xref: /openbmc/linux/drivers/crypto/amcc/crypto4xx_core.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aead.h>
39 #include <crypto/aes.h>
40 #include <crypto/ctr.h>
41 #include <crypto/gcm.h>
42 #include <crypto/sha.h>
43 #include <crypto/scatterwalk.h>
44 #include <crypto/skcipher.h>
45 #include <crypto/internal/aead.h>
46 #include <crypto/internal/skcipher.h>
47 #include "crypto4xx_reg_def.h"
48 #include "crypto4xx_core.h"
49 #include "crypto4xx_sa.h"
50 #include "crypto4xx_trng.h"
51 
52 #define PPC4XX_SEC_VERSION_STR			"0.5"
53 
54 /**
55  * PPC4xx Crypto Engine Initialization Routine
56  */
57 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
58 {
59 	union ce_ring_size ring_size;
60 	union ce_ring_control ring_ctrl;
61 	union ce_part_ring_size part_ring_size;
62 	union ce_io_threshold io_threshold;
63 	u32 rand_num;
64 	union ce_pe_dma_cfg pe_dma_cfg;
65 	u32 device_ctrl;
66 
67 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
68 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
69 	pe_dma_cfg.w = 0;
70 	pe_dma_cfg.bf.bo_sgpd_en = 1;
71 	pe_dma_cfg.bf.bo_data_en = 0;
72 	pe_dma_cfg.bf.bo_sa_en = 1;
73 	pe_dma_cfg.bf.bo_pd_en = 1;
74 	pe_dma_cfg.bf.dynamic_sa_en = 1;
75 	pe_dma_cfg.bf.reset_sg = 1;
76 	pe_dma_cfg.bf.reset_pdr = 1;
77 	pe_dma_cfg.bf.reset_pe = 1;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	/* un reset pe,sg and pdr */
80 	pe_dma_cfg.bf.pe_mode = 0;
81 	pe_dma_cfg.bf.reset_sg = 0;
82 	pe_dma_cfg.bf.reset_pdr = 0;
83 	pe_dma_cfg.bf.reset_pe = 0;
84 	pe_dma_cfg.bf.bo_td_en = 0;
85 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
86 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
87 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
88 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
89 	get_random_bytes(&rand_num, sizeof(rand_num));
90 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
91 	get_random_bytes(&rand_num, sizeof(rand_num));
92 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
93 	ring_size.w = 0;
94 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
95 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
96 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
97 	ring_ctrl.w = 0;
98 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
99 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
100 	device_ctrl |= PPC4XX_DC_3DES_EN;
101 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
102 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
103 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
104 	part_ring_size.w = 0;
105 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
106 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
107 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
108 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
109 	io_threshold.w = 0;
110 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
111 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
112 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
113 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
114 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
115 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
116 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
117 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
118 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
119 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
120 	/* un reset pe,sg and pdr */
121 	pe_dma_cfg.bf.pe_mode = 1;
122 	pe_dma_cfg.bf.reset_sg = 0;
123 	pe_dma_cfg.bf.reset_pdr = 0;
124 	pe_dma_cfg.bf.reset_pe = 0;
125 	pe_dma_cfg.bf.bo_td_en = 0;
126 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
127 	/*clear all pending interrupt*/
128 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
129 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
130 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
131 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
132 	if (dev->is_revb) {
133 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
134 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
135 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
136 		       dev->ce_base + CRYPTO4XX_INT_EN);
137 	} else {
138 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
139 	}
140 }
141 
142 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
143 {
144 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
145 	if (ctx->sa_in == NULL)
146 		return -ENOMEM;
147 
148 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
149 	if (ctx->sa_out == NULL) {
150 		kfree(ctx->sa_in);
151 		ctx->sa_in = NULL;
152 		return -ENOMEM;
153 	}
154 
155 	ctx->sa_len = size;
156 
157 	return 0;
158 }
159 
160 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
161 {
162 	kfree(ctx->sa_in);
163 	ctx->sa_in = NULL;
164 	kfree(ctx->sa_out);
165 	ctx->sa_out = NULL;
166 	ctx->sa_len = 0;
167 }
168 
169 /**
170  * alloc memory for the gather ring
171  * no need to alloc buf for the ring
172  * gdr_tail, gdr_head and gdr_count are initialized by this function
173  */
174 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
175 {
176 	int i;
177 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
178 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
179 				      &dev->pdr_pa, GFP_ATOMIC);
180 	if (!dev->pdr)
181 		return -ENOMEM;
182 
183 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
184 				 GFP_KERNEL);
185 	if (!dev->pdr_uinfo) {
186 		dma_free_coherent(dev->core_dev->device,
187 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
188 				  dev->pdr,
189 				  dev->pdr_pa);
190 		return -ENOMEM;
191 	}
192 	memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
193 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
194 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
195 				   &dev->shadow_sa_pool_pa,
196 				   GFP_ATOMIC);
197 	if (!dev->shadow_sa_pool)
198 		return -ENOMEM;
199 
200 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
201 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
202 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
203 	if (!dev->shadow_sr_pool)
204 		return -ENOMEM;
205 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
206 		struct ce_pd *pd = &dev->pdr[i];
207 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
208 
209 		pd->sa = dev->shadow_sa_pool_pa +
210 			sizeof(union shadow_sa_buf) * i;
211 
212 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
213 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
214 
215 		/* alloc state record */
216 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
217 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
218 		    sizeof(struct sa_state_record) * i;
219 	}
220 
221 	return 0;
222 }
223 
224 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
225 {
226 	if (dev->pdr)
227 		dma_free_coherent(dev->core_dev->device,
