1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements AMCC crypto offload Linux device driver for use with
9  * Linux CryptoAPI.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock_types.h>
15 #include <linux/random.h>
16 #include <linux/scatterlist.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/platform_device.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_platform.h>
25 #include <linux/slab.h>
26 #include <asm/dcr.h>
27 #include <asm/dcr-regs.h>
28 #include <asm/cacheflush.h>
29 #include <crypto/aead.h>
30 #include <crypto/aes.h>
31 #include <crypto/ctr.h>
32 #include <crypto/gcm.h>
33 #include <crypto/sha.h>
34 #include <crypto/rng.h>
35 #include <crypto/scatterwalk.h>
36 #include <crypto/skcipher.h>
37 #include <crypto/internal/aead.h>
38 #include <crypto/internal/rng.h>
39 #include <crypto/internal/skcipher.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	if (dev->is_revb) {
126 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129 		       dev->ce_base + CRYPTO4XX_INT_EN);
130 	} else {
131 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132 	}
133 }
134 
135 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136 {
137 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138 	if (ctx->sa_in == NULL)
139 		return -ENOMEM;
140 
141 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142 	if (ctx->sa_out == NULL) {
143 		kfree(ctx->sa_in);
144 		ctx->sa_in = NULL;
145 		return -ENOMEM;
146 	}
147 
148 	ctx->sa_len = size;
149 
150 	return 0;
151 }
152 
153 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154 {
155 	kfree(ctx->sa_in);
156 	ctx->sa_in = NULL;
157 	kfree(ctx->sa_out);
158 	ctx->sa_out = NULL;
159 	ctx->sa_len = 0;
160 }
161 
162 /**
163  * alloc memory for the gather ring
164  * no need to alloc buf for the ring
165  * gdr_tail, gdr_head and gdr_count are initialized by this function
166  */
167 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168 {
169 	int i;
170 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172 				      &dev->pdr_pa, GFP_ATOMIC);
173 	if (!dev->pdr)
174 		return -ENOMEM;
175 
176 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177 				 GFP_KERNEL);
178 	if (!dev->pdr_uinfo) {
179 		dma_free_coherent(dev->core_dev->device,
180 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				  dev->pdr,
182 				  dev->pdr_pa);
183 		return -ENOMEM;
184 	}
185 	memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
186 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
187 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
188 				   &dev->shadow_sa_pool_pa,
189 				   GFP_ATOMIC);
190 	if (!dev->shadow_sa_pool)
191 		return -ENOMEM;
192 
193 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
194 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
195 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
196 	if (!dev->shadow_sr_pool)
197 		return -ENOMEM;
198 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
199 		struct ce_pd *pd = &dev->pdr[i];
200 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
201 
202 		pd->sa = dev->shadow_sa_pool_pa +
203 			sizeof(union shadow_sa_buf) * i;
204 
205 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
206 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
207 
208 		/* alloc state record */
209 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
210 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
211 		    sizeof(struct sa_state_record) * i;
212 	}
213 
214 	return 0;
215 }
216 
217 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
218 {
219 	if (dev->pdr)
220 		dma_free_coherent(dev->core_dev->device,
221 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
222 				  dev->pdr, dev->pdr_pa);
223 
224 	if (dev->shadow_sa_pool)
225 		dma_free_coherent(dev->core_dev->device,
226 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
227 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
228 
229 	if (dev->shadow_sr_pool)
230 		dma_free_coherent(dev->core_dev->device,
231 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
232 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
233 
234 	kfree(dev->pdr_uinfo);
235 }
236 
237 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
238 {
239 	u32 retval;
240 	u32 tmp;
241 
242 	retval = dev->pdr_head;
243 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
244 
245 	if (tmp == dev->pdr_tail)
246 		return ERING_WAS_FULL;
247 
248 	dev->pdr_head = tmp;
249 
250 	return retval;
251 }
252 
253 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
254 {
255 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
256 	u32 tail;
257 	unsigned long flags;
258 
259 	spin_lock_irqsave(&dev->core_dev->lock, flags);
260 	pd_uinfo->state = PD_ENTRY_FREE;
261 
262 	if (dev->pdr_tail != PPC4XX_LAST_PD)
263 		dev->pdr_tail++;
264 	else
265 		dev->pdr_tail = 0;
266 	tail = dev->pdr_tail;
267 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
268 
269 	return tail;
270 }
271 
272 /**
273  * alloc memory for the gather ring
274  * no need to alloc buf for the ring
275  * gdr_tail, gdr_head and gdr_count are initialized by this function
276  */
277 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
278 {
279 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
280 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
281 				      &dev->gdr_pa, GFP_ATOMIC);
282 	if (!dev->gdr)
283 		return -ENOMEM;
284 
285 	return 0;
286 }
287 
288 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
289 {
290 	dma_free_coherent(dev->core_dev->device,
291 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292 			  dev->gdr, dev->gdr_pa);
293 }
294 
295 /*
296  * when this function is called.
