req = acry_dev->req;
305 	u8 __iomem *sram_buffer = acry_dev->acry_sram;
306 	struct scatterlist *out_sg = req->dst;
307 	static u8 dram_buffer[ASPEED_ACRY_SRAM_MAX_LEN];
308 	int leading_zero = 1;
309 	int result_nbytes;
310 	int i = 0, j;
311 	int data_idx;
312 
313 	/* Set Data Memory to AHB(CPU) Access Mode */
314 	ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
315 
316 	/* Disable ACRY SRAM protection */
317 	regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
318 			   REGION_ACRYM, 0);
319 
320 	result_nbytes = ASPEED_ACRY_SRAM_MAX_LEN;
321 
322 	for (j = ASPEED_ACRY_SRAM_MAX_LEN - 1; j >= 0; j--) {
323 		data_idx = acry_dev->data_byte_mapping[j];
324 		if (readb(sram_buffer + data_idx) == 0 && leading_zero) {
325 			result_nbytes--;
326 		} else {
327 			leading_zero = 0;
328 			dram_buffer[i] = readb(sram_buffer + data_idx);
329 			i++;
330 		}
331 	}
332 
333 	ACRY_DBG(acry_dev, "result_nbytes:%d, req->dst_len:%d\n",
334 		 result_nbytes, req->dst_len);
335 
336 	if (result_nbytes <= req->dst_len) {
337 		scatterwalk_map_and_copy(dram_buffer, out_sg, 0, result_nbytes,
338 					 1);
339 		req->dst_len = result_nbytes;
340 
341 	} else {
342 		dev_err(acry_dev->dev, "RSA engine error!\n");
343 	}
344 
345 	memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
346 
347 	return aspeed_acry_complete(acry_dev, 0);
348 }
349 
350 static int aspeed_acry_rsa_trigger(struct aspeed_acry_dev *acry_dev)
351 {
352 	struct akcipher_request *req = acry_dev->req;
353 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
354 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
355 	int ne, nm;
356 
357 	if (!ctx->n || !ctx->n_sz) {
358 		dev_err(acry_dev->dev, "%s: key n is not set\n", __func__);
359 		return -EINVAL;
360 	}
361 
362 	memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
363 
364 	/* Copy source data to DMA buffer */
365 	aspeed_acry_rsa_sg_copy_to_buffer(acry_dev, acry_dev->buf_addr,
366 					  req->src, req->src_len);
367 
368 	nm = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr, ctx->n,
369 				      ctx->n_sz, ASPEED_RSA_MOD_MODE);
370 	if (ctx->enc) {
371 		if (!ctx->e || !ctx->e_sz) {
372 			dev_err(acry_dev->dev, "%s: key e is not set\n",
373 				__func__);
374 			return -EINVAL;
375 		}
376 		/* Copy key e to DMA buffer */
377 		ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
378 					      ctx->e, ctx->e_sz,
379 					      ASPEED_RSA_EXP_MODE);
380 	} else {
381 		if (!ctx->d || !ctx->d_sz) {
382 			dev_err(acry_dev->dev, "%s: key d is not set\n",
383 				__func__);
384 			return -EINVAL;
385 		}
386 		/* Copy key d to DMA buffer */
387 		ne = aspeed_acry_rsa_ctx_copy(acry_dev, acry_dev->buf_addr,
388 					      ctx->key.d, ctx->key.d_sz,
389 					      ASPEED_RSA_EXP_MODE);
390 	}
391 
392 	ast_acry_write(acry_dev, acry_dev->buf_dma_addr,
393 		       ASPEED_ACRY_DMA_SRC_BASE);
394 	ast_acry_write(acry_dev, (ne << 16) + nm,
395 		       ASPEED_ACRY_RSA_KEY_LEN);
396 	ast_acry_write(acry_dev, ASPEED_ACRY_BUFF_SIZE,
397 		       ASPEED_ACRY_DMA_LEN);
