1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /**
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_ATOMIC);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187 				   &dev->shadow_sa_pool_pa,
188 				   GFP_ATOMIC);
189 	if (!dev->shadow_sa_pool)
190 		return -ENOMEM;
191 
192 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
195 	if (!dev->shadow_sr_pool)
196 		return -ENOMEM;
197 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198 		struct ce_pd *pd = &dev->pdr[i];
199 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200 
201 		pd->sa = dev->shadow_sa_pool_pa +
202 			sizeof(union shadow_sa_buf) * i;
203 
204 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206 
207 		/* alloc state record */
208 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210 		    sizeof(struct sa_state_record) * i;
211 	}
212 
213 	return 0;
214 }
215 
216 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217 {
218 	if (dev->pdr)
219 		dma_free_coherent(dev->core_dev->device,
220 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221 				  dev->pdr, dev->pdr_pa);
222 
223 	if (dev->shadow_sa_pool)
224 		dma_free_coherent(dev->core_dev->device,
225 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227 
228 	if (dev->shadow_sr_pool)
229 		dma_free_coherent(dev->core_dev->device,
230 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232 
233 	kfree(dev->pdr_uinfo);
234 }
235 
236 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237 {
238 	u32 retval;
239 	u32 tmp;
240 
241 	retval = dev->pdr_head;
242 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243 
244 	if (tmp == dev->pdr_tail)
245 		return ERING_WAS_FULL;
246 
247 	dev->pdr_head = tmp;
248 
249 	return retval;
250 }
251 
252 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253 {
254 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255 	u32 tail;
256 	unsigned long flags;
257 
258 	spin_lock_irqsave(&dev->core_dev->lock, flags);
259 	pd_uinfo->state = PD_ENTRY_FREE;
260 
261 	if (dev->pdr_tail != PPC4XX_LAST_PD)
262 		dev->pdr_tail++;
263 	else
264 		dev->pdr_tail = 0;
265 	tail = dev->pdr_tail;
266 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267 
268 	return tail;
269 }
270 
271 /**
272  * alloc memory for the gather ring
273  * no need to alloc buf for the ring
274  * gdr_tail, gdr_head and gdr_count are initialized by this function
275  */
276 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277 {
278 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280 				      &dev->gdr_pa, GFP_ATOMIC);
281 	if (!dev->gdr)
282 		return -ENOMEM;
283 
284 	return 0;
285 }
286 
287 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288 {
289 	dma_free_coherent(dev->core_dev->device,
290 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
291 			  dev->gdr, dev->gdr_pa);
292 }
293 
294 /*
295  * when this function is called.
296  * preemption or interrupt must be disabled
297  */
298 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
299 {
300 	u32 retval;
301 	u32 tmp;
302 
303 	if (n >= PPC4XX_NUM_GD)
304 		return ERING_WAS_FULL;
305 
306 	retval = dev->gdr_head;
307 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
308 	if (dev->gdr_head > dev->gdr_tail) {
309 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
310 			return ERING_WAS_FULL;
311 	} else if (dev->gdr_head < dev->gdr_tail) {
312 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
313 			return ERING_WAS_FULL;
314 	}
315 	dev->gdr_head = tmp;
316 
317 	return retval;
318 }
319 
320 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&dev->core_dev->lock, flags);
325 	if (dev->gdr_tail == dev->gdr_head) {
326 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
327 		return 0;
328 	}
329 
330 	if (dev->gdr_tail != PPC4XX_LAST_GD)
331 		dev->gdr_tail++;
332 	else
333 		dev->gdr_tail = 0;
334 
335 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
336 
337 	return 0;
338 }
339 
340 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
341 					      dma_addr_t *gd_dma, u32 idx)
342 {
343 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
344 
345 	return &dev->gdr[idx];
346 }
347 
348 /**
349  * alloc memory for the scatter ring
350  * need to alloc buf for the ring
351  * sdr_tail, sdr_head and sdr_count are initialized by this function
352  */
353 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
354 {
355 	int i;
356 
357 	/* alloc memory for scatter descriptor ring */
358 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
359 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
360 				      &dev->sdr_pa, GFP_ATOMIC);
361 	if (!dev->sdr)
362 		return -ENOMEM;
363 
364 	dev->scatter_buffer_va =
365 		dma_alloc_coherent(dev->core_dev->device,
366 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
367 			&dev->scatter_buffer_pa, GFP_ATOMIC);
368 	if (!dev->scatter_buffer_va) {
369 		dma_free_coherent(dev->core_dev->device,
370 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
371 				  dev->sdr, dev->sdr_pa);
372 		return -ENOMEM;
373 	}
374 
375 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
376 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
377 				  PPC4XX_SD_BUFFER_SIZE * i;
378 	}
379 
380 	return 0;
381 }
382 
383 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
384 {
385 	if (dev->sdr)
386 		dma_free_coherent(dev->core_dev->device,
387 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
388 				  dev->sdr, dev->sdr_pa);
389 
390 	if (dev->scatter_buffer_va)
391 		dma_free_coherent(dev->core_dev->device,
392 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
393 				  dev->scatter_buffer_va,
394 				  dev->scatter_buffer_pa);
395 }
396 
397 /*
398  * when this function is called.