297  * preemption or interrupt must be disabled
298  */
299 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300 {
301 	u32 retval;
302 	u32 tmp;
303 
304 	if (n >= PPC4XX_NUM_GD)
305 		return ERING_WAS_FULL;
306 
307 	retval = dev->gdr_head;
308 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309 	if (dev->gdr_head > dev->gdr_tail) {
310 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311 			return ERING_WAS_FULL;
312 	} else if (dev->gdr_head < dev->gdr_tail) {
313 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314 			return ERING_WAS_FULL;
315 	}
316 	dev->gdr_head = tmp;
317 
318 	return retval;
319 }
320 
321 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322 {
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&dev->core_dev->lock, flags);
326 	if (dev->gdr_tail == dev->gdr_head) {
327 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328 		return 0;
329 	}
330 
331 	if (dev->gdr_tail != PPC4XX_LAST_GD)
332 		dev->gdr_tail++;
333 	else
334 		dev->gdr_tail = 0;
335 
336 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337 
338 	return 0;
339 }
340 
341 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342 					      dma_addr_t *gd_dma, u32 idx)
343 {
344 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345 
346 	return &dev->gdr[idx];
347 }
348 
349 /**
350  * alloc memory for the scatter ring
351  * need to alloc buf for the ring
352  * sdr_tail, sdr_head and sdr_count are initialized by this function
353  */
354 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355 {
356 	int i;
357 
358 	/* alloc memory for scatter descriptor ring */
359 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
360 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
361 				      &dev->sdr_pa, GFP_ATOMIC);
362 	if (!dev->sdr)
363 		return -ENOMEM;
364 
365 	dev->scatter_buffer_va =
366 		dma_alloc_coherent(dev->core_dev->device,
367 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
368 			&dev->scatter_buffer_pa, GFP_ATOMIC);
369 	if (!dev->scatter_buffer_va) {
370 		dma_free_coherent(dev->core_dev->device,
371 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
372 				  dev->sdr, dev->sdr_pa);
373 		return -ENOMEM;
374 	}
375 
376 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
377 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
378 				  PPC4XX_SD_BUFFER_SIZE * i;
379 	}
380 
381 	return 0;
382 }
383 
384 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
385 {
386 	if (dev->sdr)
387 		dma_free_coherent(dev->core_dev->device,
388 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
389 				  dev->sdr, dev->sdr_pa);
390 
391 	if (dev->scatter_buffer_va)
392 		dma_free_coherent(dev->core_dev->device,
393 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
394 				  dev->scatter_buffer_va,
395 				  dev->scatter_buffer_pa);
396 }
397 
398 /*
399  * when this function is called.
400  * preemption or interrupt must be disabled
401  */
402 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
403 {
404 	u32 retval;
405 	u32 tmp;
406 
407 	if (n >= PPC4XX_NUM_SD)
408 		return ERING_WAS_FULL;
409 
410 	retval = dev->sdr_head;
411 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
412 	if (dev->sdr_head > dev->gdr_tail) {
413 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
414 			return ERING_WAS_FULL;
415 	} else if (dev->sdr_head < dev->sdr_tail) {
416 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
417 			return ERING_WAS_FULL;
418 	} /* the head = tail, or empty case is already take cared */
419 	dev->sdr_head = tmp;
420 
421 	return retval;
422 }
423 
424 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
425 {
426 	unsigned long flags;
427 
428 	spin_lock_irqsave(&dev->core_dev->lock, flags);
429 	if (dev->sdr_tail == dev->sdr_head) {
430 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
431 		return 0;
432 	}
433 	if (dev->sdr_tail != PPC4XX_LAST_SD)
434 		dev->sdr_tail++;
435 	else
436 		dev->sdr_tail = 0;
437 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
438 
439 	return 0;
440 }
441 
442 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
443 					      dma_addr_t *sd_dma, u32 idx)
444 {
445 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
446 
447 	return &dev->sdr[idx];
448 }
449 
450 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
451 				      struct ce_pd *pd,
452 				      struct pd_uinfo *pd_uinfo,
453 				      u32 nbytes,
454 				      struct scatterlist *dst)
455 {
456 	unsigned int first_sd = pd_uinfo->first_sd;
457 	unsigned int last_sd;
458 	unsigned int overflow = 0;
459 	unsigned int to_copy;
460 	unsigned int dst_start = 0;
461 
462 	/*
463 	 * Because the scatter buffers are all neatly organized in one
464 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
465 	 * be instructed to copy a range of buffers in one go.
