1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aes.h>
39 #include <crypto/sha.h>
40 #include "crypto4xx_reg_def.h"
41 #include "crypto4xx_core.h"
42 #include "crypto4xx_sa.h"
43 #include "crypto4xx_trng.h"
44 
45 #define PPC4XX_SEC_VERSION_STR			"0.5"
46 
47 /**
48  * PPC4xx Crypto Engine Initialization Routine
49  */
50 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51 {
52 	union ce_ring_size ring_size;
53 	union ce_ring_control ring_ctrl;
54 	union ce_part_ring_size part_ring_size;
55 	union ce_io_threshold io_threshold;
56 	u32 rand_num;
57 	union ce_pe_dma_cfg pe_dma_cfg;
58 	u32 device_ctrl;
59 
60 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62 	pe_dma_cfg.w = 0;
63 	pe_dma_cfg.bf.bo_sgpd_en = 1;
64 	pe_dma_cfg.bf.bo_data_en = 0;
65 	pe_dma_cfg.bf.bo_sa_en = 1;
66 	pe_dma_cfg.bf.bo_pd_en = 1;
67 	pe_dma_cfg.bf.dynamic_sa_en = 1;
68 	pe_dma_cfg.bf.reset_sg = 1;
69 	pe_dma_cfg.bf.reset_pdr = 1;
70 	pe_dma_cfg.bf.reset_pe = 1;
71 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72 	/* un reset pe,sg and pdr */
73 	pe_dma_cfg.bf.pe_mode = 0;
74 	pe_dma_cfg.bf.reset_sg = 0;
75 	pe_dma_cfg.bf.reset_pdr = 0;
76 	pe_dma_cfg.bf.reset_pe = 0;
77 	pe_dma_cfg.bf.bo_td_en = 0;
78 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82 	get_random_bytes(&rand_num, sizeof(rand_num));
83 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84 	get_random_bytes(&rand_num, sizeof(rand_num));
85 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86 	ring_size.w = 0;
87 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90 	ring_ctrl.w = 0;
91 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93 	device_ctrl |= PPC4XX_DC_3DES_EN;
94 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97 	part_ring_size.w = 0;
98 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102 	io_threshold.w = 0;
103 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113 	/* un reset pe,sg and pdr */
114 	pe_dma_cfg.bf.pe_mode = 1;
115 	pe_dma_cfg.bf.reset_sg = 0;
116 	pe_dma_cfg.bf.reset_pdr = 0;
117 	pe_dma_cfg.bf.reset_pe = 0;
118 	pe_dma_cfg.bf.bo_td_en = 0;
119 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120 	/*clear all pending interrupt*/
121 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125 	writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
126 }
127 
128 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
129 {
130 	ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
131 					&ctx->sa_in_dma_addr, GFP_ATOMIC);
132 	if (ctx->sa_in == NULL)
133 		return -ENOMEM;
134 
135 	ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
136 					 &ctx->sa_out_dma_addr, GFP_ATOMIC);
137 	if (ctx->sa_out == NULL) {
138 		dma_free_coherent(ctx->dev->core_dev->device, size * 4,
139 				  ctx->sa_in, ctx->sa_in_dma_addr);
140 		return -ENOMEM;
141 	}
142 
143 	memset(ctx->sa_in, 0, size * 4);
144 	memset(ctx->sa_out, 0, size * 4);
145 	ctx->sa_len = size;
146 
147 	return 0;
148 }
149 
150 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
151 {
152 	if (ctx->sa_in != NULL)
153 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
154 				  ctx->sa_in, ctx->sa_in_dma_addr);
155 	if (ctx->sa_out != NULL)
156 		dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
157 				  ctx->sa_out, ctx->sa_out_dma_addr);
158 
159 	ctx->sa_in_dma_addr = 0;
160 	ctx->sa_out_dma_addr = 0;
161 	ctx->sa_len = 0;
162 }
163 
164 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
165 {
166 	ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
167 				sizeof(struct sa_state_record),
168 				&ctx->state_record_dma_addr, GFP_ATOMIC);
169 	if (!ctx->state_record_dma_addr)
170 		return -ENOMEM;
171 	memset(ctx->state_record, 0, sizeof(struct sa_state_record));
172 
173 	return 0;
174 }
175 
176 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
177 {
178 	if (ctx->state_record != NULL)
179 		dma_free_coherent(ctx->dev->core_dev->device,
180 				  sizeof(struct sa_state_record),
181 				  ctx->state_record,
182 				  ctx->state_record_dma_addr);
183 	ctx->state_record_dma_addr = 0;
184 }
185 
186 /**
187  * alloc memory for the gather ring
188  * no need to alloc buf for the ring
189  * gdr_tail, gdr_head and gdr_count are initialized by this function