228 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
229 				  dev->pdr, dev->pdr_pa);
230 
231 	if (dev->shadow_sa_pool)
232 		dma_free_coherent(dev->core_dev->device,
233 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
234 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
235 
236 	if (dev->shadow_sr_pool)
237 		dma_free_coherent(dev->core_dev->device,
238 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
239 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
240 
241 	kfree(dev->pdr_uinfo);
242 }
243 
244 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
245 {
246 	u32 retval;
247 	u32 tmp;
248 
249 	retval = dev->pdr_head;
250 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
251 
252 	if (tmp == dev->pdr_tail)
253 		return ERING_WAS_FULL;
254 
255 	dev->pdr_head = tmp;
256 
257 	return retval;
258 }
259 
260 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
261 {
262 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
263 	u32 tail;
264 	unsigned long flags;
265 
266 	spin_lock_irqsave(&dev->core_dev->lock, flags);
267 	pd_uinfo->state = PD_ENTRY_FREE;
268 
269 	if (dev->pdr_tail != PPC4XX_LAST_PD)
270 		dev->pdr_tail++;
271 	else
272 		dev->pdr_tail = 0;
273 	tail = dev->pdr_tail;
274 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
275 
276 	return tail;
277 }
278 
279 /**
280  * alloc memory for the gather ring
281  * no need to alloc buf for the ring
282  * gdr_tail, gdr_head and gdr_count are initialized by this function
283  */
284 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
285 {
286 	dev->gdr = dma_zalloc_coherent(dev->core_dev->device,
287 				       sizeof(struct ce_gd) * PPC4XX_NUM_GD,
288 				       &dev->gdr_pa, GFP_ATOMIC);
289 	if (!dev->gdr)
290 		return -ENOMEM;
291 
292 	return 0;
293 }
294 
295 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
296 {
297 	dma_free_coherent(dev->core_dev->device,
298 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
299 			  dev->gdr, dev->gdr_pa);
300 }
301 
302 /*
303  * when this function is called.
304  * preemption or interrupt must be disabled
305  */
306 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
307 {
308 	u32 retval;
309 	u32 tmp;
310 
311 	if (n >= PPC4XX_NUM_GD)
312 		return ERING_WAS_FULL;
313 
314 	retval = dev->gdr_head;
315 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
316 	if (dev->gdr_head > dev->gdr_tail) {
317 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
318 			return ERING_WAS_FULL;
319 	} else if (dev->gdr_head < dev->gdr_tail) {
320 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
321 			return ERING_WAS_FULL;
322 	}
323 	dev->gdr_head = tmp;
324 
325 	return retval;
326 }
327 
328 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
329 {
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&dev->core_dev->lock, flags);
333 	if (dev->gdr_tail == dev->gdr_head) {
334 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
335 		return 0;
336 	}
337 
338 	if (dev->gdr_tail != PPC4XX_LAST_GD)
339 		dev->gdr_tail++;
340 	else
341 		dev->gdr_tail = 0;
342 
343 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
344 
345 	return 0;
346 }
347 
348 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
349 					      dma_addr_t *gd_dma, u32 idx)
350 {
351 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
352 
353 	return &dev->gdr[idx];
354 }
355 
356 /**
357  * alloc memory for the scatter ring
358  * need to alloc buf for the ring
359  * sdr_tail, sdr_head and sdr_count are initialized by this function
360  */
361 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
362 {
363 	int i;
364 
365 	/* alloc memory for scatter descriptor ring */
366 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368 				      &dev->sdr_pa, GFP_ATOMIC);
369 	if (!dev->sdr)
370 		return -ENOMEM;
371 
372 	dev->scatter_buffer_va =
373 		dma_alloc_coherent(dev->core_dev->device,
374 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
375 			&dev->scatter_buffer_pa, GFP_ATOMIC);
376 	if (!dev->scatter_buffer_va) {
377 		dma_free_coherent(dev->core_dev->device,
378 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
379 				  dev->sdr, dev->sdr_pa);
380 		return -ENOMEM;
381 	}
382 
383 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
384 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
385 				  PPC4XX_SD_BUFFER_SIZE * i;
386 	}
387 
388 	return 0;
389 }
390 
391 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
392 {
393 	if (dev->sdr)
394 		dma_free_coherent(dev->core_dev->device,
395 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
396 				  dev->sdr, dev->sdr_pa);
397 
398 	if (dev->scatter_buffer_va)
399 		dma_free_coherent(dev->core_dev->device,
400 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
401 				  dev->scatter_buffer_va,
402 				  dev->scatter_buffer_pa);
403 }
404 
405 /*
406  * when this function is called.
407  * preemption or interrupt must be disabled
408  */
409 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
410 {
411 	u32 retval;
412 	u32 tmp;
413 
414 	if (n >= PPC4XX_NUM_SD)
415 		return ERING_WAS_FULL;
416 
417 	retval = dev->sdr_head;
418 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
419 	if (dev->sdr_head > dev->gdr_tail) {
420 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
421 			return ERING_WAS_FULL;
422 	} else if (dev->sdr_head < dev->sdr_tail) {
423 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
424 			return ERING_WAS_FULL;
425 	} /* the head = tail, or empty case is already take cared */
426 	dev->sdr_head = tmp;
427 
428 	return retval;
429 }
430 
431 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
432 {
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&dev->core_dev->lock, flags);
436 	if (dev->sdr_tail == dev->sdr_head) {
437 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
438 		return 0;
439 	}
440 	if (dev->sdr_tail != PPC4XX_LAST_SD)
441 		dev->sdr_tail++;
442 	else
443 		dev->sdr_tail = 0;
444 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
445 
446 	return 0;
447 }
448 
449 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
450 					      dma_addr_t *sd_dma, u32 idx)
451 {
452 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
453 
454 	return &dev->sdr[idx];
455 }
456 
457 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
458 				      struct ce_pd *pd,
459 				      struct pd_uinfo *pd_uinfo,
460 				      u32 nbytes,
461 				      struct scatterlist *dst)
462 {
463 	unsigned int first_sd = pd_uinfo->first_sd;
464 	unsigned int last_sd;
465 	unsigned int overflow = 0;
466 	unsigned int to_copy;
467 	unsigned int dst_start = 0;
468 
469 	/*
470 	 * Because the scatter buffers are all neatly organized in one
471 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
472 	 * be instructed to copy a range of buffers in one go.