399  * preemption or interrupt must be disabled
400  */
401 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
402 {
403 	u32 retval;
404 	u32 tmp;
405 
406 	if (n >= PPC4XX_NUM_SD)
407 		return ERING_WAS_FULL;
408 
409 	retval = dev->sdr_head;
410 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
411 	if (dev->sdr_head > dev->gdr_tail) {
412 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
413 			return ERING_WAS_FULL;
414 	} else if (dev->sdr_head < dev->sdr_tail) {
415 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
416 			return ERING_WAS_FULL;
417 	} /* the head = tail, or empty case is already take cared */
418 	dev->sdr_head = tmp;
419 
420 	return retval;
421 }
422 
423 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
424 {
425 	unsigned long flags;
426 
427 	spin_lock_irqsave(&dev->core_dev->lock, flags);
428 	if (dev->sdr_tail == dev->sdr_head) {
429 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
430 		return 0;
431 	}
432 	if (dev->sdr_tail != PPC4XX_LAST_SD)
433 		dev->sdr_tail++;
434 	else
435 		dev->sdr_tail = 0;
436 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
437 
438 	return 0;
439 }
440 
441 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
442 					      dma_addr_t *sd_dma, u32 idx)
443 {
444 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
445 
446 	return &dev->sdr[idx];
447 }
448 
449 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
450 				      struct ce_pd *pd,
451 				      struct pd_uinfo *pd_uinfo,
452 				      u32 nbytes,
453 				      struct scatterlist *dst)
454 {
455 	unsigned int first_sd = pd_uinfo->first_sd;
456 	unsigned int last_sd;
457 	unsigned int overflow = 0;
458 	unsigned int to_copy;
459 	unsigned int dst_start = 0;
460 
461 	/*
462 	 * Because the scatter buffers are all neatly organized in one
463 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
464 	 * be instructed to copy a range of buffers in one go.
465 	 */
466 
467 	last_sd = (first_sd + pd_uinfo->num_sd);
468 	if (last_sd > PPC4XX_LAST_SD) {
469 		last_sd = PPC4XX_LAST_SD;
470 		overflow = last_sd % PPC4XX_NUM_SD;
471 	}
472 
473 	while (nbytes) {
474 		void *buf = dev->scatter_buffer_va +
475 			first_sd * PPC4XX_SD_BUFFER_SIZE;
476 
477 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
478 				      (1 + last_sd - first_sd));
479 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
480 		nbytes -= to_copy;
481 
482 		if (overflow) {
483 			first_sd = 0;
484 			last_sd = overflow;
485 			dst_start += to_copy;
486 			overflow = 0;
487 		}
488 	}
489 }
490 
491 static void crypto4xx_copy_digest_to_dst(void *dst,
492 					struct pd_uinfo *pd_uinfo,
493 					struct crypto4xx_ctx *ctx)
494 {
495 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
496 
497 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
498 		memcpy(dst, pd_uinfo->sr_va->save_digest,
499 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
500 	}
501 }
502 
503 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
504 				  struct pd_uinfo *pd_uinfo)
505 {
506 	int i;
507 	if (pd_uinfo->num_gd) {
508 		for (i = 0; i < pd_uinfo->num_gd; i++)
509 			crypto4xx_put_gd_to_gdr(dev);
510 		pd_uinfo->first_gd = 0xffffffff;
511 		pd_uinfo->num_gd = 0;
512 	}
513 	if (pd_uinfo->num_sd) {
514 		for (i = 0; i < pd_uinfo->num_sd; i++)
515 			crypto4xx_put_sd_to_sdr(dev);
516 
517 		pd_uinfo->first_sd = 0xffffffff;
518 		pd_uinfo->num_sd = 0;
519 	}
520 }
521 
522 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
523 				     struct pd_uinfo *pd_uinfo,
524 				     struct ce_pd *pd)
525 {
526 	struct skcipher_request *req;
527 	struct scatterlist *dst;
528 	dma_addr_t addr;
529 
530 	req = skcipher_request_cast(pd_uinfo->async_req);
531 
532 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
533 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
534 					  req->cryptlen, req->dst);
535 	} else {
536 		dst = pd_uinfo->dest_va;
537 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
538 				    dst->offset, dst->length, DMA_FROM_DEVICE);
539 	}
540 
541 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
542 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
543 
544 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
545 			pd_uinfo->sr_va->save_iv,
546 			crypto_skcipher_ivsize(skcipher));
547 	}
548 
549 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
550 
551 	if (pd_uinfo->state & PD_ENTRY_BUSY)
552 		skcipher_request_complete(req, -EINPROGRESS);
553 	skcipher_request_complete(req, 0);
554 }
555 
556 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
557 				struct pd_uinfo *pd_uinfo)
558 {
559 	struct crypto4xx_ctx *ctx;
560 	struct ahash_request *ahash_req;
561 
562 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
563 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