190  */
191 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
192 {
193 	int i;
194 	struct pd_uinfo *pd_uinfo;
195 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
196 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
197 				      &dev->pdr_pa, GFP_ATOMIC);
198 	if (!dev->pdr)
199 		return -ENOMEM;
200 
201 	dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
202 				GFP_KERNEL);
203 	if (!dev->pdr_uinfo) {
204 		dma_free_coherent(dev->core_dev->device,
205 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
206 				  dev->pdr,
207 				  dev->pdr_pa);
208 		return -ENOMEM;
209 	}
210 	memset(dev->pdr, 0,  sizeof(struct ce_pd) * PPC4XX_NUM_PD);
211 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
212 				   256 * PPC4XX_NUM_PD,
213 				   &dev->shadow_sa_pool_pa,
214 				   GFP_ATOMIC);
215 	if (!dev->shadow_sa_pool)
216 		return -ENOMEM;
217 
218 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
219 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
220 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
221 	if (!dev->shadow_sr_pool)
222 		return -ENOMEM;
223 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
224 		pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
225 						sizeof(struct pd_uinfo) * i);
226 
227 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
228 		pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
229 		pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
230 
231 		/* alloc state record */
232 		pd_uinfo->sr_va = dev->shadow_sr_pool +
233 		    sizeof(struct sa_state_record) * i;
234 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
235 		    sizeof(struct sa_state_record) * i;
236 	}
237 
238 	return 0;
239 }
240 
241 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
242 {
243 	if (dev->pdr != NULL)
244 		dma_free_coherent(dev->core_dev->device,
245 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
246 				  dev->pdr, dev->pdr_pa);
247 	if (dev->shadow_sa_pool)
248 		dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
249 				  dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
250 	if (dev->shadow_sr_pool)
251 		dma_free_coherent(dev->core_dev->device,
252 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
253 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
254 
255 	kfree(dev->pdr_uinfo);
256 }
257 
258 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
259 {
260 	u32 retval;
261 	u32 tmp;
262 
263 	retval = dev->pdr_head;
264 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
265 
266 	if (tmp == dev->pdr_tail)
267 		return ERING_WAS_FULL;
268 
269 	dev->pdr_head = tmp;
270 
271 	return retval;
272 }
273 
274 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
275 {
276 	struct pd_uinfo *pd_uinfo;
277 	unsigned long flags;
278 
279 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
280 				       sizeof(struct pd_uinfo) * idx);
281 	spin_lock_irqsave(&dev->core_dev->lock, flags);
282 	if (dev->pdr_tail != PPC4XX_LAST_PD)
283 		dev->pdr_tail++;
284 	else
285 		dev->pdr_tail = 0;
286 	pd_uinfo->state = PD_ENTRY_FREE;
287 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
288 
289 	return 0;
290 }
291 
292 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
293 				       dma_addr_t *pd_dma, u32 idx)
294 {
295 	*pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
296 
297 	return dev->pdr + sizeof(struct ce_pd) * idx;
298 }
299 
300 /**
301  * alloc memory for the gather ring
302  * no need to alloc buf for the ring
303  * gdr_tail, gdr_head and gdr_count are initialized by this function
304  */
305 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
306 {
307 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
308 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
309 				      &dev->gdr_pa, GFP_ATOMIC);
310 	if (!dev->gdr)
311 		return -ENOMEM;
312 
313 	memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
314 
315 	return 0;
316 }
317 
318 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
319 {
320 	dma_free_coherent(dev->core_dev->device,
321 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
322 			  dev->gdr, dev->gdr_pa);
323 }
324 
325 /*
326  * when this function is called.