466 	 */
467 
468 	last_sd = (first_sd + pd_uinfo->num_sd);
469 	if (last_sd > PPC4XX_LAST_SD) {
470 		last_sd = PPC4XX_LAST_SD;
471 		overflow = last_sd % PPC4XX_NUM_SD;
472 	}
473 
474 	while (nbytes) {
475 		void *buf = dev->scatter_buffer_va +
476 			first_sd * PPC4XX_SD_BUFFER_SIZE;
477 
478 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
479 				      (1 + last_sd - first_sd));
480 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
481 		nbytes -= to_copy;
482 
483 		if (overflow) {
484 			first_sd = 0;
485 			last_sd = overflow;
486 			dst_start += to_copy;
487 			overflow = 0;
488 		}
489 	}
490 }
491 
492 static void crypto4xx_copy_digest_to_dst(void *dst,
493 					struct pd_uinfo *pd_uinfo,
494 					struct crypto4xx_ctx *ctx)
495 {
496 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
497 
498 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
499 		memcpy(dst, pd_uinfo->sr_va->save_digest,
500 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
501 	}
502 }
503 
504 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
505 				  struct pd_uinfo *pd_uinfo)
506 {
507 	int i;
508 	if (pd_uinfo->num_gd) {
509 		for (i = 0; i < pd_uinfo->num_gd; i++)
510 			crypto4xx_put_gd_to_gdr(dev);
511 		pd_uinfo->first_gd = 0xffffffff;
512 		pd_uinfo->num_gd = 0;
513 	}
514 	if (pd_uinfo->num_sd) {
515 		for (i = 0; i < pd_uinfo->num_sd; i++)
516 			crypto4xx_put_sd_to_sdr(dev);
517 
518 		pd_uinfo->first_sd = 0xffffffff;
519 		pd_uinfo->num_sd = 0;
520 	}
521 }
522 
523 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
524 				     struct pd_uinfo *pd_uinfo,
525 				     struct ce_pd *pd)
526 {
527 	struct skcipher_request *req;
528 	struct scatterlist *dst;
529 	dma_addr_t addr;
530 
531 	req = skcipher_request_cast(pd_uinfo->async_req);
532 
533 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
534 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
535 					  req->cryptlen, req->dst);
536 	} else {
537 		dst = pd_uinfo->dest_va;
538 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
539 				    dst->offset, dst->length, DMA_FROM_DEVICE);
540 	}
541 
542 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
543 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
544 
545 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
546 			pd_uinfo->sr_va->save_iv,
547 			crypto_skcipher_ivsize(skcipher));
548 	}
549 
550 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
551 
552 	if (pd_uinfo->state & PD_ENTRY_BUSY)
553 		skcipher_request_complete(req, -EINPROGRESS);
554 	skcipher_request_complete(req, 0);
555 }
556 
557 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
558 				struct pd_uinfo *pd_uinfo)
559 {
560 	struct crypto4xx_ctx *ctx;
561 	struct ahash_request *ahash_req;
562 
563 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
564 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
565 
566 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
567 				     crypto_tfm_ctx(ahash_req->base.tfm));
568 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
569 
570 	if (pd_uinfo->state & PD_ENTRY_BUSY)
571 		ahash_request_complete(ahash_req, -EINPROGRESS);
572 	ahash_request_complete(ahash_req, 0);
573 }
574 
575 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
576 				struct pd_uinfo *pd_uinfo,
577 				struct ce_pd *pd)
578 {
579 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
580 		struct aead_request, base);
581 	struct scatterlist *dst = pd_uinfo->dest_va;
582 	size_t cp_len = crypto_aead_authsize(
583 		crypto_aead_reqtfm(aead_req));
584 	u32 icv[AES_BLOCK_SIZE];
585 	int err = 0;
586 
587 	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
588 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
589 					  pd->pd_ctl_len.bf.pkt_len,
590 					  dst);
591 	} else {
592 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
593 				DMA_FROM_DEVICE);
594 	}
595 
596 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
597 		/* append icv at the end */
598 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
599 					   sizeof(icv));
600 
601 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
602 					 cp_len, 1);
603 	} else {
604 		/* check icv at the end */
605 		scatterwalk_map_and_copy(icv, aead_req->src,
606 			aead_req->assoclen + aead_req->cryptlen -
607 			cp_len, cp_len, 0);
608 
609 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
610 
611 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
612 			err = -EBADMSG;
613 	}
614 
615 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
616 
617 	if (pd->pd_ctl.bf.status & 0xff) {
618 		if (!__ratelimit(&dev->aead_ratelimit)) {
619 			if (pd->pd_ctl.bf.status & 2)
620 				pr_err("pad fail error\n");
621 			if (pd->pd_ctl.bf.status & 4)
622 				pr_err("seqnum fail\n");
623 			if (pd->pd_ctl.bf.status & 8)
624 				pr_err("error _notify\n");
625 			pr_err("aead return err status = 0x%02x\n",
626 				pd->pd_ctl.bf.status & 0xff);
627 			pr_err("pd pad_ctl = 0x%08x\n",
628 				pd->pd_ctl.bf.pd_pad_ctl);
629 		}
630 		err = -EINVAL;
631 	}
632 
633 	if (pd_uinfo->state & PD_ENTRY_BUSY)
634 		aead_request_complete(aead_req, -EINPROGRESS);
635 
636 	aead_request_complete(aead_req, err);
637 }
638 
639 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
640 {
641 	struct ce_pd *pd = &dev->pdr[idx];
642 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
643 
644 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
645 	case CRYPTO_ALG_TYPE_SKCIPHER:
646 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
647 		break;
648 	case CRYPTO_ALG_TYPE_AEAD:
649 		crypto4xx_aead_done(dev, pd_uinfo, pd);
650 		break;
651 	case CRYPTO_ALG_TYPE_AHASH:
652 		crypto4xx_ahash_done(dev, pd_uinfo);
653 		break;
654 	}
655 }
656 
657 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
658 {
659 	crypto4xx_destroy_pdr(core_dev->dev);
660 	crypto4xx_destroy_gdr(core_dev->dev);
661 	crypto4xx_destroy_sdr(core_dev->dev);
662 	iounmap(core_dev->dev->ce_base);
663 	kfree(core_dev->dev);
664 	kfree(core_dev);
665 }
666 
667 static u32 get_next_gd(u32 current)
668 {
669 	if (current != PPC4XX_LAST_GD)
670 		return current + 1;
671 	else
672 		return 0;
673 }
674 
675 static u32 get_next_sd(u32 current)
676 {
677 	if (current != PPC4XX_LAST_SD)
678 		return current + 1;
679 	else
680 		return 0;
681 }
682 
683 int crypto4xx_build_pd(struct crypto_async_request *req,
684 		       struct crypto4xx_ctx *ctx,
685 		       struct scatterlist *src,
686 		       struct scatterlist *dst,
687 		       const unsigned int datalen,
688 		       const __le32 *iv, const u32 iv_len,
689 		       const struct dynamic_sa_ctl *req_sa,
690 		       const unsigned int sa_len,
691 		       const unsigned int assoclen,
692 		       struct scatterlist *_dst)
693 {
694 	struct crypto4xx_device *dev = ctx->dev;
695 	struct dynamic_sa_ctl *sa;
696 	struct ce_gd *gd;
697 	struct ce_pd *pd;
698 	u32 num_gd, num_sd;
699 	u32 fst_gd = 0xffffffff;
700 	u32 fst_sd = 0xffffffff;
701 	u32 pd_entry;
702 	unsigned long flags;
703 	struct pd_uinfo *pd_uinfo;
704 	unsigned int nbytes = datalen;
705 	size_t offset_to_sr_ptr;
706 	u32 gd_idx = 0;
707 	int tmp;
708 	bool is_busy, force_sd;
709 
710 	/*
711 	 * There's a very subtile/disguised "bug" in the hardware that
712 	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
713 	 * of the hardware spec:
714 	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
715 	 * operation modes for >>> "Block ciphers" <<<.