564 
565 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
566 				     crypto_tfm_ctx(ahash_req->base.tfm));
567 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
568 
569 	if (pd_uinfo->state & PD_ENTRY_BUSY)
570 		ahash_request_complete(ahash_req, -EINPROGRESS);
571 	ahash_request_complete(ahash_req, 0);
572 }
573 
574 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
575 				struct pd_uinfo *pd_uinfo,
576 				struct ce_pd *pd)
577 {
578 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
579 		struct aead_request, base);
580 	struct scatterlist *dst = pd_uinfo->dest_va;
581 	size_t cp_len = crypto_aead_authsize(
582 		crypto_aead_reqtfm(aead_req));
583 	u32 icv[AES_BLOCK_SIZE];
584 	int err = 0;
585 
586 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
587 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
588 					  pd->pd_ctl_len.bf.pkt_len,
589 					  dst);
590 	} else {
591 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
592 				DMA_FROM_DEVICE);
593 	}
594 
595 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
596 		/* append icv at the end */
597 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
598 					   sizeof(icv));
599 
600 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
601 					 cp_len, 1);
602 	} else {
603 		/* check icv at the end */
604 		scatterwalk_map_and_copy(icv, aead_req->src,
605 			aead_req->assoclen + aead_req->cryptlen -
606 			cp_len, cp_len, 0);
607 
608 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
609 
610 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
611 			err = -EBADMSG;
612 	}
613 
614 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
615 
616 	if (pd->pd_ctl.bf.status & 0xff) {
617 		if (!__ratelimit(&dev->aead_ratelimit)) {
618 			if (pd->pd_ctl.bf.status & 2)
619 				pr_err("pad fail error\n");
620 			if (pd->pd_ctl.bf.status & 4)
621 				pr_err("seqnum fail\n");
622 			if (pd->pd_ctl.bf.status & 8)
623 				pr_err("error _notify\n");
624 			pr_err("aead return err status = 0x%02x\n",
625 				pd->pd_ctl.bf.status & 0xff);
626 			pr_err("pd pad_ctl = 0x%08x\n",
627 				pd->pd_ctl.bf.pd_pad_ctl);
628 		}
629 		err = -EINVAL;
630 	}
631 
632 	if (pd_uinfo->state & PD_ENTRY_BUSY)
633 		aead_request_complete(aead_req, -EINPROGRESS);
634 
635 	aead_request_complete(aead_req, err);
636 }
637 
638 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
639 {
640 	struct ce_pd *pd = &dev->pdr[idx];
641 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
642 
643 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
644 	case CRYPTO_ALG_TYPE_SKCIPHER:
645 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
646 		break;
647 	case CRYPTO_ALG_TYPE_AEAD:
648 		crypto4xx_aead_done(dev, pd_uinfo, pd);
649 		break;
650 	case CRYPTO_ALG_TYPE_AHASH:
651 		crypto4xx_ahash_done(dev, pd_uinfo);
652 		break;
653 	}
654 }
655 
656 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
657 {
658 	crypto4xx_destroy_pdr(core_dev->dev);
659 	crypto4xx_destroy_gdr(core_dev->dev);
660 	crypto4xx_destroy_sdr(core_dev->dev);
661 	iounmap(core_dev->dev->ce_base);
662 	kfree(core_dev->dev);
663 	kfree(core_dev);
664 }
665 
666 static u32 get_next_gd(u32 current)
667 {
668 	if (current != PPC4XX_LAST_GD)
669 		return current + 1;
670 	else
671 		return 0;
672 }
673 
674 static u32 get_next_sd(u32 current)
675 {
676 	if (current != PPC4XX_LAST_SD)
677 		return current + 1;
678 	else
679 		return 0;
680 }
681 
682 int crypto4xx_build_pd(struct crypto_async_request *req,
683 		       struct crypto4xx_ctx *ctx,
684 		       struct scatterlist *src,
685 		       struct scatterlist *dst,
686 		       const unsigned int datalen,
687 		       const __le32 *iv, const u32 iv_len,
688 		       const struct dynamic_sa_ctl *req_sa,
689 		       const unsigned int sa_len,
690 		       const unsigned int assoclen,
691 		       struct scatterlist *_dst)
692 {
693 	struct crypto4xx_device *dev = ctx->dev;
694 	struct dynamic_sa_ctl *sa;
695 	struct ce_gd *gd;
696 	struct ce_pd *pd;
697 	u32 num_gd, num_sd;
698 	u32 fst_gd = 0xffffffff;
699 	u32 fst_sd = 0xffffffff;
700 	u32 pd_entry;
701 	unsigned long flags;
702 	struct pd_uinfo *pd_uinfo;
703 	unsigned int nbytes = datalen;
704 	size_t offset_to_sr_ptr;
705 	u32 gd_idx = 0;
706 	int tmp;
707 	bool is_busy, force_sd;
708 
709 	/*
710 	 * There's a very subtile/disguised "bug" in the hardware that
711 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
712 	 * of the hardware spec:
713 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
714 	 * operation modes for >>> "Block ciphers" <<<.
715 	 *
716 	 * To workaround this issue and stop the hardware from causing
717 	 * "overran dst buffer" on crypttexts that are not a multiple
718 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
719 	 * scatter buffers.