327  * preemption or interrupt must be disabled
328  */
329 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
330 {
331 	u32 retval;
332 	u32 tmp;
333 	if (n >= PPC4XX_NUM_GD)
334 		return ERING_WAS_FULL;
335 
336 	retval = dev->gdr_head;
337 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
338 	if (dev->gdr_head > dev->gdr_tail) {
339 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
340 			return ERING_WAS_FULL;
341 	} else if (dev->gdr_head < dev->gdr_tail) {
342 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
343 			return ERING_WAS_FULL;
344 	}
345 	dev->gdr_head = tmp;
346 
347 	return retval;
348 }
349 
350 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&dev->core_dev->lock, flags);
355 	if (dev->gdr_tail == dev->gdr_head) {
356 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
357 		return 0;
358 	}
359 
360 	if (dev->gdr_tail != PPC4XX_LAST_GD)
361 		dev->gdr_tail++;
362 	else
363 		dev->gdr_tail = 0;
364 
365 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
366 
367 	return 0;
368 }
369 
370 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
371 					      dma_addr_t *gd_dma, u32 idx)
372 {
373 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
374 
375 	return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
376 }
377 
378 /**
379  * alloc memory for the scatter ring
380  * need to alloc buf for the ring
381  * sdr_tail, sdr_head and sdr_count are initialized by this function
382  */
383 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
384 {
385 	int i;
386 	struct ce_sd *sd_array;
387 
388 	/* alloc memory for scatter descriptor ring */
389 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
390 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
391 				      &dev->sdr_pa, GFP_ATOMIC);
392 	if (!dev->sdr)
393 		return -ENOMEM;
394 
395 	dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
396 	dev->scatter_buffer_va =
397 		dma_alloc_coherent(dev->core_dev->device,
398 			dev->scatter_buffer_size * PPC4XX_NUM_SD,
399 			&dev->scatter_buffer_pa, GFP_ATOMIC);
400 	if (!dev->scatter_buffer_va) {
401 		dma_free_coherent(dev->core_dev->device,
402 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
403 				  dev->sdr, dev->sdr_pa);
404 		return -ENOMEM;
405 	}
406 
407 	sd_array = dev->sdr;
408 
409 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
410 		sd_array[i].ptr = dev->scatter_buffer_pa +
411 				  dev->scatter_buffer_size * i;
412 	}
413 
414 	return 0;
415 }
416 
417 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
418 {
419 	if (dev->sdr != NULL)
420 		dma_free_coherent(dev->core_dev->device,
421 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
422 				  dev->sdr, dev->sdr_pa);
423 
424 	if (dev->scatter_buffer_va != NULL)
425 		dma_free_coherent(dev->core_dev->device,
426 				  dev->scatter_buffer_size * PPC4XX_NUM_SD,
427 				  dev->scatter_buffer_va,
428 				  dev->scatter_buffer_pa);
429 }
430 
431 /*
432  * when this function is called.
433  * preemption or interrupt must be disabled
434  */
435 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
436 {
437 	u32 retval;
438 	u32 tmp;
439 
440 	if (n >= PPC4XX_NUM_SD)
441 		return ERING_WAS_FULL;
442 
443 	retval = dev->sdr_head;
444 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
445 	if (dev->sdr_head > dev->gdr_tail) {
446 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
447 			return ERING_WAS_FULL;
448 	} else if (dev->sdr_head < dev->sdr_tail) {
449 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
450 			return ERING_WAS_FULL;
451 	} /* the head = tail, or empty case is already take cared */
452 	dev->sdr_head = tmp;
453 
454 	return retval;
455 }
456 
457 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
458 {
459 	unsigned long flags;
460 
461 	spin_lock_irqsave(&dev->core_dev->lock, flags);
462 	if (dev->sdr_tail == dev->sdr_head) {
463 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
464 		return 0;
465 	}
466 	if (dev->sdr_tail != PPC4XX_LAST_SD)
467 		dev->sdr_tail++;
468 	else
469 		dev->sdr_tail = 0;
470 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
471 
472 	return 0;
473 }
474 
475 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
476 					      dma_addr_t *sd_dma, u32 idx)
477 {
478 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
479 
480 	return  (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
481 }
482 
483 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
484 				   dma_addr_t *addr, u32 *length,
485 				   u32 *idx, u32 *offset, u32 *nbytes)
486 {
487 	u32 len;
488 
489 	if (*length > dev->scatter_buffer_size) {
490 		memcpy(phys_to_virt(*addr),
491 			dev->scatter_buffer_va +
492 			*idx * dev->scatter_buffer_size + *offset,
493 			dev->scatter_buffer_size);
494 		*offset = 0;
495 		*length -= dev->scatter_buffer_size;
496 		*nbytes -= dev->scatter_buffer_size;
497 		if (*idx == PPC4XX_LAST_SD)
498 			*idx = 0;
499 		else
500 			(*idx)++;
501 		*addr = *addr +  dev->scatter_buffer_size;
502 		return 1;
503 	} else if (*length < dev->scatter_buffer_size) {
504 		memcpy(phys_to_virt(*addr),
505 			dev->scatter_buffer_va +
506 			*idx * dev->scatter_buffer_size + *offset, *length);
507 		if ((*offset + *length) == dev->scatter_buffer_size) {
508 			if (*idx == PPC4XX_LAST_SD)
509 				*idx = 0;
510 			else
511 				(*idx)++;
512 			*nbytes -= *length;
513 			*offset = 0;
514 		} else {
515 			*nbytes -= *length;
516 			*offset += *length;
517 		}
518 
519 		return 0;
520 	} else {
521 		len = (*nbytes <= dev->scatter_buffer_size) ?