716 	 *
717 	 * To workaround this issue and stop the hardware from causing
718 	 * "overran dst buffer" on crypttexts that are not a multiple
719 	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
720 	 * scatter buffers.
721 	 */
722 	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
723 		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
724 		&& (datalen % AES_BLOCK_SIZE);
725 
726 	/* figure how many gd are needed */
727 	tmp = sg_nents_for_len(src, assoclen + datalen);
728 	if (tmp < 0) {
729 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
730 		return tmp;
731 	}
732 	if (tmp == 1)
733 		tmp = 0;
734 	num_gd = tmp;
735 
736 	if (assoclen) {
737 		nbytes += assoclen;
738 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
739 	}
740 
741 	/* figure how many sd are needed */
742 	if (sg_is_last(dst) && force_sd == false) {
743 		num_sd = 0;
744 	} else {
745 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
746 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
747 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
748 				num_sd++;
749 		} else {
750 			num_sd = 1;
751 		}
752 	}
753 
754 	/*
755 	 * The follow section of code needs to be protected
756 	 * The gather ring and scatter ring needs to be consecutive
757 	 * In case of run out of any kind of descriptor, the descriptor
758 	 * already got must be return the original place.
759 	 */
760 	spin_lock_irqsave(&dev->core_dev->lock, flags);
761 	/*
762 	 * Let the caller know to slow down, once more than 13/16ths = 81%
763 	 * of the available data contexts are being used simultaneously.
764 	 *
765 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
766 	 * 31 more contexts. Before new requests have to be rejected.
767 	 */
768 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
769 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
770 			((PPC4XX_NUM_PD * 13) / 16);
771 	} else {
772 		/*
773 		 * To fix contention issues between ipsec (no blacklog) and
774 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
775 		 * data contexts.
776 		 */
777 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
778 			((PPC4XX_NUM_PD * 15) / 16);
779 
780 		if (is_busy) {
781 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
782 			return -EBUSY;
783 		}
784 	}
785 
786 	if (num_gd) {
787 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
788 		if (fst_gd == ERING_WAS_FULL) {
789 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
790 			return -EAGAIN;
791 		}
792 	}
793 	if (num_sd) {
794 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
795 		if (fst_sd == ERING_WAS_FULL) {
796 			if (num_gd)
797 				dev->gdr_head = fst_gd;
798 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
799 			return -EAGAIN;
800 		}
801 	}
802 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
803 	if (pd_entry == ERING_WAS_FULL) {
804 		if (num_gd)
805 			dev->gdr_head = fst_gd;
806 		if (num_sd)
807 			dev->sdr_head = fst_sd;
808 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
809 		return -EAGAIN;
810 	}
811 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
812 
813 	pd = &dev->pdr[pd_entry];
814 	pd->sa_len = sa_len;
815 
816 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
817 	pd_uinfo->num_gd = num_gd;
818 	pd_uinfo->num_sd = num_sd;
819 	pd_uinfo->dest_va = dst;
820 	pd_uinfo->async_req = req;
821 
822 	if (iv_len)
823 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
824 
825 	sa = pd_uinfo->sa_va;
826 	memcpy(sa, req_sa, sa_len * 4);
827 
828 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
829 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
830 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
831 
832 	if (num_gd) {
833 		dma_addr_t gd_dma;
834 		struct scatterlist *sg;
835 
836 		/* get first gd we are going to use */
837 		gd_idx = fst_gd;
838 		pd_uinfo->first_gd = fst_gd;
839 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
840 		pd->src = gd_dma;
841 		/* enable gather */
842 		sa->sa_command_0.bf.gather = 1;
843 		/* walk the sg, and setup gather array */
844 
845 		sg = src;
846 		while (nbytes) {
847 			size_t len;
848 
849 			len = min(sg->length, nbytes);
850 			gd->ptr = dma_map_page(dev->core_dev->device,
851 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
852 			gd->ctl_len.len = len;
853 			gd->ctl_len.done = 0;
854 			gd->ctl_len.ready = 1;
855 			if (len >= nbytes)
856 				break;
857 
858 			nbytes -= sg->length;
859 			gd_idx = get_next_gd(gd_idx);
860 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
861 			sg = sg_next(sg);
862 		}
863 	} else {
864 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
865 				src->offset, min(nbytes, src->length),
866 				DMA_TO_DEVICE);
867 		/*
868 		 * Disable gather in sa command
869 		 */
870 		sa->sa_command_0.bf.gather = 0;
871 		/*
872 		 * Indicate gather array is not used
873 		 */
874 		pd_uinfo->first_gd = 0xffffffff;
875 	}
876 	if (!num_sd) {
877 		/*
878 		 * we know application give us dst a whole piece of memory
879 		 * no need to use scatter ring.