720 	 */
721 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
722 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
723 		&& (datalen % AES_BLOCK_SIZE);
724 
725 	/* figure how many gd are needed */
726 	tmp = sg_nents_for_len(src, assoclen + datalen);
727 	if (tmp < 0) {
728 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
729 		return tmp;
730 	}
731 	if (tmp == 1)
732 		tmp = 0;
733 	num_gd = tmp;
734 
735 	if (assoclen) {
736 		nbytes += assoclen;
737 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
738 	}
739 
740 	/* figure how many sd are needed */
741 	if (sg_is_last(dst) && force_sd == false) {
742 		num_sd = 0;
743 	} else {
744 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
745 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
746 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
747 				num_sd++;
748 		} else {
749 			num_sd = 1;
750 		}
751 	}
752 
753 	/*
754 	 * The follow section of code needs to be protected
755 	 * The gather ring and scatter ring needs to be consecutive
756 	 * In case of run out of any kind of descriptor, the descriptor
757 	 * already got must be return the original place.
758 	 */
759 	spin_lock_irqsave(&dev->core_dev->lock, flags);
760 	/*
761 	 * Let the caller know to slow down, once more than 13/16ths = 81%
762 	 * of the available data contexts are being used simultaneously.
763 	 *
764 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
765 	 * 31 more contexts. Before new requests have to be rejected.
766 	 */
767 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
768 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
769 			((PPC4XX_NUM_PD * 13) / 16);
770 	} else {
771 		/*
772 		 * To fix contention issues between ipsec (no blacklog) and
773 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
774 		 * data contexts.
775 		 */
776 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
777 			((PPC4XX_NUM_PD * 15) / 16);
778 
779 		if (is_busy) {
780 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
781 			return -EBUSY;
782 		}
783 	}
784 
785 	if (num_gd) {
786 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
787 		if (fst_gd == ERING_WAS_FULL) {
788 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
789 			return -EAGAIN;
790 		}
791 	}
792 	if (num_sd) {
793 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
794 		if (fst_sd == ERING_WAS_FULL) {
795 			if (num_gd)
796 				dev->gdr_head = fst_gd;
797 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
798 			return -EAGAIN;
799 		}
800 	}
801 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
802 	if (pd_entry == ERING_WAS_FULL) {
803 		if (num_gd)
804 			dev->gdr_head = fst_gd;
805 		if (num_sd)
806 			dev->sdr_head = fst_sd;
807 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
808 		return -EAGAIN;
809 	}
810 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
811 
812 	pd = &dev->pdr[pd_entry];
813 	pd->sa_len = sa_len;
814 
815 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
816 	pd_uinfo->num_gd = num_gd;
817 	pd_uinfo->num_sd = num_sd;
818 	pd_uinfo->dest_va = dst;
819 	pd_uinfo->async_req = req;
820 
821 	if (iv_len)
822 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
823 
824 	sa = pd_uinfo->sa_va;
825 	memcpy(sa, req_sa, sa_len * 4);
826 
827 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
828 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
829 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
830 
831 	if (num_gd) {
832 		dma_addr_t gd_dma;
833 		struct scatterlist *sg;
834 
835 		/* get first gd we are going to use */
836 		gd_idx = fst_gd;
837 		pd_uinfo->first_gd = fst_gd;
838 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
839 		pd->src = gd_dma;
840 		/* enable gather */
841 		sa->sa_command_0.bf.gather = 1;
842 		/* walk the sg, and setup gather array */
843 
844 		sg = src;
845 		while (nbytes) {
846 			size_t len;
847 
848 			len = min(sg->length, nbytes);
849 			gd->ptr = dma_map_page(dev->core_dev->device,
850 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
851 			gd->ctl_len.len = len;
852 			gd->ctl_len.done = 0;
853 			gd->ctl_len.ready = 1;
854 			if (len >= nbytes)
855 				break;
856 
857 			nbytes -= sg->length;
858 			gd_idx = get_next_gd(gd_idx);
859 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
860 			sg = sg_next(sg);
861 		}
862 	} else {
863 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
864 				src->offset, min(nbytes, src->length),
865 				DMA_TO_DEVICE);
866 		/*
867 		 * Disable gather in sa command
868 		 */
869 		sa->sa_command_0.bf.gather = 0;
870 		/*
871 		 * Indicate gather array is not used
872 		 */
873 		pd_uinfo->first_gd = 0xffffffff;
874 	}
875 	if (!num_sd) {
876 		/*
877 		 * we know application give us dst a whole piece of memory
878 		 * no need to use scatter ring.
879 		 */
880 		pd_uinfo->first_sd = 0xffffffff;
881 		sa->sa_command_0.bf.scatter = 0;
882 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
883 					     sg_page(dst), dst->offset,
884 					     min(datalen, dst->length),
885 					     DMA_TO_DEVICE);
886 	} else {
887 		dma_addr_t sd_dma;
888 		struct ce_sd *sd = NULL;
889 
890 		u32 sd_idx = fst_sd;
891 		nbytes = datalen;
892 		sa->sa_command_0.bf.scatter = 1;
893 		pd_uinfo->first_sd = fst_sd;
894 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
895 		pd->dest = sd_dma;
896 		/* setup scatter descriptor */
897 		sd->ctl.done = 0;
898 		sd->ctl.rdy = 1;
899 		/* sd->ptr should be setup by sd_init routine*/
900 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
901 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
902 		else
903 			nbytes = 0;
904 		while (nbytes) {
905 			sd_idx = get_next_sd(sd_idx);
906 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
907 			/* setup scatter descriptor */
908 			sd->ctl.done = 0;
909 			sd->ctl.rdy = 1;
910 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
911 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
912 			} else {
913 				/*
914 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
915 				 * which is more than nbytes, so done.