522 				(*nbytes) : dev->scatter_buffer_size;
523 		memcpy(phys_to_virt(*addr),
524 			dev->scatter_buffer_va +
525 			*idx * dev->scatter_buffer_size + *offset,
526 			len);
527 		*offset = 0;
528 		*nbytes -= len;
529 
530 		if (*idx == PPC4XX_LAST_SD)
531 			*idx = 0;
532 		else
533 			(*idx)++;
534 
535 		return 0;
536     }
537 }
538 
539 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
540 				      struct ce_pd *pd,
541 				      struct pd_uinfo *pd_uinfo,
542 				      u32 nbytes,
543 				      struct scatterlist *dst)
544 {
545 	dma_addr_t addr;
546 	u32 this_sd;
547 	u32 offset;
548 	u32 len;
549 	u32 i;
550 	u32 sg_len;
551 	struct scatterlist *sg;
552 
553 	this_sd = pd_uinfo->first_sd;
554 	offset = 0;
555 	i = 0;
556 
557 	while (nbytes) {
558 		sg = &dst[i];
559 		sg_len = sg->length;
560 		addr = dma_map_page(dev->core_dev->device, sg_page(sg),
561 				sg->offset, sg->length, DMA_TO_DEVICE);
562 
563 		if (offset == 0) {
564 			len = (nbytes <= sg->length) ? nbytes : sg->length;
565 			while (crypto4xx_fill_one_page(dev, &addr, &len,
566 				&this_sd, &offset, &nbytes))
567 				;
568 			if (!nbytes)
569 				return;
570 			i++;
571 		} else {
572 			len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
573 				nbytes : (dev->scatter_buffer_size - offset);
574 			len = (sg->length < len) ? sg->length : len;
575 			while (crypto4xx_fill_one_page(dev, &addr, &len,
576 					       &this_sd, &offset, &nbytes))
577 				;
578 			if (!nbytes)
579 				return;
580 			sg_len -= len;
581 			if (sg_len) {
582 				addr += len;
583 				while (crypto4xx_fill_one_page(dev, &addr,
584 					&sg_len, &this_sd, &offset, &nbytes))
585 					;
586 			}
587 			i++;
588 		}
589 	}
590 }
591 
592 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
593 					struct crypto4xx_ctx *ctx)
594 {
595 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
596 	struct sa_state_record *state_record =
597 				(struct sa_state_record *) pd_uinfo->sr_va;
598 
599 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
600 		memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
601 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
602 	}
603 
604 	return 0;
605 }
606 
607 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
608 				  struct pd_uinfo *pd_uinfo)
609 {
610 	int i;
611 	if (pd_uinfo->num_gd) {
612 		for (i = 0; i < pd_uinfo->num_gd; i++)
613 			crypto4xx_put_gd_to_gdr(dev);
614 		pd_uinfo->first_gd = 0xffffffff;
615 		pd_uinfo->num_gd = 0;
616 	}
617 	if (pd_uinfo->num_sd) {
618 		for (i = 0; i < pd_uinfo->num_sd; i++)
619 			crypto4xx_put_sd_to_sdr(dev);
620 
621 		pd_uinfo->first_sd = 0xffffffff;
622 		pd_uinfo->num_sd = 0;
623 	}
624 }
625 
626 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
627 				     struct pd_uinfo *pd_uinfo,
628 				     struct ce_pd *pd)
629 {
630 	struct crypto4xx_ctx *ctx;
631 	struct ablkcipher_request *ablk_req;
632 	struct scatterlist *dst;
633 	dma_addr_t addr;
634 
635 	ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
636 	ctx  = crypto_tfm_ctx(ablk_req->base.tfm);
637 
638 	if (pd_uinfo->using_sd) {
639 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
640 					  ablk_req->dst);
641 	} else {
642 		dst = pd_uinfo->dest_va;
643 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
644 				    dst->offset, dst->length, DMA_FROM_DEVICE);
645 	}
646 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
647 	if (ablk_req->base.complete != NULL)
648 		ablk_req->base.complete(&ablk_req->base, 0);
649 
650 	return 0;
651 }
652 
653 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
654 				struct pd_uinfo *pd_uinfo)
655 {
656 	struct crypto4xx_ctx *ctx;
657 	struct ahash_request *ahash_req;
658 
659 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
660 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
661 
662 	crypto4xx_copy_digest_to_dst(pd_uinfo,
663 				     crypto_tfm_ctx(ahash_req->base.tfm));
664 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
665 	/* call user provided callback function x */
666 	if (ahash_req->base.complete != NULL)
667 		ahash_req->base.complete(&ahash_req->base, 0);
668 
669 	return 0;
670 }
671 
672 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
673 {
674 	struct ce_pd *pd;
675 	struct pd_uinfo *pd_uinfo;
676 
677 	pd =  dev->pdr + sizeof(struct ce_pd)*idx;
678 	pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
679 	if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
680 			CRYPTO_ALG_TYPE_ABLKCIPHER)
681 		return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
682 	else
683 		return crypto4xx_ahash_done(dev, pd_uinfo);
684 }
685 
686 /**
687  * Note: Only use this function to copy items that is word aligned.