398 
399 	acry_dev->resume = aspeed_acry_rsa_transfer;
400 
401 	/* Enable ACRY SRAM protection */
402 	regmap_update_bits(acry_dev->ahbc, AHBC_REGION_PROT,
403 			   REGION_ACRYM, REGION_ACRYM);
404 
405 	ast_acry_write(acry_dev, ACRY_RSA_ISR, ASPEED_ACRY_INT_MASK);
406 	ast_acry_write(acry_dev, ACRY_CMD_DMA_SRAM_MODE_RSA |
407 			  ACRY_CMD_DMA_SRAM_AHB_ENGINE, ASPEED_ACRY_DMA_CMD);
408 
409 	/* Trigger RSA engines */
410 	ast_acry_write(acry_dev, ACRY_CMD_RSA_TRIGGER |
411 			  ACRY_CMD_DMA_RSA_TRIGGER, ASPEED_ACRY_TRIGGER);
412 
413 	return 0;
414 }
415 
416 static int aspeed_acry_rsa_enc(struct akcipher_request *req)
417 {
418 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
419 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
420 	struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
421 
422 	ctx->trigger = aspeed_acry_rsa_trigger;
423 	ctx->enc = 1;
424 
425 	return aspeed_acry_handle_queue(acry_dev, req);
426 }
427 
428 static int aspeed_acry_rsa_dec(struct akcipher_request *req)
429 {
430 	struct crypto_akcipher *cipher = crypto_akcipher_reqtfm(req);
431 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(cipher);
432 	struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
433 
434 	ctx->trigger = aspeed_acry_rsa_trigger;
435 	ctx->enc = 0;
436 
437 	return aspeed_acry_handle_queue(acry_dev, req);
438 }
439 
440 static u8 *aspeed_rsa_key_copy(u8 *src, size_t len)
441 {
442 	return kmemdup(src, len, GFP_KERNEL);
443 }
444 
445 static int aspeed_rsa_set_n(struct aspeed_acry_ctx *ctx, u8 *value,
446 			    size_t len)
447 {
448 	ctx->n_sz = len;
449 	ctx->n = aspeed_rsa_key_copy(value, len);
450 	if (!ctx->n)
451 		return -ENOMEM;
452 
453 	return 0;
454 }
455 
456 static int aspeed_rsa_set_e(struct aspeed_acry_ctx *ctx, u8 *value,
457 			    size_t len)
458 {
459 	ctx->e_sz = len;
460 	ctx->e = aspeed_rsa_key_copy(value, len);
461 	if (!ctx->e)
462 		return -ENOMEM;
463 
464 	return 0;
465 }
466 
467 static int aspeed_rsa_set_d(struct aspeed_acry_ctx *ctx, u8 *value,
468 			    size_t len)
469 {
470 	ctx->d_sz = len;
471 	ctx->d = aspeed_rsa_key_copy(value, len);
472 	if (!ctx->d)
473 		return -ENOMEM;
474 
475 	return 0;
476 }
477 
478 static void aspeed_rsa_key_free(struct aspeed_acry_ctx *ctx)
479 {
480 	kfree_sensitive(ctx->n);
481 	kfree_sensitive(ctx->e);
482 	kfree_sensitive(ctx->d);
483 	ctx->n_sz = 0;
484 	ctx->e_sz = 0;
485 	ctx->d_sz = 0;
486 }
487 
488 static int aspeed_acry_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
489 				  unsigned int keylen, int priv)
490 {
491 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
492 	struct aspeed_acry_dev *acry_dev = ctx->acry_dev;
493 	int ret;
494 
495 	if (priv)
496 		ret = rsa_parse_priv_key(&ctx->key, key, keylen);
497 	else
498 		ret = rsa_parse_pub_key(&ctx->key, key, keylen);
499 
500 	if (ret) {
501 		dev_err(acry_dev->dev, "rsa parse key failed, ret:0x%x\n",
502 			ret);
503 		return ret;
504 	}
505 
506 	/* Aspeed engine supports up to 4096 bits,
507 	 * Use software fallback instead.