916 				 */
917 				nbytes = 0;
918 			}
919 		}
920 	}
921 
922 	pd->pd_ctl.w = PD_CTL_HOST_READY |
923 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
924 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
925 			PD_CTL_HASH_FINAL : 0);
926 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
927 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
928 
929 	wmb();
930 	/* write any value to push engine to read a pd */
931 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
932 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
933 	return is_busy ? -EBUSY : -EINPROGRESS;
934 }
935 
936 /**
937  * Algorithm Registration Functions
938  */
939 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
940 			       struct crypto4xx_ctx *ctx)
941 {
942 	ctx->dev = amcc_alg->dev;
943 	ctx->sa_in = NULL;
944 	ctx->sa_out = NULL;
945 	ctx->sa_len = 0;
946 }
947 
948 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
949 {
950 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
951 	struct crypto4xx_alg *amcc_alg;
952 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
953 
954 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
955 		ctx->sw_cipher.cipher =
956 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
957 					      CRYPTO_ALG_NEED_FALLBACK);
958 		if (IS_ERR(ctx->sw_cipher.cipher))
959 			return PTR_ERR(ctx->sw_cipher.cipher);
960 	}
961 
962 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
963 	crypto4xx_ctx_init(amcc_alg, ctx);
964 	return 0;
965 }
966 
967 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
968 {
969 	crypto4xx_free_sa(ctx);
970 }
971 
972 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
973 {
974 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
975 
976 	crypto4xx_common_exit(ctx);
977 	if (ctx->sw_cipher.cipher)
978 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
979 }
980 
981 static int crypto4xx_aead_init(struct crypto_aead *tfm)
982 {
983 	struct aead_alg *alg = crypto_aead_alg(tfm);
984 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
985 	struct crypto4xx_alg *amcc_alg;
986 
987 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
988 						CRYPTO_ALG_NEED_FALLBACK |
989 						CRYPTO_ALG_ASYNC);
990 	if (IS_ERR(ctx->sw_cipher.aead))
991 		return PTR_ERR(ctx->sw_cipher.aead);
992 
993 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
994 	crypto4xx_ctx_init(amcc_alg, ctx);
995 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
996 				crypto_aead_reqsize(ctx->sw_cipher.aead),
997 				sizeof(struct crypto4xx_aead_reqctx)));
998 	return 0;
999 }
1000 
1001 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1002 {
1003 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1004 
1005 	crypto4xx_common_exit(ctx);
1006 	crypto_free_aead(ctx->sw_cipher.aead);
1007 }
1008 
1009 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1010 				  struct crypto4xx_alg_common *crypto_alg,
1011 				  int array_size)
1012 {
1013 	struct crypto4xx_alg *alg;
1014 	int i;
1015 	int rc = 0;
1016 
1017 	for (i = 0; i < array_size; i++) {
1018 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1019 		if (!alg)
1020 			return -ENOMEM;
1021 
1022 		alg->alg = crypto_alg[i];
1023 		alg->dev = sec_dev;
1024 
1025 		switch (alg->alg.type) {
1026 		case CRYPTO_ALG_TYPE_AEAD:
1027 			rc = crypto_register_aead(&alg->alg.u.aead);
1028 			break;
1029 
1030 		case CRYPTO_ALG_TYPE_AHASH:
1031 			rc = crypto_register_ahash(&alg->alg.u.hash);
1032 			break;
1033 
1034 		case CRYPTO_ALG_TYPE_RNG:
1035 			rc = crypto_register_rng(&alg->alg.u.rng);
1036 			break;
1037 
1038 		default:
1039 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1040 			break;
1041 		}
1042 
1043 		if (rc)
1044 			kfree(alg);
1045 		else
1046 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1053 {
1054 	struct crypto4xx_alg *alg, *tmp;
1055 
1056 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1057 		list_del(&alg->entry);
1058 		switch (alg->alg.type) {
1059 		case CRYPTO_ALG_TYPE_AHASH:
1060 			crypto_unregister_ahash(&alg->alg.u.hash);
1061 			break;
1062 
1063 		case CRYPTO_ALG_TYPE_AEAD:
1064 			crypto_unregister_aead(&alg->alg.u.aead);
1065 			break;
1066 
1067 		case CRYPTO_ALG_TYPE_RNG:
1068 			crypto_unregister_rng(&alg->alg.u.rng);
1069 			break;
1070 
1071 		default:
1072 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1073 		}
1074 		kfree(alg);
1075 	}
1076 }
1077 
1078 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1079 {
1080 	struct device *dev = (struct device *)data;
1081 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1082 	struct pd_uinfo *pd_uinfo;
1083 	struct ce_pd *pd;
1084 	u32 tail = core_dev->dev->pdr_tail;
1085 	u32 head = core_dev->dev->pdr_head;
1086 
1087 	do {
1088 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1089 		pd = &core_dev->dev->pdr[tail];
1090 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1091 		     ((READ_ONCE(pd->pd_ctl.w) &
1092 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1093 		       PD_CTL_PE_DONE)) {
1094 			crypto4xx_pd_done(core_dev->dev, tail);
1095 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1096 		} else {
1097 			/* if tail not done, break */
1098 			break;
1099 		}
1100 	} while (head != tail);
1101 }
1102 
1103 /**
1104  * Top Half of isr.