688  */
689 void crypto4xx_memcpy_le(unsigned int *dst,
690 			 const unsigned char *buf,
691 			 int len)
692 {
693 	u8 *tmp;
694 	for (; len >= 4; buf += 4, len -= 4)
695 		*dst++ = cpu_to_le32(*(unsigned int *) buf);
696 
697 	tmp = (u8 *)dst;
698 	switch (len) {
699 	case 3:
700 		*tmp++ = 0;
701 		*tmp++ = *(buf+2);
702 		*tmp++ = *(buf+1);
703 		*tmp++ = *buf;
704 		break;
705 	case 2:
706 		*tmp++ = 0;
707 		*tmp++ = 0;
708 		*tmp++ = *(buf+1);
709 		*tmp++ = *buf;
710 		break;
711 	case 1:
712 		*tmp++ = 0;
713 		*tmp++ = 0;
714 		*tmp++ = 0;
715 		*tmp++ = *buf;
716 		break;
717 	default:
718 		break;
719 	}
720 }
721 
722 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
723 {
724 	crypto4xx_destroy_pdr(core_dev->dev);
725 	crypto4xx_destroy_gdr(core_dev->dev);
726 	crypto4xx_destroy_sdr(core_dev->dev);
727 	iounmap(core_dev->dev->ce_base);
728 	kfree(core_dev->dev);
729 	kfree(core_dev);
730 }
731 
732 void crypto4xx_return_pd(struct crypto4xx_device *dev,
733 			 u32 pd_entry, struct ce_pd *pd,
734 			 struct pd_uinfo *pd_uinfo)
735 {
736 	/* irq should be already disabled */
737 	dev->pdr_head = pd_entry;
738 	pd->pd_ctl.w = 0;
739 	pd->pd_ctl_len.w = 0;
740 	pd_uinfo->state = PD_ENTRY_FREE;
741 }
742 
743 static u32 get_next_gd(u32 current)
744 {
745 	if (current != PPC4XX_LAST_GD)
746 		return current + 1;
747 	else
748 		return 0;
749 }
750 
751 static u32 get_next_sd(u32 current)
752 {
753 	if (current != PPC4XX_LAST_SD)
754 		return current + 1;
755 	else
756 		return 0;
757 }
758 
759 u32 crypto4xx_build_pd(struct crypto_async_request *req,
760 		       struct crypto4xx_ctx *ctx,
761 		       struct scatterlist *src,
762 		       struct scatterlist *dst,
763 		       unsigned int datalen,
764 		       void *iv, u32 iv_len)
765 {
766 	struct crypto4xx_device *dev = ctx->dev;
767 	dma_addr_t addr, pd_dma, sd_dma, gd_dma;
768 	struct dynamic_sa_ctl *sa;
769 	struct scatterlist *sg;
770 	struct ce_gd *gd;
771 	struct ce_pd *pd;
772 	u32 num_gd, num_sd;
773 	u32 fst_gd = 0xffffffff;
774 	u32 fst_sd = 0xffffffff;
775 	u32 pd_entry;
776 	unsigned long flags;
777 	struct pd_uinfo *pd_uinfo = NULL;
778 	unsigned int nbytes = datalen, idx;
779 	unsigned int ivlen = 0;
780 	u32 gd_idx = 0;
781 
782 	/* figure how many gd is needed */
783 	num_gd = sg_nents_for_len(src, datalen);
784 	if ((int)num_gd < 0) {
785 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
786 		return -EINVAL;
787 	}
788 	if (num_gd == 1)
789 		num_gd = 0;
790 
791 	/* figure how many sd is needed */
792 	if (sg_is_last(dst) || ctx->is_hash) {
793 		num_sd = 0;
794 	} else {
795 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
796 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
797 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
798 				num_sd++;
799 		} else {
800 			num_sd = 1;
801 		}
802 	}
803 
804 	/*
805 	 * The follow section of code needs to be protected
806 	 * The gather ring and scatter ring needs to be consecutive
807 	 * In case of run out of any kind of descriptor, the descriptor
808 	 * already got must be return the original place.