880 		 */
881 		pd_uinfo->first_sd = 0xffffffff;
882 		sa->sa_command_0.bf.scatter = 0;
883 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
884 					     sg_page(dst), dst->offset,
885 					     min(datalen, dst->length),
886 					     DMA_TO_DEVICE);
887 	} else {
888 		dma_addr_t sd_dma;
889 		struct ce_sd *sd = NULL;
890 
891 		u32 sd_idx = fst_sd;
892 		nbytes = datalen;
893 		sa->sa_command_0.bf.scatter = 1;
894 		pd_uinfo->first_sd = fst_sd;
895 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
896 		pd->dest = sd_dma;
897 		/* setup scatter descriptor */
898 		sd->ctl.done = 0;
899 		sd->ctl.rdy = 1;
900 		/* sd->ptr should be setup by sd_init routine*/
901 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
902 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
903 		else
904 			nbytes = 0;
905 		while (nbytes) {
906 			sd_idx = get_next_sd(sd_idx);
907 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
908 			/* setup scatter descriptor */
909 			sd->ctl.done = 0;
910 			sd->ctl.rdy = 1;
911 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
912 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
913 			} else {
914 				/*
915 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
916 				 * which is more than nbytes, so done.
917 				 */
918 				nbytes = 0;
919 			}
920 		}
921 	}
922 
923 	pd->pd_ctl.w = PD_CTL_HOST_READY |
924 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
925 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
926 			PD_CTL_HASH_FINAL : 0);
927 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
928 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
929 
930 	wmb();
931 	/* write any value to push engine to read a pd */
932 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
933 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
934 	return is_busy ? -EBUSY : -EINPROGRESS;
935 }
936 
937 /**
938  * Algorithm Registration Functions
939  */
940 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
941 			       struct crypto4xx_ctx *ctx)
942 {
943 	ctx->dev = amcc_alg->dev;
944 	ctx->sa_in = NULL;
945 	ctx->sa_out = NULL;
946 	ctx->sa_len = 0;
947 }
948 
949 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
950 {
951 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
952 	struct crypto4xx_alg *amcc_alg;
953 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
954 
955 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
956 		ctx->sw_cipher.cipher =
957 			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
958 					      CRYPTO_ALG_NEED_FALLBACK);
959 		if (IS_ERR(ctx->sw_cipher.cipher))
960 			return PTR_ERR(ctx->sw_cipher.cipher);
961 	}
962 
963 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
964 	crypto4xx_ctx_init(amcc_alg, ctx);
965 	return 0;
966 }
967 
968 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
969 {
970 	crypto4xx_free_sa(ctx);
971 }
972 
973 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
974 {
975 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
976 
977 	crypto4xx_common_exit(ctx);
978 	if (ctx->sw_cipher.cipher)
979 		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
980 }
981 
982 static int crypto4xx_aead_init(struct crypto_aead *tfm)
983 {
984 	struct aead_alg *alg = crypto_aead_alg(tfm);
985 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
986 	struct crypto4xx_alg *amcc_alg;
987 
988 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
989 						CRYPTO_ALG_NEED_FALLBACK |
990 						CRYPTO_ALG_ASYNC);
991 	if (IS_ERR(ctx->sw_cipher.aead))
992 		return PTR_ERR(ctx->sw_cipher.aead);
993 
994 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
995 	crypto4xx_ctx_init(amcc_alg, ctx);
996 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
997 				crypto_aead_reqsize(ctx->sw_cipher.aead),
998 				sizeof(struct crypto4xx_aead_reqctx)));
999 	return 0;
1000 }
1001 
1002 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1003 {
1004 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1005 
1006 	crypto4xx_common_exit(ctx);
1007 	crypto_free_aead(ctx->sw_cipher.aead);
1008 }
1009 
1010 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1011 				  struct crypto4xx_alg_common *crypto_alg,
1012 				  int array_size)
1013 {
1014 	struct crypto4xx_alg *alg;
1015 	int i;
1016 	int rc = 0;
1017 
1018 	for (i = 0; i < array_size; i++) {
1019 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1020 		if (!alg)
1021 			return -ENOMEM;
1022 
1023 		alg->alg = crypto_alg[i];
1024 		alg->dev = sec_dev;
1025 
1026 		switch (alg->alg.type) {
1027 		case CRYPTO_ALG_TYPE_AEAD:
1028 			rc = crypto_register_aead(&alg->alg.u.aead);
1029 			break;
1030 
1031 		case CRYPTO_ALG_TYPE_AHASH:
1032 			rc = crypto_register_ahash(&alg->alg.u.hash);
1033 			break;
1034 
1035 		case CRYPTO_ALG_TYPE_RNG:
1036 			rc = crypto_register_rng(&alg->alg.u.rng);
1037 			break;
1038 
1039 		default:
1040 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1041 			break;
1042 		}
1043 
1044 		if (rc)
1045 			kfree(alg);
1046 		else
1047 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1054 {
1055 	struct crypto4xx_alg *alg, *tmp;
1056 
1057 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1058 		list_del(&alg->entry);
1059 		switch (alg->alg.type) {
1060 		case CRYPTO_ALG_TYPE_AHASH:
1061 			crypto_unregister_ahash(&alg->alg.u.hash);
1062 			break;
1063 
1064 		case CRYPTO_ALG_TYPE_AEAD:
1065 			crypto_unregister_aead(&alg->alg.u.aead);
1066 			break;
1067 
1068 		case CRYPTO_ALG_TYPE_RNG:
1069 			crypto_unregister_rng(&alg->alg.u.rng);
1070 			break;
1071 
1072 		default:
1073 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1074 		}
1075 		kfree(alg);
1076 	}
1077 }
1078 
1079 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1080 {
1081 	struct device *dev = (struct device *)data;
1082 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1083 	struct pd_uinfo *pd_uinfo;
1084 	struct ce_pd *pd;
1085 	u32 tail = core_dev->dev->pdr_tail;
1086 	u32 head = core_dev->dev->pdr_head;
1087 
1088 	do {
1089 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1090 		pd = &core_dev->dev->pdr[tail];
1091 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1092 		     ((READ_ONCE(pd->pd_ctl.w) &
1093 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1094 		       PD_CTL_PE_DONE)) {
1095 			crypto4xx_pd_done(core_dev->dev, tail);
1096 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1097 		} else {
1098 			/* if tail not done, break */
1099 			break;
1100 		}
1101 	} while (head != tail);
1102 }
1103 
1104 /**
1105  * Top Half of isr.