1105  */
1106 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1107 						      u32 clr_val)
1108 {
1109 	struct device *dev = (struct device *)data;
1110 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1111 
1112 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1113 	tasklet_schedule(&core_dev->tasklet);
1114 
1115 	return IRQ_HANDLED;
1116 }
1117 
1118 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1119 {
1120 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1121 }
1122 
1123 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1124 {
1125 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1126 		PPC4XX_TMO_ERR_INT);
1127 }
1128 
1129 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1130 				 u8 *data, unsigned int max)
1131 {
1132 	unsigned int i, curr = 0;
1133 	u32 val[2];
1134 
1135 	do {
1136 		/* trigger PRN generation */
1137 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1138 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1139 
1140 		for (i = 0; i < 1024; i++) {
1141 			/* usually 19 iterations are enough */
1142 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1143 			     CRYPTO4XX_PRNG_STAT_BUSY))
1144 				continue;
1145 
1146 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1147 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1148 			break;
1149 		}
1150 		if (i == 1024)
1151 			return -ETIMEDOUT;
1152 
1153 		if ((max - curr) >= 8) {
1154 			memcpy(data, &val, 8);
1155 			data += 8;
1156 			curr += 8;
1157 		} else {
1158 			/* copy only remaining bytes */
1159 			memcpy(data, &val, max - curr);
1160 			break;
1161 		}
1162 	} while (curr < max);
1163 
1164 	return curr;
1165 }
1166 
1167 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1168 				   const u8 *src, unsigned int slen,
1169 				   u8 *dstn, unsigned int dlen)
1170 {
1171 	struct rng_alg *alg = crypto_rng_alg(tfm);
1172 	struct crypto4xx_alg *amcc_alg;
1173 	struct crypto4xx_device *dev;
1174 	int ret;
1175 
1176 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1177 	dev = amcc_alg->dev;
1178 
1179 	mutex_lock(&dev->core_dev->rng_lock);
1180 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1181 	mutex_unlock(&dev->core_dev->rng_lock);
1182 	return ret;
1183 }
1184 
1185 
1186 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1187 			unsigned int slen)
1188 {
1189 	return 0;
1190 }
1191 
1192 /**
1193  * Supported Crypto Algorithms
1194  */
1195 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1196 	/* Crypto AES modes */
1197 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1198 		.base = {
1199 			.cra_name = "cbc(aes)",
1200 			.cra_driver_name = "cbc-aes-ppc4xx",
1201 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1202 			.cra_flags = CRYPTO_ALG_ASYNC |
1203 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1204 			.cra_blocksize = AES_BLOCK_SIZE,
1205 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1206 			.cra_module = THIS_MODULE,
1207 		},
1208 		.min_keysize = AES_MIN_KEY_SIZE,
1209 		.max_keysize = AES_MAX_KEY_SIZE,
1210 		.ivsize	= AES_IV_SIZE,
1211 		.setkey = crypto4xx_setkey_aes_cbc,
1212 		.encrypt = crypto4xx_encrypt_iv_block,
1213 		.decrypt = crypto4xx_decrypt_iv_block,
1214 		.init = crypto4xx_sk_init,
1215 		.exit = crypto4xx_sk_exit,
1216 	} },
1217 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1218 		.base = {
1219 			.cra_name = "cfb(aes)",
1220 			.cra_driver_name = "cfb-aes-ppc4xx",
1221 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1222 			.cra_flags = CRYPTO_ALG_ASYNC |
1223 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1224 			.cra_blocksize = 1,
1225 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1226 			.cra_module = THIS_MODULE,
1227 		},
1228 		.min_keysize = AES_MIN_KEY_SIZE,
1229 		.max_keysize = AES_MAX_KEY_SIZE,
1230 		.ivsize	= AES_IV_SIZE,
1231 		.setkey	= crypto4xx_setkey_aes_cfb,
1232 		.encrypt = crypto4xx_encrypt_iv_stream,
1233 		.decrypt = crypto4xx_decrypt_iv_stream,
1234 		.init = crypto4xx_sk_init,
1235 		.exit = crypto4xx_sk_exit,
1236 	} },
1237 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1238 		.base = {
1239 			.cra_name = "ctr(aes)",
1240 			.cra_driver_name = "ctr-aes-ppc4xx",
1241 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1242 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1243 				CRYPTO_ALG_ASYNC |
1244 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 			.cra_blocksize = 1,
1246 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1247 			.cra_module = THIS_MODULE,
1248 		},
1249 		.min_keysize = AES_MIN_KEY_SIZE,
1250 		.max_keysize = AES_MAX_KEY_SIZE,
1251 		.ivsize	= AES_IV_SIZE,
1252 		.setkey	= crypto4xx_setkey_aes_ctr,
1253 		.encrypt = crypto4xx_encrypt_ctr,
1254 		.decrypt = crypto4xx_decrypt_ctr,
1255 		.init = crypto4xx_sk_init,
1256 		.exit = crypto4xx_sk_exit,
1257 	} },
1258 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1259 		.base = {
1260 			.cra_name = "rfc3686(ctr(aes))",
1261 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1262 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1263 			.cra_flags = CRYPTO_ALG_ASYNC |
1264 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1265 			.cra_blocksize = 1,
1266 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1267 			.cra_module = THIS_MODULE,
1268 		},
1269 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1270 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1271 		.ivsize	= CTR_RFC3686_IV_SIZE,
1272 		.setkey = crypto4xx_setkey_rfc3686,
1273 		.encrypt = crypto4xx_rfc3686_encrypt,