508 	 */
509 	if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
510 		return 0;
511 
512 	ret = aspeed_rsa_set_n(ctx, (u8 *)ctx->key.n, ctx->key.n_sz);
513 	if (ret)
514 		goto err;
515 
516 	ret = aspeed_rsa_set_e(ctx, (u8 *)ctx->key.e, ctx->key.e_sz);
517 	if (ret)
518 		goto err;
519 
520 	if (priv) {
521 		ret = aspeed_rsa_set_d(ctx, (u8 *)ctx->key.d, ctx->key.d_sz);
522 		if (ret)
523 			goto err;
524 	}
525 
526 	return 0;
527 
528 err:
529 	dev_err(acry_dev->dev, "rsa set key failed\n");
530 	aspeed_rsa_key_free(ctx);
531 
532 	return ret;
533 }
534 
535 static int aspeed_acry_rsa_set_pub_key(struct crypto_akcipher *tfm,
536 				       const void *key,
537 				       unsigned int keylen)
538 {
539 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
540 	int ret;
541 
542 	ret = crypto_akcipher_set_pub_key(ctx->fallback_tfm, key, keylen);
543 	if (ret)
544 		return ret;
545 
546 	return aspeed_acry_rsa_setkey(tfm, key, keylen, 0);
547 }
548 
549 static int aspeed_acry_rsa_set_priv_key(struct crypto_akcipher *tfm,
550 					const void *key,
551 					unsigned int keylen)
552 {
553 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
554 	int ret;
555 
556 	ret = crypto_akcipher_set_priv_key(ctx->fallback_tfm, key, keylen);
557 	if (ret)
558 		return ret;
559 
560 	return aspeed_acry_rsa_setkey(tfm, key, keylen, 1);
561 }
562 
563 static unsigned int aspeed_acry_rsa_max_size(struct crypto_akcipher *tfm)
564 {
565 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
566 
567 	if (ctx->key.n_sz > ASPEED_ACRY_RSA_MAX_KEY_LEN)
568 		return crypto_akcipher_maxsize(ctx->fallback_tfm);
569 
570 	return ctx->n_sz;
571 }
572 
573 static int aspeed_acry_rsa_init_tfm(struct crypto_akcipher *tfm)
574 {
575 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
576 	struct akcipher_alg *alg = crypto_akcipher_alg(tfm);
577 	const char *name = crypto_tfm_alg_name(&tfm->base);
578 	struct aspeed_acry_alg *acry_alg;
579 
580 	acry_alg = container_of(alg, struct aspeed_acry_alg, akcipher);
581 
582 	ctx->acry_dev = acry_alg->acry_dev;
583 
584 	ctx->fallback_tfm = crypto_alloc_akcipher(name, 0, CRYPTO_ALG_ASYNC |
585 						  CRYPTO_ALG_NEED_FALLBACK);
586 	if (IS_ERR(ctx->fallback_tfm)) {
587 		dev_err(ctx->acry_dev->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
588 			name, PTR_ERR(ctx->fallback_tfm));
589 		return PTR_ERR(ctx->fallback_tfm);
590 	}
591 
592 	ctx->enginectx.op.do_one_request = aspeed_acry_do_request;
593 	ctx->enginectx.op.prepare_request = NULL;
594 	ctx->enginectx.op.unprepare_request = NULL;
595 
596 	return 0;
597 }
598 
599 static void aspeed_acry_rsa_exit_tfm(struct crypto_akcipher *tfm)
600 {
601 	struct aspeed_acry_ctx *ctx = akcipher_tfm_ctx(tfm);
602 
603 	crypto_free_akcipher(ctx->fallback_tfm);
604 }
605 
606 static struct aspeed_acry_alg aspeed_acry_akcipher_algs[] = {
607 	{
608 		.akcipher = {
609 			.encrypt = aspeed_acry_rsa_enc,
610 			.decrypt = aspeed_acry_rsa_dec,
611 			.sign = aspeed_acry_rsa_dec,
612 			.verify = aspeed_acry_rsa_enc,
613 			.set_pub_key = aspeed_acry_rsa_set_pub_key,
614 			.set_priv_key = aspeed_acry_rsa_set_priv_key,
615 			.max_size = aspeed_acry_rsa_max_size,
616 			.init = aspeed_acry_rsa_init_tfm,