809 	 */
810 	spin_lock_irqsave(&dev->core_dev->lock, flags);
811 	if (num_gd) {
812 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
813 		if (fst_gd == ERING_WAS_FULL) {
814 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
815 			return -EAGAIN;
816 		}
817 	}
818 	if (num_sd) {
819 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
820 		if (fst_sd == ERING_WAS_FULL) {
821 			if (num_gd)
822 				dev->gdr_head = fst_gd;
823 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
824 			return -EAGAIN;
825 		}
826 	}
827 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
828 	if (pd_entry == ERING_WAS_FULL) {
829 		if (num_gd)
830 			dev->gdr_head = fst_gd;
831 		if (num_sd)
832 			dev->sdr_head = fst_sd;
833 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
834 		return -EAGAIN;
835 	}
836 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
837 
838 	pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
839 				       sizeof(struct pd_uinfo) * pd_entry);
840 	pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
841 	pd_uinfo->async_req = req;
842 	pd_uinfo->num_gd = num_gd;
843 	pd_uinfo->num_sd = num_sd;
844 
845 	if (iv_len || ctx->is_hash) {
846 		ivlen = iv_len;
847 		pd->sa = pd_uinfo->sa_pa;
848 		sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
849 		if (ctx->direction == DIR_INBOUND)
850 			memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
851 		else
852 			memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
853 
854 		memcpy((void *) sa + ctx->offset_to_sr_ptr,
855 			&pd_uinfo->sr_pa, 4);
856 
857 		if (iv_len)
858 			crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
859 	} else {
860 		if (ctx->direction == DIR_INBOUND) {
861 			pd->sa = ctx->sa_in_dma_addr;
862 			sa = (struct dynamic_sa_ctl *) ctx->sa_in;
863 		} else {
864 			pd->sa = ctx->sa_out_dma_addr;
865 			sa = (struct dynamic_sa_ctl *) ctx->sa_out;
866 		}
867 	}
868 	pd->sa_len = ctx->sa_len;
869 	if (num_gd) {
870 		/* get first gd we are going to use */
871 		gd_idx = fst_gd;
872 		pd_uinfo->first_gd = fst_gd;
873 		pd_uinfo->num_gd = num_gd;
874 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
875 		pd->src = gd_dma;
876 		/* enable gather */
877 		sa->sa_command_0.bf.gather = 1;
878 		idx = 0;
879 		src = &src[0];
880 		/* walk the sg, and setup gather array */
881 		while (nbytes) {
882 			sg = &src[idx];
883 			addr = dma_map_page(dev->core_dev->device, sg_page(sg),
884 				    sg->offset, sg->length, DMA_TO_DEVICE);
885 			gd->ptr = addr;
886 			gd->ctl_len.len = sg->length;
887 			gd->ctl_len.done = 0;
888 			gd->ctl_len.ready = 1;
889 			if (sg->length >= nbytes)
890 				break;
891 			nbytes -= sg->length;
892 			gd_idx = get_next_gd(gd_idx);
893 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
894 			idx++;
895 		}
896 	} else {
897 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
898 				src->offset, src->length, DMA_TO_DEVICE);
899 		/*
900 		 * Disable gather in sa command
901 		 */
902 		sa->sa_command_0.bf.gather = 0;
903 		/*
904 		 * Indicate gather array is not used
905 		 */
906 		pd_uinfo->first_gd = 0xffffffff;
907 		pd_uinfo->num_gd = 0;
908 	}
909 	if (ctx->is_hash || sg_is_last(dst)) {
910 		/*
911 		 * we know application give us dst a whole piece of memory
912 		 * no need to use scatter ring.
913 		 * In case of is_hash, the icv is always at end of src data.
914 		 */
915 		pd_uinfo->using_sd = 0;
916 		pd_uinfo->first_sd = 0xffffffff;
917 		pd_uinfo->num_sd = 0;
918 		pd_uinfo->dest_va = dst;
919 		sa->sa_command_0.bf.scatter = 0;
920 		if (ctx->is_hash)
921 			pd->dest = virt_to_phys((void *)dst);
922 		else
923 			pd->dest = (u32)dma_map_page(dev->core_dev->device,
924 					sg_page(dst), dst->offset,
925 					dst->length, DMA_TO_DEVICE);
926 	} else {
927 		struct ce_sd *sd = NULL;
928 		u32 sd_idx = fst_sd;
929 		nbytes = datalen;
930 		sa->sa_command_0.bf.scatter = 1;
931 		pd_uinfo->using_sd = 1;
932 		pd_uinfo->dest_va = dst;
933 		pd_uinfo->first_sd = fst_sd;
934 		pd_uinfo->num_sd = num_sd;
935 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
936 		pd->dest = sd_dma;
937 		/* setup scatter descriptor */
938 		sd->ctl.done = 0;
939 		sd->ctl.rdy = 1;
940 		/* sd->ptr should be setup by sd_init routine*/
941 		idx = 0;
942 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
943 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
944 		else
945 			nbytes = 0;
946 		while (nbytes) {
947 			sd_idx = get_next_sd(sd_idx);
948 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
949 			/* setup scatter descriptor */
950 			sd->ctl.done = 0;
951 			sd->ctl.rdy = 1;
952 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
953 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
954 			else
955 				/*
956 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
957 				 * which is more than nbytes, so done.