1274 		.decrypt = crypto4xx_rfc3686_decrypt,
1275 		.init = crypto4xx_sk_init,
1276 		.exit = crypto4xx_sk_exit,
1277 	} },
1278 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1279 		.base = {
1280 			.cra_name = "ecb(aes)",
1281 			.cra_driver_name = "ecb-aes-ppc4xx",
1282 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1283 			.cra_flags = CRYPTO_ALG_ASYNC |
1284 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1285 			.cra_blocksize = AES_BLOCK_SIZE,
1286 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1287 			.cra_module = THIS_MODULE,
1288 		},
1289 		.min_keysize = AES_MIN_KEY_SIZE,
1290 		.max_keysize = AES_MAX_KEY_SIZE,
1291 		.setkey	= crypto4xx_setkey_aes_ecb,
1292 		.encrypt = crypto4xx_encrypt_noiv_block,
1293 		.decrypt = crypto4xx_decrypt_noiv_block,
1294 		.init = crypto4xx_sk_init,
1295 		.exit = crypto4xx_sk_exit,
1296 	} },
1297 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1298 		.base = {
1299 			.cra_name = "ofb(aes)",
1300 			.cra_driver_name = "ofb-aes-ppc4xx",
1301 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1302 			.cra_flags = CRYPTO_ALG_ASYNC |
1303 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1304 			.cra_blocksize = 1,
1305 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1306 			.cra_module = THIS_MODULE,
1307 		},
1308 		.min_keysize = AES_MIN_KEY_SIZE,
1309 		.max_keysize = AES_MAX_KEY_SIZE,
1310 		.ivsize	= AES_IV_SIZE,
1311 		.setkey	= crypto4xx_setkey_aes_ofb,
1312 		.encrypt = crypto4xx_encrypt_iv_stream,
1313 		.decrypt = crypto4xx_decrypt_iv_stream,
1314 		.init = crypto4xx_sk_init,
1315 		.exit = crypto4xx_sk_exit,
1316 	} },
1317 
1318 	/* AEAD */
1319 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1320 		.setkey		= crypto4xx_setkey_aes_ccm,
1321 		.setauthsize	= crypto4xx_setauthsize_aead,
1322 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1323 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1324 		.init		= crypto4xx_aead_init,
1325 		.exit		= crypto4xx_aead_exit,
1326 		.ivsize		= AES_BLOCK_SIZE,
1327 		.maxauthsize    = 16,
1328 		.base = {
1329 			.cra_name	= "ccm(aes)",
1330 			.cra_driver_name = "ccm-aes-ppc4xx",
1331 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1332 			.cra_flags	= CRYPTO_ALG_ASYNC |
1333 					  CRYPTO_ALG_NEED_FALLBACK |
1334 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1335 			.cra_blocksize	= 1,
1336 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1337 			.cra_module	= THIS_MODULE,
1338 		},
1339 	} },
1340 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1341 		.setkey		= crypto4xx_setkey_aes_gcm,
1342 		.setauthsize	= crypto4xx_setauthsize_aead,
1343 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1344 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1345 		.init		= crypto4xx_aead_init,
1346 		.exit		= crypto4xx_aead_exit,
1347 		.ivsize		= GCM_AES_IV_SIZE,
1348 		.maxauthsize	= 16,
1349 		.base = {
1350 			.cra_name	= "gcm(aes)",
1351 			.cra_driver_name = "gcm-aes-ppc4xx",
1352 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1353 			.cra_flags	= CRYPTO_ALG_ASYNC |
1354 					  CRYPTO_ALG_NEED_FALLBACK |
1355 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1356 			.cra_blocksize	= 1,
1357 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1358 			.cra_module	= THIS_MODULE,
1359 		},
1360 	} },
1361 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1362 		.base = {
1363 			.cra_name		= "stdrng",
1364 			.cra_driver_name        = "crypto4xx_rng",
1365 			.cra_priority		= 300,
1366 			.cra_ctxsize		= 0,
1367 			.cra_module		= THIS_MODULE,
1368 		},
1369 		.generate               = crypto4xx_prng_generate,
1370 		.seed                   = crypto4xx_prng_seed,
1371 		.seedsize               = 0,
1372 	} },
1373 };
1374 
1375 /**
1376  * Module Initialization Routine
1377  */
1378 static int crypto4xx_probe(struct platform_device *ofdev)
1379 {
1380 	int rc;
1381 	struct resource res;
1382 	struct device *dev = &ofdev->dev;
1383 	struct crypto4xx_core_device *core_dev;
1384 	u32 pvr;
1385 	bool is_revb = true;
1386 
1387 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1388 	if (rc)
1389 		return -ENODEV;
1390 
1391 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1392 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1393 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1394 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1395 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1396 	} else if (of_find_compatible_node(NULL, NULL,
1397 			"amcc,ppc405ex-crypto")) {
1398 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1399 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1400 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1401 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1402 		is_revb = false;
1403 	} else if (of_find_compatible_node(NULL, NULL,
1404 			"amcc,ppc460sx-crypto")) {
1405 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1406 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1407 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1408 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1409 	} else {
1410 		printk(KERN_ERR "Crypto Function Not supported!\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1415 	if (!core_dev)
1416 		return -ENOMEM;
1417 
1418 	dev_set_drvdata(dev, core_dev);
1419 	core_dev->ofdev = ofdev;
1420 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1421 	rc = -ENOMEM;
1422 	if (!core_dev->dev)
1423 		goto err_alloc_dev;
1424 
1425 	/*
1426 	 * Older version of 460EX/GT have a hardware bug.