617 			.exit = aspeed_acry_rsa_exit_tfm,
618 			.base = {
619 				.cra_name = "rsa",
620 				.cra_driver_name = "aspeed-rsa",
621 				.cra_priority = 300,
622 				.cra_flags = CRYPTO_ALG_TYPE_AKCIPHER |
623 					     CRYPTO_ALG_ASYNC |
624 					     CRYPTO_ALG_KERN_DRIVER_ONLY |
625 					     CRYPTO_ALG_NEED_FALLBACK,
626 				.cra_module = THIS_MODULE,
627 				.cra_ctxsize = sizeof(struct aspeed_acry_ctx),
628 			},
629 		},
630 	},
631 };
632 
633 static void aspeed_acry_register(struct aspeed_acry_dev *acry_dev)
634 {
635 	int i, rc;
636 
637 	for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++) {
638 		aspeed_acry_akcipher_algs[i].acry_dev = acry_dev;
639 		rc = crypto_register_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
640 		if (rc) {
641 			ACRY_DBG(acry_dev, "Failed to register %s\n",
642 				 aspeed_acry_akcipher_algs[i].akcipher.base.cra_name);
643 		}
644 	}
645 }
646 
647 static void aspeed_acry_unregister(struct aspeed_acry_dev *acry_dev)
648 {
649 	int i;
650 
651 	for (i = 0; i < ARRAY_SIZE(aspeed_acry_akcipher_algs); i++)
652 		crypto_unregister_akcipher(&aspeed_acry_akcipher_algs[i].akcipher);
653 }
654 
655 /* ACRY interrupt service routine. */
656 static irqreturn_t aspeed_acry_irq(int irq, void *dev)
657 {
658 	struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)dev;
659 	u32 sts;
660 
661 	sts = ast_acry_read(acry_dev, ASPEED_ACRY_STATUS);
662 	ast_acry_write(acry_dev, sts, ASPEED_ACRY_STATUS);
663 
664 	ACRY_DBG(acry_dev, "irq sts:0x%x\n", sts);
665 
666 	if (sts & ACRY_RSA_ISR) {
667 		/* Stop RSA engine */
668 		ast_acry_write(acry_dev, 0, ASPEED_ACRY_TRIGGER);
669 
670 		if (acry_dev->flags & CRYPTO_FLAGS_BUSY)
671 			tasklet_schedule(&acry_dev->done_task);
672 		else
673 			dev_err(acry_dev->dev, "RSA no active requests.\n");
674 	}
675 
676 	return IRQ_HANDLED;
677 }
678 
679 /*
680  * ACRY SRAM has its own memory layout.
681  * Set the DRAM to SRAM indexing for future used.
682  */
683 static void aspeed_acry_sram_mapping(struct aspeed_acry_dev *acry_dev)
684 {
685 	int i, j = 0;
686 
687 	for (i = 0; i < (ASPEED_ACRY_SRAM_MAX_LEN / BYTES_PER_DWORD); i++) {
688 		acry_dev->exp_dw_mapping[i] = j;
689 		acry_dev->mod_dw_mapping[i] = j + 4;
690 		acry_dev->data_byte_mapping[(i * 4)] = (j + 8) * 4;
691 		acry_dev->data_byte_mapping[(i * 4) + 1] = (j + 8) * 4 + 1;
692 		acry_dev->data_byte_mapping[(i * 4) + 2] = (j + 8) * 4 + 2;
693 		acry_dev->data_byte_mapping[(i * 4) + 3] = (j + 8) * 4 + 3;
694 		j++;
695 		j = j % 4 ? j : j + 8;
696 	}
697 }
698 
699 static void aspeed_acry_done_task(unsigned long data)
700 {
701 	struct aspeed_acry_dev *acry_dev = (struct aspeed_acry_dev *)data;
702 
703 	(void)acry_dev->resume(acry_dev);
704 }
705 
706 static const struct of_device_id aspeed_acry_of_matches[] = {
707 	{ .compatible = "aspeed,ast2600-acry", },
708 	{},
709 };
710 
711 static int aspeed_acry_probe(struct platform_device *pdev)
712 {
713 	struct aspeed_acry_dev *acry_dev;
714 	struct device *dev = &pdev->dev;
715 	struct resource *res;
716 	int rc;
717 
718 	acry_dev = devm_kzalloc(dev, sizeof(struct aspeed_acry_dev),
719 				GFP_KERNEL);
720 	if (!acry_dev)
721 		return -ENOMEM;
722 
723 	acry_dev->dev = dev;