1106  */
1107 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1108 						      u32 clr_val)
1109 {
1110 	struct device *dev = (struct device *)data;
1111 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1112 
1113 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1114 	tasklet_schedule(&core_dev->tasklet);
1115 
1116 	return IRQ_HANDLED;
1117 }
1118 
1119 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1120 {
1121 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1122 }
1123 
1124 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1125 {
1126 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1127 		PPC4XX_TMO_ERR_INT);
1128 }
1129 
1130 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1131 				 u8 *data, unsigned int max)
1132 {
1133 	unsigned int i, curr = 0;
1134 	u32 val[2];
1135 
1136 	do {
1137 		/* trigger PRN generation */
1138 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1139 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1140 
1141 		for (i = 0; i < 1024; i++) {
1142 			/* usually 19 iterations are enough */
1143 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1144 			     CRYPTO4XX_PRNG_STAT_BUSY))
1145 				continue;
1146 
1147 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1148 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1149 			break;
1150 		}
1151 		if (i == 1024)
1152 			return -ETIMEDOUT;
1153 
1154 		if ((max - curr) >= 8) {
1155 			memcpy(data, &val, 8);
1156 			data += 8;
1157 			curr += 8;
1158 		} else {
1159 			/* copy only remaining bytes */
1160 			memcpy(data, &val, max - curr);
1161 			break;
1162 		}
1163 	} while (curr < max);
1164 
1165 	return curr;
1166 }
1167 
1168 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1169 				   const u8 *src, unsigned int slen,
1170 				   u8 *dstn, unsigned int dlen)
1171 {
1172 	struct rng_alg *alg = crypto_rng_alg(tfm);
1173 	struct crypto4xx_alg *amcc_alg;
1174 	struct crypto4xx_device *dev;
1175 	int ret;
1176 
1177 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1178 	dev = amcc_alg->dev;
1179 
1180 	mutex_lock(&dev->core_dev->rng_lock);
1181 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1182 	mutex_unlock(&dev->core_dev->rng_lock);
1183 	return ret;
1184 }
1185 
1186 
1187 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1188 			unsigned int slen)
1189 {
1190 	return 0;
1191 }
1192 
1193 /**
1194  * Supported Crypto Algorithms
1195  */
1196 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1197 	/* Crypto AES modes */
1198 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1199 		.base = {
1200 			.cra_name = "cbc(aes)",
1201 			.cra_driver_name = "cbc-aes-ppc4xx",
1202 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1203 			.cra_flags = CRYPTO_ALG_ASYNC |
1204 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1205 			.cra_blocksize = AES_BLOCK_SIZE,
1206 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1207 			.cra_module = THIS_MODULE,
1208 		},
1209 		.min_keysize = AES_MIN_KEY_SIZE,
1210 		.max_keysize = AES_MAX_KEY_SIZE,
1211 		.ivsize	= AES_IV_SIZE,
1212 		.setkey = crypto4xx_setkey_aes_cbc,
1213 		.encrypt = crypto4xx_encrypt_iv,
1214 		.decrypt = crypto4xx_decrypt_iv,
1215 		.init = crypto4xx_sk_init,
1216 		.exit = crypto4xx_sk_exit,
1217 	} },
1218 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1219 		.base = {
1220 			.cra_name = "cfb(aes)",
1221 			.cra_driver_name = "cfb-aes-ppc4xx",
1222 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1223 			.cra_flags = CRYPTO_ALG_ASYNC |
1224 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1225 			.cra_blocksize = AES_BLOCK_SIZE,
1226 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1227 			.cra_module = THIS_MODULE,
1228 		},
1229 		.min_keysize = AES_MIN_KEY_SIZE,
1230 		.max_keysize = AES_MAX_KEY_SIZE,
1231 		.ivsize	= AES_IV_SIZE,
1232 		.setkey	= crypto4xx_setkey_aes_cfb,
1233 		.encrypt = crypto4xx_encrypt_iv,
1234 		.decrypt = crypto4xx_decrypt_iv,
1235 		.init = crypto4xx_sk_init,
1236 		.exit = crypto4xx_sk_exit,
1237 	} },
1238 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1239 		.base = {
1240 			.cra_name = "ctr(aes)",
1241 			.cra_driver_name = "ctr-aes-ppc4xx",
1242 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1243 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1244 				CRYPTO_ALG_ASYNC |
1245 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1246 			.cra_blocksize = AES_BLOCK_SIZE,
1247 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1248 			.cra_module = THIS_MODULE,
1249 		},
1250 		.min_keysize = AES_MIN_KEY_SIZE,
1251 		.max_keysize = AES_MAX_KEY_SIZE,
1252 		.ivsize	= AES_IV_SIZE,
1253 		.setkey	= crypto4xx_setkey_aes_ctr,
1254 		.encrypt = crypto4xx_encrypt_ctr,
1255 		.decrypt = crypto4xx_decrypt_ctr,
1256 		.init = crypto4xx_sk_init,
1257 		.exit = crypto4xx_sk_exit,
1258 	} },
1259 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1260 		.base = {
1261 			.cra_name = "rfc3686(ctr(aes))",
1262 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1263 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1264 			.cra_flags = CRYPTO_ALG_ASYNC |
1265 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1266 			.cra_blocksize = AES_BLOCK_SIZE,
1267 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1268 			.cra_module = THIS_MODULE,
1269 		},
1270 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1271 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1272 		.ivsize	= CTR_RFC3686_IV_SIZE,
1273 		.setkey = crypto4xx_setkey_rfc3686,
1274 		.encrypt = crypto4xx_rfc3686_encrypt,