958 				 */
959 				nbytes = 0;
960 		}
961 	}
962 
963 	sa->sa_command_1.bf.hash_crypto_offset = 0;
964 	pd->pd_ctl.w = ctx->pd_ctl;
965 	pd->pd_ctl_len.w = 0x00400000 | datalen;
966 	pd_uinfo->state = PD_ENTRY_INUSE;
967 	wmb();
968 	/* write any value to push engine to read a pd */
969 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
970 	return -EINPROGRESS;
971 }
972 
973 /**
974  * Algorithm Registration Functions
975  */
976 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
977 {
978 	struct crypto_alg *alg = tfm->__crt_alg;
979 	struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
980 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
981 
982 	ctx->dev = amcc_alg->dev;
983 	ctx->sa_in = NULL;
984 	ctx->sa_out = NULL;
985 	ctx->sa_in_dma_addr = 0;
986 	ctx->sa_out_dma_addr = 0;
987 	ctx->sa_len = 0;
988 
989 	switch (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
990 	default:
991 		tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
992 		break;
993 	case CRYPTO_ALG_TYPE_AHASH:
994 		crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
995 					 sizeof(struct crypto4xx_ctx));
996 		break;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1003 {
1004 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1005 
1006 	crypto4xx_free_sa(ctx);
1007 	crypto4xx_free_state_record(ctx);
1008 }
1009 
1010 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1011 			   struct crypto4xx_alg_common *crypto_alg,
1012 			   int array_size)
1013 {
1014 	struct crypto4xx_alg *alg;
1015 	int i;
1016 	int rc = 0;
1017 
1018 	for (i = 0; i < array_size; i++) {
1019 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1020 		if (!alg)
1021 			return -ENOMEM;
1022 
1023 		alg->alg = crypto_alg[i];
1024 		alg->dev = sec_dev;
1025 
1026 		switch (alg->alg.type) {
1027 		case CRYPTO_ALG_TYPE_AHASH:
1028 			rc = crypto_register_ahash(&alg->alg.u.hash);
1029 			break;
1030 
1031 		default:
1032 			rc = crypto_register_alg(&alg->alg.u.cipher);
1033 			break;
1034 		}
1035 
1036 		if (rc)
1037 			kfree(alg);
1038 		else
1039 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1046 {
1047 	struct crypto4xx_alg *alg, *tmp;
1048 
1049 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1050 		list_del(&alg->entry);
1051 		switch (alg->alg.type) {
1052 		case CRYPTO_ALG_TYPE_AHASH:
1053 			crypto_unregister_ahash(&alg->alg.u.hash);
1054 			break;
1055 
1056 		default:
1057 			crypto_unregister_alg(&alg->alg.u.cipher);
1058 		}
1059 		kfree(alg);
1060 	}
1061 }
1062 
1063 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1064 {
1065 	struct device *dev = (struct device *)data;
1066 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1067 	struct pd_uinfo *pd_uinfo;
1068 	struct ce_pd *pd;
1069 	u32 tail;
1070 
1071 	while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1072 		tail = core_dev->dev->pdr_tail;
1073 		pd_uinfo = core_dev->dev->pdr_uinfo +
1074 			sizeof(struct pd_uinfo)*tail;
1075 		pd =  core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1076 		if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1077 				   pd->pd_ctl.bf.pe_done &&
1078 				   !pd->pd_ctl.bf.host_ready) {
1079 			pd->pd_ctl.bf.pe_done = 0;
1080 			crypto4xx_pd_done(core_dev->dev, tail);
1081 			crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1082 			pd_uinfo->state = PD_ENTRY_FREE;
1083 		} else {
1084 			/* if tail not done, break */
1085 			break;
1086 		}
1087 	}
1088 }
1089 
1090 /**
1091  * Top Half of isr.
1092  */
1093 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1094 {
1095 	struct device *dev = (struct device *)data;
1096 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1097 
1098 	if (!core_dev->dev->ce_base)
1099 		return 0;
1100 
1101 	writel(PPC4XX_INTERRUPT_CLR,
1102 	       core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1103 	tasklet_schedule(&core_dev->tasklet);
1104 
1105 	return IRQ_HANDLED;
1106 }
1107 
1108 /**
1109  * Supported Crypto Algorithms
1110  */
1111 struct crypto4xx_alg_common crypto4xx_alg[] = {
1112 	/* Crypto AES modes */
1113 	{ .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1114 		.cra_name 	= "cbc(aes)",
1115 		.cra_driver_name = "cbc-aes-ppc4xx",
1116 		.cra_priority 	= CRYPTO4XX_CRYPTO_PRIORITY,
1117 		.cra_flags 	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1118 		.cra_blocksize 	= AES_BLOCK_SIZE,
1119 		.cra_ctxsize 	= sizeof(struct crypto4xx_ctx),
1120 		.cra_type 	= &crypto_ablkcipher_type,
1121 		.cra_init	= crypto4xx_alg_init,
1122 		.cra_exit	= crypto4xx_alg_exit,
1123 		.cra_module 	= THIS_MODULE,
1124 		.cra_u 		= {
1125 			.ablkcipher = {
1126 				.min_keysize 	= AES_MIN_KEY_SIZE,
1127 				.max_keysize 	= AES_MAX_KEY_SIZE,
1128 				.ivsize		= AES_IV_SIZE,
1129 				.setkey 	= crypto4xx_setkey_aes_cbc,
1130 				.encrypt 	= crypto4xx_encrypt,
1131 				.decrypt 	= crypto4xx_decrypt,