724 
725 	platform_set_drvdata(pdev, acry_dev);
726 
727 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
728 	acry_dev->regs = devm_ioremap_resource(dev, res);
729 	if (IS_ERR(acry_dev->regs))
730 		return PTR_ERR(acry_dev->regs);
731 
732 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
733 	acry_dev->acry_sram = devm_ioremap_resource(dev, res);
734 	if (IS_ERR(acry_dev->acry_sram))
735 		return PTR_ERR(acry_dev->acry_sram);
736 
737 	/* Get irq number and register it */
738 	acry_dev->irq = platform_get_irq(pdev, 0);
739 	if (acry_dev->irq < 0)
740 		return -ENXIO;
741 
742 	rc = devm_request_irq(dev, acry_dev->irq, aspeed_acry_irq, 0,
743 			      dev_name(dev), acry_dev);
744 	if (rc) {
745 		dev_err(dev, "Failed to request irq.\n");
746 		return rc;
747 	}
748 
749 	acry_dev->clk = devm_clk_get_enabled(dev, NULL);
750 	if (IS_ERR(acry_dev->clk)) {
751 		dev_err(dev, "Failed to get acry clk\n");
752 		return PTR_ERR(acry_dev->clk);
753 	}
754 
755 	acry_dev->ahbc = syscon_regmap_lookup_by_phandle(dev->of_node,
756 							 "aspeed,ahbc");
757 	if (IS_ERR(acry_dev->ahbc)) {
758 		dev_err(dev, "Failed to get AHBC regmap\n");
759 		return -ENODEV;
760 	}
761 
762 	/* Initialize crypto hardware engine structure for RSA */
763 	acry_dev->crypt_engine_rsa = crypto_engine_alloc_init(dev, true);
764 	if (!acry_dev->crypt_engine_rsa) {
765 		rc = -ENOMEM;
766 		goto clk_exit;
767 	}
768 
769 	rc = crypto_engine_start(acry_dev->crypt_engine_rsa);
770 	if (rc)
771 		goto err_engine_rsa_start;
772 
773 	tasklet_init(&acry_dev->done_task, aspeed_acry_done_task,
774 		     (unsigned long)acry_dev);
775 
776 	/* Set Data Memory to AHB(CPU) Access Mode */
777 	ast_acry_write(acry_dev, ACRY_CMD_DMEM_AHB, ASPEED_ACRY_DMA_CMD);
778 
779 	/* Initialize ACRY SRAM index */
780 	aspeed_acry_sram_mapping(acry_dev);
781 
782 	acry_dev->buf_addr = dmam_alloc_coherent(dev, ASPEED_ACRY_BUFF_SIZE,
783 						 &acry_dev->buf_dma_addr,
784 						 GFP_KERNEL);
785 	memzero_explicit(acry_dev->buf_addr, ASPEED_ACRY_BUFF_SIZE);
786 
787 	aspeed_acry_register(acry_dev);
788 
789 	dev_info(dev, "Aspeed ACRY Accelerator successfully registered\n");
790 
791 	return 0;
792 
793 err_engine_rsa_start:
794 	crypto_engine_exit(acry_dev->crypt_engine_rsa);
795 clk_exit:
796 	clk_disable_unprepare(acry_dev->clk);
797 
798 	return rc;
799 }
800 
801 static int aspeed_acry_remove(struct platform_device *pdev)
802 {
803 	struct aspeed_acry_dev *acry_dev = platform_get_drvdata(pdev);
804 
805 	aspeed_acry_unregister(acry_dev);
806 	crypto_engine_exit(acry_dev->crypt_engine_rsa);
807 	tasklet_kill(&acry_dev->done_task);
808 	clk_disable_unprepare(acry_dev->clk);
809 
810 	return 0;
811 }
812 
813 MODULE_DEVICE_TABLE(of, aspeed_acry_of_matches);
814 
815 static struct platform_driver aspeed_acry_driver = {
816 	.probe		= aspeed_acry_probe,
817 	.remove		= aspeed_acry_remove,
818 	.driver		= {
819 		.name   = KBUILD_MODNAME,
820 		.of_match_table = aspeed_acry_of_matches,
821 	},
822 };
823 
824 module_platform_driver(aspeed_acry_driver);
825 
826 MODULE_AUTHOR("Neal Liu <neal_liu@aspeedtech.com>");
827 MODULE_DESCRIPTION("ASPEED ACRY driver for hardware RSA Engine");
828 MODULE_LICENSE("GPL");
829