1427 	 * Hence they do not support H/W based security intr coalescing
1428 	 */
1429 	pvr = mfspr(SPRN_PVR);
1430 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1431 		u32 min = PVR_MIN(pvr);
1432 
1433 		if (min < 4) {
1434 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1435 			is_revb = false;
1436 		}
1437 	}
1438 
1439 	core_dev->dev->core_dev = core_dev;
1440 	core_dev->dev->is_revb = is_revb;
1441 	core_dev->device = dev;
1442 	mutex_init(&core_dev->rng_lock);
1443 	spin_lock_init(&core_dev->lock);
1444 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1445 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1446 	rc = crypto4xx_build_pdr(core_dev->dev);
1447 	if (rc)
1448 		goto err_build_pdr;
1449 
1450 	rc = crypto4xx_build_gdr(core_dev->dev);
1451 	if (rc)
1452 		goto err_build_pdr;
1453 
1454 	rc = crypto4xx_build_sdr(core_dev->dev);
1455 	if (rc)
1456 		goto err_build_sdr;
1457 
1458 	/* Init tasklet for bottom half processing */
1459 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1460 		     (unsigned long) dev);
1461 
1462 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1463 	if (!core_dev->dev->ce_base) {
1464 		dev_err(dev, "failed to of_iomap\n");
1465 		rc = -ENOMEM;
1466 		goto err_iomap;
1467 	}
1468 
1469 	/* Register for Crypto isr, Crypto Engine IRQ */
1470 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1471 	rc = request_irq(core_dev->irq, is_revb ?
1472 			 crypto4xx_ce_interrupt_handler_revb :
1473 			 crypto4xx_ce_interrupt_handler, 0,
1474 			 KBUILD_MODNAME, dev);
1475 	if (rc)
1476 		goto err_request_irq;
1477 
1478 	/* need to setup pdr, rdr, gdr and sdr before this */
1479 	crypto4xx_hw_init(core_dev->dev);
1480 
1481 	/* Register security algorithms with Linux CryptoAPI */
1482 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1483 			       ARRAY_SIZE(crypto4xx_alg));
1484 	if (rc)
1485 		goto err_start_dev;
1486 
1487 	ppc4xx_trng_probe(core_dev);
1488 	return 0;
1489 
1490 err_start_dev:
1491 	free_irq(core_dev->irq, dev);
1492 err_request_irq:
1493 	irq_dispose_mapping(core_dev->irq);
1494 	iounmap(core_dev->dev->ce_base);
1495 err_iomap:
1496 	tasklet_kill(&core_dev->tasklet);
1497 err_build_sdr:
1498 	crypto4xx_destroy_sdr(core_dev->dev);
1499 	crypto4xx_destroy_gdr(core_dev->dev);
1500 err_build_pdr:
1501 	crypto4xx_destroy_pdr(core_dev->dev);
1502 	kfree(core_dev->dev);
1503 err_alloc_dev:
1504 	kfree(core_dev);
1505 
1506 	return rc;
1507 }
1508 
1509 static int crypto4xx_remove(struct platform_device *ofdev)
1510 {
1511 	struct device *dev = &ofdev->dev;
1512 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1513 
1514 	ppc4xx_trng_remove(core_dev);
1515 
1516 	free_irq(core_dev->irq, dev);
1517 	irq_dispose_mapping(core_dev->irq);
1518 
1519 	tasklet_kill(&core_dev->tasklet);
1520 	/* Un-register with Linux CryptoAPI */
1521 	crypto4xx_unregister_alg(core_dev->dev);
1522 	mutex_destroy(&core_dev->rng_lock);
1523 	/* Free all allocated memory */
1524 	crypto4xx_stop_all(core_dev);
1525 
1526 	return 0;
1527 }
1528 
1529 static const struct of_device_id crypto4xx_match[] = {
1530 	{ .compatible      = "amcc,ppc4xx-crypto",},
1531 	{ },
1532 };
1533 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1534 
1535 static struct platform_driver crypto4xx_driver = {
1536 	.driver = {
1537 		.name = KBUILD_MODNAME,
1538 		.of_match_table = crypto4xx_match,
1539 	},
1540 	.probe		= crypto4xx_probe,
1541 	.remove		= crypto4xx_remove,
1542 };
1543 
1544 module_platform_driver(crypto4xx_driver);
1545 
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1548 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1549