1275 		.decrypt = crypto4xx_rfc3686_decrypt,
1276 		.init = crypto4xx_sk_init,
1277 		.exit = crypto4xx_sk_exit,
1278 	} },
1279 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1280 		.base = {
1281 			.cra_name = "ecb(aes)",
1282 			.cra_driver_name = "ecb-aes-ppc4xx",
1283 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1284 			.cra_flags = CRYPTO_ALG_ASYNC |
1285 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1286 			.cra_blocksize = AES_BLOCK_SIZE,
1287 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1288 			.cra_module = THIS_MODULE,
1289 		},
1290 		.min_keysize = AES_MIN_KEY_SIZE,
1291 		.max_keysize = AES_MAX_KEY_SIZE,
1292 		.setkey	= crypto4xx_setkey_aes_ecb,
1293 		.encrypt = crypto4xx_encrypt_noiv,
1294 		.decrypt = crypto4xx_decrypt_noiv,
1295 		.init = crypto4xx_sk_init,
1296 		.exit = crypto4xx_sk_exit,
1297 	} },
1298 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1299 		.base = {
1300 			.cra_name = "ofb(aes)",
1301 			.cra_driver_name = "ofb-aes-ppc4xx",
1302 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1303 			.cra_flags = CRYPTO_ALG_ASYNC |
1304 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1305 			.cra_blocksize = AES_BLOCK_SIZE,
1306 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1307 			.cra_module = THIS_MODULE,
1308 		},
1309 		.min_keysize = AES_MIN_KEY_SIZE,
1310 		.max_keysize = AES_MAX_KEY_SIZE,
1311 		.ivsize	= AES_IV_SIZE,
1312 		.setkey	= crypto4xx_setkey_aes_ofb,
1313 		.encrypt = crypto4xx_encrypt_iv,
1314 		.decrypt = crypto4xx_decrypt_iv,
1315 		.init = crypto4xx_sk_init,
1316 		.exit = crypto4xx_sk_exit,
1317 	} },
1318 
1319 	/* AEAD */
1320 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1321 		.setkey		= crypto4xx_setkey_aes_ccm,
1322 		.setauthsize	= crypto4xx_setauthsize_aead,
1323 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1324 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1325 		.init		= crypto4xx_aead_init,
1326 		.exit		= crypto4xx_aead_exit,
1327 		.ivsize		= AES_BLOCK_SIZE,
1328 		.maxauthsize    = 16,
1329 		.base = {
1330 			.cra_name	= "ccm(aes)",
1331 			.cra_driver_name = "ccm-aes-ppc4xx",
1332 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1333 			.cra_flags	= CRYPTO_ALG_ASYNC |
1334 					  CRYPTO_ALG_NEED_FALLBACK |
1335 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1336 			.cra_blocksize	= 1,
1337 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1338 			.cra_module	= THIS_MODULE,
1339 		},
1340 	} },
1341 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1342 		.setkey		= crypto4xx_setkey_aes_gcm,
1343 		.setauthsize	= crypto4xx_setauthsize_aead,
1344 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1345 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1346 		.init		= crypto4xx_aead_init,
1347 		.exit		= crypto4xx_aead_exit,
1348 		.ivsize		= GCM_AES_IV_SIZE,
1349 		.maxauthsize	= 16,
1350 		.base = {
1351 			.cra_name	= "gcm(aes)",
1352 			.cra_driver_name = "gcm-aes-ppc4xx",
1353 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1354 			.cra_flags	= CRYPTO_ALG_ASYNC |
1355 					  CRYPTO_ALG_NEED_FALLBACK |
1356 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1357 			.cra_blocksize	= 1,
1358 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1359 			.cra_module	= THIS_MODULE,
1360 		},
1361 	} },
1362 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1363 		.base = {
1364 			.cra_name		= "stdrng",
1365 			.cra_driver_name        = "crypto4xx_rng",
1366 			.cra_priority		= 300,
1367 			.cra_ctxsize		= 0,
1368 			.cra_module		= THIS_MODULE,
1369 		},
1370 		.generate               = crypto4xx_prng_generate,
1371 		.seed                   = crypto4xx_prng_seed,
1372 		.seedsize               = 0,
1373 	} },
1374 };
1375 
1376 /**
1377  * Module Initialization Routine
1378  */
1379 static int crypto4xx_probe(struct platform_device *ofdev)
1380 {
1381 	int rc;
1382 	struct resource res;
1383 	struct device *dev = &ofdev->dev;
1384 	struct crypto4xx_core_device *core_dev;
1385 	u32 pvr;
1386 	bool is_revb = true;
1387 
1388 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1389 	if (rc)
1390 		return -ENODEV;
1391 
1392 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1393 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1394 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1395 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1396 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1397 	} else if (of_find_compatible_node(NULL, NULL,
1398 			"amcc,ppc405ex-crypto")) {
1399 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1400 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1401 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1402 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1403 		is_revb = false;
1404 	} else if (of_find_compatible_node(NULL, NULL,
1405 			"amcc,ppc460sx-crypto")) {
1406 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1407 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1408 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1409 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1410 	} else {
1411 		printk(KERN_ERR "Crypto Function Not supported!\n");
1412 		return -EINVAL;
1413 	}
1414 
1415 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1416 	if (!core_dev)
1417 		return -ENOMEM;
1418 
1419 	dev_set_drvdata(dev, core_dev);
1420 	core_dev->ofdev = ofdev;
1421 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1422 	rc = -ENOMEM;
1423 	if (!core_dev->dev)
1424 		goto err_alloc_dev;
1425 
1426 	/*
1427 	 * Older version of 460EX/GT have a hardware bug.