473 	 */
474 
475 	last_sd = (first_sd + pd_uinfo->num_sd);
476 	if (last_sd > PPC4XX_LAST_SD) {
477 		last_sd = PPC4XX_LAST_SD;
478 		overflow = last_sd % PPC4XX_NUM_SD;
479 	}
480 
481 	while (nbytes) {
482 		void *buf = dev->scatter_buffer_va +
483 			first_sd * PPC4XX_SD_BUFFER_SIZE;
484 
485 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
486 				      (1 + last_sd - first_sd));
487 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
488 		nbytes -= to_copy;
489 
490 		if (overflow) {
491 			first_sd = 0;
492 			last_sd = overflow;
493 			dst_start += to_copy;
494 			overflow = 0;
495 		}
496 	}
497 }
498 
499 static void crypto4xx_copy_digest_to_dst(void *dst,
500 					struct pd_uinfo *pd_uinfo,
501 					struct crypto4xx_ctx *ctx)
502 {
503 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
504 
505 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
506 		memcpy(dst, pd_uinfo->sr_va->save_digest,
507 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
508 	}
509 }
510 
511 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
512 				  struct pd_uinfo *pd_uinfo)
513 {
514 	int i;
515 	if (pd_uinfo->num_gd) {
516 		for (i = 0; i < pd_uinfo->num_gd; i++)
517 			crypto4xx_put_gd_to_gdr(dev);
518 		pd_uinfo->first_gd = 0xffffffff;
519 		pd_uinfo->num_gd = 0;
520 	}
521 	if (pd_uinfo->num_sd) {
522 		for (i = 0; i < pd_uinfo->num_sd; i++)
523 			crypto4xx_put_sd_to_sdr(dev);
524 
525 		pd_uinfo->first_sd = 0xffffffff;
526 		pd_uinfo->num_sd = 0;
527 	}
528 }
529 
530 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
531 				     struct pd_uinfo *pd_uinfo,
532 				     struct ce_pd *pd)
533 {
534 	struct skcipher_request *req;
535 	struct scatterlist *dst;
536 	dma_addr_t addr;
537 
538 	req = skcipher_request_cast(pd_uinfo->async_req);
539 
540 	if (pd_uinfo->using_sd) {
541 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
542 					  req->cryptlen, req->dst);
543 	} else {
544 		dst = pd_uinfo->dest_va;
545 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
546 				    dst->offset, dst->length, DMA_FROM_DEVICE);
547 	}
548 
549 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
550 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
551 
552 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
553 			pd_uinfo->sr_va->save_iv,
554 			crypto_skcipher_ivsize(skcipher));
555 	}
556 
557 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
558 
559 	if (pd_uinfo->state & PD_ENTRY_BUSY)
560 		skcipher_request_complete(req, -EINPROGRESS);
561 	skcipher_request_complete(req, 0);
562 }
563 
564 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
565 				struct pd_uinfo *pd_uinfo)
566 {
567 	struct crypto4xx_ctx *ctx;
568 	struct ahash_request *ahash_req;
569 
570 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
571 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
572 
573 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
574 				     crypto_tfm_ctx(ahash_req->base.tfm));
575 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
576 
577 	if (pd_uinfo->state & PD_ENTRY_BUSY)
578 		ahash_request_complete(ahash_req, -EINPROGRESS);
579 	ahash_request_complete(ahash_req, 0);
580 }
581 
582 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
583 				struct pd_uinfo *pd_uinfo,
584 				struct ce_pd *pd)
585 {
586 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
587 		struct aead_request, base);
588 	struct scatterlist *dst = pd_uinfo->dest_va;
589 	size_t cp_len = crypto_aead_authsize(
590 		crypto_aead_reqtfm(aead_req));
591 	u32 icv[AES_BLOCK_SIZE];
592 	int err = 0;
593 
594 	if (pd_uinfo->using_sd) {
595 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
596 					  pd->pd_ctl_len.bf.pkt_len,
597 					  dst);
598 	} else {
599 		__dma_sync_page(sg_page(dst), dst->offset, dst->length,
600 				DMA_FROM_DEVICE);
601 	}
602 
603 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
604 		/* append icv at the end */
605 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
606 					   sizeof(icv));
607 
608 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
609 					 cp_len, 1);
610 	} else {
611 		/* check icv at the end */
612 		scatterwalk_map_and_copy(icv, aead_req->src,
613 			aead_req->assoclen + aead_req->cryptlen -
614 			cp_len, cp_len, 0);
615 
616 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
617 
618 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