1132 			}
1133 		}
1134 	}},
1135 };
1136 
1137 /**
1138  * Module Initialization Routine
1139  */
1140 static int crypto4xx_probe(struct platform_device *ofdev)
1141 {
1142 	int rc;
1143 	struct resource res;
1144 	struct device *dev = &ofdev->dev;
1145 	struct crypto4xx_core_device *core_dev;
1146 
1147 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1148 	if (rc)
1149 		return -ENODEV;
1150 
1151 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1152 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1153 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1154 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1155 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1156 	} else if (of_find_compatible_node(NULL, NULL,
1157 			"amcc,ppc405ex-crypto")) {
1158 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1159 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1160 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1161 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1162 	} else if (of_find_compatible_node(NULL, NULL,
1163 			"amcc,ppc460sx-crypto")) {
1164 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1165 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1166 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1167 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1168 	} else {
1169 		printk(KERN_ERR "Crypto Function Not supported!\n");
1170 		return -EINVAL;
1171 	}
1172 
1173 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1174 	if (!core_dev)
1175 		return -ENOMEM;
1176 
1177 	dev_set_drvdata(dev, core_dev);
1178 	core_dev->ofdev = ofdev;
1179 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1180 	rc = -ENOMEM;
1181 	if (!core_dev->dev)
1182 		goto err_alloc_dev;
1183 
1184 	core_dev->dev->core_dev = core_dev;
1185 	core_dev->device = dev;
1186 	spin_lock_init(&core_dev->lock);
1187 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1188 	rc = crypto4xx_build_pdr(core_dev->dev);
1189 	if (rc)
1190 		goto err_build_pdr;
1191 
1192 	rc = crypto4xx_build_gdr(core_dev->dev);
1193 	if (rc)
1194 		goto err_build_gdr;
1195 
1196 	rc = crypto4xx_build_sdr(core_dev->dev);
1197 	if (rc)
1198 		goto err_build_sdr;
1199 
1200 	/* Init tasklet for bottom half processing */
1201 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1202 		     (unsigned long) dev);
1203 
1204 	/* Register for Crypto isr, Crypto Engine IRQ */
1205 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1206 	rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1207 			 core_dev->dev->name, dev);
1208 	if (rc)
1209 		goto err_request_irq;
1210 
1211 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1212 	if (!core_dev->dev->ce_base) {
1213 		dev_err(dev, "failed to of_iomap\n");
1214 		rc = -ENOMEM;
1215 		goto err_iomap;
1216 	}
1217 
1218 	/* need to setup pdr, rdr, gdr and sdr before this */
1219 	crypto4xx_hw_init(core_dev->dev);
1220 
1221 	/* Register security algorithms with Linux CryptoAPI */
1222 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1223 			       ARRAY_SIZE(crypto4xx_alg));
1224 	if (rc)
1225 		goto err_start_dev;
1226 
1227 	ppc4xx_trng_probe(core_dev);
1228 	return 0;
1229 
1230 err_start_dev:
1231 	iounmap(core_dev->dev->ce_base);
1232 err_iomap:
1233 	free_irq(core_dev->irq, dev);
1234 err_request_irq:
1235 	irq_dispose_mapping(core_dev->irq);
1236 	tasklet_kill(&core_dev->tasklet);
1237 	crypto4xx_destroy_sdr(core_dev->dev);
1238 err_build_sdr:
1239 	crypto4xx_destroy_gdr(core_dev->dev);
1240 err_build_gdr:
1241 	crypto4xx_destroy_pdr(core_dev->dev);
1242 err_build_pdr:
1243 	kfree(core_dev->dev);
1244 err_alloc_dev:
1245 	kfree(core_dev);
1246 
1247 	return rc;
1248 }
1249 
1250 static int crypto4xx_remove(struct platform_device *ofdev)
1251 {
1252 	struct device *dev = &ofdev->dev;
1253 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1254 
1255 	ppc4xx_trng_remove(core_dev);
1256 
1257 	free_irq(core_dev->irq, dev);
1258 	irq_dispose_mapping(core_dev->irq);
1259 
1260 	tasklet_kill(&core_dev->tasklet);
1261 	/* Un-register with Linux CryptoAPI */
1262 	crypto4xx_unregister_alg(core_dev->dev);
1263 	/* Free all allocated memory */
1264 	crypto4xx_stop_all(core_dev);
1265 
1266 	return 0;
1267 }
1268 
1269 static const struct of_device_id crypto4xx_match[] = {
1270 	{ .compatible      = "amcc,ppc4xx-crypto",},
1271 	{ },
1272 };
1273 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1274 
1275 static struct platform_driver crypto4xx_driver = {
1276 	.driver = {
1277 		.name = MODULE_NAME,
1278 		.of_match_table = crypto4xx_match,
1279 	},
1280 	.probe		= crypto4xx_probe,
1281 	.remove		= crypto4xx_remove,
1282 };
1283 
1284 module_platform_driver(crypto4xx_driver);
1285 
1286 MODULE_LICENSE("GPL");
1287 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1288 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1289