1428 	 * Hence they do not support H/W based security intr coalescing
1429 	 */
1430 	pvr = mfspr(SPRN_PVR);
1431 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1432 		u32 min = PVR_MIN(pvr);
1433 
1434 		if (min < 4) {
1435 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1436 			is_revb = false;
1437 		}
1438 	}
1439 
1440 	core_dev->dev->core_dev = core_dev;
1441 	core_dev->dev->is_revb = is_revb;
1442 	core_dev->device = dev;
1443 	mutex_init(&core_dev->rng_lock);
1444 	spin_lock_init(&core_dev->lock);
1445 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1446 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1447 	rc = crypto4xx_build_pdr(core_dev->dev);
1448 	if (rc)
1449 		goto err_build_pdr;
1450 
1451 	rc = crypto4xx_build_gdr(core_dev->dev);
1452 	if (rc)
1453 		goto err_build_pdr;
1454 
1455 	rc = crypto4xx_build_sdr(core_dev->dev);
1456 	if (rc)
1457 		goto err_build_sdr;
1458 
1459 	/* Init tasklet for bottom half processing */
1460 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1461 		     (unsigned long) dev);
1462 
1463 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1464 	if (!core_dev->dev->ce_base) {
1465 		dev_err(dev, "failed to of_iomap\n");
1466 		rc = -ENOMEM;
1467 		goto err_iomap;
1468 	}
1469 
1470 	/* Register for Crypto isr, Crypto Engine IRQ */
1471 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1472 	rc = request_irq(core_dev->irq, is_revb ?
1473 			 crypto4xx_ce_interrupt_handler_revb :
1474 			 crypto4xx_ce_interrupt_handler, 0,
1475 			 KBUILD_MODNAME, dev);
1476 	if (rc)
1477 		goto err_request_irq;
1478 
1479 	/* need to setup pdr, rdr, gdr and sdr before this */
1480 	crypto4xx_hw_init(core_dev->dev);
1481 
1482 	/* Register security algorithms with Linux CryptoAPI */
1483 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1484 			       ARRAY_SIZE(crypto4xx_alg));
1485 	if (rc)
1486 		goto err_start_dev;
1487 
1488 	ppc4xx_trng_probe(core_dev);
1489 	return 0;
1490 
1491 err_start_dev:
1492 	free_irq(core_dev->irq, dev);
1493 err_request_irq:
1494 	irq_dispose_mapping(core_dev->irq);
1495 	iounmap(core_dev->dev->ce_base);
1496 err_iomap:
1497 	tasklet_kill(&core_dev->tasklet);
1498 err_build_sdr:
1499 	crypto4xx_destroy_sdr(core_dev->dev);
1500 	crypto4xx_destroy_gdr(core_dev->dev);
1501 err_build_pdr:
1502 	crypto4xx_destroy_pdr(core_dev->dev);
1503 	kfree(core_dev->dev);
1504 err_alloc_dev:
1505 	kfree(core_dev);
1506 
1507 	return rc;
1508 }
1509 
1510 static int crypto4xx_remove(struct platform_device *ofdev)
1511 {
1512 	struct device *dev = &ofdev->dev;
1513 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1514 
1515 	ppc4xx_trng_remove(core_dev);
1516 
1517 	free_irq(core_dev->irq, dev);
1518 	irq_dispose_mapping(core_dev->irq);
1519 
1520 	tasklet_kill(&core_dev->tasklet);
1521 	/* Un-register with Linux CryptoAPI */
1522 	crypto4xx_unregister_alg(core_dev->dev);
1523 	mutex_destroy(&core_dev->rng_lock);
1524 	/* Free all allocated memory */
1525 	crypto4xx_stop_all(core_dev);
1526 
1527 	return 0;
1528 }
1529 
1530 static const struct of_device_id crypto4xx_match[] = {
1531 	{ .compatible      = "amcc,ppc4xx-crypto",},
1532 	{ },
1533 };
1534 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1535 
1536 static struct platform_driver crypto4xx_driver = {
1537 	.driver = {
1538 		.name = KBUILD_MODNAME,
1539 		.of_match_table = crypto4xx_match,
1540 	},
1541 	.probe		= crypto4xx_probe,
1542 	.remove		= crypto4xx_remove,
1543 };
1544 
1545 module_platform_driver(crypto4xx_driver);
1546 
1547 MODULE_LICENSE("GPL");
1548 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1549 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1550