619 			err = -EBADMSG;
620 	}
621 
622 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
623 
624 	if (pd->pd_ctl.bf.status & 0xff) {
625 		if (!__ratelimit(&dev->aead_ratelimit)) {
626 			if (pd->pd_ctl.bf.status & 2)
627 				pr_err("pad fail error\n");
628 			if (pd->pd_ctl.bf.status & 4)
629 				pr_err("seqnum fail\n");
630 			if (pd->pd_ctl.bf.status & 8)
631 				pr_err("error _notify\n");
632 			pr_err("aead return err status = 0x%02x\n",
633 				pd->pd_ctl.bf.status & 0xff);
634 			pr_err("pd pad_ctl = 0x%08x\n",
635 				pd->pd_ctl.bf.pd_pad_ctl);
636 		}
637 		err = -EINVAL;
638 	}
639 
640 	if (pd_uinfo->state & PD_ENTRY_BUSY)
641 		aead_request_complete(aead_req, -EINPROGRESS);
642 
643 	aead_request_complete(aead_req, err);
644 }
645 
646 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
647 {
648 	struct ce_pd *pd = &dev->pdr[idx];
649 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
650 
651 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
652 	case CRYPTO_ALG_TYPE_SKCIPHER:
653 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
654 		break;
655 	case CRYPTO_ALG_TYPE_AEAD:
656 		crypto4xx_aead_done(dev, pd_uinfo, pd);
657 		break;
658 	case CRYPTO_ALG_TYPE_AHASH:
659 		crypto4xx_ahash_done(dev, pd_uinfo);
660 		break;
661 	}
662 }
663 
664 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
665 {
666 	crypto4xx_destroy_pdr(core_dev->dev);
667 	crypto4xx_destroy_gdr(core_dev->dev);
668 	crypto4xx_destroy_sdr(core_dev->dev);
669 	iounmap(core_dev->dev->ce_base);
670 	kfree(core_dev->dev);
671 	kfree(core_dev);
672 }
673 
674 static u32 get_next_gd(u32 current)
675 {
676 	if (current != PPC4XX_LAST_GD)
677 		return current + 1;
678 	else
679 		return 0;
680 }
681 
682 static u32 get_next_sd(u32 current)
683 {
684 	if (current != PPC4XX_LAST_SD)
685 		return current + 1;
686 	else
687 		return 0;
688 }
689 
690 int crypto4xx_build_pd(struct crypto_async_request *req,
691 		       struct crypto4xx_ctx *ctx,
692 		       struct scatterlist *src,
693 		       struct scatterlist *dst,
694 		       const unsigned int datalen,
695 		       const __le32 *iv, const u32 iv_len,
696 		       const struct dynamic_sa_ctl *req_sa,
697 		       const unsigned int sa_len,
698 		       const unsigned int assoclen,
699 		       struct scatterlist *_dst)
700 {
701 	struct crypto4xx_device *dev = ctx->dev;
702 	struct dynamic_sa_ctl *sa;
703 	struct ce_gd *gd;
704 	struct ce_pd *pd;
705 	u32 num_gd, num_sd;
706 	u32 fst_gd = 0xffffffff;
707 	u32 fst_sd = 0xffffffff;
708 	u32 pd_entry;
709 	unsigned long flags;
710 	struct pd_uinfo *pd_uinfo;
711 	unsigned int nbytes = datalen;
712 	size_t offset_to_sr_ptr;
713 	u32 gd_idx = 0;
714 	int tmp;
715 	bool is_busy;
716 
717 	/* figure how many gd are needed */
718 	tmp = sg_nents_for_len(src, assoclen + datalen);
719 	if (tmp < 0) {
720 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
721 		return tmp;
722 	}
723 	if (tmp == 1)
724 		tmp = 0;
725 	num_gd = tmp;
726 
727 	if (assoclen) {
728 		nbytes += assoclen;
729 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
730 	}
731 
732 	/* figure how many sd are needed */
733 	if (sg_is_last(dst)) {
734 		num_sd = 0;
735 	} else {
736 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
737 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
738 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
739 				num_sd++;
740 		} else {
741 			num_sd = 1;
742 		}
743 	}
744 
745 	/*
746 	 * The follow section of code needs to be protected
747 	 * The gather ring and scatter ring needs to be consecutive
748 	 * In case of run out of any kind of descriptor, the descriptor
749 	 * already got must be return the original place.
750 	 */
751 	spin_lock_irqsave(&dev->core_dev->lock, flags);
752 	/*
753 	 * Let the caller know to slow down, once more than 13/16ths = 81%
754 	 * of the available data contexts are being used simultaneously.
755 	 *
756 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
757 	 * 31 more contexts. Before new requests have to be rejected.
758 	 */
759 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
760 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
761 			((PPC4XX_NUM_PD * 13) / 16);
762 	} else {
763 		/*
764 		 * To fix contention issues between ipsec (no blacklog) and
765 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
766 		 * data contexts.
767 		 */
768 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769 			((PPC4XX_NUM_PD * 15) / 16);
770 
771 		if (is_busy) {
772 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
773 			return -EBUSY;
774 		}
775 	}
776 
777 	if (num_gd) {
778 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
779 		if (fst_gd == ERING_WAS_FULL) {
780 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781 			return -EAGAIN;
782 		}
783 	}
784 	if (num_sd) {
785 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
786 		if (fst_sd == ERING_WAS_FULL) {
787 			if (num_gd)
788 				dev->gdr_head = fst_gd;
789 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
790 			return -EAGAIN;
791 		}
792 	}
793 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
794 	if (pd_entry == ERING_WAS_FULL) {
795 		if (num_gd)
796 			dev->gdr_head = fst_gd;
797 		if (num_sd)
798 			dev->sdr_head = fst_sd;
799 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
800 		return -EAGAIN;
801 	}
802 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803 
804 	pd = &dev->pdr[pd_entry];
805 	pd->sa_len = sa_len;
806 
807 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
808 	pd_uinfo->async_req = req;
809 	pd_uinfo->num_gd = num_gd;
810 	pd_uinfo->num_sd = num_sd;
811 
812 	if (iv_len)
813 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
814 
815 	sa = pd_uinfo->sa_va;
816 	memcpy(sa, req_sa, sa_len * 4);
817 
818 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
819 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
820 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
821 
822 	if (num_gd) {
823 		dma_addr_t gd_dma;
824 		struct scatterlist *sg;
825 
826 		/* get first gd we are going to use */
827 		gd_idx = fst_gd;
828 		pd_uinfo->first_gd = fst_gd;
829 		pd_uinfo->num_gd = num_gd;
830 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
831 		pd->src = gd_dma;
832 		/* enable gather */
833 		sa->sa_command_0.bf.gather = 1;
834 		/* walk the sg, and setup gather array */
835 
836 		sg = src;
837 		while (nbytes) {
838 			size_t len;
839 
840 			len = min(sg->length, nbytes);
841 			gd->ptr = dma_map_page(dev->core_dev->device,
842 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
843 			gd->ctl_len.len = len;
844 			gd->ctl_len.done = 0;
845 			gd->ctl_len.ready = 1;
846 			if (len >= nbytes)
847 				break;
848 
849 			nbytes -= sg->length;
850 			gd_idx = get_next_gd(gd_idx);
851 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
852 			sg = sg_next(sg);
853 		}
854 	} else {
855 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
856 				src->offset, min(nbytes, src->length),
857 				DMA_TO_DEVICE);
858 		/*
859 		 * Disable gather in sa command
860 		 */
861 		sa->sa_command_0.bf.gather = 0;
862 		/*
863 		 * Indicate gather array is not used
864 		 */
865 		pd_uinfo->first_gd = 0xffffffff;
866 		pd_uinfo->num_gd = 0;
867 	}
868 	if (sg_is_last(dst)) {
869 		/*
870 		 * we know application give us dst a whole piece of memory
871 		 * no need to use scatter ring.
872 		 */
873 		pd_uinfo->using_sd = 0;
874 		pd_uinfo->first_sd = 0xffffffff;
875 		pd_uinfo->num_sd = 0;
876 		pd_uinfo->dest_va = dst;
877 		sa->sa_command_0.bf.scatter = 0;
878 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
879 					     sg_page(dst), dst->offset,
880 					     min(datalen, dst->length),
881 					     DMA_TO_DEVICE);
882 	} else {
883 		dma_addr_t sd_dma;
884 		struct ce_sd *sd = NULL;
885 
886 		u32 sd_idx = fst_sd;
887 		nbytes = datalen;
888 		sa->sa_command_0.bf.scatter = 1;
889 		pd_uinfo->using_sd = 1;
890 		pd_uinfo->dest_va = dst;
891 		pd_uinfo->first_sd = fst_sd;
892 		pd_uinfo->num_sd = num_sd;
893 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
894 		pd->dest = sd_dma;
895 		/* setup scatter descriptor */
896 		sd->ctl.done = 0;
897 		sd->ctl.rdy = 1;
898 		/* sd->ptr should be setup by sd_init routine*/
899 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
900 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
901 		else
902 			nbytes = 0;
903 		while (nbytes) {
904 			sd_idx = get_next_sd(sd_idx);
905 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
906 			/* setup scatter descriptor */
907 			sd->ctl.done = 0;
908 			sd->ctl.rdy = 1;
909 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
910 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
911 			} else {
912 				/*
913 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
914 				 * which is more than nbytes, so done.
915 				 */
916 				nbytes = 0;
917 			}
918 		}
919 	}
920 
921 	pd->pd_ctl.w = PD_CTL_HOST_READY |
922 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
923 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
924 			PD_CTL_HASH_FINAL : 0);
925 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
926 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
927 
928 	wmb();
929 	/* write any value to push engine to read a pd */
930 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
931 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
932 	return is_busy ? -EBUSY : -EINPROGRESS;
933 }
934 
935 /**
936  * Algorithm Registration Functions
937  */
938 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
939 			       struct crypto4xx_ctx *ctx)
940 {
941 	ctx->dev = amcc_alg->dev;
942 	ctx->sa_in = NULL;
943 	ctx->sa_out = NULL;
944 	ctx->sa_len = 0;
945 }
946 
947 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
948 {
949 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
950 	struct crypto4xx_alg *amcc_alg;
951 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
952 
953 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
954 		ctx->sw_cipher.cipher =
955 			crypto_alloc_skcipher(alg->base.cra_name, 0,
956 					      CRYPTO_ALG_NEED_FALLBACK |
957 					      CRYPTO_ALG_ASYNC);
958 		if (IS_ERR(ctx->sw_cipher.cipher))
959 			return PTR_ERR(ctx->sw_cipher.cipher);
960 
961 		crypto_skcipher_set_reqsize(sk,
962 			sizeof(struct skcipher_request) + 32 +
963 			crypto_skcipher_reqsize(ctx->sw_cipher.cipher));
964 	}
965 
966 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
967 	crypto4xx_ctx_init(amcc_alg, ctx);
968 	return 0;
969 }
970 
971 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
972 {
973 	crypto4xx_free_sa(ctx);
974 }
975 
976 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
977 {
978 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
979 
980 	crypto4xx_common_exit(ctx);
981 	if (ctx->sw_cipher.cipher)
982 		crypto_free_skcipher(ctx->sw_cipher.cipher);
983 }
984 
985 static int crypto4xx_aead_init(struct crypto_aead *tfm)
986 {
987 	struct aead_alg *alg = crypto_aead_alg(tfm);
988 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
989 	struct crypto4xx_alg *amcc_alg;
990 
991 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
992 						CRYPTO_ALG_NEED_FALLBACK |
993 						CRYPTO_ALG_ASYNC);
994 	if (IS_ERR(ctx->sw_cipher.aead))
995 		return PTR_ERR(ctx->sw_cipher.aead);
996 
997 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
998 	crypto4xx_ctx_init(amcc_alg, ctx);
999 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
1000 				crypto_aead_reqsize(ctx->sw_cipher.aead),
1001 				sizeof(struct crypto4xx_aead_reqctx)));
1002 	return 0;
1003 }
1004 
1005 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1006 {
1007 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1008 
1009 	crypto4xx_common_exit(ctx);
1010 	crypto_free_aead(ctx->sw_cipher.aead);
1011 }
1012 
1013 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1014 				  struct crypto4xx_alg_common *crypto_alg,
1015 				  int array_size)
1016 {
1017 	struct crypto4xx_alg *alg;
1018 	int i;
1019 	int rc = 0;
1020 
1021 	for (i = 0; i < array_size; i++) {
1022 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1023 		if (!alg)
1024 			return -ENOMEM;
1025 
1026 		alg->alg = crypto_alg[i];
1027 		alg->dev = sec_dev;
1028 
1029 		switch (alg->alg.type) {
1030 		case CRYPTO_ALG_TYPE_AEAD:
1031 			rc = crypto_register_aead(&alg->alg.u.aead);
1032 			break;
1033 
1034 		case CRYPTO_ALG_TYPE_AHASH:
1035 			rc = crypto_register_ahash(&alg->alg.u.hash);
1036 			break;
1037 
1038 		default:
1039 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1040 			break;
1041 		}
1042 
1043 		if (rc)
1044 			kfree(alg);
1045 		else
1046 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1053 {
1054 	struct crypto4xx_alg *alg, *tmp;
1055 
1056 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1057 		list_del(&alg->entry);
1058 		switch (alg->alg.type) {
1059 		case CRYPTO_ALG_TYPE_AHASH:
1060 			crypto_unregister_ahash(&alg->alg.u.hash);
1061 			break;
1062 
1063 		case CRYPTO_ALG_TYPE_AEAD:
1064 			crypto_unregister_aead(&alg->alg.u.aead);
1065 			break;
1066 
1067 		default:
1068 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1069 		}
1070 		kfree(alg);
1071 	}
1072 }
1073 
1074 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1075 {
1076 	struct device *dev = (struct device *)data;
1077 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1078 	struct pd_uinfo *pd_uinfo;
1079 	struct ce_pd *pd;
1080 	u32 tail = core_dev->dev->pdr_tail;
1081 	u32 head = core_dev->dev->pdr_head;
1082 
1083 	do {
1084 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1085 		pd = &core_dev->dev->pdr[tail];
1086 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1087 		     ((READ_ONCE(pd->pd_ctl.w) &
1088 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1089 		       PD_CTL_PE_DONE)) {
1090 			crypto4xx_pd_done(core_dev->dev, tail);
1091 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1092 		} else {
1093 			/* if tail not done, break */
1094 			break;
1095 		}
1096 	} while (head != tail);
1097 }
1098 
1099 /**
1100  * Top Half of isr.
1101  */
1102 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1103 						      u32 clr_val)
1104 {
1105 	struct device *dev = (struct device *)data;
1106 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1107 
1108 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1109 	tasklet_schedule(&core_dev->tasklet);
1110 
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1115 {
1116 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1117 }
1118 
1119 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1120 {
1121 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1122 		PPC4XX_TMO_ERR_INT);
1123 }
1124 
1125 /**
1126  * Supported Crypto Algorithms
1127  */
1128 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1129 	/* Crypto AES modes */
1130 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1131 		.base = {
1132 			.cra_name = "cbc(aes)",
1133 			.cra_driver_name = "cbc-aes-ppc4xx",
1134 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1135 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1136 				CRYPTO_ALG_ASYNC |
1137 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1138 			.cra_blocksize = AES_BLOCK_SIZE,
1139 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1140 			.cra_module = THIS_MODULE,
1141 		},
1142 		.min_keysize = AES_MIN_KEY_SIZE,
1143 		.max_keysize = AES_MAX_KEY_SIZE,
1144 		.ivsize	= AES_IV_SIZE,
1145 		.setkey = crypto4xx_setkey_aes_cbc,
1146 		.encrypt = crypto4xx_encrypt_iv,
1147 		.decrypt = crypto4xx_decrypt_iv,
1148 		.init = crypto4xx_sk_init,
1149 		.exit = crypto4xx_sk_exit,
1150 	} },
1151 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1152 		.base = {
1153 			.cra_name = "cfb(aes)",
1154 			.cra_driver_name = "cfb-aes-ppc4xx",
1155 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1156 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1157 				CRYPTO_ALG_ASYNC |
1158 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1159 			.cra_blocksize = AES_BLOCK_SIZE,
1160 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1161 			.cra_module = THIS_MODULE,
1162 		},
1163 		.min_keysize = AES_MIN_KEY_SIZE,
1164 		.max_keysize = AES_MAX_KEY_SIZE,
1165 		.ivsize	= AES_IV_SIZE,
1166 		.setkey	= crypto4xx_setkey_aes_cfb,
1167 		.encrypt = crypto4xx_encrypt_iv,
1168 		.decrypt = crypto4xx_decrypt_iv,
1169 		.init = crypto4xx_sk_init,
1170 		.exit = crypto4xx_sk_exit,
1171 	} },
1172 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1173 		.base = {
1174 			.cra_name = "ctr(aes)",
1175 			.cra_driver_name = "ctr-aes-ppc4xx",
1176 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1177 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1178 				CRYPTO_ALG_NEED_FALLBACK |
1179 				CRYPTO_ALG_ASYNC |
1180 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1181 			.cra_blocksize = AES_BLOCK_SIZE,
1182 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1183 			.cra_module = THIS_MODULE,
1184 		},
1185 		.min_keysize = AES_MIN_KEY_SIZE,
1186 		.max_keysize = AES_MAX_KEY_SIZE,
1187 		.ivsize	= AES_IV_SIZE,
1188 		.setkey	= crypto4xx_setkey_aes_ctr,
1189 		.encrypt = crypto4xx_encrypt_ctr,
1190 		.decrypt = crypto4xx_decrypt_ctr,
1191 		.init = crypto4xx_sk_init,
1192 		.exit = crypto4xx_sk_exit,
1193 	} },
1194 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1195 		.base = {
1196 			.cra_name = "rfc3686(ctr(aes))",
1197 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1198 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1199 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1200 				CRYPTO_ALG_ASYNC |
1201 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1202 			.cra_blocksize = AES_BLOCK_SIZE,
1203 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1204 			.cra_module = THIS_MODULE,
1205 		},
1206 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1207 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1208 		.ivsize	= CTR_RFC3686_IV_SIZE,
1209 		.setkey = crypto4xx_setkey_rfc3686,
1210 		.encrypt = crypto4xx_rfc3686_encrypt,
1211 		.decrypt = crypto4xx_rfc3686_decrypt,
1212 		.init = crypto4xx_sk_init,
1213 		.exit = crypto4xx_sk_exit,
1214 	} },
1215 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1216 		.base = {
1217 			.cra_name = "ecb(aes)",
1218 			.cra_driver_name = "ecb-aes-ppc4xx",
1219 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1220 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1221 				CRYPTO_ALG_ASYNC |
1222 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1223 			.cra_blocksize = AES_BLOCK_SIZE,
1224 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1225 			.cra_module = THIS_MODULE,
1226 		},
1227 		.min_keysize = AES_MIN_KEY_SIZE,
1228 		.max_keysize = AES_MAX_KEY_SIZE,
1229 		.setkey	= crypto4xx_setkey_aes_ecb,
1230 		.encrypt = crypto4xx_encrypt_noiv,
1231 		.decrypt = crypto4xx_decrypt_noiv,
1232 		.init = crypto4xx_sk_init,
1233 		.exit = crypto4xx_sk_exit,
1234 	} },
1235 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1236 		.base = {
1237 			.cra_name = "ofb(aes)",
1238 			.cra_driver_name = "ofb-aes-ppc4xx",
1239 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1240 			.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
1241 				CRYPTO_ALG_ASYNC |
1242 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1243 			.cra_blocksize = AES_BLOCK_SIZE,
1244 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1245 			.cra_module = THIS_MODULE,
1246 		},
1247 		.min_keysize = AES_MIN_KEY_SIZE,
1248 		.max_keysize = AES_MAX_KEY_SIZE,
1249 		.ivsize	= AES_IV_SIZE,
1250 		.setkey	= crypto4xx_setkey_aes_ofb,
1251 		.encrypt = crypto4xx_encrypt_iv,
1252 		.decrypt = crypto4xx_decrypt_iv,
1253 		.init = crypto4xx_sk_init,
1254 		.exit = crypto4xx_sk_exit,
1255 	} },
1256 
1257 	/* AEAD */
1258 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1259 		.setkey		= crypto4xx_setkey_aes_ccm,
1260 		.setauthsize	= crypto4xx_setauthsize_aead,
1261 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1262 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1263 		.init		= crypto4xx_aead_init,
1264 		.exit		= crypto4xx_aead_exit,
1265 		.ivsize		= AES_BLOCK_SIZE,
1266 		.maxauthsize    = 16,
1267 		.base = {
1268 			.cra_name	= "ccm(aes)",
1269 			.cra_driver_name = "ccm-aes-ppc4xx",
1270 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1271 			.cra_flags	= CRYPTO_ALG_ASYNC |
1272 					  CRYPTO_ALG_NEED_FALLBACK |
1273 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1274 			.cra_blocksize	= 1,
1275 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1276 			.cra_module	= THIS_MODULE,
1277 		},
1278 	} },
1279 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1280 		.setkey		= crypto4xx_setkey_aes_gcm,
1281 		.setauthsize	= crypto4xx_setauthsize_aead,
1282 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1283 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1284 		.init		= crypto4xx_aead_init,
1285 		.exit		= crypto4xx_aead_exit,
1286 		.ivsize		= GCM_AES_IV_SIZE,
1287 		.maxauthsize	= 16,
1288 		.base = {
1289 			.cra_name	= "gcm(aes)",
1290 			.cra_driver_name = "gcm-aes-ppc4xx",
1291 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1292 			.cra_flags	= CRYPTO_ALG_ASYNC |
1293 					  CRYPTO_ALG_NEED_FALLBACK |
1294 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1295 			.cra_blocksize	= 1,
1296 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1297 			.cra_module	= THIS_MODULE,
1298 		},
1299 	} },
1300 };
1301 
1302 /**
1303  * Module Initialization Routine
1304  */
1305 static int crypto4xx_probe(struct platform_device *ofdev)
1306 {
1307 	int rc;
1308 	struct resource res;
1309 	struct device *dev = &ofdev->dev;
1310 	struct crypto4xx_core_device *core_dev;
1311 	u32 pvr;
1312 	bool is_revb = true;
1313 
1314 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1315 	if (rc)
1316 		return -ENODEV;
1317 
1318 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1319 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1320 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1321 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1322 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1323 	} else if (of_find_compatible_node(NULL, NULL,
1324 			"amcc,ppc405ex-crypto")) {
1325 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1326 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1327 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1328 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1329 		is_revb = false;
1330 	} else if (of_find_compatible_node(NULL, NULL,
1331 			"amcc,ppc460sx-crypto")) {
1332 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1333 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1334 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1335 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1336 	} else {
1337 		printk(KERN_ERR "Crypto Function Not supported!\n");
1338 		return -EINVAL;
1339 	}
1340 
1341 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1342 	if (!core_dev)
1343 		return -ENOMEM;
1344 
1345 	dev_set_drvdata(dev, core_dev);
1346 	core_dev->ofdev = ofdev;
1347 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1348 	rc = -ENOMEM;
1349 	if (!core_dev->dev)
1350 		goto err_alloc_dev;
1351 
1352 	/*
1353 	 * Older version of 460EX/GT have a hardware bug.
1354 	 * Hence they do not support H/W based security intr coalescing
1355 	 */
1356 	pvr = mfspr(SPRN_PVR);
1357 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1358 		u32 min = PVR_MIN(pvr);
1359 
1360 		if (min < 4) {
1361 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1362 			is_revb = false;
1363 		}
1364 	}
1365 
1366 	core_dev->dev->core_dev = core_dev;
1367 	core_dev->dev->is_revb = is_revb;
1368 	core_dev->device = dev;
1369 	spin_lock_init(&core_dev->lock);
1370 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1371 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1372 	rc = crypto4xx_build_pdr(core_dev->dev);
1373 	if (rc)
1374 		goto err_build_pdr;
1375 
1376 	rc = crypto4xx_build_gdr(core_dev->dev);
1377 	if (rc)
1378 		goto err_build_pdr;
1379 
1380 	rc = crypto4xx_build_sdr(core_dev->dev);
1381 	if (rc)
1382 		goto err_build_sdr;
1383 
1384 	/* Init tasklet for bottom half processing */
1385 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1386 		     (unsigned long) dev);
1387 
1388 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1389 	if (!core_dev->dev->ce_base) {
1390 		dev_err(dev, "failed to of_iomap\n");
1391 		rc = -ENOMEM;
1392 		goto err_iomap;
1393 	}
1394 
1395 	/* Register for Crypto isr, Crypto Engine IRQ */
1396 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1397 	rc = request_irq(core_dev->irq, is_revb ?
1398 			 crypto4xx_ce_interrupt_handler_revb :
1399 			 crypto4xx_ce_interrupt_handler, 0,
1400 			 KBUILD_MODNAME, dev);
1401 	if (rc)
1402 		goto err_request_irq;
1403 
1404 	/* need to setup pdr, rdr, gdr and sdr before this */
1405 	crypto4xx_hw_init(core_dev->dev);
1406 
1407 	/* Register security algorithms with Linux CryptoAPI */
1408 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1409 			       ARRAY_SIZE(crypto4xx_alg));
1410 	if (rc)
1411 		goto err_start_dev;
1412 
1413 	ppc4xx_trng_probe(core_dev);
1414 	return 0;
1415 
1416 err_start_dev:
1417 	free_irq(core_dev->irq, dev);
1418 err_request_irq:
1419 	irq_dispose_mapping(core_dev->irq);
1420 	iounmap(core_dev->dev->ce_base);
1421 err_iomap:
1422 	tasklet_kill(&core_dev->tasklet);
1423 err_build_sdr:
1424 	crypto4xx_destroy_sdr(core_dev->dev);
1425 	crypto4xx_destroy_gdr(core_dev->dev);
1426 err_build_pdr:
1427 	crypto4xx_destroy_pdr(core_dev->dev);
1428 	kfree(core_dev->dev);
1429 err_alloc_dev:
1430 	kfree(core_dev);
1431 
1432 	return rc;
1433 }
1434 
1435 static int crypto4xx_remove(struct platform_device *ofdev)
1436 {
1437 	struct device *dev = &ofdev->dev;
1438 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1439 
1440 	ppc4xx_trng_remove(core_dev);
1441 
1442 	free_irq(core_dev->irq, dev);
1443 	irq_dispose_mapping(core_dev->irq);
1444 
1445 	tasklet_kill(&core_dev->tasklet);
1446 	/* Un-register with Linux CryptoAPI */
1447 	crypto4xx_unregister_alg(core_dev->dev);
1448 	/* Free all allocated memory */
1449 	crypto4xx_stop_all(core_dev);
1450 
1451 	return 0;
1452 }
1453 
1454 static const struct of_device_id crypto4xx_match[] = {
1455 	{ .compatible      = "amcc,ppc4xx-crypto",},
1456 	{ },
1457 };
1458 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1459 
1460 static struct platform_driver crypto4xx_driver = {
1461 	.driver = {
1462 		.name = KBUILD_MODNAME,
1463 		.of_match_table = crypto4xx_match,
1464 	},
1465 	.probe		= crypto4xx_probe,
1466 	.remove		= crypto4xx_remove,
1467 };
1468 
1469 module_platform_driver(crypto4xx_driver);
1470 
1471 MODULE_LICENSE("GPL");
1472 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1473 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1474